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—— Abstract

Let II(n) be the largest number such that for every set S of n points in a polygon P, there always
exist two points z,y € S, where every geodesic disk containing = and y contains II(n) points of S.
We establish upper and lower bounds for II(n), and show that [g] +1<TI(n) < (ﬂ + 1. We also
show that there always exist two points z,y € S such that every geodesic disk with z and y on its
boundary contains at least %(n —2) & M;g“ points both inside and outside the disk. For the
special case where the points of S are restricted to be the vertices of a geodesically convex polygon

we give a tight bound of [g-l + 1. We provide the same tight bound when we only consider geodesic
disks having = and y as diametral endpoints. Finally, we give a lower bound of ["5—_62] + 2 for the
two-colored version of the problem.
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1 Introduction

Given a set S of n points in the plane in general position — no three of them are collinear and
no four of them are cocircular — there always exist two points u,v € S such that any disk
that contains v and v also contains a constant fraction of S. Neumann-Lara and Urrutia [19]
proved that this constant fraction is at least {"6—’02
papers [14,15] culminating in the best known lower bound of about % by Edelsbrunner et
al. [13]. Hayward et al. [15] gave an upper bound by constructing a set of n points such that
for every pair of points u, v, there exists a disk with u, v on its boundary containing less than
[%1 points, thereby showing that [%1 + 1 is an upper bound for the problem. In addition,

they studied the problem for point sets in convex position, giving a tight bound of [%W + 1.

] This bound was improved in a series of

* Since the acceptance of this paper by the WADS Program Committee, the authors have improved some
bounds that can be found in the full version [11].
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Table 1 Summary of our results, comparing the Euclidean and geodesic settings. Note that
non-integer values in the table are approximations, and refer to the corresponding reference for the
exact value.

Variant Euclidean setting Geodesic setting
(see Def. 1) | Lower bound | Upper bound Lower bound Upper bound
II(n) =] [13] [41+4 1 [15] [£]+ 1 (Thm. 10) [41+1
M) | [1+1015 | [3]+1015 | [4]+1(Thm. 14) | [3]+1
Imeut (n) |2 [23] [27 + 1 [15] 2-21+1 (Thm. 12) 2741
o%em () [27+1 (2 [27+4+1 2] [2]+ 1 (Thm. 16) [27+4+1
[bichrom (p) =] [12] [21+1[12] | [%2]+2 (Thm. 18) [27+1

Another version of the problem is to consider disks in the plane having the points u and v
as diametral endpoints [2]. In this case, a tight bound of [%W + 1 for both the convex and
non-convex cases was shown.

The best known lower bound of (% — \/%) n+O(1) = f= was obtained in multiple ways,

see [12,13,23]. Edelsbrunner et al. [13] were the first to show this using techniques related
to the order-k Voronoi diagram. Ramos and Viafia [23] used known results about j-facets
of point sets in R3. In fact, these results allowed Ramos and Viaiia to prove that there is
always a pair of points such that any disk through them has at least ;% points both inside
and outside the disk.

Generalizations of the original problem to higher dimensions have been studied by Bardny

et al. [6] who proved that any set S C R? of n points in general position contains a subset A of
I(d—m—1)!

i a En

other points of S. Moreover, Bardny and Larman extended the results in [19] from Euclidean

size m = | §(d + 3)| such that, any ball with A on its boundary, contains at least

balls to ellipses in R? and, more generally, to quadrics in R? [5]. In particular, they showed
that any set S C R? of n points contains a subset A, of size Lid(d + 3)J +1, with the property
that any quadric through A, contains at least i+t points of S, where s = (dH)QM.

A colored version of the problem has also been studied in the literature: Given a set S
of 5 red and 5 blue points in the plane, there always exists a bichromatic pair of points
u,v € S such that any disk containing v and v contains at least a constant fraction of the n
points. Prodromou [22] proved! that any set S C R? colored with k = [%E2] colors contains
a subset A C S of k points, one of each color, such that any ball through all points in A
% points of S, which gives a fraction g5 for points in the plane. This
fraction for the two-dimensional case was later improved in [12] to (% - %) n—o(n) =~ g%.

We note that all the upper bounds in the Euclidean setting translate directly to the
geodesic setting by enclosing the constructions in a large enough triangle. Thus, in this
paper, we focus mainly on the lower bounds and address all variants of the problem in the
case where S is a set of n points inside a simple polygon P. In addition, throughout the
paper, we consider that n > 21, so that all our results hold.

We summarize all our results and compare them with the Euclidean setting in Table 1.

contains at least

In Section 3, we present an overview of key properties of shortest paths in P (which we
refer to as the geodesic setting), emphasizing both their similarities to and differences from

! Using techniques from Edelsbrunner et al. [13], a PhD thesis written in Spanish and not published

elsewhere had claimed before a lower bound of % ~ {7 [25].
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the Euclidean case. It is these differences that pose challenges we address to extend the
results to the geodesic setting. Using these properties, in Section 4, we extend the lower
bounds from the Euclidean case [14,19] to the geodesic setting. While the upper bounds
carry over directly, the lower bounds require new arguments due to the differences outlined in
Section 3. For instance, unlike the Euclidean metric, which has bounded doubling dimension,
the doubling dimension of the geodesic metric is not necessarily bounded since it depends on
the number of reflex vertices of P. Additionally, we establish a tight bound for the case where
the point set is in geodesically convex position. In Section 5, we show that the techniques

in [2], where only diametral disks are considered, can be generalized to the geodesic setting.

Finally, in Section 6 we extend the results in [22,25] for two-colored points.
The problem of studying the largest number of points contained in any disk through two
points inside a polygon is distinct from the planar case. As illustrated in Figure 1, a geodesic

disk of radius r in a polygon P can be strictly contained in a Euclidean disk of radius r.

As such, in this setting, it is unclear whether there always exists a pair of points such that
any geodesic disk through them can contain the same number of points as in the Euclidean
setting.

2 Preliminaries and notation

A sequence of points in the plane, pq,...,pn, forms a polygonal chain where the edges of
the chain are the segments p;p;4+1, for ¢ € {1,...,n — 1}. A polygonal chain is simple if
consecutive edges intersect at their common point and non-consecutive segments do not
intersect. In a graph theoretic sense, this is a path. A simple polygon is a simple closed
polygonal chain, i.e. a cycle. Informally, a polygon P is a weakly-simple polygon provided
that a slight perturbation of the vertices of the polygon results in a simple polygon. See
Akitaya et al. [1] for a formal definition of weakly-simple as well as an algorithm to quickly
recognize weakly-simple polygons. Given a pair of points u, v in a polygon P, the geodesic
(or shortest) path from u to v in P is denoted by g(u,v). It is well-known that g(u,v) is a
polygonal chain. The length of this path is the sum of the lengths of its edges and is denoted
by |g(u,v)|.

A subset P’ of P is called geodesically convex if, for all pairs of points u,v € P’, the
geodesic path g(u,v) is contained in P’. The geodesic convex hull of a set S of points in P is
the geodesically convex set of minimum area that contains S. We say that .S is in geodesically
convex position if every point of S is on the boundary of the geodesic convex hull of S. A
geodesic triangle on three points a,b,c € P, denoted A(a, b, ¢), is a weakly-simple polygon
whose boundary consists of g(a,b), g(b,c), and g(c,a). The geodesic paths g(a,b) and g(a, ¢)

follow a common route from a until they diverge at a point @’ (which may be a itself).

Similarly, let b" be the point where g(b, a) and g(b, ¢) diverge, and ¢’ be the point where g(c, a)
and g(c, b) diverge. The geodesic triangle A(a’, ¥, ¢') is a simple polygon that has a’,d" and
¢ as its convex vertices. The geodesic triangle A(a’, ¥, ¢') is referred to as the geodesic core
of A(a,b,c) with the vertices a’, V', ¢ referred to as the core vertices corresponding to the

vertices a, b, ¢, respectively. The geodesic core of A(a,b,c) is denoted as V(a,b,c) [9,21].

In addition, Zabc denotes the convex angle formed by the two edges of the geodesic core
adjacent to the core vertex b’ in V(a,b,c). See Figure 2.

A geodesic disk centered at ¢ € P with radius » > 0 is the set D(¢,7) = {z € P :
lg(c, )| < r}. In the plane, there always exists a disk through three given points, assuming
they are not collinear. When we refer to a disk through a set of points, we mean that the
points are on the boundary of the disk. In a simple polygon, it is no longer true that there
always exists a geodesic disk through three given points. This essentially means that given
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Figure 1 Geodesic disk centered at ¢, with radius |g(c, z)|, shown solid, and the equivalent
Fuclidean disk, shown dashed.

three points in a simple polygon, there does not always exists a point in the polygon that
is geodesically equidistant to all three. However, if there is a geodesic disk through three
points in a polygon, then it is unique [4]. Given two points u and v, there always exists a
geodesic disk through v and v centered at c¢,,, the midpoint of g(u,v), called the diametral
geodesic disk.

A set S’ of at least three points in P is geodesically collinear if 3x,y € S’ such that
S" C g(x,y), see set {z,c,y} in Figure 1. Similarly, a set S” of at least four points is
geodesically cocircular if there exists a geodesic disk with S” on its boundary, see set
{w, z,y, 2} in Figure 1. A set S of n points in a polygon P is said to be in general position
if no three points in S are geodesically collinear and no four points in .S or the boundary
of P are geodesically cocircular. In this paper we only consider sets S in general position
in polygons P with the extra condition that there are no two points z,y € S and a reflex
vertex p on the boundary of P such that y C g(z, p).

Given two points u and v, the extension path €(u,v) is defined as follows: extend the
first and last segment of g(u,v) until they properly intersect with P. Denote these extension
points on the boundary as @ and o, respectively. See the red path in Figure 2. Note that if u
(or v) is on the boundary of P then 4 = u (or & = v). Also note that, because of the extra
condition added to the general position, the extensions cannot touch a reflex vertex p on the
boundary of the polygon P. The extension path £(u,v) naturally partitions the polygon into
two weakly-simple polygons. We say that a point w is to the left (resp., right) of g(u,v) if w
belongs to the weakly-simple polygon to the left (resp., right) of ¢(u,v), when considering
£(u,v) oriented from u to v. In addition, we define the left (resp., right) half-polygon of the
path g(u,v) as the set of points that are to the left (resp., right) of its extension path ¢(u,v)
and denote it as PT(u,v) (resp., P~ (u,v)).

Given two points u,v € S, the bisector b(u,v) is the set of all points that are equidistant
to u and v. In this paper, as in [3], we assume that no bisector b(u,v) passes through a
vertex of P. Hence, b(u,v) is a continuous curve connecting two points on the boundary
of P. Moreover, b(u,v) can be decomposed into O(|P]) pieces [3], each of which is a subarc
of a hyperbola (that could degenerate to a line segment).
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Figure 2 The point a belongs to the interior of A(c/, p, q).

» Definition 1. Let S be a set of n points in a polygon P.
I(n) (resp., II(n)) is the largest integer such that, for every set (resp., geodesically convex
set) S, there exist points u,v € S such that every geodesic disk through them contains
II(n) (resp., II(n)) points of S.
IInout(n) is the largest integer such that, for every set S, there exist points u,v € S such
that every geodesic disk through them has II"™™°4t(n) points of S, both inside and outside.

[1%iam (n) (resp., 1" """ (n)) is the largest integer such that, for every set (resp., geodesically

convex set) S, there exist points u,v € S such that D (cm,, M) contains T1%9™ (n)

(resp., ﬁdmm(n)) points of S.
Let B be a set of 5 blue points, and R be a set of 5 red points in a polygon P, and let
S=BUR.
[1bichrom (n) js the largest integer such that, for every set S, there exist pointsu € B, v € R
such that every geodesic disk through them contains II°“""°™ (n) points of S.

3 Euclidean and geodesic disks: some similarities and differences

In this section we describe some of the similarities and differences concerning Euclidean and
geodesic disks that arise when proving the main results in this paper.

3.1 Some similarities

Two bounded curves g; and go intersect if by traversing ¢g; from one of its endpoints to the
other endpoint, it crosses go and switches from one side of gs to the other side [7,24]. We
say that g1 and go are mon-intersecting if they do not intersect. Two non-intersecting curves
can share an endpoint or can “touch” each other. Note that if g; and go are geodesics they
can intersect at most once [7].

It is well known that given two segments ab and pq that intersect transversely in the
plane, any disk through a and b contains at least one endpoint of pq, or any disk through
p and ¢ contains at least one endpoint of ab, see, e.g., [19]. This result translates to the
geodesic setting as shown below. We begin with a property of geodesic disks.

» Lemma 2. Let p,q be two points in P and D, D’ be two geodesic disks through p and q,
respectively with centers ¢ and ¢'. If ¢ is left of £(p,c) then DN PT(p,q) C D'.
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Proof. Let a be an arbitrary point in D N P*(p, ¢). By definition of P¥(p, q), we have that
a is to the left of ¢(p, q). We consider two cases: a € A(c/,p,q) and a € A(c,p, q).

If a is in A(c, p, q), see Figure 2, then we use the fact that, for every point = € g(p, ¢), the
length of g(¢/, x) as x moves from p to ¢ is a convex function with the maximum occurring
at p or ¢ [21]. In particular, we have that |g(c’,z)| < |g(c,q)| = |g(c,p)|, for = € g(p,q). If
we move z from p to ¢ along g(p, q), at some point g(¢/, z) will go through the point a, so
lg(c/,a)| < lg(d,x)|. Hence, |g(c,a)| <lg(c,q)| =|g9(¢, p)|, which means that a € D’'.

Now consider the case where the point a is outside A(¢, p, q), like @’ in Figure 2. Without
loss of generality, assume «a is to the right of g(p,c¢’). (Otherwise, we can consider a and
¢, and the proof is analogous). In this case, g(¢/,p) must intersect g(c,a). Let x be a
point in this intersection. By definition, we have |g(¢/,x)| + |g(z,p)] = |g(¢/,p)|- Since
a € D, we have that |g(c,a)| = |g(c, )| + |g(z,a)|] < |g(c,p)| and by the triangle inequality,
we have |g(c,p)| < |g(c,z)| + |g(z,p)|. This means that |g(z,a)| < |g(z,p)|. Therefore,
lg(c';a)| < [g(c,2)| + lg(z, a)| < lg(c,x) + [g(z,p)| = |g(¢,p)|, implying a € D" in this
case. <

With this property of geodesic disks in hand, we are now ready to prove the corresponding
property of intersecting segments in the geodesic setting.

» Lemma 3. Let a,b,p,q be four distinct points in general position in P such that g(p,q)
and g(a,b) intersect. Then every geodesic disk with p and q on its boundary contains at least
one endpoint of g(a,b), or every geodesic disk with a,b on its boundary contains at least one

endpoint of g(p,q).

Proof. First, suppose that the bisectors b(a, b) and b(p, q) intersect, see Figure 3a, and let z
be a point in their intersection. Then we have that |g(z, a)| = |g(z,b)| and |g(x, p)| = |g(z, q)|.
We can assume, without loss of generality, that |g(x, p)| < |g(z,a)| since the points in S are
in general position, and a, b, p, ¢ are not co-circular. The case where |g(x,p)| > |g(z, a)]| is
symmetric.

When |g(z,p)| < |g(x,a)|, the geodesic disk through a and b with center x contains p
and ¢. Since g(a,b) and g(p, q) intersect, p and ¢ are on different sides of the extension path
¢(a,b). Hence, by Lemma 2, if we move the center of this disk along the bisector b(a,b) in
one direction while keeping a, b on its boundary, the geodesic disk will always contain p in
its interior, and if we move the center in the other direction, the geodesic disk will always
contain q.

Now, suppose that the bisectors b(a,b) and b(p, q) do not intersect, see Figure 3b. Hence,
all points of the bisector b(a,b) are closer to one endpoint of g(p,q) than to the other one.
Assume, without loss of generality, that this point is p, i.e., |[g(z’,p)| < |g9(2’, q)|, V' € b(a,b).
Similarly, all points of the bisector b(p, q) are closer to one endpoint of g(a,b) than to the
other one. Assume, without loss of generality, that this point is b.

The bisector b(a, b) intersects the boundary of the polygon. Also, the extension path £(a, b)
divides the polygon P into two half-polygons, one containing p and the other containing q.
Let = be the intersection of b(a,b) with the polygon boundary that is contained in the
same half-polygon as ¢. Similarly, the extension path ¢(p, q) divides the polygon into two
half-polygons, and let y be the intersection of b(p, ¢) with the polygon contained in the same
half-polygon as a.

By definition, we have that |g(z,a)| = |g(z,b)|, and |g(z,p)| < |g(z,q)|. If |g(z,p)|] <
lg(x, )|, the geodesic disk with center at x and radius |g(z,b)| contains a,b and p. By
Lemma 2, this means that every geodesic disk through a, b contains p.
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(a) Bisectors b(a,b) and b(p, ¢) intersect. (b) Bisectors b(a, b) and b(p, ¢) do not intersect.

Figure 3 Any geodesic disk through a and b contains at least one endpoint of g(p, q).

The only remaining case to consider is if |g(z,p)| > |g(z,b)|. Since the bisectors do not
intersect, we have that g(x,b) intersects g(y,p). Let z be a point in this intersection. By
definition, we have |g(z, )| = |g(z, 2)| + a(z, b)| and |g(y.p)| = g(y, )| + |g(=p)|. By the
triangle inequality, we have |g(z,p)| < |g(z, z)| + |9(z,p)|, which with our assumption that
lg(x,p)| > |g(x,b)| implies that |g(z,b)| < |g(z,p)|- However, this means that |g(y,b)| <
19y, 2)| + |9(z,b)] < lg(y, 2)| + 9(2,p)| = |9(y,p)|. Therefore, when |g(z,p)| > |g(z,D)|, we
have |g(y,b)| < |g(y,p)|. By Lemma 2, this means that every geodesic disk through p, g
contains b. <

We now prove a complementary lemma about points that always remain outside disks
through endpoints of geodesic paths that intersect. The proof is similar to that of Lemma 3,
and we include it here for completeness.

» Lemma 4. Let a,b,p,q be four distinct points in general position in P such that g(p,q)
and g(a,b) intersect. Then every geodesic disk with p and q on its boundary does not contain
at least one endpoint of g(a,b), or every geodesic disk with a,b on its boundary does not
contain at least one endpoint of g(p,q).

Proof. Suppose that the bisectors b(a,b) and b(p, ¢) intersect, see Figure 3a, and let « be a
point in their intersection. Then we have that |g(z,a)| = |g(z,b)| and |g(x, p)| = |g(x, q)|.
We can assume, without loss of generality, that |g(x, a)| < |g(x,p)| since the points in S are
in general position, and a, b, p, ¢ are not co-circular. The case where |g(z,a)| > |g(z,p)]| is
symmetric.

When |g(z,a)| < |g(z,p)]|, the geodesic disk through a and b with center x contains neither
p nor q. Since g(a,b) and g(p, q) intersect, p and ¢ are on different sides of the extension
path £(a,b). Note that if we exchange the roles of p by ¢, and D by D’ in Lemma 2, we
have that D' N P~ (p,q) C D. Hence, by Lemma 2, if we move the center of this disk along
the bisector b(a, b) in one direction while keeping a, b on its boundary, the geodesic disk will
never contain p, and if we move the center in the other direction, the geodesic disk will never
contain q.

Now, suppose that the bisectors b(a,b) and b(p, q) do not intersect, see Figure 3b. Hence,

all points of the bisector b(a, b) are closer to one endpoint of g(p,q) than to the other one.
Assume, without loss of generality, that this point is p, i.e., |g(z', p)| < |g(2’,q)|, V2’ € b(a,b).

Similarly, all points of the bisector b(p, q) are closer to one endpoint of g(a,b) than to the
other one. Assume, without loss of generality, that this point is b.
The bisector b(a, b) intersects the boundary of the polygon. Also, the extension path ¢(a, b)

divides the polygon P into two half-polygons, one containing p and the other containing q.

Let x be the intersection of b(a,b) with the polygon boundary that is contained in the
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™

Figure 4 The angle Zuvw is greater than %,

and |vg| < |up|.

same half-polygon as ¢. Similarly, the extension path ¢(p, q) divides the polygon into two
half-polygons, and let y be the intersection of b(p, q) with the polygon contained in the same
half-polygon as a.

By definition, we have that |g(z,a)| = |g(z,b)|, and |g(z,p)| < |g(z, q)|. If |g(z,b)| <
lg(x, q)], the geodesic disk with center at  through a,b does not contain ¢. By Lemma 2,
this means that every geodesic disk through a,b does not contain q.

The only remaining case to consider is when |g(z, b)| > |g(z, ¢)|. By the fact that a, b, p, ¢
are not co-circular, we have that in fact |g(z,b)| > |g(z,q)|. Since the bisectors do not
intersect, we have that g(z,q) intersects g(y,b). Let z be a point in this intersection. By
definition, we have |g(z,q)| = [g(z, 2)| + [9(2, ¢)| and |g(y,b)| = |9(y,2)| + [9(2,b)|. By the
triangle inequality, we have |g(z,b)| < |g(z, 2)| + |g(2,b)|, which with our assumption that
lg(z,b)| > |g(x,q)| implies that |g(z,b)| > |g(z,p)|. However, this means that |g(y,q)| <
9(y, 2)| + |9(2,@)| < [9(y,2)| + [9(2,b)| = |g(y,b)|. Therefore, when |g(z,b)| > |g(z, q)|, we
have |g(y,p)| < |g9(y,b)|. By Lemma 2, this means that every geodesic disk through p, ¢ does
not contain b. <

We now show two results about the length of the sides of a triangle. These results are
trivial in the plane, but in the geodesic setting have not been proven before. In particular,
they will be useful in Section 5 to prove the lower bounds on the diametral case.

» Lemma 5. Let A(u, v, w) be a geodesic triangle, such that v is a convex vertex of V(u,v,w)
and Zuvw > F. Then |g(u,w)| > min{|g(u,v)|, |g(v, w)|}.

Proof. Consider the geodesic core V(u,v,w) = A(u',v,w’) of A(u, v, w). Recall that Zuvw
is the angle at vertex v in V(u,v,w). Let g be the intersection of the geodesic g(u’, w’)
with the line containing the segment of g(v,u) adjacent to v. Symmetrically, let p be the
intersection of the geodesic g(u', w’) with the line containing the segment of g(v, w) adjacent
to v, see Figure 4.

Since A(v,p,q) is a Euclidean triangle, we know that |pg| > min{|vp|, |vg|}. We can
assume, without loss of generality, that |pg| > |vg|. Let = be the vertex that is the endpoint
of the first edge of g(v,u). By construction |vg| = |vz| + |zg|. Note that |g(p,q)| > |pq| >
lvg| = |vz| + |xzq| (1). By the triangle inequality, |g(z,u’)| < |zq| + |g(g, v)|. This implies
that |g(x,u")| — |zq| < |g(g,u')| (2). Putting it all together, we have

l9(0, )] = lg(u )] + lg(, )] by definition
= |g(u,u")| + |vz| + |g(z,u)| by definition
= lg(u,u)| + [vz| + [g(z, v')| = |zq| + |zq]
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< lg(u, u)| + |vz| + |g(q, w')| + |q| by (2)
<lg(g, w) +lg(p,g)| by (1)
< lg(p,u)l
< lg(w, u)
We conclude that |g(u, w)| > min{|g(w,v)]|, |g(v, w)|}. <

» Lemma 6. Let A(u,v,w) be a geodesic triangle, such that Zuvw < %. Then we have that
luw| < max{|g(u,v)|, |g(v,w)[}.

Proof. Since the three points w,v,w form a Euclidean triangle, we know that |uw| <
max{|uv|, [vw|}. We can assume, without loss of generality, that |uw| < |uv|. Since |uv| <
|g(u,v)|, we thus have that |uw| < |g(u,v)| < max{|g(u,v)],|g(v,w)|}. <

3.2 Some differences

In contrast to the similarities in the previous section, there are properties that cannot be
generalized from the Euclidean to the geodesic setting. We highlight a few differences. One
difference which we alluded to in Section 1 is that the geodesic metric, unlike the Euclidean
metric, does not necessarily have bounded doubling dimension. Another difference is that
the geodesic bisector of a pair of points inside a simple polygon can intersect a line segment
more than once [10].

The Voronoi diagrams of order k were one of the tools used to prove the lower bounds in
the Euclidean setting, see, e.g., [12,13,23]. However, some important properties of order-k
Voronoi diagrams do not extend to the geodesic setting. For instance, in the Euclidean
setting, the bisector of a pair of points is a line, whereas in the geodesic setting, the bisector
is a finite curve. Moreover, this means that in the Euclidean case, three points in general
position uniquely define a disk with those points on the boundary. On the other hand, given

three points inside a polygon P, there may not exist a point in P equidistant to all three.

Thus, there are cases where three points do not define a geodesic disk with the three points
on the boundary [4].

Another difference between the two settings is that the well-known lifting transformation
that maps a point (z,y) € R? to the point (z,y,2% + y?) € R? used in [23] to obtain the
lower bound of ;% is no longer applicable in the geodesic setting. The exact number of
edges of the order-k Voronoi diagram is known in the Euclidean case [18]. The formula for
this exact number of edges was fundamental to Edelsbrunner et al’s lower bound proof [13].
However, only upper bounds are known in the geodesic case [8]. In fact, this is one of the
reasons why the lower bounds we obtain in the geodesic setting are not as strong as in the
Euclidean setting.

4 The general case

In this section we provide a generalization to the geodesic setting of lower bounds that are
known for the original problem in the plane. In particular, we generalize results from [14,15,19].
We note that upper bounds for the Euclidean setting are in general also valid for the geodesic
setting, since one can take the constructions provided in [2,12,14], and enclose the relevant
set of points in a bounding polygon, big enough so that the geodesic disks through every
three points coincide with the corresponding Euclidean disks.
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We begin by adapting some definitions and results from [19] to our setting. The intersection
number I(S) of a set of points S in a polygon is defined as the number of different geodesic
paths g(u,v), g(x,y) for u,v,z,y € S such that g(u,v) Ng(z,y) # 0. Then, the intersection
graph G(S) = (V(G(S)), E(G(S5))) is defined with V(G(S)) = {g(u,v)|u,v € S,u # v},
and two vertices g(u,v), g(z,y) being joined by an edge in G(S) if g(u,v) N g(z,y) # 0.
Finally, the oriented graph G (S) of G(S) is defined orienting an edge g(u,v) — g(z,y) as
g(u,v) = g(z,y) if any geodesic disk through w and v contains x or y, or otherwise orienting
g(x,y) = g(u,v). This orientation is consistent because of Lemma 3.

» Theorem 7. For any set S of n > 5 points in a polygon, II(n) > {"6—702} ~ 0.0166n.

Proof. By Kuratowski’s Theorem [17], each subset S’ C S, with |S’| = 5, contains four
points w, x,y, z such that g(w,z) N g(y, z) # 0. Moreover, the subset {w,z,y, 2} appears in

exactly n — 4 subsets of S with five elements. Thus, I(S) > %. By the definition of the
intersection graph G(S), |E(G(S))| = I(95), thus |[E(G(S5))| > ()
Let d*(g(z,y)) be the out-degree of a vertex g(z,y) in 8(5) Then,

n—4-°

> d(glxy) = [EG(S)] > %.
9(z,y)eV (T (S))

Since we have exactly (}) vertices in 8(5)7 there is a vertex g(uo,vo) with

(t)

= —2)(n—3
T (g, v0)) > 2t = P22 23]
(2) 60
This means that any geodesic disk through ug and vy contains at least one endpoint of
% geodesic paths g(x,y), x,y € S. Since each point could appear in at most n — 3

(n—2)(n—3)
of these geodesic paths, any geodesic disk through ug and vy contains at least [71"_03—‘ =

(”6—702} points of S different from ug and vyg. <

We now establish an improved lower bound on the number of points contained in any
disk with # and y on its boundary, by generalizing the results by Hayward in [14] to the
geodesic setting. We begin with a preliminary combinatorial result.

» Lemma 8. Among any set S’ of k points in a polygon P, there are at least (k;‘3) pairs of

points x,y € S" such that every geodesic disk through x and y contains at least one of the
other k — 2 points of S'.

Proof. Let G = (V, E) be the graph where V=5, and two vertices are joined by an edge
if at least one of the geodesic disks through them does not contain any of the other k — 2
points of S’. The edge between u and v is drawn as the geodesic path g(u,v). We claim
that G is planar, and the edges can be drawn without crossings inside P. Suppose there are
two edges g(u,v),g(z,y) in G, for u,v,x,y € S’, that intersect. By Lemma 3, one of the
edges has the property that every geodesic disk through both of its endpoints contains at
least one of the endpoints of the other diagonal, which contradicts the definition of the edges
of G. Thus, G is a planar graph with k vertices. By Euler’s formula, |E| < 3k — 6, so S’
contains at least (g) —(3k—6)= (kgg) pairs that satisfy the property. <

Now, using Lemma 8, we obtain a tighter lower bound for the number of points contained
in any geodesic disk with two points u and v on its boundary.
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n—2

» Theorem 9. For any set S of n > 8 points in a polygon, 1I(n) > [8—54(71 — 2)—| = {m] =
0.0595n.

Proof. Two points in a subset S’ C S of k points dominate S’ if every geodesic disk through
n
k

By Lemma 8, each of these sets has (k;‘?’) dominating pairs. The average number of subsets
(*2°) ()
()

k—3 n
at least M subsets of S.

n

them contains at least one of the other & — 2 points of S’. There are ( ) subsets of size k.

dominated by a pair is . Thus, there is a pair of points {u,v} € S’ that dominates

2
For each of these subsets, every geodesic disk through u and v contains at least one of
the other k& — 2 points of S’. Since a point of S\ {u,v} can be in at most (}_3) subsets that
include u and v, every geodesic disk through u and v contains at least

(G _ gy (E=3)(k—4)

n\ (n—3\ (n )

(2) iZs)
other points of S. The largest coefficient of n — 2 is %, obtained for k =8 and for k =9. <«

We now present our strongest lower bound for II(n) by generalizing the approach by
Edelsbrunner et al. [13] to the geodesic setting.

» Theorem 10. For any set S of n points in a polygon, II(n) > {%] + 1.

Proof. Unless specified otherwise, in this proof, order-k diagrams refer to order-k geodesic
Voronoi diagrams. Recall that a geodesic disk through two points containing £ — 1 points in
its interior has its center on an edge of the order-k diagram. Consider the set of all disks
that pass through two points p,q € S in the polygon. These disks are all centered on the
bisector b(p, q), and there are at most n — 2 points on the bisector where a third point of S is
on the boundary of the disk. This partitions the bisector into at most n — 1 pieces such that
any circle through p and ¢ centered on any point belonging to a fixed piece s contains in its
interior the same number of points p(s). The pieces s such that p(s) = k — 1 are precisely
the edges of the order-k diagram.

Now consider some fixed bisector b(p,q). The edges of the order-1 through order-k
diagrams on b(p, ¢) form a number of connected components (which is strictly less than the
total number of edges of all the diagrams). Let Ay be the number of connected components
formed by all the bisectors of the order-1 through order-k diagrams. The goal is to find
the largest value of k such that A\x < (Z) Every bisector is completely covered by a single
connected component when &k =n — 2. When A\, < (g), by the pigeonhole principle there

exists a bisector b(p, ¢) that does not have any edges of the order-1 through order-k diagrams.

Therefore, every geodesic disk with p and ¢ on its boundary must contain in its interior at
least k points.

We derive a formula for Ay in terms of the number of edges in the order-1 to the order-k
diagram by considering how the pieces must “pair up”, in the sense that a piece s with
p(s) = i can only be adjacent to pieces s’ with p(s’) =i+ 1. If a piece s with p(s) = k
is adjacent to two pieces s; and sy with p(s1) = p(s2) = k — 1, the number of connected
components is decreased by one. If s is adjacent to only one piece s; with p(s1) = k — 1,
it extends an existing component. Otherwise, if it is not adjacent to any piece s; with
p(s1) = k — 1, it creates a new connected component. Let €,, €, and €. be, respectively, the
number of pieces s with p(s) = k of the first, second, and third type. Then we have

Ak = Ag—1 + € — € (1)
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Let e be the number of edges in an order-k diagram and let S be the number of edges
of the order-k diagram that intersect the boundary. The total number of endpoints of all
order-k edges is given by 2ep — S}, since the edges that intersect the boundary of the polygon
only contribute one endpoint. The edges intersecting the boundary are analogous to the
unbounded edges in the Euclidean setting. Moreover, we note that e = ¢, + € + €.

Let ¢; be the number of unpaired endpoints in A;. Consider all the unpaired endpoints
of the connected components of A\;_1. These endpoints can only come from edges in the
order-k — 1 diagram since all edges of the order-i diagrams for i € {1,...,k — 2} are all
paired. Therefore, these unpaired endpoints can only pair up with edges from the order-k
diagram, which implies that ¢p_1 = 2¢, + €;. Thus, from Equation (1) and the fact that
er = € + € + €, we have that Ay = A\g—1 + ex — ¢p—1. If we iterate over k, we get that
A= (er —dp—1) + (€1 — Pr—2)+...+(e2— 1) +e1 = Ele e — Zfz_ll ¢i- Note that ¢; 1
is the number of unpaired endpoints in \;_1, which are the paired endpoints of \;. Therefore,
o¢i + ¢i—1 = 2e; — S;—the number of endpoints in order-i diagrams. We use this to rewrite
the equation for \g in terms of e; and S;.

[
M=

Ak e; — [(Pr—1 + dr—2) + (Ppr—3 + dr—4a) + ...] (end of sum depends on parity of k)

1

.
Il

e; — [(2er—1 — Sk—1) + (2e5—3 — Sk—3) + ... + (2€2-07-1 — S2-0r-1)] (depending on parity of k)

Il

Il
NN

(fl)k*iei + (Sk—1+ Sk—3+ ...+ Sa-or-1) (S or S; depending on parity of k)

Il

@
Il
—

To complete the bound on Ak, we need to bound the size of the order-j diagrams. Exact
bounds on the size of order-j Euclidean Voronoi diagrams are known but do not apply since
unlike the Euclidean case, the geodesic order-j Voronoi diagram has no unbounded edges.
We can, however, establish upper and lower bounds using abstract Voronoi diagrams [16]:
Geodesic bisectors fulfill all the axioms for an abstract Voronoi diagram except for the
property of being unbounded, which in the geodesic setting corresponds to hitting the
boundary of the polygon. We can crop this diagram with a closed Jordan curve that encloses
all the intersections between bisectors (as is the case for the polygon and the geodesic
bisectors) to have an abstract Voronoi diagram [20]. It is this cropping that no longer
allows us to have an exact formula. Since an order-j geodesic Voronoi diagram is an order-j
abstract Voronoi diagram, we have that the number of edges e; = 3(F; — 1) — S;, where
Fj=2jn—j2—-n+1- 23;11 S; is the number of faces of an order-j geodesic Voronoi
diagram, see [8, Lemmas 15 and 16]. Hence, e; = 6jn — 352 — 3n — 32?;11 S; — S;. Then
we get

€; —€j—1 :6n—6j+3—25j,1—5j. (2)

In the final calculation, as in the proof of the lower bound in [13], we distinguish the case
that & is even from k£ odd. However, in both cases we have that

3 3 b
_ _ 22 Y .
A = 3kn 2k 2k ;—1 S;.

We use the fact that 25:1 S; > j(j +1), see [8, Lemma 11], which implies that

3 3 5 5
Ao <3kn— k> —Sk—k(k+1) =3kn— —k*>— 2k
ko= ORIy 2 (k+1) "y 2"
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n

which is a quadratic polynomial in k. We note that A\; < (g) whenever k < £, 1.e., k < {3] —1.

Then, as mentioned above, the pigeonhole principle implies that every geodesic disk with p

and ¢ on its boundary must contain in its interior at least k < (%W — 1 points. Thus, we get

that II(n) > {%] + 1, with the plus one accounting for p and q. <

4.1 A Constant Fraction of Points Inside and Outside Geodesic Disks

In this section we show that for a point set S, there is a pair of points x,y € S such that
any disk through them contains a constant fraction of points of S, both inside and outside
the disks. We obtain this bound by modifying the previous proof of Theorem 9 by using
Lemma 11. For completeness, we add here the proof of the bound.

» Lemma 11. Among any set S” of k points in a polygon, there are at least (kgg) pairs of
points x,y € S’ such that every geodesic disk through x and y leaves outside at least one of
the other k — 2 points of S’.

Proof. Let G = (V, E) be the graph where V' =5’, and two vertices are joined by an edge
if at least one of the geodesic disks through them contains one of the other k — 2 points of
S’. The edge between u and v is drawn as the geodesic path g(u,v). We claim that G is
planar, and the edges can be drawn without crossings inside P. Suppose there are two edges
g(u,v),g(x,y) in G, for u,v,z,y € S’, that intersect. By Lemma 3, one of the edges has the
property that every geodesic disk through both of its endpoints leaves outside at least one of
the endpoints of the other diagonal, which contradicts the definition of the edges of G. Thus,
G is a planar graph with k vertices. By Euler’s formula, |E| < 3k — 6, so S’ contains at least
(g) — B8k —6) = (k;?’) pairs that satisfy the property. <

» Theorem 12. For any set S of n > 21 points in a polygon, I (n) > [4%(n — 2)] ~
m%.(ﬂ ~ 0.024n.

Proof. In the same spirit as in the proof Theorem 9, we define two points in a subset S’ C S
of k points to be dominated by S’ if every geodesic disk through them leaves outside at least
one of the other k — 2 points of 5.

Among any set of k points in P there are at most (g) — (k;?’
do not satisfy the property of Lemma 8 and at most 3k — 6 pairs of points (possibly different
than the previous pairs) that do not satisfy the property of Lemma 11. For k& > 11, it holds
that 2(3k — 6) < (g), so that there is at least one pair of points {u,v} € S’ that satisfies

) = 3k — 6 pairs of points that

2 2 k

k=3\_ (k n
both properties, hence dominates and is dominated by at least w subsets of S.

2
For each of these subsets, every geodesic disk through u and v has at least one of the other
k — 2 points of S’ both inside and outside. Since a point of S\ {u,v} could be in at most
("_3) subsets containing u and v, every geodesic disk through v and v has at least

-G
Bl

other points of S, both inside and outside. The largest coefficient of n — 2 is obtained for
k =21, thus k = 21 leads to the largest possible coefficient, the one in the statement. <

2(k — 3)(k — 4) — k(k — 1)
Kk —1)(k — 2)

=(n—2)

10:13

WADS 2025



10:14

On Geodesic Disks Enclosing Many Points

4.2 Sets in geodesically convex position

In the Euclidean setting, Hayward et al. [15] proved that when points are in convex position,
for every disk containing two points on the boundary, there always exists a pair of points
such that any disk containing that pair contains at least %—‘ + 1. We generalize that result
to the geodesic setting by showing that II(n) > {%W + 1. The geodesic case poses its unique
challenges, for example, it is not always possible to find an enclosing geodesic disk with three
points on the boundary. However, when no such enclosing geodesic disk exists, we show
that there exists a pair of points such that every geodesic disk through them is an enclosing
geodesic disk.

» Lemma 13. Let S be a set of points in a polygon P. If there is no enclosing geodesic disk
through three points of S, then there exist two points of S such that any geodesic disk through
them is an enclosing geodesic disk.

Proof. Define the notation D(c) to be the disk D(c, maxpes |g(c, p)|) which is the geodesic
disk centered at an arbitrary point ¢ € P, and having as radius the maximum geodesic
distance from c to any other point p € S. By construction, this is an enclosing geodesic
disk. Consider an arbitrary disk D(x) centered on a point x € S with a point y € S on the
boundary of D(z). Either D(x) has a second point z on its boundary or only has y on its
boundary. If the latter is true, then we show how to obtain an enclosing disk with a second
point on its boundary. Consider the disk D(z) as the center z moves along g(z,y) towards y.
Since the radius is shrinking, eventually, a second point z € S will reach the boundary of
D(xz). Note that D(x) always remains enclosing.

Thus, D(z) is an enclosing disk with y and z on its boundary. We now show that every
geodesic disk through y and z is enclosing. Let w be any point on b(y, z). D(w) has y and
z on its boundary. Moreover, D(w) must be enclosing. If D(w) is not enclosing, then we
contradict the fact that there is no enclosing geodesic disk through three points. The lemma
follows. |

We now generalize the result from Hayward et al. [15] for point sets in convex position
to the geodesic setting. In particular, when S is a set of points in P that is in geodesically
convex position, then there is a pair of points such that any geodesic disk through them
contains at least [%1 + 1 points of S.

» Theorem 14. For any set S of n points in geodesically convex position in a polygon,
T(n) > [5] +1.

Proof. By Lemma 13, if there is no enclosing geodesic disk through three points, there exist
two points of S such that any geodesic disk through them is an enclosing geodesic disk. Then
all such disks contain all points of .S, and the inequality holds.

Otherwise, there is an enclosing disk D that has three points on its boundary, namely
x,y, z in clockwise order along the boundary of D. Let f(A(x,y,2)) be the maximum among
the number of points from S contained in each of the three regions DN P (z,y), DN P (y, 2)
and DN P (z,z). Among all enclosing disks with 3 points on the boundary, consider disk
D, with points u,v,w € S on its boundary which minimizes f(A(u,v,w)). There must be
at least one region among Dy N Pt (u,v), D1 N Pt (v,w) and Dy N P (w,u) whose interior
has at least {%‘ﬂ points. Assume, without loss of generality, that Dy N P (u, v) does.

If the interior of Dy N P~ (u,v) contains fewer than ("de] points, then we continuously
change D; by the disks through w,v obtained when moving the center ¢ of D; along the
part of the bisector b(u,v) to the right of £(u,c), as in Figure 5. While doing this, all those
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D,

Figure 5 The geodesic disk D is obtained by moving the center ¢ of D; along the part of the
bisector b(u,v) (shown dashed) to the right of ¢(u, c) until hitting point w;.

disks will keep being enclosing disks, by Lemma 2. As we move ¢, we may arrive at one
of two situations: Either the center c¢ hits the boundary of the polygon, or the boundary
of the current disk, Do, hits a point w; € D; N P*(u,v). We show, by contradiction,
that the latter case cannot occur. If it occurred, the geodesic triangle A(u, wq,v) divides
D5 into three regions Dy N Pt (u,w;), Dy N Pt (wy,v) and Dy N Pt (v,u). Note that
Dy N P (v,u) = Dy N P~ (u,v) contains fewer than [%*3] points of S, since it is contained
in D; N P~ (u,v). Also, Dy N PT(u,w;) and Dy N P (wy,v) both contain fewer points than
Dy N P (u,v). Thus, f(A(u,wy,v)) < f(A(u,v,w)), and contradicting the minimality of
F(A(u,v,w)).

Therefore, we will eventually hit the boundary. Then, every geodesic disk through u
and v with center in the part of b(u,v) to the right of ¢(u,c) contains all the points in S,
since the current D; is an enclosing disk. Also, by Lemma 2, every geodesic disk through u
and v with center in the part of b(u,v) to the left of £(u,c) contains Dy NPT (u,v), thus at
least (”Tf?’w points of S.

It follows that there exist two points u, v such that any geodesic disk through u and v
contains at least [”7_3] points of S in its interior. By accounting for v and v, on the disk
boundary, we conclude that II(n) > [%2] + 1. <

5 Diametral geodesic disk

In the Euclidean setting, Akiyama et al. [2] showed that for points in the plane (both in
convex position and not) there always exists a diametral disk that contains {%] + 1 points
of S and that this is a tight bound. In this section, we consider the problem of proving lower
bounds on the values of 1% (n) and o (n), generalizing the results in [2]. We prove
that, among a set S of n points, there is a pair of points such that the diametral geodesic
disk through them contains at least (%1 + 1 points of S.

In order to obtain these lower bounds, we are going to use an enclosing geodesic disk
with its center inside the geodesic convex hull of the points on its boundary.
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» Lemma 15. Let S be a set of points in a polygon. There exists an enclosing geodesic disk
D with (i) three points x,y,z on the boundary, and the center of D inside N(x,y,z), or
(i) two points x,y on the boundary, and the center of D at the midpoint of g(x,y).

Proof. Let D be an enclosing geodesic disk with three points on its boundary. If such a
disk does not exist, by Lemma 13, there exist two points x,y € S such that every geodesic

disk through them is a geodesic enclosing disk. In particular, the disk D (czy, M

) is an
enclosing diametral disk with x and y as its diametral endpoints.

Otherwise, let x,y, z € S be the three points on the boundary of D, in clockwise order.
If the center of the disk is inside the geodesic triangle A(x,y, z), we are done. Otherwise,
the center is inside one of the regions D N P*(z,y), DN P*(y,2) or DN P*(z,x). Assume,
without loss of generality, it is in D N P*(x,y). Then we move the center ¢ of D along

lg(z,y)|
2

b(z,y) towards cg,. If the center ¢ reaches ¢gy, then D (cwy7 ) is a diametral enclosing

geodesic disk with = and y as its diametral endpoints. If the disk hits a third point w € .5,
and the center of the disk is inside A(x,y,w) , we are done. Otherwise, we repeat the process
with the points z,y, w as the new points z, y, z until the center of the disk through the three
points on the boundary of the disk lies inside the geodesic triangle formed by the three points
on the boundary. This process ends because the distance to the center from the closest
shortest path is decreasing at every iteration. <

—diam

» Theorem 16. For any set S of n points in a polygon, 114%™ (n) =TI (n) > [2] +1.

Proof. Consider an enclosing disk D as guaranteed by Lemma 15. Either (i) D has exactly
three points of S on the boundary, and the center of the geodesic disk is inside the geodesic
triangle formed by the three points, or (ii) D has two points of S as diametral endpoints. For
case (ii), D having two points on the boundary, the claimed result holds, since D contains
all the points.

For case (i), let a, b and ¢ be the three points on the boundary of the geodesic disk. We will

prove that any point € S is contained in at least one of the geodesic disks D (cab, M),
D (Cbm |!J(Z;,C)|> and D (Cca7 |9(027a)\).

First, consider the case where z is outside the geodesic triangle A(a, b, ¢). Then, x belongs
to one of the regions DN P*(a,b), DNPY(b,c), and DN P+ (a,c). Without loss of generality,
assume ¥ € DN Pt (a,b). By Lemma 15, the center of the geodesic disk is inside A(a, b, ¢),
so it does not belong to D N P*(a,b). Then, by Lemma 2, x is contained in the diametral

geodesic disk D (Cab7 M)

Now, we prove the case where x € A(a,b,c). Consider the geodesic paths g(a, x), g(b, )
and g(c,z). One of the angles Zaxb, Zbxc or Zaxc is greater than or equal to 2?“, and
the other two angles are smaller than or equal to §. Assume, without loss of generality,

that Zbxc > 2?", see blue angle in Figure 6. Let o be the midpoint of the shortest path

g(b,c). We also know that one of the angles Zbxo or Zoxc is greater than or equal to

Z. Assume, without loss of generality, that it is the angle Zoxe. When o is not visible

3
from z, the angle Zoxc is equal to the angle Zbxc > 2?” > 7. Hence, by [21, Corollary 2],
lg(gcﬂ In

lg(x,0)] < |g(o,¢)] = |g(o,b)|, and z is contained in the geodesic disk D (cbc,

the case of o being visible from z, by Lemma 5, |g(o,c)| > min{|g(c, z)|, |g(x,0)|} and, by

Lemma 6, |g(z,0)| < max{|g(c,x)l,|g(0,c)|}, hence |g(z,0)| < |g(o,c)| = |g(0,b)|, and z is
lg(b,9)]

contained in the geodesic disk D <ch, T)
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Figure 6 The point o is visible from =z.

N6
2 2
covers all the points in P. Since the points a,b and ¢ are counted twice,

Then, the union of the geodesic disks D (cab, M) ,D (cbc, m) and D (cm, |g(c’a)|)

b b
‘D (cab7 |g(a27 )|>ﬂP + D(Cbc, |g(270)>mp + D(Cca,lg(cz,a”)ﬂp >n+3
By the pigeonhole principle, the result follows. <

6 Bichromatic geodesic disks

In this section, we consider the bichromatic version of the problem, which has also received
attention in the Euclidean setting. Let B be a set of % blue points and R be a set of 5 red
points inside a polygon P, and let S = BU R.

Following the procedure in [25], we obtain a similar result to Theorem 7, and we prove
that it is possible to find a bichromatic pair such that any geodesic disk containing them

‘S7|;2—‘ points of S.

contains at least [

» Theorem 17. For any set S of § > 3 red points and § > 3 blue points in a polygon

Hbichrom(n) > ["77722—‘ =~ 0.0139n.

Proof. Let G(S) = (V(G(S)), E(G(S))) be the intersection graph defined as follows: V(S) =
{g(u,v)|u,v € S,u is red, and v is blue}, and two vertices g(u,v),g(z,y) are joined by an
edge in G(S) if g(u,v) Ng(x,y) # 0. The oriented graph G (S) of G(S) is defined orienting
an edge g(u,v) — g(z,y) as g(u,v) = g(x,y) if any geodesic disk through v and v contains x
or y, or otherwise orienting g(x,y) — g(u,v). By Lemma 3, if two of these paths intersect,
then one of the two bichromatic pairs fulfills the property that any geodesic disk through it
will contain one of the other two endpoints, so this orientation is consistent.

We now obtain the minimum number of intersections between all pairs of geodesic paths.

Let, as in Theorem 7, I(S) be the number of pairs of geodesic paths that intersect. For each
S’ C S with exactly 3 blue and 3 red points, by Kuratowski’s Theorem [17], there are two

blue points w,x € S’ and two red points y,z € S’ such that g(w,y) N g(z,z) # 0. There
2

%

3

subsets of this type. Dividing by this number, we remove repetitions, and we obtain that

1= (1)

By definition of the intersection graph G(S), |[E(G(S))| = I(S) and |V (G(S))| = (%)2
I(S)

are subsets of this type. Furthermore, every intersection belongs to exactly (g — 2)2

Hence, there exists one vertex g(ug,v9) € G with out-degree at least
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n

(8 2-1\?
() > < 2 ) . This means that there exist two points ug and v,

Then, we have that 5

n 2
2

n_q

one of each color, such that the geodesic path between them intersects at least ( 5 other

geodesic paths. Since every point is the endpoint of at most § — 1 geodesic paths, every
no__ 2 n__

geodesic disk through this pair of points contains at least <%1) %171 = 2361 = ”7—_22 points

of S. P

It was proved in [22] that any set of bichromatic points S, contains a pair {p,q} C S, one
point of each color, such that any disk through p and ¢ contains a positive fraction of the
points of S, in particular 3—16 We present the analogous colored result in the geodesic setting.

» Theorem 18. For any set S of § > 3 blue points and § > 3 red points in a polygon,
IIvichrom () > [222] 4 2 &~ 0.0277n.

Proof. Let B be the set of blue points, and let R be the set of red points. By Kuratowski’s
Theorem and Lemma 3, for every set Z C S of six points, three being blue and three being
red, there is a pair {u, v} of bichromatic points such that any geodesic disk with v and v on
its boundary contains at least one point of Z \ {u,v}. Hence, there is a family Z and a pair
{u,v} C S of bichromatic points such that {u,v} belongs to every Z € Z and

2> (3) _ G-y )

n\ 2 62
2
()

Now we will upper-bound the value |Z|. Let D be a geodesic disk with u and v on its
boundary, and m — 2 points in its interior. Each Z € Z contains a point of D \ {u,v}. The
set {u, v} can be extended to Z, given that DN (Z\ {u,v}) # 0, by (i) choosing a point of Z
from the remaining m — 2 points in D, (ii) choosing a point of the same color class from the
remaining § — 2 points in S, and (iii) choosing two points in S from the remaining color
class. Thus, we get that

|Z|<(m1—2>(31—2)<32—1):(m_2)(32)22(7’1). )

n_q D435 70
2 S 2 _
TR 36

Nl

Finally, from equations (3) and (4) we get m —2 >

7 Conclusion

We study different variants of the following question: Given a set S of n points in a polygon P,
does there always exist two points x,y € S, such that every geodesic disk containing = and y
contains a constant fraction of the points of S7 This question has been studied intensely
in the Euclidean setting [2,12-15,19,22,23,25]. We focus on the geodesic versions of this
problem. We note that all the solutions to these problems lend themselves to polynomial time
algorithms since the characterizations are based on standard structures in Computational
Geometry such as order-k Voronoi diagrams. An obvious open problem is the following: Can
our lower bounds be improved? Basically, some of our geodesic lower bounds are not as
strong as in the FKuclidean case. It would be interesting to determine whether there is a
separation between the bounds in the Euclidean and geodesic case. Since the acceptance of
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this paper by the WADS Program Committee, we have improved the bounds in Theorems 12
and 18 by modifying the technique using order-k geodesic Voronoi diagrams as was done in
the proof of Theorem 10. The proof of these improved results can be found in [11]. Finally,

the main open problem which has been open since 1988 is whether we can find a tight bound

for the original question?
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