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—— Abstract

Given a set A of points in the plane, a family of line segments forming a matching in A is called

crossing (or independent) if each pair of segments in the family intersects (or is non-intersecting,
respectively). In past works, these notions have been generalized to polygons by identifying the
points in A with the vertices of a given set of polygons and forbidding the line segments from
intersecting or overlapping with polygon walls. In this work, we study the computational complexity
of computing maximum crossing and independent families in this more general setting.

As our first two results, we show that both problems are NP-hard already when the polygons
are triangles. Motivated by this, we turn to parameterized algorithms. For our main algorithmic
results, we consider the number of polygons on the input as the natural parameter and under this
parameterization obtain a fixed-parameter algorithm for computing a largest crossing family among
these polygons, and a separate XP-algorithm for computing a largest independent family that lies in
one of the faces of the polygonal domain.
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1 Introduction

Given n points in the plane, a crossing family is a set of straight-line segments with endpoints
among these n points such that each pair of segments in the set cross in their interior.
The natural counterpart to crossing families are sets of segments which are pairwise non-
intersecting (not even at the endpoints); these are studied under the term crossing-free
families, plane matchings, or independent families [19].
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In 1994, Aronov et al. [4] showed that for any point set in general position there is always
a crossing family of size Q(y/n) and since then the problem of quantifying the size of the
largest possible crossing family has become a prominent and challenging task in discrete
geometry. While it is generally conjectured that the size is in fact ©(n) [6], only recently
Pach, Rubin, and Tardos [20] achieved a breakthrough result establishing an n'~°(™ bound.
Similarly, researchers have investigated crossing-free matchings that can be drawn on a point
set. While all point sets admit matchings that cover all but at most one point, a large
body of research has been devoted to related problems such as counting how many such
matchings exist in a point set [24, 25], considering the lengths of segments in a crossing-free
matching [2, 11], or finding large matchings in bicolored point sets [5, 13, 15]. Taking an
algorithmic viewpoint, it is natural to ask about the complexity of computing a largest
crossing or independent family. While the latter problem (INDEPENDENTFAMILY) is known to
be solvable in O(nlogn)-time [13], the complexity of the former (CROSSINGFAMILY) remains
wide open.

In this work, we consider a more general setting in which the points are the vertices of
a set of simple polygons and the segments are segments between two polygon vertices. In
particular, we only allow segments which do not intersect the polygon boundary edges in
their relative interior. In this perspective, these boundaries can be seen as obstacles in the
plane and the segments model visibility, whereas the original problem forms a degenerate
case where each polygon is a single point. However, compared to the setting of point sets, the
complexity landscape of the problems changes drastically. In fact, already for one polygon
the problem of computing a maximum independent family becomes intractable [21], while
finding a maximum crossing family in one polygon can be solved in polynomial time [12].

A natural way of tackling these two problems is through the intersection graph of the
visibility segments. In particular, one can form a graph by considering each segment as a
vertex and connecting two vertices whenever their respective segments intersect. Computing
largest crossing and independent families then precisely corresponds to finding a maximum
clique or independent set (respectively) in this graph.

The study of these two problems on general segment intersection graphs has a long
and storied history. For independent sets in this graph class, Kratochvil and Nesettil [14]
showed NP-hardness in 1990 and Marx showed that the problem is even W([1]-hard when
parameterized by the solution size [16]. For clique, the computational complexity on segment
intersection graphs was a long-standing open problem; after partial progress in 1992 [17], this
was finally settled via the NP-hardness reduction of Cabello, Cardinal, and Langermann [7].
Unfortunately, none of these lower bounds can be directly carried over to the considered
generalization of CROSSINGFAMILY and INDEPENDENTFAMILY.

Apart from the considerations above, the problem of finding a large independent family
in our setting is closely related to the task of augmenting a given geometric structure by a
plane matching. Algorithms and lower bounds for this task have also received considerable
attention in the literature [1, 21, 22, 23].

Contributions. Our first result concerns the classical complexity of finding maximum
crossing and independent families. For both problems, we demonstrate that they are NP-hard
even when all polygons are as simple as possible, namely triangles. Our reductions are
from finding a maximum clique and independent set, respectively, in segment intersection
graphs [7, 14]. The main idea of the reduction is to “emulate” each segment of the given
segment intersection graph using the endpoints of special triangles. And while the principal
logic of the reduction can be explained in a streamlined fashion, the underlying gadgets



A. Brotzner, R. Ganian, T. Hamm, F. Klute, and |. Parada

require a careful construction and the precise placement of every triangle. Especially, it is
necessary to find a placement of only triangles such that the vertices responsible for the
“emulation” of the segment do not interact with gadgets representing other segments.

To overcome the complexity-theoretic intractability of these problems we turn to the
tools of parameterized algorithms. We consider the parameterized problems of finding a
largest crossing or independent family among a set of k simple polygons, choosing k as
our parameter. For parameterized problems whose unparameterized versions are NP-hard
the most desirable runtime behavior of an algorithm is of the form O(f(k) - n¢) for some
computable function f, i.e., a fixed-parameter algorithm. Allowing for more running time,
we also consider so-called XP-algorithms where the running time may be in O(nf®)).

As our first algorithmic result, we show that under this parameterization the problem of
finding a largest crossing family indeed admits a fixed-parameter algorithm. For this, we
consider the segments in a solution ordered by their slopes, together with the polygons on
which the segment endpoints lie. Crucially, we argue that this sequence can in fact be viewed
as a sequence of what we call bundles which are sets of segments that are consecutive in
the sequence and are between a pair of two (not necessarily distinct) polygons. We show
that the length of this sequence of bundles is bounded in the number of polygons, which
allows us to efficiently branch on the order of pairs of polygons associated with the sequence
of bundles. We use the resulting sequence as basis of a dynamic programming approach in
which we look at one bundle at a time and compute and tabulate a best option for each last
segment (delimiter) of the bundle. We show that it is possible to do that only looking at
such tabulated information of the previous bundle and the branched information. The main
challenge here is that choices made for a bundle that are compatible with preceding bundles
may not be compatible with later bundles or segments in them; carefully filtering our choices
without missing a potential solution, we can guarantee that this does not happen.

Turning to our second algorithm, we first realize that for independent families, the above
mentioned result by Pilz et al. [21] indicates that the problem is already NP-hard for one
polygon, ruling out the existence of even an XP-algorithm. Crucial to their reduction is the
fact that segments may appear on the outside and the inside of the polygon. Consequently,
we consider the case when segments may only appear on one side of each polygon. We give
an XP-algorithm solving this case, again with the number k of polygons on the input as the
parameter. The idea is to partition a hypothetical solution into O(k?) independent parts,
each of which is bounded by two segments of the solution. Branching over which segments act
as these boundaries allows us to solve the instance by leveraging polynomial-time algorithms
for finding maximum independent sets in circle graphs.

2 Preliminaries

We assume familiarity with the foundations of parameterized complexity [8] and standard
terminology used in the area of computational geometry, including the notions of (simple)
curves and (straight-)line segments, polygons and their vertices [10].

All of our objects are placed in the plane. We say that a simple closed curve 7 encloses
an object X if X is contained in the face bounded by 7. Two points a,b are wvisible to (or
see) each other if the a-b line segment neither touches nor crosses any other object in the
plane; we call such segments visibility segments. Extending this, a set of points is visible
from a point a if each point in the set is visible from a. We assume all polygons in this work
to be simple (i.e., with no self-intersections) and pairwise non-intersecting. Moreover, we
assume w.l.o.g. that the vertices of each polygon are in general position, meaning that no
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three vertices lie on a straight line. We explicitly note that polygons are allowed to nest each
other, i.e., one may be drawn in the interior of another. We use the notation P° to denote
the interior of a polygon.

We say that a crossing family among a set of polygons is a set of pairwise crossing
visibility segments between vertices of the polygons. Similarly, an independent family (also
called non-crossing matching) among a set of polygons is a set of pairwise non-intersecting
visibility segments between vertices of the polygons; we explicitly remark that such segments
cannot intersect even at the endpoints. We can now define our main problems of interest:

» Problem 1 (MAXCROSSINGFAMILY). Given a set P of polygons, find a largest crossing
family C among P.

» Problem 2 (MAXINDEPENDENTFAMILY). Given a set P of polygons, find a largest inde-
pendent family F' among P.

Unfortunately, solving MAXINDEPENDENTFAMILY is known to be NP-hard even if |P| =
1 [21], precisely because of the fact that visibility segments may occur both inside and outside
of polygons. Hence, it will be useful to also consider a variant of the problem where polygons
represent bounded-sized regions of the plane that are inaccessible, i.e., F' does not contain
any segment that intersects the interior of a polygon. Formally:

» Problem 3 (MAXINDEPENDENTFAMILYWITHHOLES). Given a set P of polygons, find a
largest independent family ' among P that lies completely in the unbounded face.

We remark that — in contrast to MAXINDEPENDENTFAMILY— the above problem can be
solved in polynomial time for |P| = 1, as it can be reduced to the well-studied problem of
finding a maximum independent set in a circle graph [12].

3 Finding maximum crossing and independent families is hard

In this section, we prove that both MAXINDEPENDENTFAMILY and MAXCROSSINGFAMILY
are NP-hard, even if the polygons on the input are triangles. We present reductions from
the corresponding problems of finding a maximum independent set and maximum clique,
respectively, in segment intersection graphs. Both are well known to be NP-hard [7, 14].
Here we give an overview of the reductions.

In either reduction, we start from a given set of segments S and construct a set of
triangles 7 such that a maximum set of pairwise crossing or non-crossing segments in S
corresponds to a maximum crossing family and independent family, respectively, among 7T .

We first sketch the construction for MAXINDEPENDENTFAMILY. The idea of the reduction
is to replace each s = pg € § by a so-called segment gadget. Each segment gadget consists
of ten triangles, divided into two groups of five triangles each, where each group forms an
endpoint gadget. As the name suggests, the two endpoint gadgets which we denote by 7, and
T, are placed at the endpoints p and g of s, respectively. As every endpoint gadget contains
exactly 15 vertices, there is at least one vertex in any independent family among the triangles
of the endpoint gadget which can never be matched to a vertex also in the same endpoint
gadget. The goal is to place the triangles in such a way that a solution will match a pair of
vertices in endpoint gadgets if and only if the underlying segment s lies in a corresponding
set of non-crossing segments in S.

An endpoint gadget 7, contains three types of triangles: three outer triangles, one inner
triangle, and one shooting triangle. The outer triangles are three congruent triangles placed
around the inner triangle in such a way that each of them has one side on the boundary of the
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Figure 1 Endpoint gadget with three outer triangles, inner triangle Tin¢, and shooting triangle
Tshoot- The original segment s is indicated in dark blue. The areas marked in gray are visible from
the exterior of the gadget; the area marked in green is the interior area visible to Tshoot; the area
marked in pink is the area outside the gadget visible from Tihoot- The red segments are segments of
a maximum independent family within the gadget.

gadget’s convex hull, and such that every pair of outer triangles forms a narrow rectangular
corridor. One of these corridors is parallel to the supporting line of s and contains the
endpoint p in its interior. At the position of p, we place the shooting triangle Ty,00t- The
construction can be seen in Figure 1. An analogous endpoint gadget 7, is placed at ¢. By
carefully scaling the corridor, we achieve that the vertices of the shooting triangles only see
some vertices in their own endpoint gadget, and vertices in the corridor around ¢ in 7j.

Finally, the three outer triangles delimit a triangular region in the interior of the convex
hull of 7, that is visible neither via the corridors nor from the vertices of Tshoot. Consequently,
the vertices of the inner triangle only see the three vertices of outer triangles that are interior
to the convex hull of the endpoint gadget. This forces the corresponding three segments
between these vertices to occur in every maximum independent family among 7.

Given a set of k pairwise non-crossing segments in § it is straight-forward to construct
an independent family of size 14 - |S| 4+ k among the triangles in 7. Vice versa, for any
independent family F' of size 14 - |S| + k among T we find that for k segment gadgets a
segment in F' has to have both its endpoints among the vertices of the two shooting triangles
in the segment gadget. Since two segments connecting shooting triangles in different segment
gadgets cross if and only if the corresponding segments in S cross we obtain a set of pairwise
non-crossing segments of size k in S from F.

» Theorem 1. MAXINDEPENDENTFAMILY is NP-hard even if all polygons are triangles.

For MAXCROSSINGFAMILY we need to modify the above construction, as vertices of the
outer triangles may be matched to each other and thereby create a large crossing family
independent from the shooting triangles. Therefore, we adapt the endpoint gadgets to ensure
that many pairwise crossing visibility segments have to be added for each segment gadget. To
this end, we replace in each endpoint gadget the shooting triangle by a set of 7 - |S| shooting
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Figure 2 Modification of endpoint gadget. The original segment s is indicated in dark blue. The
red segments are segments of a maximum crossing family within the segment gadget.

triangles such that the segments between shooting triangles of the two endpoint gadgets of
each segment gadget together form a crossing family of size 21 -|S]|, see Figure 2. Additionally,
four segments between vertices of the outer triangles can be added to this crossing family.
Then, a maximum crossing family of segments within a segment gadget has size 21 - |S| + 4.

In the whole set of triangles 7, a maximum crossing family consists of segments between
two vertices in the same segment gadget, and segments between two vertices in different
segment gadgets. We can upper-bound the number of the latter ones by 6 - |S|, since every
endpoint gadget contributes at most six vertices as endpoints of these segments. Consequently,
even if all segments between all vertices of outer triangles in 7 could be added, this would
not offset the contribution of just one segment gadget. Arguing as for independent families,
we obtain that 7 contains a maximum crossing family of size at least (21 -|S|+ 4)k if and
only if there is a set of k pairwise crossing segments in S.

» Theorem 2. MAXCROSSINGFAMILY is NP-hard even if all polygons are triangles.

4 Finding crossing families among k polygons

Let P = {P,..., Pr} be a set of k non-intersecting polygons, possibly nesting. In this section
we present a fixed-parameter algorithm to solve MAXCROSSINGFAMILY when parameterized
by k. Thus, the number k of polygons is bounded, but the numbers n1,no, ..., ny of vertices
per polygon may be unbounded. The input size is n = Zle Ng.

The k > 0 polygons in P define k+ 1 faces. Our algorithm will compute a largest crossing
family among P in each face independently. Since segments in different faces cannot cross,
the solution to MAXCROSSINGFAMILY is the largest computed crossing family. For the
remainder of this section, we therefore ask for a largest crossing family in a given face f.

For purely technical reasons, we assume w.l.o.g. that there is no vertical segment connecting
two polygon vertices (else we perform a slight rotation of the whole instance). This merely
ensures that each segment has a well-defined slope, which we will later use to obtain an
ordering of the segments. For polygons P, @ € P (not necessarily distinct) we define their
class (P, Q) to be the set of segments in which the right endpoint is a vertex of P and the left
endpoint is a vertex of Q). In a crossing family C, we consider the segments uniquely sorted
by decreasing slope; note that segments with the same slope cannot cross. This naturally
gives rise to the sequence of classes of these segments which we compress to a sequence II in
which consecutive occurrences of a class are merged. Note also that a class can appear more
than once in IT; each such appearance corresponds to a bundle of segments in C', formally a
maximal set of segments of the same class that is consecutive in the ordering of the crossing
family by slopes. We use their corresponding order in II to label the bundles By,... By.
Despite the repetitions, we can provide the following bound on ¢:

» Lemma 3. The length £ of 1 is at most 4k — 3.
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Proof. Let II, (II;) be the sequence of polygons that arises when picking only the first (resp.

second) elements of the classes in II. Since no two polygons intersect each other and no
polygon intersects a segment in the crossing family, neither of these sequences contains a
subsequence of the form PQPQ with polygons P # Q. Indeed, two segments that cross and

have one of their endpoints in P, together with the boundary of P, define a bounded region.

Polygon @ can either lie inside it or outside it, but not both.

This lack of PQP(Q subsequences implies that II,. and II; are Davenport-Schinzel sequences
of order 2 on the k polygons, and their length is therefore at most 2k —1 [9]. In the combined
sequence 11, two consecutive classes differ in at least one of the polygons. As there are at most
2k — 2 changes in each of the two sequences of polygons, there are at most 2- (2k —2) = 4k —4
changes in II. Therefore, II has length at most 4k — 3. |

We now describe our algorithm, which on a high level works by dynamically computing
the largest crossing family of a consecutive sequence of bundles with specific first and last
segments under the condition that the crossing family is consistent with the selected II.

Step 0: Precomputation. We precompute which pairs of vertices of polygons see each
other (without crossing any polygon boundary). These are the O(n?) valid segments and

they can trivially be computed in O(n?) time.

Step 1: Branching. In the next step of the algorithm, we guess the sequence II for a

solution of MAXCROSSINGFAMILY, that is, we run the algorithm for each possible sequence II.

This fixes the order of the bundles and also determines the subset of polygons that contribute
to the solution. We call them the contributing polygons, P’. By Lemma 3 and the fact that
there are k different polygons, we have at most k2(**=3) possibilities for II.

For a crossing family, the extreme delimiters dg (start delimiter) and dy (end delimiter)
are the segments with maximum and minimum slopes, respectively. We branch on dy in a
solution. For a class K;, let |K;| denote the product of the number of vertices of the two
polygons in class K;. Since dy must be in the first class K; of II, the number of choices is
bounded by |K1|. In the worst case, this is O(n?).

Thus, we run the algorithm in the next step at most O(n
largest crossing family computed among them.

2E2(4k=3)) times and select the

Step 2: Optimizing delimiters. The key information for the solution are the extreme
segments for each bundle. A crossing family C respects a sequence of classes II if the
compressed sequence of classes of the segments of C' sorted by decreasing slope is II. For a
crossing family C' that respects II and for a bundle B;, the delimiter d; of B; in C' is the
segment of C' in B; that has the smallest slope. For notational convenience, we preface the
sequence of classes II by class Ky, which is equal to K. We refer to the resulting extended
sequence as IIT. We say that the bundle and delimiter of K is the start delimiter dy.

Given two segments a and b we say that a point p lies (strictly) between them if p lies
in the (open) region bounded by the supporting lines of a and b that does not contain any
vertical ray, the horizontal double wedge of a and b. (We call the (open) interior of the
complement of a horizontal double wedge the vertical double wedge.) We say that a segment
c is between a and b if both endpoints of ¢ are between a and b, one in each side of the
horizontal double wedge. Note that then all the segments of C' between two consecutive
delimiters d; and d;11 together with d;+1 (and dg if dy = d;) form the bundle B;,1. We also
say that a polygon lies between a and b if all its vertices lie strictly between a and b, on the
same side of the horizontal double wedge.
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We now outline the procedure of our dynamic programming algorithm. Given a set P of
polygons, a sequence of classes II, and a segment dy, we aim to find a largest crossing family
C among P that respects II and begins with delimiter dy. For this, we dynamically find an
optimal sequence of bundle delimiters. Our algorithm processes the classes in the order given
by II. When processing class i € [1, /], we assume that we have solved the subproblems for
every valid delimiter d;_; in class K;_1, and that these solutions are stored in a table with
one row per delimiter d;_;. In that row we store the maximum possible size |C;_1(do, d;—1)|
of a crossing family between (i.e., with extreme delimiters) dy and d;—;. With possible we
here mean that at each step we already take into account that we will need to complete the
crossing family to one that respects II. This table also includes in each row an iteratively built
crossing family with extreme delimiters dy, d;—1, for convenience of solution reconstruction.

At the beginning of the algorithm, the table only contains one row for delimiter dy,
with size 1 and sequence dy. In step i this table gets updated to one that contains the
maximum possible size of a crossing family between dy and d;, |C;(do, d;)|, for each valid
delimiter d; in class K;. We calculate the values |C;(dg,t)| for each ¢ in class K; from the
previously tabulated values |C;_1(dp, s)| with s in class K;_1. At step ¢ we compute, for each
possible pair s, t of delimiters of classes K;_1 and K, respectively, the best possible crossing
family extension C;(s,t) consisting of segments of class K; between delimiters s and ¢, not
including s. We denote its size as |C;(s,t)|. In this computation, we take into account that
the final sequence needs to respect II. Also, not all (s,t) pairs are possible: they need to
cross and be sorted by slope, but also ¢ should cross the sequence of previous delimiters of s.
Crucially, by checking certain necessary conditions, we can make this check independent of
the sequence of previous delimiters of s. This restricts the sizes at each step and disallows
certain delimiters (which we mark as having size —oo). With the above notation, for each ¢
in class K;,

|Ci(do, t)| = \ defi A Ki_l{\cz‘—1(d075)| + |Ci(s, t)|}

In this way, our algorithm assigns to each delimiter ¢ in class K; with ¢ > 1 a delimiter s
in the previous class K;_1. To obtain the crossing family in the row corresponding to ¢, we
take the one corresponding to s and append C;(s,t).

In the final step of the algorithm, we select a delimiter d, that maximizes |Cy(do, ds)l;
the corresponding crossing family is stored in the last table in the row for dy.

The next lemma specifies how we compute each value |C;(s,t)|, for s and ¢ in classes K;_1
and K, respectively, and the underlying crossing family C;(s,t). Moreover, it shows that
such a crossing family is optimal if s and ¢ are the delimiters of the corresponding classes. In
particular, all other segments in a crossing family respecting IT will cross them.

» Lemma 4. Assume we are given a family of polygons P = {Py,..., Py}, the start delimiter

do, an extended sequence of classes 1T = (Ko = K1, ..., Ky), a superset Q of the contributing

polygons of I, and the two delimiters d; and d;11 of (consecutive bundles corresponding to)

classes K; and K41, respectively, satisfying

(*) {do,d;i,d;y1} form a crossing family, are sorted by decreasing slope, and there is no
polygon in Q between d; and d; 1.

Then we can compute, in time polynomial in the total number n of polygon vertices, a
largest crossing family C of P such that
(i) its extreme delimiters are d; and d;y1,
(ii) all its segments except maybe d; are in class K;11, and
(iii) no polygon in Q lies in a triangle bounded by three segments of C.
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Moreover, for all crossing families among P that: respect the extended sequence TIT,
no polygon in Q lies between two consecutive delimiters or in a bounded cell, and have
as delimiters d; and d;y1 for the bundles of classes K; and K1, respectively, it is always
possible to replace the segments between and including d; and d;11 by C without decreasing the
size of the crossing family, still respecting IIT and that no polygon in Q lies in a bounded cell.

In our algorithm we use Lemma 4 with Q equal to the contributing polygons of IT+
(same as of II). The motivation behind Condition iii and the condition involving Q in the
second part of the statement is that no segments in a solution crossing family can define
a region enclosing a contributing polygon. If such a region existed, there would be three
segments defining a triangular region enclosing the polygon, which cannot be the case since
any segment incident to an endpoint inside the region can only cross two of the segments.

» Observation 5. Given a crossing family C whose set of contributing polygons is P, no
(three) segments of C define a (triangular) region enclosing a polygon in P.

Proof of Lemma 4. We first check whether Condition % holds in O(n) time. If Condition %
does not hold and Q is the set of contributing polygons of II, d; and d; 1 cannot be delimiters
for classes K; and K;11.

Let S be the set of segments containing each segment s # d;, d;+1 such that {d;,d;y1,s}
are a crossing family that fulfills Conditions i—iii. Whether a segment lies in S can be tested
in O(n) time per segment s and there are at most O(n?) such segments. The segments
in S form a circle graph, since their endpoints lie either on the boundaries of two disjoint
polygons, or on the boundary of one polygon. Consequently, a maximum crossing family C~

consisting of segments in S is a clique in this graph and can be computed in time O(|S|?) [3].

Let C be the crossing family C~ U {d;, d;;1}, which we computed in O(n?) time.

We now show that the algorithm above computes the crossing family C' as per the lemma
statement. First, note that by definition of S, Conditions i and ii hold. In the definition of
S, we only checked that Condition iii holds for triangular regions bounded by segments d;

and d;+1. We show that this implies that it also holds for any other triple of segments in C.

Assume for contradiction that a polygon @ € Q lies in a triangular region bounded by
three segments in C'. By Condition x, () must lie either above the supporting lines of d;
and d;41, or below both. Being in such a bounded region implies that it lies below or above
(respectively) the supporting line of a segment x € S. In both cases, @ lies in the triangle
bounded by z, d;, and d;41, which we checked is not the case when we included x in S.

For the second part of the lemma, consider a crossing family X among P that respects
IIT, no polygon in Q lies between consecutive delimiters or in a bounded cell, and has
delimiters d; and d; 1 for the bundles of classes K; and K1, respectively. Let C’ be the set
of segments of X between d; and d; 1. For each segment y € C’ it must hold, by definition,
that {d;,d;+1,y} is a crossing family satisfying Conditions i-iii. Thus, C’ C S and replacing
C’ by C~ does not decrease the size of the crossing family.

We next show that all segments in X \ C” cross all the segments in C~; refer to Figure 3
(left). This is trivially true for d; and d; ;. Consider a different such segment z in X. By
definition, z cannot lie between d; and d;;1. Moreover, none of its endpoints can lie between
d; and d;y; since z must cross both d; and d;;1. Thus, by construction of S, and concretely
Condition iii, no endpoint of z can lie in a triangle bounded by d;, d;;1, and a segment in
C~. This implies that one endpoint of z lies below the supporting line of each segment in S
and the other above. Since z crosses d;+1 and no segment in X can cross the boundary of a
polygon, no endpoint of a segment in C'~ can lie in a triangle bounded by z, d;, and d;41.
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Figure 3 Illustration of the correctness of the FPT-algorithm for MAXCROSSINGFAMILY. Left:
Segments in red cannot be in a crossing family with the blue consecutive delimiters. The dashed
segment is invalid. Middle: a violation of Condition iii. Right: Red segments do not cross all blue
delimiters. It can be detected considering the previous dark blue delimiter and the relevant polygons.

As the segments in C~, by definition, lie between d; and d;1, this means that every such
segment has one endpoint on either side of z. We can therefore conclude that z crosses all
segments in C'~.

By construction and Conditions i and ii, after replacing C’ by C~ II is still respected.
It remains to prove that no polygon @ € Q lies in a bounded cell. By Condition x, @) cannot
lie in the horizontal double wedge of d;, d;+1. Assume w.l.o.g. that it lies in the top region of
the vertical double wedge of d;, d;+1. If @ lies below the supporting line of a segment in C'~,
then that segment together with d; and d;; would contradict Condition iii; see Figure 3
(middle). But if it lies above the supporting lines of all segments in C~ then @ can only lie
in a bounded cell if it already was in X \ C’, contradicting the assumption of X. <

In our algorithm, when computing C;(s,t) using Lemma 4, if Condition * does not hold
we do not allow such a pair of delimiters (we can return an empty set and size —o0). The
next lemma establishes the correctness of our procedure.

» Lemma 6. For a given set P of polygons, a sequence of classes 11T, and a segment dy,
our algorithm computes a valid crossing family C among P that respects I and has as start
delimiter dy, or reports that no such family exists.

Proof. Assume first that a solution exists, and let dg,dy, .. .d, be its sequence of delimiters
sorted by decreasing slope. Any two consecutive delimiters (together with dg) must fulfill
Condition x in Lemma 4, and thus our algorithm considered them and a largest crossing
family between them, since all conditions are necessary. In particular, by Observation 5
Condition iii must hold for the set of contributing polygons. It might be that our algorithm
picks a different sequence of delimiters or crossing family between them than the one in the
solution assumed, but it will output an at-least-as-large crossing family.

In the other direction, assume that our algorithm produced a crossing family. We want to
show that it is indeed a valid crossing family that respects II™ and has as start delimiter dy.
We construct the extended sequence of classes IIT from II and dg. The computed crossing
family corresponds to a sequence of delimiters dy, dq, . ..dy. If those would indeed form a
crossing family sorted by decreasing slope that respects IIT and has as start delimiter do,
then by the second part of Lemma 4, the whole crossing family computed would be valid.
The sequence of delimiters is sorted by decreasing slope and has as start delimiter dy by
Condition * at each step. It also respects IIT by Condition ii.

It remains to prove that all the delimiters pairwise cross. Assume for contradiction that
they do not, and let d;;1 be the first delimiter in the sequence that does not cross all the
previous delimiters. Thus, dg, dq, ..., d; form a crossing family. By Condition *, dy, d;, and
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d;+1 are sorted by decreasing slope and there is no contributing polygon between d; and
d;t1. In particular, the endpoints of d;;1 lie in the top and bottom region of the vertical
double wedge of d; and dg, see Figure 3 (right). In contrast, delimiters dy, ..., d;_1 have their
endpoints in the left and right region of the horizontal double wedge of d; and dy. Since we
only consider valid segments as delimiters and there is no contributing polygon between d;
and d;41, there is no endpoint of the delimiters dy, ..., d;—; enclosed by {do, d;, d;+1}. Thus,
do,d1,...,d;+1 form a crossing family, contradicting the assumption. |

» Lemma 7. For a given set P of polygons, a sequence of classes 11, and a segment dy, our
algorithm computes a largest crossing family C among P that respects Il and has as start
delimiter dg.

Proof. Let Hj = (Ko = Ki,...,K) be the extended sequence of classes of II and let Q
be the set of contributing polygons of II. We prove by induction on i that our algorithm
computes (in step @) a largest crossing family C' among P that respects the extended sequence
Hj = (Ko = Kj,..., K;), has as start delimiter dy, as end delimiter a given segment d; (of
class K;) and the following property: (¢) there is no polygon in Q that lies between the
extreme delimiters of C' or in a triangular region bounded by three segments of C'. Note that
condition (¢) is necessary to obtain a crossing family fulfilling the conditions of the lemma.
The induction base trivially holds for 4 = 0 and by Lemma 4, case i = 1 also holds.
Assume the induction hypothesis for step ¢, and assume for contradiction that in step i + 1
there is a larger crossing family C’ that respects H;_l, has as start delimiter dy, as end
delimiter d;4+1, and fulfills (¢). Let d} be the previous delimiter in C’; it might not coincide
with the one chosen by our algorithm, but, for a similar argument as in Lemma 6, it is in
the table at the start of step ¢ + 1. By the induction hypothesis, until d; the crossing family
computed and tabulated by our algorithm cannot be smaller than the one of C' until d!.
Moreover, by Lemma 4, between delimiters d; and d;y; our algorithm computes a largest
crossing family that can replace the one of C’ while maintaining its properties (respects H;”H,
has as start delimiter dy, as end delimiter d;;1, and fulfills (¢)). Thus, the crossing family
that our algorithm computes for d; 11 in step ¢ + 1 is at least as large as C”; contradiction.
This implies that in the last step our algorithm computes a largest crossing family for
each possible end delimiter. Lemma 6 ensures that we will succeed, and assuming we chose
the end delimiter yielding a largest crossing family, the statement follows. |

We are now ready to establish our first algorithmic result:

» Theorem 8. MAXCROSSINGFAMILY is fized-parameter tractable with respect to the number
of polygons k.

Proof. Given a set P of polygons, consider a crossing family C” solving MAXCROSSINGFAMILY.

In our branching step, we consider all possible sequences of classes and start delimiters. In
particular, the sequence of classes IT and the start delimiter dy of C’. By Lemmas 6 and 7,
Step 2 in our algorithm computes a largest valid crossing family C with |C| > |C”| respecting
II and with start delimiter dy, thus solving MAXCROSSINGFAMILY.

The algorithm runs in time f(k) - n®M) where n is the number of vertices of P. The
precomputation step takes O(n?) time. We run the polynomial (in n and k) algorithm in
Step 2 O(n2k2(4k_3)) times. Without trying to optimize its running time, it comprises at
most 4k — 3 steps corresponding to the classes, and in each step we consider at most O(n*)
pairs of delimiters (assuming that we choose the 4 endpoints of the delimiters from all n
points). For each such pair, the procedure in Lemma 4 takes O(n?) time. <
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5 Finding independent families among k holes

As our final contribution, we provide an XP-algorithm for MAXINDEPENDENTFAMILY WITH-
HoOLES when parameterized by the number of holes — a result which contrasts the known
NP-hardness of MAXINDEPENDENTFAMILY with a single polygon [21].

Our proof is based on decomposing sets of independent segments into what we refer
to as bunches. On a high level, bunches are inclusion-maximal sets of segments that are
enclosed by one segment and one connected hole boundary part, or by two segments and
two connected hole boundary parts that do not enclose segments of the independent family
with endpoints on other hole boundary parts. We will argue that each hypothetical solution
can be decomposed into a number of bunches quadratic in the number of polygons, each
of which is enclosed by at most two delimiting segments of the hypothetical solution and
connected parts of at most two polygon boundaries. In XP-time we can branch on a choice
of such delimiting segments and compute the other edges of each bunch as an independent
set of a circle graph. We formalize below.

» Definition 9. Given a family of polygons P = {Py,..., Py} and a set S of pairwise
independent segments between vertices of P that do not intersect P° for any P € P, a
bunch B is a maximal subset of S that is enclosed by at most two elements by, by of B and
connected parts Q, Q" of the boundaries of at most two arbitrary polygons P, P’ € P such
that the endpoints of each b € B lie in QU Q'. by,by are called the delimiters of B, and
by UbyUQU Q' is called the boundary of B.

The next lemma, whose proof uses similar ideas as that of Lemma 3, allows us to branch
on boundaries of bunches that partition a hypothetical target maximum independent family.

» Lemma 10. Given a family of polygons P = {Py,..., P} and a set of pairwise independent
segments S between vertices of P that do not intersect P° for any P € P, § = Uie[z]Bi
where each B; is a bunch and ¢ < 4k2.

Knowing the boundaries of bunches allows us to compute their other contained segments,
or an independent family of at least as many segments in polynomial time. Note that here it
is crucial that we are considering holes.

» Theorem 11 ([18]). Given a polygon, a mazimal family of independent segments in its
interior can be computed in polynomial time.

The proofs for Lemma 10 and Theorem 11 can be found in the appendix. Combining the
above, we obtain our final algorithmic result.

» Theorem 12. MAXINDEPENDENTFAMILY WITHHOLES is in XP parameterized by the
number of holes.

Proof. We can assume a partition into bunches of a maximum independent family of segments
between the holes according to Lemma 10, and branch in 20 (n denotes the overall
number of polygon vertices) ways on the boundaries of the corresponding bunches: we branch
on a set of O(k?) pairwise independent delimiting segments, on O(k*) pairings of them, and
O(1) hole boundary parts to complete the boundary. Using Theorem 11, we can compute
in polynomial time a maximum independent family of segments within each boundary. We
return the union of all families computed in this way together with the branched delimiting

segments obtained in this way with maximum size.
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The described procedure obviously runs in XP-time parameterized by k. Further, the
returned family of segments is indeed independent: Segments which are in the solution of the
same invocation of Theorem 11 are independent by the correctness of Theorem 11. Segments
which are in a solution of an invocation of Theorem 11 are independent from all branched on
delimiting segments because they are prohibited from crossing the boundary for which they
are in the solution and all delimiting segments lie on or beyond that boundary. Further, the
boundary for which a segment was in the solution of an invocation of Theorem 11 separates
this segment from all segments in solutions of other invocations of Theorem 11. Independence
of branched-on delimiting segments is ensured at branching.

A maximum independent family is returned because in some branch, the delimiting
segments will coincide with those that exist in a bunch partition of a maximum independent
family according to Lemma 10, and any other segments in a bunch can be replaced by an
arbitrary maximum independent family of segments in its boundary. <

6 Discussion and open questions

Our reductions establish the intractability of the considered problems even if the polygons
are triangles. Nevertheless, the complexity of computing a maximum crossing family among
a set of points remains as a prominent open question.

On the algorithmic front, we leave open whether MAXINDEPENDENTFAMILY WITHHOLES
is fixed-parameter tractable w.r.t. the number of holes. While it seems conceivable that the
boundaries of bunches employed in the proof of Theorem 12 could instead be processed via
dynamic programming, it is entirely unclear what processing order one should use. Another
open question is whether MAXINDEPENDENTFAMILY is fixed-parameter tractable w.r.t. the
number of polygons (as opposed to paraNP-hard) if all polygons are convex.
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Proof. We show the statement by induction on k.

For the base case, k = 1 and S = B with the delimiting segment of B being given by an
arbitrary segment in S whose endpoints are consecutive in a traversal of the boundary PN S
along the boundary of P (if no such segment exists then S = ) and hence ¢ = 0 is valid).
The boundary of B is given by the above delimiting segment and the part of the boundary
of P between its endpoints that contains other endpoints of segments in S (if there is no
other segment in S we can choose between the two parts of the boundary of P between the
endpoints of the delimiting segment arbitrarily).

For the inductive step, assume the statement to hold for independent families on holes
Py, ..., P,_1. Consider all elements of S with an endpoint on P and an endpoint on P;
for any i € [k — 1] and label them with ¢ € [k — 1] based on the containment of their other
endpoint in P;.

Along a traversal of the boundary of Py, any distinct labels 4,4 do not interleave (i.e.,
occur in the order i,4’,4,4") as this would induce a crossing between two closed curves, one
formed by segments with the same label ¢ and a part of the boundary between their endpoints
on P, and P; and the other formed by segments with the same label i’ and a part of the
boundary between their endpoints on P, and P;/, contradicting that S is independent or
that P;, Py, and Py are pairwise non-intersecting. Now we remove all but the first and last
segment or each subsequence of each maximal subsequence of the traversal which has one
unique label. We call the resulting sequence o.

A non-interleaving sequence over [k — 1] with at most two consecutive repetitions of each
element has length at most 4k — 2 because without repetitions it is a Davenport-Schinzel
sequence of order 2, and its length is therefore at most 2k — 1 [9]. Thus, the length of o is at
most 4k — 2.

By construction, a desired partition into bunches can be achieved by combining a desired
partition of the subset of S that does not contain segments with endpoints on Pj, and bunches
whose delimiting segments are in o; here, delimiting segments are associated to the same
bunch if they are consecutive with the same label. The former partition exists by inductive
hypothesis, and by inductive hypothesis we get an overall size bound of 4(k—1)?+4k—2 < 4k>
as desired. <

» Theorem 11 ([18]). Given a polygon, a mazimal family of independent segments in its
interior can be computed in polynomial time.

Proof. The set of segments in the interior of a polygon can be viewed as the vertex set of a
circle graph in a natural way. Finding a maximum independent family among these segments
then directly corresponds to finding a maximum independent set in the circle graph. The
latter is known to be possible in polynomial time [18]. <
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