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Abstract
We consider the following two algorithmic problems: given a graph G and a subgraph H ⊆ G, decide
whether H is an isometric or a geodesically convex subgraph of G. It is relatively easy to see that
the problems can be solved by computing the distances between all pairs of vertices. We provide a
conditional lower bound showing that, for sparse graphs with n vertices and Θ(n) edges, we cannot
expect to solve the problem in O(n2−ε) time for any constant ε > 0. We also show that the problem
can be solved in subquadratic time for planar graphs and in near-linear time for graphs of bounded
treewidth. Finally, we provide a near-linear time algorithm for the setting where G is a plane graph
and H is defined by a few cycles in G.
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1 Introduction

Isometric and geodesically convex subgraphs1 are two natural and fundamental concepts in
the area of metric graph theory [3, 39]. Our objective in this paper is to study the algorithmic
problem of recognizing whether a given subgraph is convex or isometric.

Setting. Let G be an undirected graph with abstract, positive edge lengths ℓ : E(G) → R>0.
We call G the host graph and assume henceforth that it is connected. The length of
a walk (or path) π in G, denoted by ℓ(π), is the sum of the lengths of its edges; thus
ℓ(π) =

∑
e∈E(π) ℓ(e), where the sum is with multiplicity. For any two vertices x, y ∈ V (G), a

shortest path from x to y is a minimum-length path connecting x and y, and the distance
between x and y in G, denoted by dG(x, y), is the length of a shortest path from x to y.

1 There are several distinct concepts of convexity in graphs [11, 39]. Since in this work we only talk about
geodetic convexity, we will drop the adjective “geodesically”.
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12:2 Testing Whether a Subgraph Is Convex or Isometric

For any two vertices x, y of G, the interval IG(x, y) is the subgraph of G defined by the
union of all shortest paths from x to y. Formally

V (IG(x, y)) = {u ∈ V (G) | dG(x, u) + dG(u, y) = dG(x, y)}.

E(IG(x, y)) = {uv ∈ E(G) | dG(x, u) + ℓ(uv) + dG(v, y) = dG(x, y) or
dG(x, v) + ℓ(uv) + dG(u, y) = dG(x, y)}.

A subgraph H of G is (geodesically) convex (in G) if and only if

∀x, y ∈ V (H) : IG(x, y) ⊆ H,

and it is isometric (in G) if and only if

∀x, y ∈ V (H) : dG(x, y) = dH(x, y).

We consider the following algorithmic problems:
Given a host graph G and a subgraph H ⊆ G, decide whether H is an isometric subgraph.
Given a host graph G and a subgraph H ⊆ G, decide whether H is a convex subgraph.

In graph theory, the concepts of isometric and (geodesically) convex subgraphs are defined
for the setting where ℓ(e) = 1 for all e ∈ E(G). In this unit-length setting, only induced
subgraphs are considered because non-induced graphs cannot be isometric nor convex. In
the general case with edge lengths, we may have dG(x, y) < ℓ(xy) for some edges xy of G.

Henceforth, we use n and m for the number of vertices and edges of the host graph G.

Related work. Dourado et al. [16] provide an efficient algorithm to test convexity in the
case of unit-length edges. Their approach can be easily adapted to graphs with arbitrary
edge lengths, as follows. For each vertex x of the subgraph H, one computes the graph
Hx =

⋃
y∈V (H) IG(x, y). The subgraph H is convex in G if and only if Hx is contained in H

for all x ∈ V (H). The computation of Hx takes O(m) time once we have a shortest-path
tree in G from x, and testing whether Hx ⊆ H also takes O(m) time.

We conclude that testing whether a subgraph is convex can be done by computing a
shortest-path tree from each vertex, the co-called all-pairs shortest-path (APSP) problem,
followed by tests that take O(nm) time. With a simple modification, the same time bound
holds for testing whether the given subgraph is isometric. The running time to solve the
APSP problem depends on the assumptions about the edge lengths:

for unit edge lengths, the APSP problem is solved in O(nm) using a simple BFS;
when the edge lengths are natural numbers and multiplications take constant time,
Thorup [46] solves the APSP problem in O(nm) time;
if we only perform additions and comparisons of edge lengths, then the algorithm of
Pettie and Ramachandran [40] for APSP takes O(nm α(m, n)) time. Using Dijkstra’s
algorithm with Fibonacci heaps [20], the running time is slightly worse, O(n2 log n + nm).

We conclude that testing whether a subgraph is convex or isometric can be done in Õ(nm)
time in all situations.

Convex subgraphs play an important role in the theory of median graphs [12, 35, 36, 37], a
class of graphs that has received substantial attention [3, 24, 31]. For median graphs, convex
sets and so-called gated sets are the same concept; see for example [4, Lemma 3.3]. This can
be used to test convexity in linear time: it suffices to check whether every vertex outside
H has at most one neighbor in H. Imrich and Klavžar [27] provided a characterization of
convex subgraphs in bipartite graphs in terms of Θ-classes. The characterization is for unit
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edge lengths and leads to an algorithm taking O(nm) time. They used it to obtain a fast
algorithm to recognize median graphs. See also [23]. It was later shown that the recognition
of median graphs is closely related to the detection of triangles in graphs [28]. If the host
graph G is the Cartesian product of graphs, G = G1□ . . .□Gk, and the edges have unit
length, a subgraph H ⊆ G is convex if and only if H = H1□ . . .□Hk, where each Hi is
a convex subgraph of Gi; see [24, Lemma 6.5]. Together with linear-time algorithms for
factorization of graphs [29], this leads to an efficient algorithm for Cartesian products of
substantially smaller graphs. Convex subgraphs are being considered also in more applied
areas; see for example [21, 34, 44, 45].

A graph is a partial cube [15, 19, 48] if it is isomorphic to an isometric subgraph of
some hypercube Qd. Partial cubes enjoy a rich structure and appear in several different
combinatorial settings; see for example [3, 24, 38]. Eppstein [18] provided an algorithm to
test in O(n2) time whether a given graph with n vertices is a partial cube. Note that this
setting is different to ours because we are not given a subgraph of Qd, but have to test
whether a given graph is isomorphic to an isometric subgraph of Qd. In our setting, we are
given a subgraph. The concept of isometric embeddings in the hypercube or other products
of graphs has also been studied recently for weighted graphs; see [5, 42].

Our contribution. We first provide a series of characterizations of isometric (Section 2)
and convex subgraphs (Section 3). Most notably, one of the characterizations uses a marked
version of the of the so-called Wiener index, which we will define below. We think that
the characterizations are new and of independent interest. Although proving each of our
characterizations is not difficult, identifying them is closely related to the development of
our algorithms.

Our first result regarding algorithms is the following conditional lower bound: if G has
n vertices and Θ(n) edges, then there is no algorithm to test whether a given subgraph H

of G is isometric or convex in O(n2−ε) time, for any constant ε > 0, unless the Orthogonal
Vectors Conjecture (OVC) and the Strong Exponential Time Hypothesis (SETH) fail. This
means that for general graphs we cannot expect to test whether a subgraph is convex or
isometric in, say, O(nm0.999) time, unless some standard assumptions are wrong. The lower
bound holds for graphs with unit edge lengths and implies that the algorithms mentioned
above, with running times Õ(nm), are asymptotically optimal up to polynomial factors Θ(nε)
for any ε > 0. Our reduction is via the diameter problem. We review OVC and SETH in
Section 4, where we also provide our reduction via the diameter problem.

The characterization using the marked version of the Wiener index can be combined with
adaptations of known algorithms to obtain the following results about testing whether a
given subgraph is isometric or convex:

If the host graph is planar graph, the test can be performed in Õ(n5/3) time.
If the host graph has treewidth bounded by a constant k ≥ 3, the test can be performed
in O(n logk−1 n) time; the constant in the O-notation depends on k. When the treewidth
k is considered a parameter, the test can be performed in n1+ε2O(k), for any constant
ε > 0; the constant in the O-notation depends on the choice of ε.

Finally, in Section 6 we consider the following setting. The host graph G is a plane
graph, that is, a planar graph with a fixed embedding in the plane. Let C be a cycle in G

and let H = int(G, C) be the subgraph of G bounded by C and including C; see Figure 1 left.
We show how to decide whether H is an isometric or a convex subgraph of G in O(n log n)
time. The result can be extended to subgraphs of G defined by a constant number of cycles;
see the right of Figure 1 for an example and Section 6 for more precise definitions. Compared
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12:4 Testing Whether a Subgraph Is Convex or Isometric

G G

C
C1C2 C

Figure 1 Schematic view of the subgraph H = int(G, C) defined by the cycle C (left) and the
subgraph holes(G, C, {C1, C2}) defined by a few cycles (right). They are both marked with stripes.

to the other results presented in the paper, this result is interesting because it uses different
characterizations and a different algorithmic paradigm. We use multiple-source shortest-path
(MSSP) algorithms for planar graphs [9, 32] and combine the distances in the interior and
the exterior of C, as the source of the shortest-path tree moves along the cycle C. As far
as we know, this is the first application of MSSP where we maintain a combination of the
interior and the exterior distances.

Notation and basic concepts. Through our discussion we will assume that the host graph G

is fixed and in the notation we will often drop the dependency on G.
For each subgraph H of G, the boundary of H (in G) is the set ∂H of vertices of H that

are incident to some edge outside H. Thus, ∂H = {v ∈ V (H) | ∃uv ∈ E(G) \ E(H)}. Note
that each path in G that has edges from E(H) and edges from E(G) \ E(H) must have some
vertex of ∂H.

For each subgraph H of G, let Hout be the complement of H in G, defined as the
subgraph with edges not contained in H. Thus, Hout = (V (G), E(G) \ E(H)). The graph
Hout may have isolated vertices. For distances in Hout we write dHout(·, ·).

We will often use without explicit mention that for any subgraph H of G and any vertices
x, y ∈ V (H) we have dG(x, y) ≤ dH(x, y) and dG(x, y) ≤ dHout(x, y).

The Wiener index with marked vertices for a graph G with respect to U ⊆ V (G)
is

∑
x,y∈U dG(x, y). The classical Wiener index is the case of U = V (G). For unweighted

graphs, this is a very similar to the vertex-weighted medians considered by Bandelt and
Chepoi [2] and it is a particular case of the vertex-weighted Wiener index considered by
Bénéteau et al. [4] for median graphs. In their weighted version, the marked vertices have
weight 1 and the vertices to be ignored in the sum have weight 0.

2 Characterizing isometric subgraphs

In this section we provide different criteria to test when a subgraph H of G is isometric.

▶ Lemma 1. Let G be a connected graph and let H be a subgraph of G. Then H is an
isometric subgraph of G if and only if

∀x, y ∈ ∂H : dH(x, y) ≤ dHout(x, y).

The next two characterizations use the Wiener index with marked vertices.

▶ Lemma 2. Let G be a connected graph and let H be a subgraph of G. Then H is an
isometric subgraph of G if and only if∑

x,y∈V (H)

dG(x, y) =
∑

x,y∈V (H)

dH(x, y).
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In fact, it suffices to add the distances between vertices on the boundary of H, or any
superset of them.

▶ Lemma 3. Let G be a connected graph, let H be a subgraph of G and let U be such that
∂H ⊆ U ⊆ V (H). Then H is an isometric subgraph of G if and only if∑

x,y∈U

dH(x, y) =
∑

x,y∈U

dG(x, y).

3 Characterizing convex subgraphs

Here we provide criteria to identify when a subgraph H of G is convex. The structure of the
statements and the proofs is parallel to the isometric case considered in Section 2.

▶ Lemma 4. Let G be a connected graph and let H be a subgraph of G. Then H is a convex
subgraph of G if and only if

∀x, y ∈ ∂H, x ̸= y : dH(x, y) < dHout(x, y).

For the following characterizations, we are going to decrease slightly the length of some
edges of G so that no new shortest paths are created. For this, we define

ε = ε(G, ℓ) = min{ℓ(π) − ℓ(π′) | π, π′ paths in G with ℓ(π) > ℓ(π′)}
n

.

First note that we can indeed take the minimum because there is a finite number of paths
in G. Moreover, for each edge e ∈ E(G), we have ε ≤ ℓ(e)/n because e is a path in G, as
well as the empty path. For a subgraph H of G and a δ with 0 < δ ≤ ε, we define the edge
lengths ℓ̂ by shortening the edges not in H by δ. Thus

ℓ̂(e) =
{

ℓ(e) if e ∈ E(H),
ℓ(e) − δ if e ∈ E(G) \ E(H).

Note that ℓ̂(e) > 0 for all e ∈ E(G) because δ ≤ ε < ℓ(e). The lengths ℓ̂ depend on H and
δ, but we drop this dependency to avoid cluttering the notation. Let d̂G(·, ·) denote the
distance in G with respect to the edge lengths ℓ̂.

▶ Lemma 5. If G is connected and 0 < δ ≤ ε, each shortest path in G with respect to ℓ̂ is a
shortest path in G with respect to ℓ. (The converse is not necessarily true.)

▶ Lemma 6. Let G be a connected graph, let H be a subgraph of G, let δ be a real value
such that 0 < δ ≤ ε, and let d̂G be the corresponding perturbed distance. Then H is a convex
subgraph of G if and only if∑

x,y∈V (H)

d̂G(x, y) =
∑

x,y∈V (H)

dH(x, y).

Proof. Assume first that H is a convex subgraph of G. Consider any two vertices x, y of H

and let πx,y be a shortest path in G from x to y with respect to ℓ̂. Therefore d̂G(x, y) = ℓ̂(πx,y).
Because of Lemma 5, the path πx,y is a shortest path in G with respect to ℓ, which means
that ℓ(πx,y) = dG(x, y). Because H is convex, the path πx,y is contained in H, and since
the edges of H have the same length in ℓ and in ℓ̂, we have ℓ̂(πx,y) = ℓ(πx,y). Putting the
forthcoming equalities together and using that H is a convex (and thus isometric) subgraph
of G, we obtain

d̂G(x, y) = ℓ̂(πx,y) = ℓ(πx,y) = dG(x, y) = dH(x, y).

WADS 2025



12:6 Testing Whether a Subgraph Is Convex or Isometric

Since this equality holds for each x, y ∈ V (H), we obtain∑
x,y∈V (H)

d̂G(x, y) =
∑

x,y∈V (H)

dH(x, y).

To show the other direction, note first that d̂G(x, y) ≤ dG(x, y) ≤ dH(x, y) for all
x, y ∈ V (H) because ℓ̂(e) ≤ ℓ(e) for all edges e ∈ E(G) (for the first inequality) and H is a
subgraph of G (for the second inequality). Assume now that H is not a convex subgraph of
G. This means that there exists vertices x0, y0 ∈ V (H) and a x0-to-y0 shortest path π0 that
is not contained in H. Since π0 has some edge in E(G) \ E(H), we have ℓ̂(π0) < ℓ(π0) and
therefore d̂G(x0, y0) < dG(x0, y0) ≤ dH(x0, y0). Therefore∑

x,y∈V (H)

d̂G(x, y) = 2 · d̂G(x0, y0) +
∑

x, y ∈ V (H)
{x, y} ̸= {x0, y0}

d̂G(x, y)

< 2 · dH(x0, y0) +
∑

x, y ∈ V (H)
{x, y} ̸= {x0, y0}

dH(x, y) =
∑

x,y∈V (H)

dH(x, y). ◀

▶ Lemma 7. Let G be a connected graph, let H be a subgraph of G, let U be such that
∂H ⊆ U ⊆ V (H), let δ be a real value such that 0 < δ ≤ ε, and let d̂G be the corresponding
perturbed distance. Then H is a convex subgraph of G if and only if∑

x,y∈U

dH(x, y) =
∑

x,y∈U

d̂G(x, y).

Proof. In the first part of the proof of Lemma 6 we have seen that, if H is a convex subgraph
of G, then for all x, y ∈ V (H) we have d̂G(x, y) = dH(x, y). The equality of the two sums
follows.

For the other direction, we start assuming that H is not a convex subgraph of G. If H is
not connected, then the left sum is ∞ while the right side is bounded, and therefore they
are distinct. We continue assuming that H is connected. By Lemma 4, there exist distinct
vertices x0, y0 ∈ ∂H such that dH(x0, y0) ≥ dHout(x0, y0). Let π0 be a shortest x0-to-y0 path
in H and let π′

0 be a shortest x0-to-y0 path in Hout. Note that π′
0 indeed exists because

dHout(x0, y0) is bounded. We then have ℓ(π0) = dH(x0, y0) ≥ dHout(x0, y0) = ℓ(π′
0). Since π′

0
has edges outside E(H), we have ℓ̂(π′

0) < ℓ(π′
0), and therefore

d̂G(x0, y0) ≤ ℓ̂(π′
0) < ℓ(π′

0) ≤ ℓ(π0) = dH(x0, y0).

In summary, d̂G(x0, y0) < dH(x0, y0) for some x0, y0 ∈ ∂H. In general, for all x, y ∈ V (H)
we have d̂G(x, y) ≤ dG(x, y) ≤ dH(x, y) because ℓ̂(e) ≤ ℓ(e) for all edges e ∈ E(G) (for the
first inequality) and H is a subgraph of G (for the second inequality). From this it follows
that for U such that ∂H ⊆ U ⊆ V (H) we have∑

x,y∈U

d̂G(x, y) <
∑

x,y∈U

dH(x, y). ◀

4 Conditional lower bound

Our conditional lower bound is based on the following assumptions, where ⟨·, ·⟩ is the inner
product and the diameter of a graph G is diam(G) = maxx,y∈V (G) dG(x, y).
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H H3 G

v∗

Figure 2 Example for the construction of Theorem 9. Left: a graph H. Center: the graph H3.
Right: the graph G with H3 as a subgraph.

▶ Orthogonal Vectors Conjecture (OVC, [47]). For every ε > 0 there is a c ≥ 1 such that
the following problem cannot be solved in O(n2−ε) time: given n binary vectors v1, . . . , vn ∈
{0, 1}d, where d = ⌈c log n⌉, are there i, j ∈ [n] such ⟨vi, vj⟩ = 0?

▶ Strong Exponential Time Hypothesis (SETH, [25, 26]). For every ε > 0 there exists an
integer k ≥ 3 such that k-SAT with n variables cannot be solved in O(2(1−ε)n) time.

Williams [47] posed OVC and showed that it is implied by SETH. One of the interesting
consequences of OVC, and therefore SETH, is the following result.

▶ Theorem 8 (Consequence of Theorem 9 in Roditty and Vassilevska Williams [41]). If one can
distinguish in O(n2−ε) time for some constant ε > 0 between diameter 2 and 3 in undirected
graphs with n vertices and O(n) edges, all of unit length, then OVC and SETH fail.

▶ Theorem 9. Assume that, for some ε > 0, there is an algorithm that in O(n2−ε) time
solves the following problem: given an undirected graph G with n vertices and O(n) edges, all
with unit length, and given a subgraph H of G, decide whether H is an isometric subgraph
of G. Then OVC and SETH fail.

The same result holds for deciding if H is a convex subgraph of G.

Proof. We will reduce from the diameter problem considered in Theorem 8. Let H be a
graph with O(n) vertices and O(n) edges, all edges of unit length, for which we want to
distinguish whether it has diameter 2 or 3. Consider the graph G = G(H) defined as follows;
see Figure 2 for an example. We first construct the graph H3 from H by subdividing each
edge of H twice. Then, we add a new vertex v∗ and connect it to each vertex of V (H) with
a 4-edge path using new interior vertices. Let G = G(H) be the resulting graph. Note that
H3 is a subgraph of G and ∂H3 = V (H).

We assign unit length to each edge of G. For all x, y ∈ V (H), we have dH3(x, y) =
3 · dH(x, y) and dG(x, y) = min{3 · dH(x, y), 8}, where the 8 comes from the path in G

through v∗.
We now show that H3 is an isometric subgraph of G if and only if H has diameter 2. If

H has diameter 2, then for all x, y ∈ V (H) we have

dG(x, y) = min{3 · dH(x, y), 8} = 3 · dH(x, y) = dH3(x, y).

Since ∂H3 = V (H), we have
∑

x,y∈∂H3
dG(x, y) =

∑
x,y∈∂H3

dH3(x, y) and H3 is an isometric
subgraph of G because of Lemma 3. If H has diameter 3, then there is some x0, y0 ∈ V (H)
with dH(x0, y0) = 3, and therefore dH3(x0, y0) = 3 · dH(x0, y0) = 9 > 8 ≥ dG(x0, y0). It
follows that H3 is not an isometric subgraph of G.

WADS 2025



12:8 Testing Whether a Subgraph Is Convex or Isometric

We now show that H3 is a convex subgraph of G if and only if H has diameter 2. Let d̂

denote the distance in G when we decrease the length of the edges of E(G) \ E(H3) by a
sufficiently small value δ > 0. For concreteness, we can take δ < 1/10 in our discussion. Then,
for all x, y ∈ V (H), we have dH3(x, y) = 3 · dH(x, y) and d̂G(x, y) = min{3 · dH(x, y), 8 − 8δ}.

If H has diameter 2, then, for all x, y ∈ V (H), we have

d̂G(x, y) = min{3 · dH(x, y), 8 − 8δ} = 3 · dH(x, y) = dH3(x, y),

where we have used that 3 · dH(x, y) ≤ 6 and 8δ < 1. Since ∂H3 = V (H), we have∑
x,y∈∂H3

d̂G(x, y) =
∑

x,y∈∂H3
dH3(x, y), and H3 is a convex subgraph of G because of

Lemma 7.
If H has diameter 3, then we have already seen that H3 is not an isometric subgraph

of G, and thus cannot be a convex subgraph.
If H has O(n) vertices and O(n) edges, then G has |V (H)|+2·|E(H)|+3·|V (H)|+1 = O(n)

vertices and 3 · |E(H)| + 4 · |V (H)| = O(n) edges. The construction of G and H3 from H

takes linear time. It follows that, if we could decide whether H3 is isometric (or convex) in
O(n2−ε) time, for some ε > 0, we could decide whether H has diameter 2 or 3 in O(n2−ε)
time, and therefore OVC and SETH would be false by Theorem 8. ◀

5 Subquadratic algorithms for special classes of graphs

In this section we provide algorithms to test whether a subgraph is isometric or convex, when
the host graph is planar or has small treewidth. The idea is to use the criteria of Lemmas 2
and 6 together with modifications of previous algorithms to compute the classical Wiener
index.

5.1 Shortening some edges a bit
To test whether H ⊆ G is convex using Lemma 6 we have to shorten the edges of E(G)\E(H)
by a small enough amount δ, where 0 < δ ≤ ε(G, ℓ). We do not know how to compute ε(G, ℓ)
efficiently, or some other value that could replace it. We solve this by perturbing the edge
lengths infinitesimally, as follows. (For unit length edges this is easy by taking ε = 1/2n.)

We define a new, composite length ℓ2 for G using 2-tuples. The intuition is that a pair
(a, b) ∈ R≥0 ×Z represents the real value a + b · δ for an infinitesimal δ > 0. This means that
we can compare two lengths (a, b) and (a′, b′) using the lexicographic comparison: (a, b) is
smaller than (a′, b′), denoted by (a, b) ≺ ℓ(a′, b′), if and only if a < a′ or if a = a′ and b < b′.
This lexicographic comparison is compatible with the test of whether a + b · δ < a′ + b′ · δ for
an infinitesimal δ > 0.

To carry the perturbation, we define a new edge length ℓ2 in the following way:

∀e ∈ E(G) : ℓ2(e) =
{

(ℓ(e), 0) if e ∈ E(H),
(ℓ(e), −1) if e ∈ E(G) \ E(H).

The length of a walk (or path) π is defined as the vector-sum of the the 2-tuples ℓ2(e) over
e ∈ E(π), with multiplicity. Therefore, we have

ℓ2(π) =
(
ℓ(π), −|E(π) \ E(H)|

)
,

which represents the value ℓ(π) − δ · |E(π) \ E(H)| for an infinitesimal δ > 0.
Classical algorithms for computing shortest paths can compute distances using this new

edge lengths. In general, any algorithm that manipulates the edge lengths with additions and
makes comparisons of the lengths of paths can be adapted to this 2-tuple distances without
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an asymptotic increase in the running time. (For the sake of comparison, it is not clear how
to adapt efficiently an algorithm that would multiply edge lengths because powers of δ would
start showing up and a constant-size tuple would not suffice anymore.)

5.2 Graphs of small treewidth
Let G be a graph of treewidth tw(G), possibly with edge lengths, and let H be a subgraph
of G. It is well-known that H has treewidth at most tw(G).

Cabello and Knauer [10] showed that, for each constant k ≥ 3, the Wiener index of graphs
of treewidth at most k can be computed in O(n logk−1 n) time; the constant hidden in the
O-notation depends on k. Bringmann, Husfeldt and Magnusson [6] carried out the analysis
making the dependency on the treewidth explicit and showed that the Wiener index can be
computed in n1+ε2O(tw(G)), for each constant ε > 0; the constant hidden in the O-notation
depends on ε.

Both papers use data structures for orthogonal range searching. The vertices of G are
used to define a point set and to define ranges. It is easy to see that those results can be
adapted to compute the sum

∑
x,y∈U dG(x, y) for any given U ⊆ V (G). Indeed, it suffices

to define the points and the ranges only for the vertices of U . This is explicitly mentioned
in [8, Section 5]. The running times of the results are not affected by this. (Actually, if
log |U | = o(log n), the asymptotic running times can be slightly improved, but we omit this
in our worst-case analysis.)

Next, we note that the algorithms in [6, 10] are manipulating and comparing sums of the
edge lengths; they do not make other operations with the edge lengths. This means that they
can handle edge lengths defined by a 2-tuple, as discussed in Section 5.1. We conclude that
those algorithms can be used, without changing the asymptotic running time, to compute∑

x,y∈V (H)

dG(x, y),
∑

x,y∈V (H)

d̂G(x, y),
∑

x,y∈V (H)

dH(x, y),

where d̂G(x, y) is defined via 2-tuples to model a shortening of the edges of E(G) \ E(H) by
an infinitesimal δ > 0. We can then compare them, taking into account that the ℓ2-length
(a, b) is equal to the ℓ-length a if and only if b = 0. We have shown the following.

▶ Theorem 10. Let k ≥ 3 be a constant. Given a graph G with n vertices and treewidth at
most k, we can test whether a given subgraph of G is convex or isometric in O(n logk−1 n)
time. The constant hidden in the O-notation depends on k.

We can decide whether a given subgraph of G is convex or isometric in n1+ε2O(tw(G))

time, for each constant ε > 0. The constant hidden in the O-notation depends on ε.

5.3 Planar graphs
Cabello [7] gave a randomized algorithm to compute the Wiener index of a planar graph G

in Õ(n11/6) expected time. This was improved by Gawrychowski et al. [22], who provided a
deterministic algorithm taking Õ(n5/3) time. Both algorithms have the property that they
can compute

∑
x,y∈U dG(x, y) for any given U ⊆ V (G). Also, both algorithms only use the

edge lengths via sums and comparisons of values. Therefore, they can also be used to obtain∑
x,y∈V (H)

dG(x, y),
∑

x,y∈V (H)

d̂G(x, y),
∑

x,y∈V (H)

dH(x, y),

where d̂G(x, y) is defined via 2-tuples to model a shortening by an infinitesimal δ > 0. This
shows the following.
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▶ Theorem 11. Given a planar graph G with n vertices, we can test whether a given subgraph
of G is convex or isometric in Õ(n5/3) time.

5.4 Discussion
We next present classes of graphs illustrating two limitations of our technique based on the
Wiener index with marked vertices. One limitation is that for testing convexity we have to
consider edge-weights, even if the original graph is unweighted; the other limitation is that
subgraphs may loose some useful properties enojoyed by the host graph.

Let us consider the class of Kh-minor-free graphs, where Kh denotes the complete graph
on h vertices. Ducoffe et al. [17] showed how to compute the diameter of such graphs in
subquadratic time for the unweighted version, but left open the question of computing the
Wiener index in subquadratic time. Recent works by Le, Wulff-Nilsen, Karczmarz and
Zheng [30, 33] have improved the dependency on h and their new techniques also work for the
Wiener index, but still only for the case of unweighted graphs. The currently best result [30,
Theorem 1.3] computes the Wiener index in unweighted graphs without a Kh-minor in
Õ(n2−1/(3h−2)) time. The technique can be easily adapted to compute the Wiener index with
marked vertices. Since a subraph of a Kh-minor-free graph is obviously also Kh-minor-free,
we can use this algorithm to test whether a given subgraph is isometric via Lemma 2. We
summarize.

▶ Theorem 12. Given an unweighted Kh-minor-free graph G with n vertices, we can test
whether a given subgraph of G is isometric in Õ(n2−1/(3h−2)) time.

Since currently we do not know how to compute in subqudratic time the Wiener index
of Kh-minor-free graph, we cannot make the modification of edge-lengths needed to test
whether a subgraph is convex via Lemma 6. Therefore, we cannot make an analogous claim
regarding testing convexity, even for unweighted graphs.

Let us turn our attention now to unweighted median graphs. Bénéteau et al. [4] show
that the Wiener index of median graphs can be computed in linear time. In fact, they solve
a vertex-weighted variant that generalizes the Wiener index with marked vertices. Consider
the problem of testing whether a given subgraph H of a median graph G is isometric. We
can apply their algorithm to compute

∑
x,y∈V (H) dG(x, y) in linear time. However, it is not

clear (at least to the author) how to compute in subquadratic time
∑

x,y∈V (H) dH(x, y), even
if we assume that H is an isometric subgraph of G, and thus a partial cube. When we
consider a subgraph of a median graph, we loose many of its structural properties, even if
the subgraph is isometric. Similarly, for testing convexity using the Wiener index, we would
need to consider the perturbed weights, which in general does not go well with many of
the structural properties of median graphs. (In contrast, as mentioned in the introduction,
testing whether a subgraph of a median graph is convex amounts to testing whether it is
gated, a property that can be tested in linear time.)

6 Subgraphs of plane graphs defined by cycles

Let G be a plane graph, that is, a planar graph with a fixed embedding in the plane. For
each cycle C of G, let γC be the Jordan curve defined by C. Such a cycle C defines naturally
the interior graph, denoted by int(G, C), which is the subgraph of G contained in the
closure of the bounded set of R2 \ γC . Thus, C is contained in int(G, C). In this section we
consider the problem of testing whether H = int(G, C) is a convex or isometric subgraph
of G. In H we assume the embedding inherited from G and then C is a facial walk of H.
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6.1 Data structure for sequences of numbers
We will use a data structure to store a sequence a1, . . . , ak of k values in R, where each value
is initialized arbitrarily, and supporting the following operations:

Init(a0
1, . . . , a0

k): initializes the data structure, setting ai = a0
i for each i ∈ [k].

Min() returns min{a1, . . . , ak}.
Add(i, j, ∆) adds the value ∆ ∈ R to ai, . . . , aj , where i ≤ j.

An efficient approach is to use a static balanced binary search tree storing k elements with
keys [k] = {1, . . . , k}, such that the node with key i stores ai. The tree is then augmented
with data at the nodes to represent values that have to be added to the whole subtree. See
for example Choi, Cabello and Ahn [13] for a comprehensive description. Another alternative,
which is a bit overkilling, is to use dynamic trees, such as cut-link trees [43] or top trees [1];
in this case we maintain a path on k nodes, where the ith node stores the value ai. These
data structures allow to add values and to query for the minimum value in a subpath, which
in our case corresponds to a contiguous subsequence. We summarize for later reference.

▶ Lemma 13. There is a data structure to maintain a sequence a1, . . . , ak of k numbers that
supports the operations Min, and Add in O(log k) time per operation. The initialization of
the data structure, Init, takes O(k) time.

6.2 Encoding distances within a face
Let C be a facial cycle in a plane graph G with n vertices, and let x1, . . . , xk be the vertices
as we walk along C, starting from an arbitrary vertex x1 of V (C). For each i ∈ [k], let
Di be the sequence of numbers telling the distances from xi to all other vertices; thus
Di =

(
dG(xi, xj)

)
j∈[k].

In a seminal work, Klein [32] showed that in O(n log n) time one can maintain a shortest-
path tree of G rooted at a vertex of C as the root moves along C. An alternative point of view
based on parametric shortest-path trees was given by Cabello, Chambers and Erickson [9],
and a new approach based on divide-and-conquer has been given by Das et al. [14].

The key insight is that when the root of the shortest path tree moves along the boundary
of a face, each directed arc of G appears in the shortest path tree along a contiguous
subsequence of roots along the facial walk. In other words, with the move of the root through
the facial walk, each directed edge enters and exits the shortest path tree at most once.

These results are the basis for the following property.

▶ Lemma 14. In O(n log n) time we can compute sequences Λ2, . . . , Λk of operations with
the following properties

for i = 2, . . . , k, each Λi is a sequence of |Λi| operations of the type Add in a sequence
a1, . . . , ak of numbers;
for i = 2, . . . , k, the sequence Di of distances from xi is obtained from the sequence Di−1
performing the operations given in Λi;
the sequences Λi together have a linear number of operations; that is

∑
i |Λi| = O(n).

Proof. Let T be an arbitrary spanning tree of G rooted at a vertex r, let e be an edge of T ,
and let T (r, e) be the subtree of T − e that does not contain the root r. Because G is plane
and C defines a face of G, the vertices of V (C) that appear in T (r, e) form a continuous
subsequence of C. See Figure 3. Note that the subsequence may be empty, meaning that
V (C) ∩ V (T (r, e)) is empty. Let s(T, r, e) and t(T, r, e) be the start and the end of the
subsequence, if it is non-empty, such that the vertices {xs(T,r,e), xs(T,r,e)+1, . . . , xt(T,r,e)}
(indices modulo k) are V (C) ∩ V (T (r, e)).
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xi

xi−1

xi+1

e

T (xi, e)

xs(T,xi,e)

xt(T,xi,e)

xi

xi−1

xi+1

e

T (xi, e)

C C

Figure 3 Schematic view of the interaction of T (xi, e) and the face defined by C. On the left,
V (T (xi, e)) ∩ V (C) is not empty, but on the right, V (T (xi, e)) ∩ V (C) is empty.

Using data structures for dynamic forests, one can maintain the tree T under swapping
of edges (removing an edge and inserting an edge while maintaining a tree) and changing the
root such that: each update takes O(log n) time; the indices s(T, xi, e) and t(T, xi, e) can
be obtained in O(log n) time for any query (xi, e) ∈ V (C) × E(T ). The basic idea for this
is to maintain the spanning tree T ∗ of the dual graph that uses the edges dual to those in
E(G) \ E(T ). The two edges defining s(T, xi, e) and t(T, xi, e) are, in the dual tree, the only
edges dual to the edges of E(C) that lie on the unique path of T ∗ that connects the two
faces bounded by e. It is easy to extend data structures for dynamic trees [1, 43] to handle
such type of queries. The edges dual to E(C) are marked as special in T ∗ and we have to
find the special edges that lie in a path of T ∗ between two given nodes. See [9, 32] for data
structures with similar properties.

Let T be a tree, let T ′ be the tree obtained from T by deleting the edge e and inserting the
edge e′, let r be a vertex of T and T ′, let A = (ai = dT (r, xi))i∈[k] the sequence of distances
in T from r to xi (for i ∈ [k]), and let A′ = (a′

i = dT ′(r, xi))i∈[k] the sequence of distances
in T ′ from r to xi (for i ∈ [k]). Assume that e in T and e′ in T ′ have a common target;
this means that in T we have e = x � z and in T ′ we have e′ = y � z, where the vertex
z is the same. Then, we can go from A to A′ by performing O(1) operations Add. More
precisely, for each vertex xi that lies in T (r, e) we have to decrease the value ai by dT (r, z)
and increase it by dT ′(r, z). (Because e and e′ have the same target we have V (T (r, e)) =
V (T ′(r, e′)).) Each one of these operations is done with at most two operations Add. For
example, if s(T, r, e) < t(T, r, e), then we perform Add(s(T, r, e), t(T, r, e), −dT (r, z)), but
if s(T, r, e) > t(T, r, e), we split it into the two updates Add(s(T, r, e), k, −dT (r, z)) and
Add(1, t(T, r, e), −dT (r, z)).

Finally, we note that [9, 32] show how to maintain a shortest-path tree as the root
moves along the boundary of the face defined by C performing O(n) swaps of the type
T ′ = (T − e) + e′ that have the property that e and e′ have the same target vertex. When
sliding the root from xi to xi+1, one has to also update the distances because of the change
of root. This amounts to adding ℓ(xixi+1) to all the values of V (C) ∩ V (T (xi+1, xixi+1) and
subtracting ℓ(xixi+1)) to all the values of V (C) ∩ V (T (xi, xixi+1)). The result follows. ◀

6.3 Testing

We discuss now how to test if H = int(G, C) is an isometric subgraph of G. Recall that
E(Hout) = E(G) \ E(H). We add to Hout the edges of C with very large weights, say
2

∑
e∈E(G) ℓ(e), so that the new edges never appear in a shortest path.
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Let x1, . . . , xk be the vertices of C ordered as they appear in C. The cycle C defines a
face in H and in Hout and therefore we can use Lemma 14 for each of those graphs. For H

we obtain the sequence of operations Λ2, . . . , Λk that are needed to maintain

Di =
(

ai = dH(xi, xj)
)

j∈[k]
,

while for Hout we obtain the the sequence of operations Λ′
2, . . . , Λ′

k that are needed to
maintain

D′
i =

(
a′

i = dHout(xi, xj)
)

j∈[k]
.

The objective now is to maintain the sequence of values

D̃i =
(

ãi = dHout(xi, xj) − dH(xi, xj) = a′
i − ai

)
j∈[k]

.

as we move the root xi along C. We start computing D̃1 by using a shortest-path tree in H

and in Hout from x1. We store the sequence D̃1 using the data structure of Lemma 13.
For i = 2 to i = k, to move from D̃i−1 to D̃i we have to perform the operations of

Λ′
i (as they are) and the operations of Λi with reversed sign. Each operation is done in

O(log n) time per operation using the data structure of Lemma 13. Whenever we obtain the
sequence D̃i, we query the data structure with Min to obtain

mi := min{D̃i} = min{dHout(xi, xj) − dH(xi, xj) | j ∈ [k]}.

If some mi is negative, then we know that for some xj ∈ V (C) we have

dHout(xi, xj) < dH(xi, xj),

and therefore H is not an isometric subgraph of G. If mi ≥ 0 for all i ∈ [k], then we have

∀i, j ∈ [k] : dHout(xi, xj) ≥ dH(xi, xj).

Because ∂H ⊆ V (C) = {x1, . . . , xk}, it follows from Lemma 1 that H is an isometric
subgraph in G.

Because of Lemma 14 we spend O(n log n) time to know which O(n) operations in the
sequence of numbers have to be performed. Since each operation in the sequence of numbers
takes O(log n) time (Lemma 13), the total running time is O(n log n).

A similar procedure can be done for testing convexity because of Lemma 4: the graph H

is convex in G if and only if mi > 0 for all i ∈ [k]. We summarize.

▶ Theorem 15. Let G be a plane graph with n vertices and let H = int(G, C) be a subgraph
of G enclosed by a cycle C of G. In O(n log n) time we can test whether H is an isometric
subgraph of G and whether H is a convex subgraph of G.

The result can be extended to subgraphs of a plane graph that are defined by a few cycles,
as shown in Figure 1. We omit this extension from this shortened version.

References
1 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining

information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.
doi:10.1145/1103963.1103966.

WADS 2025

https://doi.org/10.1145/1103963.1103966


12:14 Testing Whether a Subgraph Is Convex or Isometric

2 Hans-Jürgen Bandelt and Victor Chepoi. Graphs with connected medians. SIAM J. Discret.
Math., 15(2):268–282, 2002. doi:10.1137/S089548019936360X.

3 Hans-Jürgen Bandelt and Victor Chepoi. Metric graph theory and geometry: a survey. In
Surveys on discrete and computational geometry, volume 453 of Contemp. Math., pages 49–86.
Amer. Math. Soc., Providence, RI, 2008. doi:10.1090/conm/453/08795.

4 Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, and Yann Vaxès. Medians in median
graphs and their cube complexes in linear time. J. Comput. Syst. Sci., 126:80–105, 2022.
doi:10.1016/J.JCSS.2022.01.001.

5 Joseph Berleant, Kristin Sheridan, Anne Condon, Virginia Vassilevska Williams, and Mark
Bathe. Isometric Hamming embeddings of weighted graphs. Discret. Appl. Math., 332:119–128,
2023. doi:10.1016/J.DAM.2023.02.005.

6 Karl Bringmann, Thore Husfeldt, and Måns Magnusson. Multivariate analysis of orthogonal
range searching and graph distances. Algorithmica, 82(8):2292–2315, 2020. doi:10.1007/
s00453-020-00680-z.

7 Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances
in planar graphs. ACM Trans. Algorithms, 15(2):21:1–21:38, 2019. doi:10.1145/3218821.

8 Sergio Cabello. Computing the inverse geodesic length in planar graphs and graphs of bounded
treewidth. ACM Trans. Algorithms, 18(2):14:1–14:26, 2022. doi:10.1145/3501303.

9 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-source shortest paths in
embedded graphs. SIAM J. Comput., 42(4):1542–1571, 2013. doi:10.1137/120864271.

10 Sergio Cabello and Christian Knauer. Algorithms for graphs of bounded treewidth via
orthogonal range searching. Comput. Geom., 42(9):815–824, 2009. doi:10.1016/j.comgeo.
2009.02.001.

11 Manoj Changat, Henry Martyn Mulder, and Gerard Sierksma. Convexities related to path
properties on graphs. Discret. Math., 290(2/3):117–131, 2005. doi:10.1016/j.disc.2003.07.
014.

12 Victor D. Chepoi. Isometric subgraphs of Hamming graphs and d-convexity. Cybernetics
(Kibernetyka), 24:6–11, 1988. doi:10.1007/BF01069520.

13 Jongmin Choi, Sergio Cabello, and Hee-Kap Ahn. Maximizing dominance in the plane and its
applications. Algorithmica, 83(11):3491–3513, 2021. doi:10.1007/s00453-021-00863-2.

14 Debarati Das, Evangelos Kipouridis, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen.
A simple algorithm for multiple-source shortest paths in planar digraphs. In 5th Symposium on
Simplicity in Algorithms, SOSA, pages 1–11. SIAM, 2022. doi:10.1137/1.9781611977066.1.

15 Dragomir Ž. Djoković. Distance-preserving subgraphs of hypercubes. Journal of Combinatorial
Theory, Series B, 14:263–267, 1973. doi:10.1016/0095-8956(73)90010-5.

16 Mitre Costa Dourado, John G. Gimbel, Jan Kratochvíl, Fábio Protti, and Jayme Luiz
Szwarcfiter. On the computation of the hull number of a graph. Discret. Math., 309(18):5668–
5674, 2009. doi:10.1016/j.disc.2008.04.020.

17 Guillaume Ducoffe, Michel Habib, and Laurent Viennot. Diameter, eccentricities and distance
oracle computations on H-minor free graphs and graphs of bounded (distance) Vapnik-
Chervonenkis dimension. SIAM J. Comput., 51(5):1506–1534, 2022. doi:10.1137/20M136551X.

18 David Eppstein. Recognizing partial cubes in quadratic time. J. Graph Algorithms Appl.,
15(2):269–293, 2011. doi:10.7155/jgaa.00226.

19 V.V. Firsov. Isometric embedding of a graph in a Boolean cube. Cybernetics (Kibernetyka),
1:112–113, 1965. doi:10.1007/BF01074705.

20 Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874.

21 Dmitrii Gavrilev and Ilya Makarov. Fast approximate convex hull construction in networks via
node embedding. IEEE Access, 11:54588–54595, 2023. doi:10.1109/ACCESS.2023.3281337.

22 Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. Voronoi
diagrams on planar graphs, and computing the diameter in deterministic Õ(n5/3) time. SIAM
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