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—— Abstract
We study the problem of computing the diameter and the mean distance of a continuous graph,
i.e., a connected graph where all points along the edges, instead of only the vertices, must be
taken into account. It is known that for continuous graphs with m edges these values can be
computed in roughly O(m2) time. In this paper, we use geometric techniques to obtain subquadratic
time algorithms to compute the diameter and the mean distance of a continuous graph for two
well-established classes of sparse graphs. We show that the diameter and the mean distance of a
continuous graph of treewidth at most k can be computed in O(n logo(k) n) time, where n is the
number of vertices in the graph. We also show that computing the diameter and mean distance of a
continuous planar graph with n vertices and F faces takes O(nF logn) time.
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Algorithms for Distance Problems in Continuous Graphs

1 Introduction

Graph parameters dealing with distances provide fundamental information on the graph.
The diameter, defined as the maximum distance between any two vertices of a graph, and the
mean distance, which gives the average of all those distances, are natural concepts of great
importance in real-world applications. While the diameter gives the maximum eccentricity
in the graph, the mean distance provides a measure of its compactness, and is closely related
to the sum of the pairwise distances of the graph and the well-known Wiener index.!

Computing the diameter and the sum of the pairwise distances of a given graph G is
a central problem in algorithmic graph theory. A straightforward algorithm is to perform
Dijkstra’s algorithm from each vertex, allowing to compute both parameters in O(nm +
n?logn) time, for n and m the number of vertices and edges of G, respectively. Given the
high computational cost of this approach, considerable effort has been invested in developing
faster algorithms, especially for sparse graphs. It turns out that the general problem is
notably difficult. In 2013, it was showed that in sparse graphs, no O(n?~¢)-time algorithm
can distinguish between diameter 2 and 3, unless the Strong Exponential Time Hypothesis
fails [29]. From the proof, one can deduce the same conditional lower bound for computing
the sum of the pairwise distances of the graph (see also [9]). This justifies the vast amount
of ongoing research on identifying classes of sparse graphs for which these parameters can
actually be computed in subquadratic time. Currently, such classes include graphs of bounded
treewidth [1,8,12], graphs of bounded distance VC dimension [18,26], median graphs [4, 5],
and planar graphs [9,22].

In this work, we tackle the challenge of subquadratic diameter and mean distance
computation for continuous graphs (these objects are also called metric graphs in other areas
closer to analysis [19,27]). Our main motivation arises from geometric graphs. A geometric
graph is an undirected graph where each vertex is a two-dimensional point, and each edge
is a straight line segment between the corresponding two points. These graphs naturally
arise in applications involving geographic information, such as road or river networks. The
main characteristic of geometric graphs is that every point on each edge is considered part of
the graph. Therefore, the graph can be considered an infinite point set. The diameter of a
geometric graph is the maximum distance taken over its infinitely many pairs of points. The
class of continuous graphs is actually more general than geometric graphs, and is formally
defined in Section 2. Distances in continuous graphs, especially the diameter, have received a
lot of interest recently, mainly in the context of augmentation problems [2,13-16,20,21,23,24];
see also [3] for results on the mean distance in the context of geometric analysis. Another
well-known related problem about distances in graphs, also with a continuous aspect, is the
computation of the absolute center of a graph, originally proposed by Hakimi [25].

The diameter and the mean distance of a continuous graph with m edges can be computed
in roughly O(m?) time [13,16,21]2. For the diameter, this follows from the fact that, in a
continuous graph, any pair of points attaining the diameter, called diametral pair, consists of
either: (i) two vertices, (ii) two points on distinct non-pendant edges,? or (iii) a pendant
vertex and a point on a non-pendant edge [13, Lemma 6] (see Figure 1). Regarding the
mean distance, one can show that it is given by a weighted sum of the mean distances of all
ordered pairs of edges, which can be obtained in constant time, once the distance matrix of
the vertices of the graph has been computed [21].

L The sum of the pairwise distances of a graph is the sum of distances between all ordered pairs of vertices,
and half of this value is the Wiener index. This topological index has been studied extensively.

2 The algorithm to compute the diameter in [13] is for plane geometric graphs, but it also applies here.

3 An edge wv € E(G) is pendant if either u or v is a pendant vertex (i.e., has degree 1).
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Figure 1 Types of diametral pairs of a continuous graph.

However, for sparse graphs, one hits again a quadratic running time barrier. Algorithms
for diameter in discrete graphs do not carry over to continuous graphs, except in few situations
(e.g., if there are only O(1) different edge weights, then O(1) Steiner points can be added to
each edge, so that the diameter coincides with that of the continuous graph), and the same
conditional lower bound of the discrete setting holds for the continuous case (one can reduce
the continuous case to the discrete case by simply adding enough long paths to the graph.)

The main challenge for continuous graphs is that the techniques that have successfully
worked to speed-up the computation of the diameter and the sum of the pairwise distances for
discrete graphs do not seem to easily extend. The most similar setting to ours is perhaps that

of planar graphs, for which recently the first subquadratic algorithms were discovered [9,22].

These works use Voronoi diagrams in planar graphs to compute those values in the discrete

setting. However, it is not clear whether they can be adapted to the continuous setting.

More precisely, for a fixed source vertex and a fixed subgraph H of a graph G, they compute
the Voronoi diagram of H using some additive weights. As the source moves, the additive
weights defining the Voronoi diagram change, and the Voronoi diagrams change. Tracing
those changes efficiently seems difficult, especially because the combinatorial structure of the
Voronoi diagram may undergo important changes. Moreover, such changes can happen for
several different movements of the sources. Thus, to achieve a subquadratic algorithm for
planar continuous graphs, it seems that one should be able to treat those parallel changes in
groups. The current technology for planar graphs does not seem ready for this.

Contributions. In this work, we present subquadratic algorithms to compute the diameter
and the mean distance for two classes of sparse continuous graphs. In Sections 3 and 4, We
study continuous graphs of bounded treewidth and show how to compute, respectively, its
diameter and its mean distance in subquadratic time. In fact, we consider the slightly more
general framework of computing the diameter diam(#, G) and the mean distance mean(#, G)
of a subgraph H of a continuous graph G with respect to G, which are the diameter and
mean distance of G when H = G. This concept appears naturally in our algorithm during
the recursion. Theorems 1 and 2 below distinguish whether the treewidth is assumed to be
constant, as done in [12], or a parameter, as done in [8].

» Theorem 1 (Theorems 11 and 16). Let k > 2 be an integer constant. Let G be a graph
with n vertices, treewidth at most k, nonnegative edge-lengths, and let G be the corresponding
continuous graph. Let H be a subgraph of G and let H C G be the corresponding continuous
subgraph. We can compute the diameter diam(H,G) and the mean distance mean(H,G) in
O(nlog™ 2 n) time.

» Theorem 2 (Theorems 12 and 17). Let G be a graph with n vertices, treewidth at most k,
nonnegative edge-lengths, and let G be the corresponding continuous graph. Let H be a
subgraph of G and let H C G be the corresponding continuous subgraph. We can compute the
diameter diam(H, G) and mean distance mean(H,G) in n*+te20%) time, for any fived € > 0.
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Similarly to previous algorithms in the discrete setting to compute the diameter and the
sum of the pairwise distances for graphs of bounded treewidth [1,8,12], the key technique that
we use is orthogonal range searching; see also [17] for a novel application of this technique to
compute the eccentricity and the distance-sum of any vertex of a directed weighted graph.

Finally, we investigate planar graphs. For any n-vertex continuous plane graph, we show
how to compute the maximum eccentricity (i.e., largest distance from a point) over all points
on the boundary of a face in O(nlogn) time. Further, we show that the same approach
can be used to compute the mean from all points of a face with respect to the continuous
graph in O(nlogn) time. This allows us to compute the diameter and mean of continuous
planar graphs in O(nF logn) time, where F' is the number of faces, which is subquadratic, if

F= o(logn). (By Euler’s formula, F is the same for any embedding of a planar graph.)

» Theorem 3. For a continuous planar graph G with n vertices and F' faces, we can compute
its diameter diam(G) and its mean distance mean(G) in O(nF logn) time.

Note that some proofs and the section about planar graphs are deferred to the full version.

2 Preliminaries

2.1 Continuous Graphs

Consider an edge-weighted, connected graph G = (V(G), E(G), £),where £ is a function that
assigns a length ¢(e) > 0 to each edge e € E(G) (clearly, for our purposes we assume that
not all edge lengths are 0). Informally, the continuous graph G defined by G is the infinite
set of points determined by the vertices and edges of G, where each point on an edge is part
of the graph. This idea requires to define precisely what we mean by a point on an edge.

For each edge uv of G, we take a closed segment of length ¢(uv) with the usual metric
and measure, and denote it G(uv). Moreover, for such an edge wv, we arbitrarily select
one extreme of the segment G(uv) and denote it endp(uv, u), and call endp(uwv,v) the other
endpoint of G(uv). Finally, for each vertex u of G, we glue (mathematically, we identify)
all points endp(uv,u) over all edges uv of G incident to u; we denote by G(u) the identified
point. The continuous graph G defined by G = (V(G), E(G), ¢) is the resulting space. The
total length £(G) of a continuous graph G defined by a graph G is defined as ), B(q) {(uv).

We observe that one may think of G as a 1-dimensional simplicial complex where each
edge uv is isometric to a segment of length £(uv).

A point p of G can be specified by a triple (uv,u, \) € E(G) x V(G) x [0, ¢(uv)], which
represents the point of the segment G(uv) at distance A (along G(uv)) from the endpoint
endp(uwv, u). The triples (uv, u, A) and (uv, v, £(uv) — A) define the same point of G. Similarly,
for any two incident edges uv,uv’ of G, the triples (uv,u,0), (uv,v,£(uv)), (uv’,u,0) and
(uv’,v', £(uv’)) define the same point, namely G(u).

We have already set the notation G(uv) for an edge wv and G(u) for a vertex u. With a
slight abuse of notation, we do not distinguish uv from G(uv) and u from G(u).

In general, for any subgraph H of G, we denote by G(H) the continuous subgraph of G
defined by the objects of H. This is also the continuous graph defined by H. Also, when H
is clear from the context, we denote such an object by H and talk about H as a subgraph
of G. For a vertex set A C V(G), we use G[A] to denote the subgraph of G induced by A.

A walk in G between two points p,q € G is a sequence pvy, v1Vs,. .., Vp_1Vk, Vpq With
V1Va, ..., Vp—10x € E(G). If the first and last point coincide, it is closed. The length of a
walk is the sum of the length of its pieces, counted with multiplicity. For any two points
D, q € G, the distance dg(p, ¢) is the minimum length over all p-to-q walks. A shortest pg-path
is a p-to-q¢ walk 7(p, ¢) in G such that (7 (p, q)) = dg(p, q)-
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We can regard dg(p, q) as the discrete graph-theoretic distance in a graph obtained by
subdividing aa’ with p as a new vertex, subdividing bb’ with ¢ as a new vertex, and setting
Liap) = A, £(pa’) = L(ad’) — A, £(bg) = XN, and £(gb’) = £(bb') — N

2.2 Distance Problems

Counsider a continuous graph G defined by a graph G and a continuous subgraph H C G
defined by a subgraph H C . We are interested in distances between points of H using the
metric given by G. One may think of G as the ambient space and of H as the relevant subset.

The eccentricity of a point p € H with respect to H is ecc(p, H,G) = max,ey dg(p, q);
when H = G, we just talk about the eccentricity of p in G and write ecc(p, G) for ecc(p, H, G).
The diameter of H with respect to G is defined as diam(#, G) = max,, ;e dg(p, q); when H =
G, we just talk about the diameter of G and write diam(G) for diam(G, G). It is easy to see that
diam(H, G) = max,ey ecc(p, H,G). The sum of distances of H in G is the sum of the pairwise
distances in H, using the metric from G, that is, sumdist(#,G) = ffp’qefﬂ dg(p,q) dpdq.

The mean distance of H in G is mean(#H,G) = ﬁsnmdist(?—l, G). It is easy to see that

mean(H,G) = ﬁfpeﬂ mean(p, H,G) dp, where mean(p, H,G) = ﬁfqu dg(p,q) dq is
the mean distance from the point p € ‘H with respect to H in G. When H = G, then we just
write mean(G) for mean(G, G) and mean(p,G) for mean(p, G, G).

2.3 Treewidth

The treecwidth of a graph is an important parameter in algorithmic graph theory which,
roughly speaking, measures how far the graph is from being a tree (a formal definition is
given in [11]). Graphs of treewidth & have O(kn) edges [6].

A separation in a graph G is a triple (A, B, S) such that A, B,S C V(G), AUB =V(G),
S = AN B, and there is no edge incident to both A\ B and B\ A. The elements of S in
separation (A, B,S) are called portals. Each path in G from A to B must pass through a
portal. Informally, we are interested in separations where A and B have a constant fraction
of the vertices and S is small. Such separations of at most k portals exist for graphs of
treewidth k, can be computed in linear time, and have the additional property that adding
edges between the portals does not increase the treewidth [8,12]; . For simplicity, we assume
that S contains exactly k portals (it may happen that is has fewer). We use the notation
[k]= {1,...,k}. We have two regimes, depending on whether we consider the treewidth
constant or a parameter.

2.4 Orthogonal Range Searching

We use the notation B(n,d) = (d+ “C‘l’g ”]) to bound the performance of some of our data
structures. First we note the following asymptotic bounds.

» Lemma 4 (Bringmann, Husfeldt, and Magnusson [8]). B(n,d) = O(log? n) and B(n,d) =
n=2°W for each ¢ > 0.

A rectangle in R is the Cartesian product of d intervals (whose extremes can be included
or not). The analysis of orthogonal range searching performed in [8, Section 3] (see also [28])
leads to the data structure described in the the following theorem. We use the version
suggested by Cabello [10] because it adapts better to our needs. (We use | | to indicate that
the union is between pairwise disjoint sets.)

13:5
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» Theorem 5 (Cabello [10]). Given a set P of n points in R, there is a family of sets
P ={P;|jeJ} and a data structure with the following properties:
P; C P for each P; € P;
all the sets of P together have O(nd - B(n,d)) points, i.e., ZPje’P |P;| = O(nd - B(n,d));
for each query rectangle R C R?, the data structure finds in O(2¢B(n,d)) time indices
Jr C J such that |Jr| = O(2B(n,d)) and PN R = Ujesn Bis
the family P and the data structure can be computed in O(nd - B(n,d)) time.

3 Diameter in Graphs with Bounded Treewidth

In this section, we discuss the computation of the diameter of a continuous graph with
treewidth k. Note that computing the diameter of continuous trees (i.e., treewidth 1) can
be reduced to the discrete setting, because in trees the diameter is always attained by two
vertices. Thus, we restrict our attention to k > 1. As in [1,8,9,12], we use orthogonal range
searching to work with distance-related problems in graphs of bounded treewidth. However,
because we consider continuous graphs, we have to consider pairs of edges instead of pairs of
vertices, and the interaction between edges is more complex. We handle this by using more
dimensions in the range searching space.

Sometimes we need to consider an orientation for each edge of G, to distinguish its
vertices. We orient the edges of G arbitrarily, but keep track of the orientation. We use uv
when the orientation is not relevant and (u,v) or (v,u), depending on the orientation, when
we consider it oriented. We use E(G) in both cases.

3.1 Characterization of the Diameter via Walks

We start with a characterization of the diameter in the continuous setting that uses the
length of walks (compare to Figure 1). For each aa’, bV’ € E(G), let W (aa’,bb’) be a shortest
closed walk passing through all the interior points of aa’ and bb'.

4 aa’,bb’
» Lemma 6. For each ad’,bb’ € E(G), maxpcaa, qebprdg(p, q) = M.
The following corollary is an immediate consequence of Lemma 6.

Corollary 7. If H C G defines the continuous subgraph H of G, then diam(H,G) =
-max{{(W(aa',bV")) | aa’,bb' € E(H)}.

NI 4

For our computation, we use the following closed formula.

» Lemma 8. For each aa’,bb’ € E(G), it holds that
(W (aa',bb")) = L(aa’) + £(bb") + min{dg(a,b) + dg(a’,b"), dg(a,b’) + da(a’,b)}.

For each pair of oriented edges (ag, a1), (bo,b1) € E(G), Lemma 8 implies that there are
two possible values for £(W (agay,bob1)). We say that (ag, a1,bg, b1) is of type 1 if

U(W (aga1, bobr)) = €(agar) + £(bob1) + de(ao, bo) + da(ay, b)),
and of type 2 otherwise. For each oriented edge (bg,b1) € E(G) and type 7 € {1,2}, we define
Type, (bo, b1) = {(a0,a1) € E(G) | (an, ar, bo, br) is of type 7}.

Therefore, (ag,a1) € Type;(bo,b1) <= dg(ao,bo) + da(ar,b1) < dg(ag,b1) + dg(a1, bo).
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3.2 Diameter Across the Portals

Let (A, B, S) be a separation in G with k portals. We fix an enumeration sy, ..., s, of them.
Let E4 C E(G[A]) be the edge set of the subgraph of G induced by A and Ep C E(G[B]),
respectively; not necessarily disjoint. For each index i € [k], each vertex a € A, and each
vertex b € B, let ¢(i;a,b) be the logic predicate that holds whenever s; is the first portal in
the enumeration that lies in some shortest path from a to b. Formally,

p(i;a,b) = /\ [dg(a,b) <dg(a,s;)+ dg(Sj,b)] A [dg(a,b) =dg(a,s;) + dg(si,b)].

7<1

It is easy to see that, for each (a,b) € A x B, there exists a unique index ¢ € [k] where
¢(i;a,b) holds (in other words, |{i € [k] | ¢(3;a,b)}| = 1).

We extend this to the four shortest paths defined by two vertices ag,a; € A and two
vertices by, by € B, by defining the following predicate for all x = (ig.0,40.1,1,0,%1,1) € [k]*:

®(r; ao, ar, bo, b1) = ®((io,0,%0,1, 71,0, 1,1); @0, a1, bo, b1) = /\ ¢(ia,p; aa; bp).
(o,8)€{0,1}2

Therefore, this predicate holds if and only if, for each «, 8 € {0, 1}, the index i, g is the
smallest index ¢ with the property that s; lies on some shortest path from a, to bs. As
before, for each (ag,a1,bo,b1) € A% x B2, there exists a unique 4-tuple k € [k]* where
®(k;ag, a1, b, by) holds. For each s € [k]*, each (by,b1) € Ep, and each type 7 we define

A+ (K;bg,b1) = max{¢(W (apa1, bob1)) | (ag,a1) € Ea NType, (by,b1) A P(k;ag,a1,bo,b1)}.

This represents the maximum length over all edges (ag, a1) of a type-7 walk between (bg, b1)
and (ag, a1), consistent with the portals in k. We next discuss how to compute efficiently
A (k;bo,b1) for several edges (bo,b1) € Ep simultaneously.

» Lemma 9. Consider a fized type T € {1,2} and indices k € [k]*. In O(m2*~3B(m, 4k—3))
time we can compute the values A;(k;bo,b1) for all (by,b1) € Ep.

Proof sketch. We sketch how to use orthogonal range searching to compute A, (k;bg, b1) for
a fixed k € [k]*. The complete proof is in [11].

For each vertex a € A and each i € [k], we define the point p(i;a) € R¥ whose j-th
coordinate is p;(i;a) = da(a, s;) — dg(a, s;). For each vertex b € B and each index i € [k],
we define the box R(i;b) = I1(i;b) x - -+ x Ij,(i;b) C R*, where I;(i;b) is the interval

(—oo, da(b,sj) — dg(b, si)) if 7 <1,
R if j =1,
(—oo, da(b,sj) — da(b, sl)] if j > 4.

In p(i;a) and I(i;b) we remove the i-th coordinate, as it does not provide any information.
We use the same notation for the resulting objects, now in R¥~1. It has been noted [8,10,12]
that the point p(; a) lies in the rectangle R(i;b) if and only if ¢(i; a, b) holds.

We do something similar for ®(k;ag, a1,bg, b1). For any two vertices ag,a; € A, we define
the point p(ag,a;) and, for any two vertices by, b; € B, we make a rectangle R(bg,b;) in
R4 =4 such that p(ag,a1) € R(bg,by1) if and only if ®(k;ag, a1, bg,b1) holds.

For each edge (ag,a1) € Ea, we extend p(ag,a1) to p*(ag,a;) by an extra coordinate to
distinguish between type 1 and 2. We also introduce the new rectangle R™ (bg,b1) such that

V(bo,bl) € Ep: AT(H;bQ,bl) = maX{E(W(aoal,bobl)) |p+(a0,a1) S RJr(bQ,bl)}.

13:7
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We use orthogonal range searching to handle the right side of the equation. In total, we
spend O(2** =3 B(m, 4k — 3)) time per edge (bo,b1) € Ep to compute A, (x;bg,by). <

We use Lemma 9 to compute the values A;(k;bo,b1) for each type 7 € {1,2}, all
(bo,b1) € Ep and indices x € [k]*. This requires applying Lemma 9 a total of O(k*) times,
and therefore we spend O(m2*~3k*B(m, 4k — 3)) time. Using Lemma 8, we note that

max dg(p,q) = £ - max {A.(k;bg,b bo,b1) € E, k€ [K]*, 7€ {1,2
T g(p.q) =3 {A-(k;bo,b1) | (bo,b1) € Ep [] {1,2)}

(for details check the proof of Lemma 10 in [11]).

» Lemma 10. We can compute max dg(p, q) in O(m2*=3kAB(m, 4k — 3)) time.
p€G(E4),9€G(EB)

» Remark. We are aware that some log factors can be shaved off, and that for small k£ one
can improve the analysis slightly. However, we prefer to keep this high-level structure to
keep it simpler, and parallel to the forthcoming computation of mean distance.

3.3 Global Diameter

Let G be a graph with n vertices and m edges defining the continuous graph G. Let H be a
subgraph of G defining a continuous graph H C G. We use a divide-and-conquer approach
to compute diam(#H, G).

Let (A, B,S) be a separation in G. Let G’ be the graph obtained from G by adding
an edge ss’ with length dg(s,s’) for every pair of portals s,s’ € S. (If the edge already
exists, we redefine its length.) For X € {A, B}, let Hx and G be the continuous graphs
defined by H[X] — E(G|S]) and G'[X], respectively. The edges ss’ added to G guarantee
that dg(p, q) = dgr, (p, q) for any points p,q € Hx. (We removed E(G[S]) because for points
on edges between portals whose length is redefined, the statement is undefined.) Therefore

diam(H = ma { max dg(p, max d ma d }
lam(#, G) X, max dg(p,q), max dg(p,q),  max —dg(p,q)

= max { max dg, (p.), max dg, (p.a), _max dg(p.q)}
B

P,q€EHA p,q€EH PEH A, qEHB
= max { diam(Ha,GY), diam(Hp,Gp), max  dg(p, q)} (1)
pPEHA,qEH B

(see Figure 2). The last term can be computed by Lemma 10, which depends on the size of S.

qa e 4B
diam(H 4,G)
bA
.pB

max_ dg(p,q
pEHA,qEH B g( )

Figure 2 Visualization of the divide-and-conquer approach to compute diam(G) (see Equation (1)).

Now we have two regimes depending on whether we want to assume that the treewidth is
constant, as done in [12], or whether we want to consider the treewidth a parameter, as done
in [8]. The same distinction was made in [10]. This difference affects the time to find a tree
decomposition and the number of portals in a balanced separation. In both cases we use
that an n-vertex graph with treewidth k£ has O(kn) edges [6].
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» Theorem 11. Let k > 2 be an integer constant. Let G be a graph with n vertices, treewidth
at most k, nonnegative edge-lengths, and let G be the corresponding continuous graph. Let H
be a subgraph of G and let H C G be the corresponding continuous subgraph. We can compute
the diameter diam(H, G) in O(nlog** =2 n) time.

Proof. If G has fewer than 2k = O(1) vertices, we compute diam(#,G) in O(1) time.
Otherwise, we find in linear time a separation (A, B, S) such that: |[S| <k, ;75 < |A| < k"—fl
Such a separation is given, e.g., in [12]. Further, we add an edge ss’ between all portals
3,8 € S with length dg(s, s’). This augmentation costs O(k(m + nlogn)) = O(nlogn) time.

By Lemma 10, the value max,c;, qen, dg(p, q) is computed in O(m2* =3k B(m, 4k —3))
time. Using that k is constant, m = O(n), and Lemma 4, this time bound is O(nlog** =3 n).

We construct the graphs G', G'[4], G'|B], H[A] — E(G[S]) and H[B]— E(G[S]) explicitly,
in O(m) = O(n) time. Because adding edges between the portals of S does not increase the
treewidth [12][Lemma 3],the graphs G’[A] and G'[B] have treewidth at most k. The values
diam(H 4, G/,) and diam(H g, G}) are computed recursively, and we obtain diam(#, G) using
Equation (1).

Since 747 < [4] < k”—fl and k is constant, each side of the recursion has a constant
fraction of the vertices |A| + |B| = n + k, and the recursion depth is O(logn), leading to a
total running time of O(nlog*~2n). <

» Theorem 12. Let G be a graph with n vertices, treewidth at most k, nonnegative edge-
lengths, and let G be the corresponding continuous graph. Let H be a subgraph of G and let
H C G be the corresponding continuous subgraph. We can compute the diameter diam(H, G)
in n'te200) time, for any fized € > 0.

Proof. We use the same divide-and-conquer strategy as in Theorem 11. The difference is in
the properties of the separation. If G has O(k) vertices, we compute diam(H,G) in O(k?)
time. Otherwise, we proceed as follows.

First, we note that, given a tree decomposition of G of width k', we can obtain in linear
time a separation (A, B, S) in G with the following properties: the set S of portals for A
has k' + 1 portals; both A and B = (V(G) \ A) have O(n — k) vertices each; adding edges
between the vertices of S does not increase the treewidth of the tree decomposition. See
for example [6, Theorem 19]; the set S is a bag of the decomposition and thus the tree
decomposition keeps being valid with the addition of edges within S.

It is shown in [7] that, for graphs of treewidth at most k, one can find a tree decomposition
of width &' = 3k + 4 in 2°®)nlogn time. From this we obtain the separation (A, B, S) in G
mentioned above, where |S| < k'+1 = 3k+5. By Lemma 10, the value max,es, qens do(p; @)
is computed in O(m2°®) (k' 4+ 1)*B(m, O(k)) time. Using that m = O(kn) and the estimate
of Lemma 4, this time bound becomes

O((kn)2°® (k' + 1)* - B(n, O(k)) = O(n20®) . n=20*)) = pl+eg0k)

where € > 0 can be chosen arbitrarily small.

To compute diam(H 4, G)) and diam(H g, G5) recursively, we pass to the subproblems
the tree decomposition we have computed, trimmed to the vertices of A and B, respectively.
We also can adapt it to keep the tree decompositions of size O(|A|) and O(|B|), respectively.
In this way, at any level of the recursion, we always have a set S with ¥ + 1 = 3k 4 5 portals.
Thus, we compute the tree decomposition only once, and then pass it to each subproblem
trimmed to the relevant vertices. The recursive calls add a logarithmic factor to the total

running time, which is absorbed by the polynomial term n!*¢.
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(The reason for passing the tree decomposition to the subproblems is that adding the
edges between the portals in S may give a clique of size k’, which increases the treewidth of G’.
Computing an approximate tree decomposition of G’ anew would increase the width of the
decomposition at each level. However, if we pass the tree decomposition to the subproblems,
we keep the width of the decomposition bounded by 3k + 5 at all levels of the recursion.) <«

4 Mean Distance in Graphs with Bounded Treewidth

In this section, we discuss the computation of the mean distance in continuous graphs with
treewidth k. The case of k = 1 corresponds to continuous trees, one of the few graph classes
for which linear-time algorithms are known [21]. Thus, we focus on k& > 1. All our efforts will
be on the computation of sumdist(#,G), from which mean(#,G) can be easily computed.
Again, we use orthogonal range searching, but now we need to efficiently retrieve sums of
distances. We achieve this by representing the sum of distances between pairs of edges as
volumes of collections of triangular prisms, which can be represented in a compact way.

4.1 Mean Distance as a Volume

We compute the sum of all distances in a continuous graph as the volume of a collection of
triangular prisms. A truncated triangular prism is formed when a prism is sliced by a plane
that is not parallel to its bases; the heights are the lengths of the three edges orthogonal to
the basis. The volume of a truncated triangular prism with base A and heights hq, hs, b3 is
L area(A)(hy + ha + hs).

Consider the following setting defined by a complete graph with vertex set {ao, a1, bo, b1}
and variable edge lengths, as follows: (i) apa; has variable length y > 0, (ii) bob; has variable
length z > 0, (iii) for all a, 8 € {0,1}, anbs has length z, 5 > 0.

Let K = K(y, #,%0,0, 0,1, 1,0, 1,1) denote this graph, and let K denote the corresponding
continuous graph. See Figure 3. We say that the 6-tuple (y, 2, 0,0, 0,1, 1,0, %1,1) is compliant
if, for all o, 8 € {0,1} it holds x4 g = dx (aq,bs). In our setting we only need to consider
compliant cases. (This poses some conditions on the values that the variables can take.)

We want to understand how the total sum of distances between points on aga; and byby,

&(y, 2, 0,0, 0,1, £1,0, T1,1) = // dx(p,q) dpdg,
peK(apar),qe(bobr)

looks like. For each A € [0, y], let p(A) be the point specified by the triple (agai, ag, A), and,
for each p € [0, 2], let ¢(u) be the point specified by the triple (boby, bo, 1t). Then

f(y»Z,iUo,o,560,1»901,0,%1,1) = // dic(p(N), q(p)) dX dya.
(/\)U)e[07y]><[072]

Function (A, p) — dic(p(M\),q(p)), defined in [0,y] x [0, 2], is the lower envelope of four
functions

oo+ A+, ogr+tA+2z—p, Troty—A+p, r11t+y—A+z—p

Following [21], we call the graph of function (A, p) — dic(p(N), g(r)) a roof; the value € is the
volume below the roof. The minimization diagram of this function consists of convex pieces;
see Figure 3. The gradient of each function is of the form (+1,41). When the variable values
are compliant, all four functions appear in the lower envelope, and the minimization diagram
has four regions. (Some of them may contain only part of an edge of the domain.)
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S

Figure 3 Concrete example of the minimization diagram of di(p(\), q(1)). In the center, some
values of dic(p()), g(p)) are shown in red; on the right, 3D visualization of the roofs.

» Lemma 13. Consider the 4-variable linear function L(zo 0, %0,1,%1,0,%1,1) = 1,0 + o1 —
x0,0 — 1,1 There are two 6-variable polynomials o1 (-), 0—(-) of degree at most three with
the following property: when (y, 2, 0,0, %01, %1,0,%1,1) 15 compliant,

Q+(y727960,0,300,1,331,0,351,1)7 if L($0,0,$0717$1,0,$1,1) >0,

5(%Z,$0,0,330,17331,0,$1,1) = )
0-(y, 2,%0,0,T0,1,%1,0,T1,1), Otherwise.

4.2 Integral Across the Portals

We reuse much of the notation and ideas from Section 3.2. As before, G is a graph with
n vertices and m edges, (A, B, S) is a separation in G with exactly &k portals, and we fix

an enumeration of the portals as s1,...,s,. We also fix an orientation for the edges of G.

Let E4 C E(G]A]) be the edge sets of the subgraph of G induced by A and Ep C E(G[B]),
respectively; not necessarily disjoint. Our objective in this section is to compute the sum of
distances between points in £ 4 and Eg:

dg(p,q)dpdg =) > / / dg(p, q) dp dg.
pEG(EA),q€G(ER) (a0,a1)€Ea  (bo,b1)€ER pEG(apay),q€G (boby)
Define the graph K = K(¢(agaq), £(bob1), dc(ag, bo), dc(ag, b1),da(a1,bo), da(a1,b1)), for
two edges (ao,a1) S EA, (bo,bl) c Ep.

The continuous edges apa; and bpby belong to G and K and, for each p € G(apai) and
q € G(boby) we have dg(p,q) = dx(p,q). It follows that

dg(p,q) dpdq = / / dx(p, q) dp dq.
peg(aoal),qeg(bobl) pGIC(aoal),qGIC(bobl)

It follows that our objective is to compute

> > &(agar), £(bobr), da(ao, bo), da(ao, br), dg(ax, bo), dg(ax, b))

(ao,a1)€EEa  (bo,b1)EEB

We keep using the predicates ¢(i; a, b) and ®(k; ag, a1, b, b1) defined in Section 3.2, where
a,ap,a1 € A, b, bo,bl €EB,i€ [k] and Kk = (i0,0;iO,lail,Oyil,l) S [k]4
Consider the polynomial L of Lemma 13. For each pair (ag,a1), (bo,b1) € E(G), we have

(aOaalabOabl) of t’ljp(i 1l = L(dG(aUabO)adG(a’Oabl)adG(a17b0)7dG(alab1)) Z 0.

13:11
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Otherwise, (ag,a1,bg,b1) is of type 2. For each oriented edge (by,b1) € F(G) and type
7 € {1, 2}, we define

Type, (bo, b1) = {(ag,a1) € E(G) | (ag,a1,bg,b1) of type 7}. (2)

For each « € [k]?, each (bg,b1) € Ep, and each type 7 € {1,2} we define

W, (k5 bo,b1) = Zﬁ(f(aoal),g(bobl), da(ao, bo), da(ao, b1),dg (a1, bo), da(ar,b1)),  (3)

where the sum ranges over all oriented edges (ag, a1) € E4 such that (ag,a1) € Type,(bo, b1)
and ®(k;agp, a1, bo,b1) holds.
Next, we show that we can efficiently compute U, (k; by, b1) for all edges (bp,b1) € Ep:

» Lemma 14. Consider a fized type 7 € {1,2} and indices k € [k]*. We can compute the
values V. (k; by, by) for all (bg,by) € Ep in O(m2*=3B(m, 4k — 3)) time.
» Lemma 15. We can compute ffp dg(p, q) dpdq in O(m2**=3k*B(m, 4k —3))
time.

€G(Fa),q€G(EB)

4.3 Global Mean

Let G be a graph with n vertices and m edges defining the continuous graph G. Let H be a
subgraph of G defining a continuous graph H C G. We use a divide-and-conquer approach to
compute sumdist(H, G). The approach is very similar to that in Section 3.3 for the diameter,
and thus we only emphasize the differences.

Let (A, B,S) be a separation in G. We use the notation defined before Theorem 11
introducing for X € {A, B}, and the graphs Hx and G%. We have

sumdist(H, G) = / / dg(p.q) dpdq — / / dg(p. q) dpdgq
PEG(Ea).q€G(ER) p,q€9(H[S]) (4)
+ sumdist(H, G’y ) + sumdist(Hp, Gp).

The first term can be computed using Lemma 15, which depends on |S|. The second term
can be computed in O(kmlogn + k?) time because, after computing the distances from S, it
is a problem of size O(k?). Dividing sumdist(#,G) by £(H)?, we obtain mean(#,G). As in
Section 3.3, we have two regimes.

» Theorem 16. Let k > 2 be an integer constant. Let G be a graph with n vertices, treewidth
at most k, nonnegative edge-lengths, and let G be the corresponding continuous graph. Let H
be a subgraph of G and let H C G be the corresponding continuous subgraph. We can compute
mean(H, G) in O(nlog**~2n) time.

» Theorem 17. Let G be a graph with n vertices, treewidth at most k, nonnegative edge-
lengths, and let G be the corresponding continuous graph. Let H be a subgraph of G and let
H C G be the corresponding continuous subgraph. We can compute mean(H,G) in niteg0k)
time, for any fized € > 0.
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5 Conclusion

We presented the first subquadratic algorithms to compute the diameter and the mean
distance in continuous graphs, for two non-trivial graph classes. We expect that the approach
for graphs parameterized by the treewidth can be adapted for computing other statistics
defined by the distance between two points selected at random in a continuous subgraph
H C G, like a cumulative density function (CDF) and higher moments:

for given &, compute CDF(6, H,G) = % // 1[dg(p, q) < 0] dpdg,
E(H) p,qEH
median distance: sup {0 € R>q | CDF(6,H,G) < 1/2},

1
higher moments, such as ——— // (dg (p, q))2 dpdg.
K(,H) p,q€EH

The main open question stemming from our work is whether our approach can be adapted
to work in subquadratic time for arbitrary planar graphs. However, as already mentioned in
the introduction, this requires dynamic trees with a set of suitable operations that — at the
moment — seem to be out of reach.
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