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Abstract
We introduce a quantum dynamic programming framework that allows us to directly extend to
the quantum realm a large body of classical dynamic programming algorithms. The corresponding
quantum dynamic programming algorithms retain the same space complexity as their classical
counterpart, while achieving a computational speedup. For a combinatorial (search or optimization)
problem P and an instance I of P, such a speedup can be expressed in terms of the average degree δ
of the dependency digraph GP(I) of I, determined by a recursive formulation of P. The nodes of this
graph are the subproblems of P induced by I and its arcs are directed from each subproblem to those
on whose solution it relies. In particular, our framework allows us to solve the considered problems in
Õ(|V (GP(I))|

√
δ) time. As an example, we obtain a quantum version of the Bellman-Ford algorithm

for computing shortest paths from a single source vertex to all the other vertices in a weighted
n-vertex digraph with m edges that runs in Õ(n

√
nm) time, which improves the best known classical

upper bound when m ∈ Ω(n1.4).
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1 Introduction

Quantum computing represents a paradigm shift in computation, leveraging the unique
principles of quantum mechanics – superposition, entanglement, and interference – to solve
problems that are intractable for classical computers. These principles allow quantum
algorithms to achieve significant speedups for tasks such as factoring large numbers [54],
searching unsorted databases [39], simulating complex physical systems [34], computational
geometry [2, 5, 7, 29], and graph drawing [14, 15, 27, 28]. Classical computing has introduced
fundamental algorithmic design paradigms that enable the efficient solution of combinatorial
problems. Among these, for problems that exhibit a recursive structure, dynamic programming
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14:2 Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms

and divide and conquer, stand out predominantly for their efficiency and wide applicability.
In this research, we introduce a framework that extends classical dynamic programming
algorithms [9, 10, 11, 20, 21, 24, 33, 40, 41, 42, 43, 47, 49] to faster quantum counterparts. This
framework applies to combinatorial search and optimization problems tackled by computing
dynamic programming tables.

Dynamic Programming. Let P be a combinatorial problem and let I be an instance of P of
size n. The dynamic programming paradigm for algorithm design can often be applied
to compute a solution sol(I) of I for P, if P satisfies the optimal substructure property, i.e.,
an optimal solution for I can be decomposed into (interchangeable) optimal solutions for
subinstances of I, and the recursive computations of solutions for larger instances require
solutions for overlapping subproblems – unlike most divide-and-conquer algorithms, in which
the subproblems do not overlap. The underlying idea of (bottom-up) dynamic programming is
to create a table D, which stores the (values of) optimal solutions for all relevant subinstances
of I, starting from the smallest ones and then computing optimal solutions for larger and
larger subinstances by suitably combining the existing solutions of smaller subinstances.
Often, the construction of sol(I), given D, is a simple task1. Therefore, the time and space
complexity for solving P are asymptotically bounded by those of constructing and storing
D, respectively. In particular, the construction time of D can be easily upper bounded
by multiplying its size by the time required to recursively compute each table entry. For
instance, a table D of size n2 and a linear-time computation for each entry yield a running
time of O(n3).

Quantum Dynamic Programming. Quantum dynamic programming algorithms have re-
cently attracted considerable interest in the exponential-time regime (which we review later).
Surprisingly, instead, polynomial-time quantum algorithms have not yet received as much
attention, despite the potential for significant speedups in practical applications. Khadiev and
Safina [45] proposed polynomial-time quantum dynamic programming algorithms for solving
problems on directed acyclic graphs (DAGs). Furrow [30] gives a polynomial-time quantum
dynamic programming algorithm for the Coin Change problem and for the Maximum
Subarray Sum2 problem.

The pioneering work by Ambainis et al. [4] introduced two quantum dynamic programming
frameworks that provide a novel approach for speeding up some exponential-time classical
dynamic programming algorithms, developed to address NP-complete problems. Both
frameworks use classical computation to construct partial dynamic programming tables,
stored in QRAM, to be accessed via quantum search subroutines. The first, and simpler,
framework addresses a subclass of set problems where the solution for a set S of size n can
be determined by considering all partitions of S into two sets of sizes k and n− k (for any
positive integer k), and by selecting the optimal option. In this setting, a quantum advantage
is obtained by suitably selecting the subset of the entries to be classically precomputed so
as to balance the time needed to compute the solution (obtained by identifying optimal
combinations of subsets) to the problem by performing (bounded-depth) recursive quantum

1 The solution sol(I) of the actual instance I is frequently found in the “last” cell of D. Such entry is
later denoted as D[i∗1][i∗2] . . . [i∗k].

2 It is worth remarking that, as discussed in [30], the proposed algorithm, albeit based on computing an
auxiliary table, is not solved via dynamic programming, but rather by following a greedy approach.
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search primitives. For instance, this framework allows to obtain fast exponential-time quantum
algorithms for Traveling Salesman [4], for One-Sided Crossing Minimization [13, 14]3,
for Graph Coloring [53], and for Dynamic programming across the subset [56].
The second, more complex, framework is based on the ability of efficiently solving a Path in
the Hypercube (PHC) problem. Given a subgraph G of the Boolean hypercube, where edges
are directed from vertices of lower Hamming weight to vertices of higher Hamming weight,
the problem asks to determine if there exists a directed path in G from the vertex 0n to
the vertex 1n. In this setting, a quantum advantage is reached by combining the access to
precomputed partial dynamic programming tables, with recursive applications of the quantum
algorithm solving PHC. For instance, this framework allows to obtain fast exponential-time
quantum algorithms for Domatic Number [6] and for Treewidth Computation [48].
Furthermore, Glos et al. [36] generalized this framework to a quantum algorithm for finding
a path in n-dimensional lattice graphs.

Our contributions. While exponential-time quantum algorithms aim to tackle problems
beyond the reach of classical computation, polynomial-time quantum algorithms can provide
substantial efficiency gains for problems already considered tractable. In this work, we focus
on polynomial-time quantum algorithms and introduce a framework that systematically
extends classical dynamic programming algorithms into accelerated quantum counterparts,
by harnessing quantum parallelism and amplitude amplification. Specifically, we developed
quantum subroutines that integrate quantum search primitives, such as min, max, find, and
findAll, within a dynamic programming context. These subroutines construct a superposition
enabling access to the specific subset of previously computed entries, stored in a Quantum
Random Access Memory (QRAM), that is needed for computing the currently-considered
entry. This, in turn, enables us to harness the full potential of quantum search primitives by
restricting the search space to the relevant candidates.

To demonstrate the broad usability of our framework, we apply it to several well-known
problems for which the best worst-case classical algorithms rely on dynamic programming;
see Table 1. For space reasons, in this paper, we only discuss in detail the application of the
framework to the Single-Source Shortest Path and Membership in Context-Free
Language problems. The applications to the remaining problems in Table 1 are presented
in the full version of the paper [16].

2 Preliminaries

In this section, we introduce preliminary notation and definitions.

Notation. Given two k-tuples of integers, ⟨a1, a2, . . . , ak⟩ and ⟨b1, b2, . . . , bk⟩, we say
that ⟨a1, a2, . . . , ak⟩ lexicographically precedes ⟨b1, b2, . . . , bk⟩, denoted by ⟨a1, a2, . . . , ak⟩ ≺
⟨b1, b2, . . . , bk⟩, if there exists an index j ∈ {1, 2, . . . , k} such that ai = bi for all i < j, and
aj < bj . The relation ≺ defines a total order among the k-tuples of integers. Given a directed
graph G = (V,E), we denote by deg(v) the degree of a vertex v of G, that is, the number of
arcs in E having v as their tail or head. Moreover, we denote by degout(v) the outdegree of a
vertex v of G, that is, the number of arcs in E having v as their tail. The average degree of

3 A quantum algorithm for Two-Sided Crossing Minimization, solely based on Grover’s search, has
been presented in [17, 15].
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14:4 Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms

Table 1 Comparison of classical and quantum time complexities, classified based on the operator
op ∈ {min,max, find, findAll} in their recursive fomulation.

Problem op Classical Complexity Quantum Complexity

Minimum-Weight Triangulation of Convex Polygon min O(n3) [49] Õ(n2√
n)

All-Pairs Shortest Paths min O(n3 log logn/log2 n) [40] Õ(n2√
n logn)

Single-Source Shortest Paths Section 5.1 min Õ(mn4/5) [42] Õ(n
√
nm)

Multi-Criteria Boundary Labeling
min po-leaders O(n3) [10, 11] Õ(n2√

n)

min do-leaders O(n5) [10, 11] Õ(n4√
n)

Segmented Least Squares min O(n2) [9, 47] Õ(n
√
n)

RNA Secondary Structure max O(n3) [47] Õ(n2√
n)

Rod Cutting max O(n2) [20] Õ(n
√
n)

Largest Divisible Subset in Array max O(n2) [25] Õ(n
√
n)

Unbounded Knapsack max O(Wn) [21] Õ(W
√
n)

Viterbi Path Problem max O(T × |S|2) [43] Õ(T × |S|×
√

|S|)

Text Segmentation find O(n2) [24] Õ(n
√
n)

Membership in Context-Free Language (CYK) Section 5.2 findAll O(n2.37) [58] Õ(n2√
n)

G is δ = 1
n

∑
v∈V (G) deg(v) = 2m

n . In order to simplify the notation, we use [h] to denote
the set {0, . . . , h − 1}, where h is a positive integer. Also, given positive integers a and b,
we denote ⌈ a

b ⌉ as a
b and ⌈log a⌉ as log a. If f(n) = O(logc n) for some constant c, we write

f(n) = polylog(n). In case f(n) = O(ndpolylog(n)) for some constant d, we use the notation
f(n) = Õ(nd) (see, e.g., [59]).

Combinatorial problems. A combinatorial search problem P is a triple ⟨Λ, S,R⟩, where:
Λ is the set of instances of P;
S is the set of solutions of P; and
R ⊆ Λ × S is a binary relation that associates each instance I ∈ Λ with a set SOL(I) =
{s ∈ S : (I, s) ∈ R}. The elements in SOL(I) are the feasible solutions of P for I.

A combinatorial optimization problem P is a quintuple ⟨Λ, S,R, fP , g⟩, where:
⟨Λ, S,R⟩ is a combinatorial search problem,
fopt : S → Y is the optimization function, where Y is a totally ordered set (usually
Y ∈ {N,R});
g : 2S → S is the comparator function, with g ∈ {min,max}.

An optimal solution of P for I is any feasible solution s∗ in SOL(I) such that
s∗ = arg mins∈SOL(I) fopt(s), if g = min, and s∗ = arg maxs∈SOL(I) fopt(s), if g = max.
For ease of notation, in the following, we denote by sol(I), both a feasible solution of a
combinatorial search problem and an optimal solution of a combinatorial optimization prob-
lem. Also, we refer to combinatorial search/optimization problems simply as combinatorial
problems.

Dynamic programming. Let P be a combinatorial problem and let I be an instance of P.
A (bottom-up) dynamic programming algorithm for P can be implemented by executing the
following steps:
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Dynamic Programming Steps:

Table Setup: Determine integers d1, d2, . . . , dk that depend on I and create a table
D of dimension d1 × d2 × . . . × dk. Initialize some “easy” entries of D (Base
Case) directly using information from I and initialize the remaining “difficult”
entries with a default value representing the fact that such entries have not yet
acquired their final value.

Table Update: Compute the “difficult” entries of D (Recursive Case) by evaluating
a recursive formula that expresses each entry D[i1][i2] . . . [ik] in terms of a subset
of the (already computed) entries D[j1][j2] . . . [jk] corresponding to optimal solu-
tions for structurally related subproblems such that (j1, j2 . . . , jk) ≺ (i1, i2 . . . , ik).

Solution Retrieval: Return the value contained in a specific entry of D[i∗1][i∗2] . . . [i∗k]
(whose position ⟨i∗1, i∗2, . . . , i∗k⟩ in D depends on I and P) or retrieve a solution of I
by inspecting D (usually exploiting the information contained in D[i∗1][i∗2] . . . [i∗k]).

Whereas the efficiency of this algorithm design paradigm lies in the fact that solutions
of overlapping problems are stored in the table and hence need to be computed only once, its
correctness lies in the fact that “difficult” entries can be computed by exploiting the values
of previously computed (“easy” and “difficult”) entries (by the optimal substructure property).
Clearly, the Table Update is the most interesting and challenging step in the overall approach.
Fortunately, many optimization problems P, including those considered in this paper,
naturally exhibit a simple recursive formulation for the entries of their dynamic programming
table D. Consider an entry D[i1][i2] . . . [ik] of D. Let Si1,i2,...,ik

be the dependency set of
D[i1][i2] . . . [ik], composed of the indices of the entries of D on which the computation of the
entry D[i1][i2] . . . [ik] depends. Observe that Si1,i2,...,ik

is some subset of Nk such that for
each entry ⟨j1, j2, . . . , jk⟩ in Si1,i2,...,ik

we have that ⟨j1, j2, . . . , jk⟩ ≺ ⟨i1, i2, . . . , ik⟩. Then,
the recursive formula for D[i1][i2] . . . [ik] is of the form:

D[i1][i2] . . . [ik] = opX ∈Ci1,i2,...,ik
fP(i1, i2, . . . , ik,X ), (1)

where: (1) op ∈ {min,max,find,findAll}; (2) Ci1,i2,...,ik
is a set, called generating set,

composed of h-element subsets of Si1,i2,...,ik
, where each subset provides the input to construct

a particular candidate value for D[i1][i2] . . . [ik] (where h is an integer constant, called
dependency index, determined by P, which specifies the number of subinstances into which
each instance is divided in the recursive definition); (3) fP is a function specific for problem
P that computes a candidate value for D[i1][i2] . . . [ik], assuming that all entries of D with
indices in Si1,i2,...,ik

have already been computed.

▶ Remark 1. The optimal substructure property of a problem P is formally captured by
the dependency set Si1,i2,...,ik

, whose entries ⟨j1, j2, . . . , jk⟩ must satisfy ⟨j1, j2, . . . , jk⟩ ≺
⟨i1, i2, . . . , ik⟩.

In most problems, the dependency index is a small integer, usually equal to 1 or 2.
A textbook example of a problem fitting Equation (1) with h = 1 is the Coin Change
problem [47]. Given a set of positive integer coin denominations c1 < c2 < · · · < cr and a
target sum T , the goal is to achieve T using the fewest possible number of coins, assuming
an unlimited supply of each denomination, or determine if it is not possible to obtain T . Let
D be a dynamic programming table of size T + 1, whose entries D[i] represent the minimum
number of coins needed to make up the sum i, with D[i] = ∞ if it is not possible. The base
case of the dynamic programming approach is D[0] = 0. For the recursive case, to compute

WADS 2025



14:6 Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms

D[i] for i > 0, we have to consider all possible choices for the first coin. Once the first coin is
selected, the remaining amount must be reached optimally. This can be expresses by the
recursive formula

D[i] =

0, if i = 0
min

j:cj≤i
(1 +D[i− cj ]), if i > 0 (2)

Clearly, the recursive case of Equation (2) matches the pattern of Equation (1). In fact, we
can set Si = {j : cj ≤ i}, Ci = {{j} : cj ≤ i}, h = 1, and fP(i, {j}) = 1 +D[i− cj ].

A notable example of a problem fitting Equation (1) with h = 2 is the Matrix Chain
Multiplication problem. Given a sequence of n matrices, A1, A2, . . . , An, and their
dimensions p0, p1, p2, . . . , pn, where for i = 1, 2, . . . , n, matrix Ai has dimension pi−1 × pi,
the problem asks to determine the order of matrix multiplications that minimizes the total
number of scalar multiplications needed to obtain A1 × A2 × . . . × An. Note that, in the
Matrix Chain Multiplication problem, we are not actually multiplying matrices; instead,
the goal is only to determine an order for multiplying matrices that has the lowest cost.
Recall that matrix multiplication is associative, therefore we aim at grouping the above
multiplications to minimize the total number of scalar multiplications.

Let D be a dynamic programming table of size n × n, whose entries D[i][j], with
1 ≤ i ≤ j ≤ n, store the minimum number of scalar multiplications needed to compute
the product Ai × Ai+1 × . . . × Aj . The base case of the dynamic programming approach
is D[i][i] = 0. For the recursive case, to compute D[i][j] for j > i, we have to consider all
possible choices to split the product at a matrix Ak, with i ≤ k < j. This can be expressed
by the recursive formula:

D[i][j] =

0, if i = j

min
i≤k<j

(D[i][k] +D[k + 1][j] + pi−1pkpj), if i < j
(3)

Clearly, the recursive case of Equation (3) matches the pattern of Equation (1). In fact, we
can set Si,j = {(i, k), (k + 1, j) : i ≤ k < j}, Ci,j = {{(i, k), (k + 1, j)} : i ≤ k < j}, h = 2,
and fP(i, j, {(i, k), (k + 1, j)}) = D[i][k] +D[k + 1][j] + pi−1pkpj .

3 Quantum Tools

In this section, we provide the reader with the quantum primitives needed in this research.
For a comprehensive introduction to the quantum computing field see, e.g., Nielsen and
Chuang [50], and Aaronson [1].

Qubits are the fundamental units of quantum computing. They differ from classical bits
in that they can exist in a superposition of the two classical states 0 and 1. This unique
characteristic enables quantum computers to perform, in parallel, multiple computations,
allowing in some cases to achieve a substantial (and sometimes exponential) speedup over
classical systems. Mathematically, a qubit is represented in a Hilbert space as a two-
dimensional vector4 |ψ⟩ =

(
α
β

)
∈ C2, that is, |ψ⟩ = α |0⟩+β |1⟩, where |0⟩ =

(1
0
)

and |1⟩ =
(0

1
)

are the two orthonormal basis states and the complex coefficients α and β are the amplitudes
of such states. The likelihood of measuring the qubit in state |0⟩ or |1⟩ is given by |α|2

4 In Dirac’s notation, a ket such as |v⟩, where v is an arbitrary label, represents a vector corresponding to
a quantum state.
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and |β|2, respectively. Therefore, α and β must satisfy the normalization condition
|α|2+|β|2= 1, ensuring that the total probability remains 1. A quantum state over n qubits
is a unit vector in the Hilbert space C2n . The computational basis {|j⟩}j∈[2n] consists of
quantum states, where |j⟩ is the unit vector with a 1 in the j-th index and 0 elsewhere. A
computational basis state |j⟩ can be interpreted as a classical bit string j, allowing quantum
systems to simulate classical algorithms. Any quantum state can be expressed as a weighted
sum (or superposition) of these basis states:

|Ψ⟩ =
2n−1∑
j=0

αj |j⟩ ,

where the amplitudes satisfy the normalization condition
∑2n−1

j=0 |αj |2= 1. If at least two
coefficients αj in the above expression are nonzero, the state is said to be in superposition.
When measuring |Ψ⟩, the state collapses to |j⟩ with probability |αj |2.

In this paper, we focus on quantum computations performed in the circuit model
of computation. In this model, quantum algorithms are specified by quantum circuits,
obtained by composing quantum gates, that perform specific quantum computations. The
process begins with the initialization of qubits, followed by the application of gate operations
that modify their states. Finally, the circuit’s output is obtained by measuring the qubits.
This operation collapses their quantum states into classical binary outcomes. Quantum gates
are the fundamental building blocks of quantum circuits, analogous to classical logic gates
in traditional computing. They are used to manipulate quantum states while preserving
key quantum properties like superposition and entanglement. Specifically, a quantum gate
performs a linear transformation on its input quantum state, meaning that a superposition
of states is mapped to the corresponding superposition of their images. In particular, any
such a transformation U must be unitary, satisfying the condition I = U†U = UU†, where I
denotes the identity matrix and U† denotes the transpose conjugate of U .

As a consequence, quantum computation is inherently reversible as long as no measurement
is performed. That is, given an output quantum state |ϕ⟩, obtained by applying U to an
initial quantum state |ψ⟩, the original state can be fully recovered by applying U−1 = U† to
|ϕ⟩. An important quantum gate (often used in the initialization of qubits) is the Hadamard
gate H = 1√

2 ( 1 1
1 −1 ), which can be used a preliminary step to transform the |0⟩ state into to

a uniform state 1√
2 (|0⟩ + |1⟩) of the two basis states.

Quantum Random Access Memory (QRAM) is the “quantum analog” of conventional
RAM, designed to store and access data in a quantum format. Like RAM, QRAM consists
of three main components: an input (or address) register a, an output (or data) register d,
and memory arrays. However, unlike traditional RAM, QRAM’s input and output registers
are composed of qubits rather than classical bits, while the memory arrays can be either
classical or quantum, depending on the application [35]. A key feature of QRAM lies in
its method of memory access. Instead of retrieving data from a single memory location
at a time, QRAM leverages quantum superposition to access multiple memory locations
simultaneously. Specifically, while a classical RAM uses n bits to randomly access one of
N = 2n distinct memory cells, a QRAM uses n qubits to address a quantum superposition
of all N memory cells simultaneously. When a quantum computer requires access to a
superposition of memory cells, the address register5 a must hold a superposition of addresses,

5 A set comprising multiple qubits is a register. A quantum register a with n qubits |qi⟩, with i ∈ [n], is
denoted as a tensor product |ψ⟩a = |q0⟩ ⊗ |q1⟩ ⊗ · · · ⊗ |qn−1⟩.

WADS 2025



14:8 Quantum Speedups for Polynomial-Time Dynamic Programming Algorithms

Algorithm 1 Procedure StatePrep prepares a uniform superposition over the set Ci1,i2,...,ik .
1: procedure StatePrep(i1i2 . . . ik)
2: input: Registers |i1i2 . . . ik⟩ and an ℓ-bit zero register |0ℓ⟩
3: output: Uniform superposition state |Ψi1,i2,...,ik

⟩
4: Apply the quantum circuit UfC

to determine λi1,i2,...,ik
= |Ci1,i2,...,ik

|
5: Prepare the state |i1i2 . . . ik⟩ |λi1,i2,...,ik

⟩
6: Introduce an additional log(λi1,i2,...,ik

)-bit zero register |0log λi1,i2,...,ik ⟩
7: Apply Hadamard gates to the qubits of the last register to prepare the uniform

superposition:

|Ψi1,i2,...,ik
⟩ = 1√

λi1,i2,...,ik

|i1, i2, . . . , ik⟩ |λi1,i2,...,ik
⟩

λi1,i2,...,ik
−1∑

u=0
|u⟩

8: return |Ψi1,i2,...,ik
⟩

9: end procedure

represented as
∑

j αj |j⟩a. In response, the QRAM returns a corresponding superposition
of data in the data register d, ensuring that the retrieved data remains correlated with the
address register:

∑
j

αj |j⟩a |0k⟩d

QRAM−→
∑

j

αj |j⟩a |δj⟩d ,

where δj represents the content of the j-th memory cell, k bits suffice to classically encode
the content of any memory cell, and |0k⟩ denotes the quantum basis state composed of k
qubits set to |0⟩. QRAM plays a crucial role in several quantum algorithms, such as quantum
searching [39], minimum/maximum finding [23], counting [12], period finding and discrete
logarithm [54], to cite a few. In particular, the use of QRAM enables us to exploit quantum
search primitives that involve condition checking on data stored in random access memory.
Specifically, the QRAM may be used by an oracle to check conditions based on the data
stored in memory, marking the superposition states that correspond to feasible or optimal
solutions [35, 51, 60, 62].

We now describe the quantum subroutines used in our algorithms. Observe that every
function f implemented as a classical circuit can be approximated with arbitrary accuracy,
using a discrete set of quantum gates, by a quantum circuit with only a polylogarithmic
overhead [22, 46, 50]. Therefore, in the following, we assume that every classical function f ,
provided as classical circuit Cf , can be passed to and accessed by our quantum procedures
as a quantum version of Cf . In the remainder, for any computable function f , we use the
notation Uf to denote the corresponding quantum circuit.

Let W be a ground set and let ω be an element of W . Let bin(ω) be the integer
corresponding to a binary encoding of ω. For ease of notation, in the remainder, we will
denote the state |bin(ω)⟩ simply as |ω⟩. In particular, given an element X ∈ Ci1,i2,...,ik

, we
will use the state |X ⟩.

Consider a computational problem P that can be solved via dynamic programming
building a k-dimensional table D of size d1 × . . .× dk. Recall that by Ci1,i2,...,ik

we denote
the generating set of an entry D[i1][i2] . . . [ik] of D. We let λi1,i2,...,ik

= |Ci1,i2,...,ik
| and we

let σ =
∑k

i=1 log di.
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Algorithm 2 Procedure TableIndexPrep for retrieving the u-th element of Ci1,i2,...,ik .
1: procedure TableIndexPrep(i1, i2, . . . , ik, u)
2: input: Registers |i1, i2, . . . , ik⟩, the register |u⟩, and an h · σ-bit zero register |0h·σ⟩
3: output: State |Ei1,i2,...,ik,u⟩ encoding the u-th element γ(⟨i1, i2, . . . , ik⟩, u) of
Ci1,i2,...,ik

4: Apply the quantum circuit Uγ to retrieve the element Xu = γ(⟨i1, i2, . . . , ik⟩, u)
5: Store Xu in the output register, thus obtaining the state:

|Ei1i2...ik,u⟩ = |i1i2 . . . ik⟩ |u⟩ |Xu⟩

6: return |Ei1i2...ik,u⟩
7: end procedure

Subroutine StatePrep. The first subroutine prepares a uniform superposition Ψi1,i2,...,ik

of the integers in [λi1,i2,...,ik
]; see the pseudocode of Algorithm 1. It assumes the existence

of a classical procedure fC that determines λi1,i2,...,ik
given the values i1, i2, . . . , ik. The

subroutine starts with the register |i1i2 . . . ik⟩ and with a register storing an ℓ-bit zero string
|0ℓ⟩ (where the value of ℓ will be discussed later). It exploits the quantum gate Uλ to
determine λi1,i2,...,ik

and prepares the state |i1i2 . . . ik⟩ |λi1,i2,...,ik
⟩. Then, the subroutine

takes in input an additional register storing a log(λi1,i2,...,ik
)-bit zero string and applies

Hadamard gates to each of the qubits of such a register to prepare the uniform superposition
state:

|Ψi1,i2,...,ik
⟩ = 1√

λi1,i2,...,ik

|i1i2 . . . ik⟩ |λi1,i2,...,ik
⟩

λi1,i2,...,ik
−1∑

u=0
|u⟩

We use the signature StatePrep(i1, i2, . . . , ik) to denote calls to the subroutine StatePrep.

Subroutine TableIndexPrep. The second quantum subroutine prepares the state
|Ei1i2...ik,u⟩ that correlates the integers in [λi1,i2,...,ik

] with the elements of Ci1i2...ik
; see

the pseudocode of Algorithm 2. Our quantum subroutine assumes the existence of a classical
injective function γ : Nk × N → Ci1i2...ik

that maps the pair ⟨⟨i1i2 . . . ik⟩, u⟩ to an element
of Ci1i2...ik

. Observe that the elements of Ci1,i2,...,ik
admit a binary representation bin(X ) of

length h · σ. The subroutine starts with the register |i1i2 . . . ik⟩, the register |u⟩, and with a
register storing an (h · σ)-bit zero string |0h·σ⟩ and uses Uγ to prepare the state:

|Ei1i2...ik,u⟩ = |i1i2 . . . ik⟩ |u⟩ |γ(⟨i1, i2, . . . , ik⟩, u)⟩ .

We use the signature TableIndexPrep(i1, i2, . . . , ik, u) to denote calls to the subroutine
TableIndexPrep.

Subroutine DP. The third quantum subroutine uses either (i) the quantum min/max
finding algorithms (QMin and QMax) due to Dürr and Høyer [23], or (ii) the quantum
finding algorithm (QFind) due to Grover to search for an item satisfying a condition in an
unsorted list [1] or (iii) the quantum finding algorithm (QFindAll) due to Ambainis to
search for all items satisfying a condition in an unsorted list [3]. In particular, QMin and
QMax allow to determine the element in a ground set of size N that minimizes/maximizes
a given function in Õ(

√
N) time, QFind (resp. QFindAll) allows to determine an element

(resp. all the elements) in a ground set of size N that satisfy a certain condition in Õ(
√
N)

time (resp.
√
NM time, where M is the number of elements satisfying the condition).
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Algorithm 3 Procedure DP for computing the value opX ∈Ci1,i2,...,ik
fP(i1, i2, . . . , ik,X ).

We use the signature QMaxMin(i1, i2, . . . , ik, fP ,⋖), QMaxMax(i1, i2, . . . , ik, fP ,max,⋖),
QFind(i1, i2, . . . , ik, fP), and QFindAll(i1, i2, . . . , ik, fP) to denote calls to the algorithms
QMaxMin, QMaxMin, QFind, and QFindAll, respectively.

1: procedure DP(i1, i2, . . . , ik, fP , op,⋖ = null)
2: input: Registers |i1, i2, . . . , ik⟩, the function fP , and an operator op ∈

{min,max,find,findAll}. Additionally, a comparator ⋖, if op ∈ {min,max}.
3: output: The value opX ∈Ci1,i2,...,ik

fP(i1, i2, . . . , ik,X ) to be assigned to
D[i1][i2] . . . [ik]

4: Invoke the subroutine StatePrep(i1, i2, . . . , ik) to prepare the superposition state
|Ψi1,i2,...,ik

⟩
5: Apply the subroutine TableIndexPrep(i1, i2, . . . , ik, u), in parallel to each basis state

of |Ψi1,i2,...,ik
⟩, to prepare the superposition |Φi1,i2,...,ik

⟩
6: if op = min then
7: Apply QMaxMin(i1, i2, . . . , ik, fP ,⋖) to |Φi1,i2,...,ik

⟩
8: else if op = max then
9: Apply QMaxMax(i1, i2, . . . , ik, fP ,⋖) to |Φi1,i2,...,ik

⟩
10: else if op is find then
11: Apply QFind(i1, i2, . . . , ik, fP) to |Φi1,i2,...,ik

⟩
12: else if op is findAll then
13: Apply QFindAll(i1, i2, . . . , ik, fP) to |Φi1,i2,...,ik

⟩
14: end if
15: return opX ∈Ci1,i2,...,ik

fP(i1, i2, . . . , ik,X )
16: end procedure

The subroutine (see the pseudocode of Algorithm 3) takes as input at least: (1) the
integers i1, i2, . . . , ik; (2) the function fP ; and (3) an operator op ∈ {min,max,find, findAll}.
Furthermore, if op ∈ {min,max}, it additionally takes as an input a comparator, ⋖, to
maximize (or minimize) over, that defines a total ordering of the values in the codomain of
fP (i.e., the values stored in D). First, the subroutine invokes StatePrep (i1, i2, . . . , ik) to
prepare the superposition state |Ψi1,i2,...,ik

⟩ and then applies TableIndexPrep, in parallel to
each basis state of |Ψi1,i2,...,ik

⟩, to prepare the superposition state:

|Φi1,i2,...,ik
⟩ = 1√

λi1,i2,...,ik

|i1, i2, . . . , ik⟩ |λi1,i2,...,ik
⟩

λi1,i2,...,ik
−1∑

u=0
|u⟩ |γ(⟨i1, i2, . . . , ik⟩, u)⟩ .

▶ Remark 2. The time T ′
i1,i2,...,ik

required to prepare the state |Φi1,i2,...,ik
⟩ is bounded by

the time needed to execute gates UfC
and Uγ .

Observe that each of the states |i1, i2, . . . , ik⟩ |λi1,i2,...,ik
⟩ |u⟩ |γ(⟨i1, i2, . . . , ik⟩, u)⟩ com-

posing |Φi1,i2,...,ik
⟩ provides the input for computing, using fP and the quantum search

subroutines described above, a candidate value for D[i1][i2] . . . [ik], that is, the registers
|i1, i2, . . . , ik⟩ and |γ(⟨i1, i2, . . . , ik⟩, u)⟩. Therefore, the subroutine proceeds by applying the
algorithm QMin, QMax, QFind, or QFindAll, depending on whether the chosen operator
op is equal to min (or max), find, or findAll, respectively, only to the candidate values for
D[i1][i2] . . . [ik] determined by the entries in Ci1,i2,...,ik

.
We use the signatures DP(i1, i2, . . . , ik, fP , op) and DP(i1, i2, . . . , ik, fP , op,⋖) to denote

calls to the subroutine DP, when op ∈ {find,findAll} or op ∈ {min,max}, respectively.
Altogether, we obtain the following main algorithmic theorem.
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▶ Theorem 3. Let P be a combinatorial problem, let I be an instance of P, and let n be
the size of I. Also, let TP be the time needed to compute quantumly the function fP and let
T ′

i1,i2,...,ik
be the time needed to prepare |Φi1,i2,...,ik

⟩. Suppose that each of the values of the
entries of D can be represented using w bits with w ∈ O(polylog(n)). Then, the following
holds for subroutine DP:

If op = find, DP determines a value of fP for an entry D[i1][i2] . . . [ik] in Õ(T ′
i1,i2,...,ik

+
TP

√
λi1,i2,...,ik

) time.
If op = findAll, DP determines all the M possible distinct values of fP for an entry
D[i1][i2] . . . [ik] in Õ(T ′

i1,i2,...,ik
+ TP

√
λi1,i2,...,ik

M) time.
If op ∈ {min,max}, consider some total ordering defined by ⋖ of the data values in D

such that comparison according to such an ordering can be performed in O(w) time. Then,
DP determines the minimum (or maximum) value of fP for an entry D[i1][i2] . . . [ik],
under the specified ordering, in Õ(T ′

i1,i2,...,ik
+ TP

√
λi1,i2,...,ik

) time.

4 Quantum Dynamic Programming

In this section, we describe a framework that exploits the quantum subroutines defined in
Section 3 to obtain quantum speedups for many computational problems solved classically
using dynamic programming algorithms.

The recursive formula that specifies how to compute the entries of the dynamic program-
ming table D used for solving a computational problem P on a instance I determines a
dependency digraph GP(I). The nodes of GP(I) are in one-to-one correspondence with
the entries of D, i.e., the subproblems of P defined by I. For each node ni1,i2,...,ik

of GP(I)
associated with the entry D[i1][i2] . . . [ik] of D, graph GP(I) contains an arc directed from
ni1,i2,...,ik

to each of the nodes nj1,j2,...,jk
associated with the entries D[j1][j2] . . . [jk] that

occur in the recursive formula for D[i1][i2] . . . [ik]. These are the entries indexed by the
tuples ⟨j1, j2, . . . , jk⟩ ∈ Si1,i2,...,ik

. Clearly, by the optimal substructure property, GP(I) is a
directed acyclic graph.

Let P be a combinatorial problem and suppose that it admits a dynamic programming
algorithm that relates the dependency set Si1,i2,...,ik

and the generating set Ci1,i2,...,ik
of an

entry D[i1][i2] . . . [ik] as follows. For each element ⟨j1, j2, . . . , jk⟩ ∈ Si1,i2,...,ik
, there exists a

unique set X ∈ Ci1,i2,...,ik
such that ⟨j1, j2, . . . , jk⟩ ∈ X . We say that a dynamic programming

algorithm exhibiting the above characteristic is simple and that P is a simple problem. Observe
that, for a simple dynamic programming algorithm, it holds that λi1,i2,...,ik

= |Ci1,i2,...,ik
|=

|Si1,i2,...,ik
|

h . In particular, this implies that, for each node ni1,i2,...,ik
of GP(I), it holds that

degout(ni1,i2,...,ik
) = |Si1,i2,...,ik

|= h ·λi1,i2,...,ik
. We have that several combinatorial problems,

including those listed in Table 1, as we prove later, are simple problems.
The next lemma shows how classical simple dynamic programming algorithms can be

quantumly enhanced to reduce their time complexity, while maintaining the same storage
requirements as in the classical setting. Such an improvement applies to problems whose
recursive formulation satisfies Equation (1). Table 1 provides an overview of the speedups
obtainable via Theorem 4 for many well-known problems.

▶ Theorem 4. Let P be a simple combinatorial problem, let I be an instance of P, and let
n be the size of I. Suppose that each of the values of the entries of D can be represented
using w bits with w ∈ O(polylog(n)). Consider a simple classical dynamic programming
algorithm A that solves P for I by computing each entry D[ii][i2] . . . [ik] of a table D of size
d1 × d2 × . . .× dk, where the values di depend on I, using a recurrence formula of the same
form as Equation (1):
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D[i1][i2] . . . [ik] = opX ∈Ci1,i2,...,ik
fP(i1, i2, . . . , ik,X ),

where op ∈ {min,max,find,findAll}. Also, let TP , TfC
and Tγ be the time needed to compute

quantumly the functions fP , fC , and γ, respectively. Finally, let T ′ = TfC
+ Tγ, let M be

the maximum number of solutions of any subproblem of P for I, and let δ be the average
degree of GP(I).

Then, there exists a quantum dynamic programming algorithm QA that solves P for I,
using QRAM, with the following time and space bounds:

If op ∈ {find,min,max}, then QA solves P for I using Õ(|V (GP(I))|(T ′ + TP
√
δ)) time

and Õ(|V (GP(I))|) space.
If op = findAll, then QA solves P for I using Õ(|V (GP(I))|(T ′ + TP

√
δ ·M)) time and

Õ(M |V (GP(I))|) space.

Proof. In the following, we describe the algorithmQA and prove its space and time complexity.
We describe QA in terms of the three steps that implement the dynamic programming
approach provided by A.

Table Setup. As in the classical scenario, the algorithm starts by initializing a dynamic
programming table QD of size d1 × d2 × . . . × dk. Differently from the classical dynamic
programming table D used by A, however, the table QD is stored in QRAM. Suppose that
each of the values of the entries of D (and thus of QD) can be represented using w bits.
Let finit be the classical function that, provided with the tuple ⟨i1, i2, . . . , ik⟩ that addresses
the entry D[i1][i2] . . . [ik], computes the initialization value of D[i1][i2] . . . [ik]. To this aim,
for each ⟨i1, i2, . . . , ik⟩ ∈ [d1] × [d2] × . . .× [dk], we provide the gate Uinit with the address
register |i1i2 . . . ik⟩a and with a data register storing a w-bit zero string |0w⟩. The application
of Uinit to these registers results in the state |i1i2 . . . ik⟩a |finit(⟨i1, i2, . . . , ik⟩)⟩d, which forms
the input for a QRAM write operation that initializes QD[i1][i2] . . . [ik].

Table Update. We process the tuples ⟨i1, i2, . . . , ik⟩ ∈ [d1] × [d2] × . . . × [dk] in lexi-
cographic order. For each tuple ⟨i1, i2, . . . , ik⟩, the algorithm invokes either the quan-
tum subroutine DP(i1, i2, . . . , ik, fP , op) or DP(i1, i2, . . . , ik, fP , op,⋖), based on whether
op ∈ {find,findAll} or op ∈ {min,max}, respectively. This allows us to compute
opX ∈Ci1,i2,...,ik

fP(i1, i2, . . . , ik,X ), which is stored in an output register |di1,i2,...,ik
⟩o cor-

related with the address register |i1i2 . . . ik⟩a. Finally, the state |i1i2 . . . ik⟩a |di1,i2,...,ik
⟩o

forms the input for a QRAM write operation that updates QD[i1][i2] . . . [ik].

Solution Retrieval. Let ⟨i∗1, i∗2, . . . , i∗k⟩ be the entry of D whose value determines the solution
to P. Then, a solution for P can be obtained by reading the entry QD[i∗1][i∗2] . . . [i∗k].

Next, we analyze the space complexity of QA. As in its classic counterpart, the space
complexity of QA is asymptotically bounded by the storage requirement of the dynamic
programming table, which can be upper bounded by multiplying the number of entries
of QD, the number w of bits to represent each of the values of the entries of QD (i.e.,
the solutions to the subproblems of P), and the maximum number M of solutions of any
subproblem of P for I. Also, recall that the entries of QD are in one-to-one correspondence
with the nodes of GP(I). Therefore, the space complexity of QA is in O(w(|V (GP(I))|), if
op = {find,min,max}, and in O((w ·M)|V (GP(I))|), if op = findAll.

Finally, we analyze the time complexity of QA. Obviously, the time needed to compute
function finit is in O(TP). Therefore, the time complexity Time(I) of QA on input I is
asymptotically bounded by the time required to execute the Table Update step. We now
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give the corresponding bound. For simplicity, we assume first that op ∈ {find,min,max}.
Let n = |V (GP(I))| and recall that δ denotes the average degree of GP(I). In order
to upper bound Time(I), we proceed as follows. For i = 1, . . . , log logn, let Vi be the
subset of V (GP(I)) whose degree is between 22i−1

δ and 22i

δ, and let V0 be the subset of
V (GP(I)) whose degree is less than 2δ. Recall that, by Theorem 3, the quantum subroutine
DP determines a value of fP for an entry D[i1][i2] . . . [ik] in Õ(T ′

i1,i2,...,ik
+ TP

√
λi1,i2,...,ik

)
time, that T ′

i1,i2,...,ik
≤ T ′, and that, for each node ni1,i2,...,ik

of GP(I), it holds that
λi1,i2,...,ik

≤ degout(ni1,i2,...,ik
) since P is simple. Therefore, we have:

Time(I) =
∑

ni1,i2,...,ik
∈V (GP (I))

Õ
(
T ′

i1,i2,...,ik
+ TP

√
λi1,i2,...,ik

)
≤

≤
∑

ni1,i2,...,ik
∈V (GP (I))

Õ
(
T ′ + TP

√
degout(ni1,i2,...,ik

)
)

≤

≤ Õ
(

|V0|(T ′ + TP
√

2δ)
)

+
log log n∑

i=1
Õ

(
|Vi|(T ′ + TP

√
22iδ)

)
=

= Õ(|V0|T ′) + Õ(|V0|TP
√
δ) +

log log n∑
i=1

Õ(|Vi|T ′) + (TP ·
√
δ)

log log n∑
i=1

Õ(|Vi|22i−1
) (4)

Next, we provide an upper bound for |Vi|. Clearly, there exist at most 2n nodes ni1,i2,...,ik
of

GP(I) such that degout(ni1,i2,...,ik
) < 2δ (that is, |V0|≤ 2n). Also, there exist at most n nodes

ni1,i2,...,ik
of GP(I) such that 2δ ≤ degout(ni1,i2,...,ik

) < 4δ (that is, |V1|≤ n). Similarly, there
exist at most n

2 nodes ni1,i2,...,ik
of GP(I) such that 4δ ≤ degout(ni1,i2,...,ik

) < 16δ (that is,
|V2|≤ n

2 ). More in general, for i = 1, . . . , log logn, there exist at most n

22i−1−1 = 2n

22i−1 nodes
of GP(I) such that 22i−1

δ ≤ degout(ni1,i2,...,ik
) < 2i

δ (that is, |Vi|≤ n

22i−1−1 = 2n

22i−1 ). In
Equation (4), we can then upper bound V0 with 2n, and |Vi| with 2n

22i−1 , if i > 1. Therefore,
we have:

Time(I) = Õ(|V0|T ′) + Õ(|V0|TP
√
δ) +

log log n∑
i=1

Õ(|Vi|T ′) + (TP ·
√
δ)

log log n∑
i=1

Õ(|Vi|22i−1
) ≤

≤ Õ(n · T ′) + Õ(nTP
√
δ) + Õ(n · T ′) + (TP ·

√
δ)

log log n∑
i=1

Õ(|Vi|22i−1
) ≤

≤ Õ(n · T ′) + Õ(nTP
√
δ) + (TP ·

√
δ)

log log n∑
i=1

Õ( 2n
22i−1 22i−1

) =

= Õ(n · T ′) + Õ(nTP
√
δ) + (TP ·

√
δ)Õ(n)

log log n∑
i=1

2

= Õ
(
n(T ′ + (TP ·

√
δ)(1 + 2log logn))

)
= Õ

(
n(T ′ + TP ·

√
δ)

)
(5)

Altogether, Equation (5) shows the desired bound for the running time of QA when
op ∈ {find,min,max}. For the case when op = findAll the same analysis applies with

√
δ

replaced by
√
δ ·M according to Theorem 3. This concludes the proof. ◀
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(a) An instance I = (G,w, s = vs) of SSSP.
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(b) The dependency graph GP(I) of I and the
dynamic programming tableD for instance I. Each
node of GP(I) is placed inside the corresponding
entry of D.

Figure 1 Illustrations for problem SSSP.

5 Applications of the Quantum Dynamic Programming Framework

In this section, we consider the Single-Source Shortest Paths (SSSP) problem and the
Membership in Context-Free Language (MCFL) problem. Since both the celebrated
Bellman-Ford algorithm for SSSP and Cocke-Younger-Kasami algorithm for MCFL are
based on dynamic programming recurrences that respect Equation (1), they provide primary
examples for computational problems amenable to a quantum speedup via Theorem 4.

In the following for the SSSP and the MCFL problems, and in the full version [16] for
the remaining problems listed in Table 1, we demonstrate the applicability of Theorem 4
as follows. First, we present the corresponding classical dynamic programming algorithm.
In particular, we describe (i) the subproblems whose solution is stored in the dynamic
programming table, (ii) the optimal substructure property of the problem, and (iii) the
overlap among subproblems. Then, if needed, we transform the recurrence relation of the
dynamic programming algorithm in such a way that it matches the pattern of Equation (1),
and we define the dependency set Si1,i2,...,ik

, the generating set Ci1,i2,...,ik
, the dependency

index h, and the function fP . Also, we bound the average degree of the dependency digraph
GP(I) in terms of the size of the instances. Further, we show that the dynamic programming
algorithm is simple. Finally, we bound the time complexity of the functions fP , fC , and γ.
Altogether, this allows us to the establish our quantum speedups via Theorem 4.

5.1 Quantum Bellman-Ford for Single-Source Shortest Paths

Let G = (V,E) be a weighted n-vertex m-edge digraph, where each arc e = uv ∈ E, directed
from u to v, has an associated weight w(e). Let p = (u0, u1, . . . , uk) be a directed path from
u0 to uk. The weight of p is

∑
(uiui+1)∈E(p) w(uiui+1), and the length of p is |E(p)|= k. A

shortest path from u to v is a minimum-weight directed path from u to v. The shortest path
distance from u to v is the weight of a shortest path from u to v.

Next, we define the Single-Source Shortest Paths problem (see Figure 1a for the
illustration of an instance of this problem).
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Input: A weighted digraph G = (V,E), a function w : E → R, and a source vertex s ∈ V .
Output: The shortest-path distances between s and v, for all v ∈ V .

Single-Source Shortest Paths (SSSP)

Subproblems. For all i ∈ [n] and for all vj ∈ V , a subproblem is defined as finding the
smallest weight of a directed path, of length at most i, from the source vertex s to the
vertex vj . Since the maximum length of a shortest path is at most n − 1, we have n2

subproblems.

Optimal substructure. Let D be a dynamic programming table of size n× n, whose entries
D[i][j] store the smallest weight of a directed path, of length at most i, from s to vj , for all
i ∈ [n] and for all vj ∈ V . If the smallest-weight path ps,vj

, of length at most i, from s to vj

uses uvj as its last arc, then the subpath of ps,vj
from s to u must be a smallest-weight path,

of length at most i− 1, from s to u. Consider a smallest-weight path P , of length at most i,
from s to vj , whose weight is stored in D[i][j]:

If P is of length at most i− 1, then D[i][j] = D[i− 1][j];
If P is of length (at most) i and its last edge is vkvj , then D[i][j] = D[i− 1][k] +w(vkvj).

Overlapping subproblems. The value D[i− 1][k] must be accessed to compute all entries
D[i][y], where vkvy ∈ E.

The above yields the following dynamic programming algorithm for SSSP, due to Bellman
and Ford [8, 26].

DP 5.1 (SSSP)
The entries of D can be computes as follows:

Base case: if i = 0 :

D[i][j] =
{

∞, for all vj ̸= s

0, if vj = s

Recursive case: if i < j:

D[i][j] = min(D[i− 1][j], min
vkvj∈E

(D[i− 1][k] + w(vkvj))) (6)

Note that Equation (6) can be rewritten as:

D[i][j] = min
vkvj∈E

(min(D[i− 1][j], D[i− 1][k] + w(vkvj))),

which matches the pattern of Equation (1). In particular, we have that: Si,j = {(i− 1, k) :
vkvj ∈ E}, Ci,j = {{(i − 1, k)} : vkvj ∈ E}, h = 1, and fP(i, j, {(i − 1, k)}) = min(D[i −
1][j], D[i− 1][k] + w(vkvj)). Note that, SSSP is a simple problem, since each entry of Ci,j

stems from a distinct entry of Si,j . Also observe that, the values in D are bounded by
W = (n− 1) maxvivj∈E w(vivj). As in [31, 32, 37], we assume that the weights defined by
w are in O(nc), where c is a constant. This implies that each of the entries of D can be
represented using logW ∈ O(logn) bits. The time TP , TfC

, and Tγ needed for computing
quantumly fP , fC , and γ is then O(logW ) = O(logn), O(logn), and O(logn), respectively.
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Thus, we have that the time T ′ = TfC
+ Tγ (see the statement of Theorem 3) is in O(logn).

Finally, we bound the average degree of GP(I). Recall that an instance I of SSSP is a tuple
I = (G,w, s). Note that, |V (GP(I))| is the number of subproblems, that is, n2. The n
nodes of V (GP(I)) corresponding to the subproblems D[0][·] have outdegree 0. Instead, by
the definition of Ci,j , each node ni,j of GP(I) corresponding to a subproblem D[i][j] has
outdegree equal to degout(vj); refer to Figure 1b. Therefore, for any i ∈ {1, . . . , n− 1}, we
have that

∑
vj∈V degout(ni,j) = m. It follows that the average degree δ of GP(I) is equal

to 2m(n−1)
n2 = 2m

n − 2m
n2 < 2m

n . Therefore, by Theorem 4, there exists a quantum dynamic
programming algorithm that solves SSSP for an n-vertex m-edge digraph, using QRAM, in
Õ(n

√
nm) time using O(n2) space.

Finally, we compare the current-best classical time bound for the SSSP problem with
our quantum bound. We remark that the running time of the Bellman-Ford algorithm
is O(n3) time. The current-fastest classical algorithm for SSSP, due to Huang, Jin, and
Quanrud [42], runs in Õ(mn4/5) time. Thus, our quantum dynamic programming version of
the Bellman-Ford algorithm improves upon [42] when m ∈ Ω(n 7

5 ) = Ω(n1.4).
We remark that, as in the classical setting, by explicitly computing the dynamic program-

ming table, our algorithm allows to detect a negative cycle in O(m) time.

5.2 Quantum Cocke-Younger-Kasami for Membership in Context-Free
Language

A formal grammar G is defined[38] a 4-tuple (V,Σ, R, S), where: (i) V is the finite set of
non-terminal symbols; (ii) T is the finite set of terminal symbols; (iii) P is is the set of
production rules; and (iv) S ∈ V is the start symbol.

Let G be a Context-Free Grammar (CFG) in Chomsky Normal Form (CNF).
A CFG is in CNF if all its production rules are of one of the following forms: (1) A → BC

where A,B,C are non-terminal symbols (variables), i.e., a non-terminal symbol A can be
replaced by two non-terminal symbols, (2) A → a where A is a non-terminal symbol and
a is a terminal symbol, i.e., a non-terminal symbol A can be replaced by a single terminal
symbol a.
Let L(G) be the language composed of the strings that can be generated by the grammar G.

Next, we define the Membership in Context-Free Language problem.

Input: A constant-size context-free grammar G in CNF and a nonempty string w =
w1w2 . . . wn, where each wi is a terminal symbol.

Output: A boolean value True, if the string w can be derived from the start non-terminal
symbol S of the grammar G, i.e., w ∈ L(G); False, otherwise.

Membership in Context-Free Language (MCFL)

Subproblems. A subproblem is defined as determing whether a consecutive substring of w
can be derived from a non-terminal symbol A. Since a string of n symbols has

(
n
2
)

consecutive
substrings, we have n(n+1)

2 subproblems.

Optimal substructure. Let D be a dynamic programming table of size n× n (where the
entries above the main diagonal are not used), whose entries D[i][j] store the set of non-
terminal symbols that can generate the substring wjwj+1 . . . wj+i−1 of w, i.e., the substring
of w of length i that starts at the j-th symbol of w. The set of non-terminal symbols in
D[i][j] is defines as follows:

D[i][j] = {A : (A → BC) ∈ G ∧ ∃k ∈ [1, i) : (B ∈ D[k][j]) ∧ (C ∈ D[i− k][j + k])}
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Figure 2 Graph GP(I) for the dynamic programming algorithm that solves MCFL.

Overlapping subproblems. The value D[k][j] must be accessed to compute all the entries of
the form D[u][j], with u > k; whereas the value D[i− k][j + k] must be accessed to compute
all the entries of the form D[u][j + k], with u > i− k.

The above yields the following dynamic programming algorithm for MCFL, due to Cocke-
Younger-Kasami [61, 44, 18].

DP 5.2 (MCFL)
The entries of D can be computes as follows:

Base case: if i = 1:

D[i][j] = {A | (A → wj) ∈ G}

Recursive case: if i < j:

D[i][j] = findAll1≤k<i{A : (A → BC ∈ G)∧ (B ∈ D[k][j])∧ (C ∈ D[i−k][j+k])}
(7)

Note that Equation (7) matches the pattern of Equation (1) of Theorem 4. Observe
that, w can be generated from G if and only if S ∈ D[n][1]. In particular, we have that:
Si,j = {(k, j), (i−k, j+k) : 1 ≤ k < i}, Ci,j = {{(k, j), (i−k, j+k)} : 1 ≤ k < i}, h = 2, and
fP(i, j, {(k, j), (i− k, j+ k)}) = {A : (A → BC ∈ G) ∧ (B ∈ D[k][j]) ∧ (C ∈ D[i− k][j+ k])}.
Note that, MCFL is a simple problem, since each entry of Ci,j stems from a distinct entry
of Si,j . The time needed for computing quantumly fP , fC , and γ is then O(1), O(logn),
and O(logn), respectively. Therefore, we have that T ′ ∈ O(logn).

Finally, we bound the average degree of GP(I). Recall that an instance I of MCFL is
a pair (G,w). Note that, |V (GP(I))| is the number of subproblems defined by I, that is,
n(n+1)

2 . Note that, the n nodes of V (GP(I)) corresponding to the subproblems D[1][j] have
outdegree 0. Instead, by the definition of Ci,j , each node ni,j of GP(I) corresponding to
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a subproblem D[i][j] has outdegree equal to 2(i− 1); refer to Figure 2. Therefore, for any
i ∈ {1, . . . , n}, we have that

∑n+1−i
j=1 degout(ni,j) = 2(n+ 1 − i)(i− 1). The total number of

edges of GP(I) is equal to

n∑
i=1

2(n+ 1 − i)(i− 1) ≤ 2n
n∑

i=1
i = 2n

(n(n+ 1)
2

)
= n2(n+ 1)

It follows that the average degree δ of GP(I) is upperbounded by (n2(n+ 1))/( n(n+1)
2 ) = 2n.

Therefore, by Theorem 4, there exists a quantum dynamic programming algorithm that
solves MCFL for a constant-size context-free grammar G and a string w on length n, using
QRAM, in Õ(n2√

n) time using O(n2) space.
Finally, we compare the current-best classical time bound for the MCFL problem with

our quantum bound. We remark that the running time of the CYK algorithm is O(n3).
Valiant demonstrated in 1975 that membership in context-free language recognition can
be performed at least as efficiently as Boolean matrix multiplication [57]. Since Boolean
matrix multiplication can be done in O(n2.81) time using Strassen’s algorithm [55], this
implies an indirect O(n2.81)-time algorithm for testing membership in a context-free language.
However, such an algorithm does not allow to directly retrieve the sequence of productions
used to derive w. The current-fastest classical algorithm for matrix multiplication has a time
complexity of O(n2.371552) [58], building upon the Coppersmith-Winograd algorithm [19].
Observe that, the constant factors hidden by the Big O notation are alone so substantial
that these fast matrix multiplication algorithms are impractical for matrix sizes manageable
by current computers. Finally, we remark that our approach is methodologically simpler
than relying upon matrix multiplication, as it directly accelerates an “easy” algorithm
for context-free parsing. In fact, using matrix multiplication for parsing requires a more
complex, three-step process: (1) transforming the parsing instance into a format suitable for
matrix multiplication, (2) applying the sophisticated (and practically cumbersome) matrix
multiplication algorithm described in [58], and (3) converting the output of the recognition
process (provided by the matrix multiplication) into a parsing solution6.

6 Conclusions and Open Problems

In this paper, we presented a framework that systematically extends classical dynamic
programming algorithms that exhibit specific characteristics in the computation of their
dynamic programming table, into accelerated quantum counterparts. These characteristics
pertain to the structure of the dependency set, specifying the global set of entries involved in
computing a table entry, and to the structure of the generating set, specifying the groups of
entries simultaneously involved in providing a candidate value for a table entry.

By leveraging quantum search primitives, such as find, findAll, min, and max, and the
QRAM, we transform dynamic programming recurrence relations into efficient quantum
subroutines. Our approach lowers the computational cost of constructing each entry in
the dynamic programming table, often achieving a significant speedup over the best-known
classical algorithms. We demonstrate the versatility of this framework by applying it to
several well-known problems, including Single-Source Shortest Paths.

This work establishes a foundation for developing more efficient quantum algorithms for
a class of dynamic programming problems, paving the way for several research directions. A
natural extension is to investigate the applicability of our framework to dynamic programming

6 Note that Ruzzo showed parsing is slightly harder than recognition by a logarithmic factor [52].
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algorithms that do not have the above characteristics. It is also worth investigating whether
similar quantum speedups can be achieved for algorithms that iteratively refine estimates
of the optimal solution, such as the Floyd-Warshall algorithm. Finally, a key challenge is
optimizing the space complexity of quantum dynamic programming algorithms. Due to the
limitations of quantum memory, it is crucial to develop strategies that avoid storing the
entire dynamic programming table. This may involve computing entries on-the-fly, leveraging
quantum speedups for efficient on-demand computation, and minimizing the number of
entries stored in superposition.
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