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Abstract
Enumerating minimal dominating sets with polynomial delay in bipartite graphs is a long-standing
open problem. To date, even the subcase of chordal bipartite graphs is open, with the best known
algorithm due to Golovach, Heggernes, Kanté, Kratsch, Sæther, and Villanger running in incremental-
polynomial time. We improve on this result by providing a polynomial delay and space algorithm
enumerating minimal dominating sets in chordal bipartite graphs. Additionally, we show that
the total and connected variants admit polynomial and incremental-polynomial delay algorithms,
respectively, within the same class. This provides an alternative proof of a result by Golovach et
al. for total dominating sets, and answers an open question for the connected variant. Finally, we
give evidence that the techniques used in this paper cannot be generalized to bipartite graphs for
(total) minimal dominating sets, unless P = NP, and show that enumerating minimal connected
dominating sets in bipartite graphs is harder than enumerating minimal transversals in general
hypergraphs.
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1 Introduction

Hypergraphs are encountered in countless areas of computer science or discrete mathematics.
Formally, they consist of a pair H = (V (H), E(H)) where V (H) is a set of elements called
vertices, and E(H) is a family of subsets of V (H) called hyperedges (or simply edges).
Hypergraphs are known as graphs when their edges are of size precisely two. A transversal
in a hypergraph H is a set T ⊆ V (H) which intersects every edge of H. It is called minimal
if it is inclusion-wise minimal, i.e., if none of its proper subsets is a transversal. The problem
of enumerating the minimal transversals of a hypergraph, usually denoted by Trans-Enum,
is one of the most important problems in algorithmic enumeration, for it has far-reaching
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15:2 Enumerating Minimal Dominating Sets and Variants in Chordal Bipartite Graphs

implications in various areas of computer science such as logic, database theory, data profiling,
or artificial intelligence [5, 16, 30, 37]; we refer the reader to [16] and the surveys [18, 22] for a
comprehensive overview on the fundamental and practical aspects of this problem.

In a typical enumeration problem such as Trans-Enum, a first observation to be made
is that the number of solutions can be exponential in both n, the number of vertices, and m,
the number of edges. Thus, asking for running times which are polynomial in n + m is
meaningless. Rather, we are interested in algorithms performing in output-polynomial time,
i.e., that run in a time which is polynomial in both the input size, and the output size.
More strict notions of tractability can be required, such as incremental-polynomial times,
and polynomial delay. We say that an algorithm runs in incremental-polynomial time if
it produces the ith solution in a time which is polynomial in the input size plus i. An
algorithm is said to run with polynomial delay if the times before the first output, after
the last output, and in between two consecutive outputs are bounded by a polynomial in
the input size only. To date, the best-known algorithm solving Trans-Enum is due to
Fredman and Khachiyan [21] and runs in quasi-polynomial incremental time. Since then,
output-polynomial time algorithms were obtained for several important classes, including
those generalizing that of bounded degree [17], or bounded edge size [38].

Dominating sets are among the most studied objects in graphs. A dominating set in a
graph G is a set D ⊆ V (G) such that every vertex is either in D, or adjacent to a vertex
of D. Again, it is called minimal if it is inclusion-wise minimal. The problem of enumerating
minimal dominating sets in graphs is denoted by Dom-Enum. Note that being a dominating
set of G can be rephrased as being a transversal of each closed neighborhood of G, so,
Dom-Enum is a special case of Trans-Enum with a linear number of hyperedges.

The problem Dom-Enum has gained lots of interest since it has been shown, perhaps sur-
prisingly, to be polynomially equivalent to Trans-Enum, even when restricted to cobipartite
graphs [33]. In particular, this work has initiated a fruitful line of research of characterizing
which graph classes admit output-polynomial algorithms, in the hope of better understanding
the underlying structure that makes Trans-Enum tractable. For example, polynomial-delay
algorithms were obtained for various graph classes including chordal graphs [34] (with linear
delay on some subclasses [13, 33]), graphs of bounded degeneracy [17], line graphs [35],
graphs of bounded clique-width [11], or graph classes related to permutation graphs and their
generalizations [8,23,32]. Incremental-polynomial time algorithms were obtained for graphs of
bounded conformality [38], C≤6-free graphs [27], chordal bipartite graphs [24], (C4, C5, claw)-
free graphs [32], or graphs arising in geometrical contexts [20, 23] including unit-disk and
unit-square graphs. Output-polynomial time algorithms are known for log n-degenerate
graphs [17], and graphs of bounded clique number [7].

In [33], the authors also include two natural variants of domination in their study: total
and connected dominating sets. A total dominating set is a set D such that every vertex of G

has a neighbor in D. In other words, elements of D cannot “dominate” themselves and need a
neighbor in the set. A connected dominating set is a dominating set that induces a connected
subgraph. Note that any connected dominating set is a total dominating set, as long as it
has more than one element, making the intersection of these two notions irrelevant to study.
Perhaps not surprisingly, the authors in [33] show that the problems of enumerating minimal
total and connected dominating sets, denoted TDom-Enum and CDom-Enum, respectively,
are equivalent to Trans-Enum when restricted to split graphs. These equivalences on a
relatively restricted graph class suggest that these variants of Dom-Enum are challenging,
and may explain why they have received less attention in the literature.
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Regarding total dominating sets, a first observation is that they are transversals of open
neighborhoods. This implies an incremental quasi-polynomial time algorithm for the problem
using the results of Fredman and Khachiyan [21]. However, few output-polynomial time
algorithms are known for specific instances of TDom-Enum. Among them, we cite the class
of chordal bipartite graphs, which admits a polynomial-delay algorithm for the problem [24].

Concerning connected dominating sets, it is not known whether the problem reduces to
Trans-Enum. It has in fact been conjectured that this is not the case in [6]. Rather, it has
been shown in [33] that the problem reduces to the enumeration of minimal transversals of
an implicit hypergraph given by the minimal separators of the graph. However, the number
of such separators may be exponential, and are intractable to compute [9]. The only work
known to us dealing with connected dominating sets enumeration, apart from [33], falls under
the input-sensitive approach [1, 25,26] where one aims at small exponential times. Still, we
note that some essential questions concerning output-sensitive enumeration were addressed
in [1] such as the NP-hardness of the associated extension problem, i.e., deciding if a given
set U ⊆ V (G) is contained in some minimal connected dominating set.

Note that, in the literature, particular attention has been put into characterizing the
status of these problems on bipartite, split, and cobipartite graphs. This is because such
instances contain the incidence graph of any hypergraph, which is fundamentally challenging
and makes interesting links with Trans-Enum. However, and in contrast to the split and
cobipartite cases, the case of bipartite graphs has been particularly challenging with the
question of the (in)tractability of these problems raised in various works [24,36]. Only recently
has an output-polynomial time algorithm been provided for Dom-Enum in a generalization
of bipartite graphs [7]. Still the problem is not known to admit a polynomial-delay algorithm.
Concerning TDom-Enum and CDom-Enum, it is also open, to the best of our knowledge,
whether they can be solved with polynomial delay, or even in output-polynomial time, in
bipartite graphs. Among natural subclasses of bipartite graphs, the case of chordal bipartite
graphs has been studied as it admits nice structural properties analogous to chordal graphs,
such as perfect elimination orderings and linearly many minimal separators. We note,
however, that even in this particular class, the existence of a polynomial-delay algorithm for
Dom-Enum seems open, and has been left open in [24].

The following two natural questions arise from the literature.

▶ Question 1. Can the minimal dominating sets of a chordal bipartite graph be enumerated
with polynomial delay?

▶ Question 2. Can the minimal connected dominating sets of a chordal bipartite graph be
enumerated in output-polynomial time?

Only the case of minimal total dominating sets has been settled for chordal bipartite
graphs, with the following result.

▶ Theorem 1 ([24]). The minimal total dominating sets of a chordal bipartite graph can be
enumerated with polynomial delay.

Our results and techniques. This paper is devoted to providing a positive answer to
Questions 1 and 2, almost completing the picture for chordal bipartite graphs. Collaterally,
we provide an alternative proof of Theorem 1 involving small modifications of our algorithm
for minimal dominating sets; we note that the obtained algorithm has similar time bounds
as the one in [24].

WADS 2025
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Our algorithms for Dom-Enum (Theorem 18) and TDom-Enum (Theorem 1) are based
on the ordered generation framework (also known as sequential method in various works)
which has been introduced in [17] as a generalization of the algorithm in [45] (see also [31] for
a concise description). This approach has since then proved to be fruitful in various contexts
related to domination and minimal transversals [7,10,14]. Roughly, the idea is to decompose
the instance with respect to an ordering of its elements, and, given the partial solutions of the
instance induced by the i first elements, to extend them to the next element of the instance.
To achieve polynomial delay, a parent-child relation on partial solutions is defined. Then, the
resulting tree is traversed in a DFS manner, and only the leaves (which correspond to actual
solutions) are output. Overall, the technique allows to reduce the general enumeration to the
enumeration of the children of a partial solution, and is particularly suitable for instances
admitting good elimination orderings. In our case, we use the weak-elimination ordering
of chordal bipartite graphs (see Section 2) to solve children generation in polynomial time,
yielding a polynomial-delay algorithm for Dom-Enum and TDom-Enum in that class.

Concerning CDom-Enum, we show that the minimal separators of a chordal bipartite
graph define a hypergraph of bounded conformality (Lemma 20), a parameter introduced by
Berge [3] and successfully used in the design of tractable algorithms for domination [32] and
minimal transversals enumeration [38]. This, combined with the fact that chordal bipartite
graphs have polynomially many minimal separators, which can be listed in polynomial
time (see Section 2), allows us to obtain an incremental-polynomial time algorithm for
CDom-Enum in that class (Theorem 21).

Additionally, we give evidence that the sequential method cannot be directly used to
generalize our results to bipartite graphs. More specifically, we show that the problem of
generating the children of a given partial solution is intractable for Dom-Enum (Lemma 22)
and TDom-Enum. For CDom-Enum we make a stronger statement (Theorem 24): the
problem is at least as hard as Trans-Enum, which was not known to the best of our
knowledge, despite the reduction being straightforward.

Organization of the paper. We introduce preliminary notions and properties dealing with
chordal bipartite graphs and minimal separators in Section 2. We describe the sequential
approach in Section 3, and provide our algorithms for Dom-Enum and TDom-Enum in
Section 4. The arguments for an incremental-polynomial time algorithm for CDom-Enum
in chordal bipartite graphs are given in Section 5. Limitations of the sequential method
in bipartite graphs are discussed in Section 6, and the reduction from Trans-Enum to
CDom-Enum in bipartite graphs is given in Section 7. We discuss open questions in Section 8.

2 Preliminary notions

We assume familiarity with standard terminology from graph and hypergraph theory, and
refer to [3, 15] for notations not included below.

Graphs. All graphs considered in this paper are simple and finite. Given X ⊆ V (G),
G[X] := (X, {uv ∈ E(G) | u, v ∈ X}) is the subgraph of G induced by X. Given v ∈ V (G),
we denote by N(v) its open neighborhood, by N [v] its closed neighborhood, and define its
distance-2 neighborhood as N2(v) := N [N [v]] \ N [v]. The first two notions are naturally
extended to subsets by N [S] :=

⋃
v∈S N [S] and N(S) := (

⋃
v∈S N [S]) \ S. An independent

set is a set of pairwise non-adjacent vertices. A graph is bipartite if its vertex set V (G) can be
partitioned into two independent sets X, Y . It is called bipartite chain if, in addition, there
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exist orderings x1, . . . , xp and y1, . . . , yq of X and Y , respectively, such that N(xi) ⊆ N(xj)
for all 1 ≤ i ≤ j ≤ p, and N(yi) ⊇ N(yj) for all 1 ≤ i ≤ j ≤ q. Note that bipartite chain
graphs are closed under taking induced subgraphs.

Hypergraphs. Let H be a hypergraph. Given a vertex v ∈ V (H), the set of edges that
contain v, also called edges incident to v, is denoted by inc(v). The hypergraph induced by a
set X ⊆ V (H) of vertices is defined as H[X] = (X, {E ∈ E(H) : E ⊆ X}). A transversal of
H is a subset T ⊆ V (H) such that E ∩ T ̸= ∅ for all E ∈ E(H), i.e., every edge is incident
to (or hit by) a vertex of T . It is minimal if it is minimal by inclusion, or equivalently, if
T \ {v} is not a transversal for any v ∈ T . The set of minimal transversals of H is denoted
by Tr(H). The private edges of an element v in a transversal T are those edges of H which
are only hit by v in T ; we denote the set of such edges by priv(T, v). It is well-known (see
e.g., [3]) that a set T ⊆ V (H) is a minimal transversal of H if and only if T is a transversal
and every v in T has a private edge. We formally state the problem of enumerating minimal
transversals of a hypergraph as follows.

Minimal Transversals Enumeration (Trans-Enum)
Input: A hypergraph H.
Output: The set T r(H).

Note that in the problem above, H can be considered inclusion-wise minimal (or Sperner)
as this does not change its set of minimal transversals, and removing non-minimal hyperedges
can be performed in polynomial time [18].

Domination. We recall the different notions of domination given in the introduction. A
dominating set (or DS for short) in a graph G is a set D ⊆ V (G) such that V (G) = N [D].
It is called connected if the graph G[D] is connected. A total dominating set in G is a set
D ⊆ V (G) such that V (G) =

⋃
v∈D N(v). A (resp. connected, total) dominating set is

said to be minimal if it is inclusion-wise minimal. We denote by MDS(G) (resp. MCDS(G),
MTDS(G)) the families of minimal such sets in a graph G. The problems of enumerating
these families are our main interest in this paper.

We recall that the precise complexity status of each of the problems above is widely
open, the first one admitting a quasi-polynomial time algorithm [21,33], while the third is
conjectured to be intractable [6]. Their study has been initiated in [33], where it is noted
that each of the problems is a particular instance of Trans-Enum: using the family of
(closed and open) neighborhoods for the first two, and a more involved hypergraph for the
third one, as formalized in Propositions 2–4. See also [3].

▶ Proposition 2. For every graph G, MDS(G) = Tr({N [v] : v ∈ V (G)}).

▶ Proposition 3. For every graph G, MTDS(G) = Tr({N(v) : v ∈ V (G)}).

Minimal separators. A separator in a graph G is a subset S ⊆ V (G) such that G − S is
disconnected. In the following, let S(G) := {S ⊆ V : G − S is not connected and ∀S′ ⊂
S, G − S′ is connected} denote the set of (inclusion-wise) minimal separators of G. Then we
have the following.

▶ Proposition 4 ([33]). For every graph G, MCDS(G) = Tr(S(G)).

WADS 2025
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Minimal separators are not to be confused with the slightly different notion of minimal
a-b separators which are minimal sets S such that a and b lie in different components of G−S.
Indeed, while every minimal separator is a minimal a-b separator, the converse is not always
true: minimal a-b separators may contain another c-d separator as a subset; see [28] for an
early mention of this observation, and [9] for a thorough discussion on this matter. A simple
example is the cycle on four vertices with a pendant edge [9]. Moreover, while enumerating
a-b minimal separators can be done with polynomial delay [4, 40,44], enumerating minimal
separators is a hard task [9]. However, and as is noted in [33], CDom-Enum reduces to
Trans-Enum for graph classes admitting polynomially many a-b separators.1 Let G be
the hypergraph where each hyperedge is an a-b minimal separator of G; using the above-
cited algorithms for enumerating a-b minimal separators, we can construct G in polynomial
time on |G| + |V (G)| + |E(G)|; moreover, note that S(G) = Min⊆ G. Indeed, recall that
Tr(H) = Tr(G) for any pair of hypergraphs H, G such that for any E ∈ E(G) there exists
E′ ∈ E(H) with E′ ⊆ E. In other words, Tr(H) = Tr(Min⊆ H) for any hypergraph H [3].

Chordal bipartite graphs. A bipartite graph is chordal bipartite if it does not contain
induced cycles of length greater than four [28]. Note that chordal bipartite graphs are not
chordal, as they may contain the induced cycle on four vertices. This terminology should be
regarded as an analogue to bipartite graphs of chordality, as bicliques are to cliques.

A vertex v in a graph G is called weak-simplicial if N(v) is an independent set, and for
any two x, y ∈ N(v), we have N(x) ⊆ N(y) or N(y) ⊆ N(x); two such vertices x, y are
said to be comparable. Note that this is precisely to say that the graph G[N(v) ∪ N2(v)]
induced by the vertices at distance at most 2 from v is a bipartite chain; see [43, Lemma 3].
A weak-simplicial elimination ordering of G is an ordering v1, . . . , vn of its vertices such that,
for all 1 ≤ i ≤ n, vi is weak-simplicial in Gi = G [{v1, . . . , vi}]. The following characterization
is due to [43] and may be regarded as a simplification of an earlier characterization and
recognition algorithm by Uehara [46].

▶ Proposition 5 ([43, 46]). A graph is chordal bipartite if and only if it admits a weak-
simplicial elimination ordering, which can be computed in polynomial time.

Another characterization of chordal bipartite graphs based on separators is given in [29],
where it is proved that a bipartite graph is chordal bipartite if and only if every minimal
edge separator induces a complete bipartite subgraph. In [41], the following analogue of the
forward implication is given for minimal a-b separators (hence for minimal separators).

▶ Proposition 6 ([41]). If G is chordal bipartite and S is an a-b minimal separator then
G[S] is complete bipartite.

In the same paper, the authors show that chordal bipartite graphs have at most O(n + m)
minimal a-b separators [41]. Since they can be listed with polynomial delay [40], we derive a
polynomial time procedure listing a-b minimal separators and filtering out the non-minimal
ones. We formalize this in the next statement that will be of use in Section 5.

▶ Proposition 7. Let G be an n-vertex chordal bipartite graph. Then its set S(G) of minimal
separators can be enumerated in polynomial time in n.

1 It should be noted that the statement [33, Corollary 33] presents an inaccuracy where by minimal
separators it should be understood minimal a-b separators. Indeed, listing minimal separators is hard [9]
while enumerating minimal a-b separators is tractable [40]. The present inaccuracy comes from an
ambiguity and common confusion in the literature around this terminology [41,44].
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Finally, we will need two extra properties of minimal separators in general and in chordal
bipartite graphs. Let S be a separator of G and C be a component of G − S. We say
that C is close to S if every vertex in S has at least one neighbor in C. It is folklore that
minimal a-b separators S are characterized by the existence of two close components in G−S;
see [28, 41, 44] or [39] for a proof. We derive one implication for minimal separators since,
in particular, they are a-b minimal separators for some specific pairs a, b of vertices. Note
however that the converse is not true.

▶ Proposition 8. Let G be a graph and S be a minimal separator of G. Then there exist two
components C1, C2 in G − S that are close to S.

Finally, the following will be of use in Section 5. We state it for minimal separators but
this more generally holds for minimal a-b separators [41].

▶ Proposition 9 ([41]). Let G be chordal bipartite with bipartition (A, B). Let S be a minimal
separator of G and C be a component of G − S that is close to S. If S ∩ A ̸= ∅ then there
exists a vertex x in C with N(x) ∩ S = S ∩ A.

3 The sequential method

We describe the sequential method. As by Propositions 2–4, the problems Dom-Enum,
TDom-Enum, and CDom-Enum can be seen as particular instances of Trans-Enum we
choose to follow the presentation of [2], and refer the reader to [7, 17, 19] for more details on
this approach.

Let H ⊆ 2V be a hypergraph on vertex set V = {v1, . . . , vn}. For 1 ≤ i ≤ n we denote by
Vi := {v1, . . . , vi} the set of its first i vertices, by Hi := H[Vi] the hypergraph induced by Vi,
and set V0 := H0 := Tr(H0) := ∅. In addition, for S ⊆ Vi and v ∈ S, we note privi(S, v) the
set of private edges of v with respect to S in Hi. Given a minimal transversal T ∈ Tr(Hi+1)
for i < n, we denote by parent(T, i + 1) the parent of T with respect to i + 1 obtained after
repeatedly removing from T the vertex of smallest index v such that privi(T, v) = ∅. By
definition, every T has a unique parent. Lastly, we denote by children(T ⋆, i), for T ⋆ ∈ Tr(Hi),
the family of T ∈ Tr(Hi+1) such that T ⋆ = parent(T, i + 1).

The next two lemmas are central to the description of the algorithm: they define a tree
structure where nodes are pairs (T, i) with T ∈ Tr(Hi) and that will be traversed in a DFS
manner in order to produce every leaf T ∈ Tr(H) = Tr(Hn) as a solution. We refer to [2]
for the proofs of these statements, which follow from the definition of the parent relation.

▶ Lemma 10. Let 0 ≤ i ≤ n − 1 and T ∈ Tr(Hi+1), then parent(T, i + 1) ∈ Tr(Hi).

▶ Lemma 11. Let 0 ≤ i ≤ n − 1 and T ⋆ ∈ Tr(Hi), then either:
T ⋆ ∈ Tr(Hi+1) and consequently parent(T ⋆, i + 1) = T ⋆; or
T ⋆ ∪ {vi+1} ∈ Tr(Hi+1) and parent(T ⋆ ∪ {vi+1}, i + 1) = T ⋆.

Finally, the whole framework culminates in the following statement that reduces Trans-
Enum to the enumeration of the children of a given pair (T, i) with T ∈ Tr(Hi), i < n, while
preserving polynomial delay and space.

▶ Theorem 12. Let f, s : N2 → Z+ be two functions. If there is an algorithm that, given a
hypergraph H on vertex set V = {v1, . . . , vn} and m edges, an integer i ∈ {1, . . . , n − 1}, and
T ⋆ ∈ Tr(Hi), enumerates children(T ⋆, i) with delay f(n, m) and using s(n, m) space, then
there is an algorithm that enumerates Tr(H) with O(nf(n, m)) delay and O(ns(n, m)) space.

WADS 2025



15:8 Enumerating Minimal Dominating Sets and Variants in Chordal Bipartite Graphs

In the following, given T ⋆ and i as above, let

∆i+1 := {E ∈ Hi+1 : E ∩ T ⋆ = ∅} ⊆ inci+1(vi+1)

be the family of hyperedges of Hi+1 that are not hit by T ⋆. The following shows that children
may be found by considering minimal extensions to Hi+1 of minimal transversals of Hi.

▶ Lemma 13. If T ∈ children(T ⋆, i) then T = T ⋆ ∪ X for some X ∈ Tr(∆i+1).

Proof. Let T ∈ children(T ⋆, i). Then T ⋆ is obtained from T by greedily removing elements
that have no private edge in Hi. Let X be the set of removed elements. Note that since
T ⋆ is transversal of Hi, X may only have private edges among those E ∈ Hi+1 that are
not intersected by T ⋆, i.e., among ∆i+1. Then, either ∆i+1 = ∅ in which case T = T ⋆ by
Lemma 11, or X is non empty and intersects each edge in ∆i+1. By minimality of T , we
derive that X is minimal with this property, as desired. ◀

As a corollary, in order to enumerate children(T ⋆, i) for some i ∈ {1, . . . , n − 1} and
T ⋆ ∈ Tr(Hi), one can simply enumerate all the minimal transversals of ∆i+1 and filter
out those that do not provide children of T ⋆. In the following, we call such sets minimal
extensions of (T ⋆, i). Note, however that the number of minimal transversal of ∆i+1 may be
greater (typically exponential) than the number of actual children, hence that this approach
fails to efficiently produce children in general. Moreover, this approach is intractable in
general, with instances admitting non-trivial children if and only if NP-complete problems
admit a positive answer; see [2] or Section 6. We nevertheless have the following which says
that the approach is still tractable if we can bound the number of minimal extension by a
polynomial in the input size, and which is in essence what is done in [17].

▶ Corollary 14. If there is an algorithm that, given T ⋆ ∈ Tr(Hi), i < n, enumerates all
X ∈ Tr(∆i+1) in time and space which are polynomial in n + m, then there is one that lists
Tr(H) with polynomial delay and space.

Note that, if H is d-degenerate and v1, . . . , vn is an optimal degeneracy ordering, then
minimal extensions have size at most d. In [17], the authors use this fact to provide a
polynomial delay algorithm that lists minimal transversals in O(1)-degenerate hypergraphs
relying on Corollary 14. See [2, 17] for the definition of these notions. In this paper, we
combine this corollary together with the elimination ordering of chordal bipartite graphs
provided by Proposition 5 to show that Dom-Enum and TDom-Enum can be solved with
polynomial delay as well in this class.

4 Minimal extension for (total) dominating sets

In this section, we apply the sequential method to Trans-Enum restricted to hypergraphs of
closed neighborhoods of chordal bipartite graphs to show that Question 1 admits a positive
answer. More specifically, we use the weak-simplicial elimination ordering of chordal bipartite
graphs to restrict the instance of minimal extensions enumeration to a variant of domination
in bipartite chain graphs, which is tractable. By Corollary 14, this allows us to obtain
Theorem 18.

In the following, let G be a chordal bipartite graph on n vertices and v1, . . . , vn be a
weak-simplicial ordering of its vertices as provided by Proposition 5. Let H be its hypergraph
of closed neighborhoods, i ∈ {1, . . . , n − 1} be an integer and T be a minimal transversal
of Hi as in the statement of Corollary 14. We will show how to enumerate the minimal
transversals of ∆i+1 in polynomial time and space, to derive the desired result.
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x1 x2

yq y1

vi+1

xpx3

yq−1

Figure 1 The bipartite chain instance induced by X and Y with vi+1 depicted as well. Blue
vertices are those whose closed neighborhoods are incident to vi+1 and included in Vi+1 as a subset.
Red vertices in X have neighbors out of Vi.

First note that since the edges of ∆i+1 belong to Hi+1 and are incident to vi+1, they may
be equal to N [vi+1] if N [vi+1] ⊆ Vi+1, or to N [u] for some neighbor u of vi+1 if N [u] ⊆ Vi+1.
Note that in the later case, the set N [u] may contain vertices at distance 2 from vi+1. From
now on, let B be the set of vertices u ∈ N(vi+1) such that N [u] ∈ ∆i+1, and let

R :=
( ⋃

{E : E ∈ ∆i+1}
)

\ B

be the remaining vertices that lie in some edge of ∆i+1. Consequently B ⊆ N(vi+1) and
R ⊆ N(vi+1) ∪ N2(vi+1). Thus the graph H = Gi[R ∪ B] is an induced subgraph of
Gi[N(vi+1) ∪ N2(vi+1)] which, by Proposition 5, is a bipartite chain. Hence H is a bipartite
chain. We denote by (X, Y ) the bipartition of H where B ⊆ X ⊆ N(vi+1), and by x1, . . . , xp

and y1, . . . , yq the respective orderings of X and Y satisfying N(xj) ∩ Y ⊆ N(xℓ) ∩ Y and
N(yℓ) ∩ X ⊆ N(yj) ∩ X for all j < ℓ; see Section 2 and Figure 1 for an illustration of the
situation.

In what remains we shall call blue the vertices in B, red those in R, and characterize
minimal transversals of ∆i+1 as particular sets analogous to red-blue dominating sets where
red and blue vertices may be selected in order to dominate blue vertices.

▶ Proposition 15. Let Z ∈ Tr(∆i+1). Then
|Z ∩ R ∩ N(vi+1)| ≤ 1; and
|Z ∩ N2(vi+1)| ≤ 1.

Proof. First, note that if x belongs to Z ∩ R ∩ N(vi+1) then it is incident to at most one
edge in ∆i+1 (as H is bipartite), namely N [vi+1], in which case N [vi+1] is a private edge
of x. Hence, no two distinct vertices x, y may lie in Z ∩ R ∩ N(vi+1) by minimality of Z,
yielding the first inequality.

Now, recall that N2(vi+1) ⊆ Y hence that one of N(y) ∩ X ⊆ N(y′) ∩ X or N(y) ∩ X ⊇
N(y′) ∩ X holds for any pair y, y′ ∈ N2(vi+1). Since edges of ∆i+1 are of the form N [x] for
some x ∈ X, no two distinct y, y′ can have private edges in ∆i+1 simultaneously. Hence,
|Z ∩ N2(vi+1)| ≤ 1 as claimed. ◀

▶ Lemma 16. Let Z ∈ Tr(∆i+1). Then exactly one of the following holds:
1. Z = {vi+1};
2. Z ⊆ B in which case Z = B;
3. Z ⊆ R in which case |Z| ≤ 2; or
4. Z = {r} ∪ (B \ N(r)) for some r ∈ N2(vi+1).
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Proof. First, note that all the cases are mutually distinct. Hence, we may consider some
Z ∈ Tr(∆i+1), assume that Z ̸= {vi+1}, and prove the conclusion for each of Items 2–4
Note that each x ∈ X hits a single edge N [x] in ∆i+1, as X is an independent set. Hence, if
Z ⊆ B then Z = B concluding Item 2. If Z ⊆ R then we have that |Z| ≤ 2 by Proposition 15
deriving Item 3. We are thus left with proving Item 4. Suppose that Z ∩B ̸= ∅ and Z ∩R ̸= ∅.
Note that if x ∈ X ∩ R, then it may be incident to at most one edge in ∆i+1, namely N [vi+1].
However, since Z ∩ B ̸= ∅ by assumption of this last case, and since each element in B is
adjacent to vi+1, the edge N [vi+1] may not be the private edge of such an x in Z. Hence
Z ∩ X ∩ R = ∅, that is, Z ∩ R ⊆ Y . By Proposition 15 there is exactly one vertex, call it y,
belonging to Z ∩ Y . Finally, note that in addition to N [vi+1], each b ∈ B hits a single edge
N [b] ∈ ∆i+1 that only b can hit in X. Hence B \ N(r) ⊆ Z and Item 4 follows. ◀

Note that the conditions of the items in Lemma 16 can be checked in polynomial time,
and provide an upper bound of O(n2) on the number of minimal transversals of ∆i+1. Clearly
these minimal transversals can be constructed within the same time and using polynomial
space. We formalize this as follows.

▶ Corollary 17. The set Tr(∆i+1) can be listed in polynomial time and space.

We conclude the following by combining Corollaries 14 and 17. This answers positively
Question 1.

▶ Theorem 18. There is a polynomial delay and space algorithm enumerating minimal
dominating sets in chordal bipartite graphs.

Let us now argue that with small modifications we can get a polynomial-delay algorithm
for TDom-Enum on the same class. Note that the minimal extension problem is almost
identical, with the caveat that the hyperedges we must hit are now of the form N(x) for
x = vi+1 or x ∈ X, i.e., we are now dealing with open instead of closed neighborhoods.
A similar analysis as conducted in the proof of Lemma 16 shows that minimal extensions
are red subsets dominating blue elements plus vi+1 if N(vi+1) ⊆ Vi+1. We note that this
becomes an instance of proper red-blue domination (where only red elements may be picked)
which is precisely what is solved in [24] for chordal bipartite graphs. However in our case,
due to the instance being a bipartite chain graph, the problem is trivial. Indeed, it may be
seen that solutions have size at most two, intersecting X and Y on at most one vertex. As
such, we have an alternative proof of Theorem 1, which was already known by [24].

▶ Theorem 1 ([24]). The minimal total dominating sets of a chordal bipartite graph can be
enumerated with polynomial delay.

5 Minimal connected dominating sets

Recall that CDom-Enum amounts to list the minimal transversals of the (implicit) hypergraph
of minimal separators of a given graph G, i.e., Proposition 4. By Proposition 7, this
hypergraph can be constructed in polynomial time if G is chordal bipartite. In this section,
we moreover show that this hypergraph has bounded conformality in that case. As a corollary,
we can use the algorithm of Khachiyan et al. in [38] to list minimal connected dominating
sets in incremental-polynomial time in chordal bipartite graphs, providing a positive answer
to Question 2.

Let us define the notion of conformality introduced by Berge in [3]. We say that a
hypergraph H is of conformality c if the following property holds for every subset X ⊆ V (H):
X is contained (as a subset) in a hyperedge of H whenever each subset of X of cardinality
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at most c is contained (as a subset) in a hyperedge of H. See also [3, 38] for other equivalent
characterizations of bounded conformality. We recall that a hypergraph H is called Sperner
if E1 ̸⊆ E2 for any two distinct hyperedges E1, E2 in H.

Khachiyan, Boros, Elbassioni, and Gurvich proved the following.

▶ Theorem 19 ([38]). The minimal transversals of a Sperner hypergraph of bounded con-
formality can be enumerated in incremental-polynomial time.

Using the properties of minimal separators of chordal bipartite graphs given in Section 2,
we obtain the following, whose proof is moved to appendix, and derive the desired algorithm
as a corollary of Theorem 19 and Lemma 20.

▶ Lemma 20. If G is chordal bipartite then S(G) has conformality 5.

▶ Theorem 21. The minimal connected dominating sets of a chordal bipartite graph can be
listed in incremental polynomial time.

6 Limitations of the sequential method

It is already known that the sequential method may not directly provide output-polynomial
time algorithms for Trans-Enum in general; see e.g. [2] for explicit statements. We adapt
the construction in [2] to show that this still holds for hypergraphs of (open or closed)
neighborhoods of bipartite graphs, i.e., that we may not expect to get tractable algorithms
for TDom-Enum and Dom-Enum using this technique.

We begin with Dom-Enum and later detail the modifications to be performed for the
statement to hold for TDom-Enum. In the following by N (G) we mean the hypergraph of
closed neighborhoods of G, whose minimal transversals are precisely the minimal dominating
sets of G; see Section 2.

Recall that in Multicolored Independent Set problem, we are given a graph G, an
integer k, and a partition V = (V1, V2, . . . , Vk) of V (G) such that Vi is an independent set
for every 1 ≤ i ≤ k. Sets V1, . . . , Vk are usually referred to as color classes. The goal is then
to decide whether there exists an independent set in G containing precisely one vertex from
each Vi, i.e., that is multicolored. See [12] for more details on this problem.

Due to space constraints, we omit the formal description of the reduction and only include
the statement we derive. We refer the reader to Figure 2 for an idea of the construction, and
to the appendix for its formal description and proof. The idea is to show that a minimal
transversal T ⋆ of H induced by all but two of its vertices can be extended into a non-trivial
child if and only if an instance G of multicolored independent set admits a solution.

▶ Lemma 22. Let (G, V) be an instance of Multicolored Independent Set. Then there
exists a bipartite graph H, an ordering v1, . . . , vn of its vertices, and a minimal transversal
T ⋆ of N (H)n−2, such that the sets in children(T ⋆, n − 2) are all multicolored independent
sets of G except for one.

A consequence of Lemma 22 is that the sequential approach may not be directly applied to
solve Dom-Enum, even in bipartite graphs. Moreover, in our construction, no vertex v of T ⋆

is made self-private, i.e., no v has its closed neighborhood as a private edge. Furthermore, the
elements in the color classes are dominated by T ⋆, and their role is thus limited to dominate
the ci’s in an extension. Hence, by keeping the same construction, all the arguments of the
proof hold for the hypergraph of open neighborhoods of G. We derive that the sequential
approach may not be directly be used for TDom-Enum neither.
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c1 c2 ck

x4 x2

x1

x3

y4

y2

y1

y3
z4

z2

z1

z3y5

α

β

u

V2V1 Vk

v

Figure 2 The construction of H, where vertices are ordered arbitrarily except for α and β which
are put last, in this order. Color classes V1, . . . , Vk induce independent sets in H. The dashed edge
denote an edge of G that is not part of H. Black vertices represent T ⋆. Note that there is one copy
of the depicted gadgets for each color class, vertex, and edge of G.

7 Trans-Enum and bipartite graphs2

Our final result is a proof that Trans-Enum reduces to CDom-Enum on bipartite graphs,
which we are not aware of being previously known or directly implied by other results. In
fact, by Proposition 4, if we can construct a graph where (almost) every minimal separator
is in a one to one correspondence to our hyperedges, we are done.

Let H be the input hypergraph to Trans-Enum with E(H) = {E1, . . . , Em} and
V (H) = {u1, . . . , un} and assume w.l.o.g. that H is a Sperner hypergraph. To obtain G, the
input to CDom-Enum, we start with the incidence bipartite graph of H, that is, {v1, . . . , vn},
{e1, . . . , em} ⊂ V (G), where vi corresponds to ui ∈ V (H) and ej corresponds to Ej ∈ E(H),
and viej ∈ E(G) if and only if ui ∈ Ej . To conclude the construction of G, we add two
vertices v′ and v⋆, the edge v′v⋆, and the edges v⋆vi for all 1 ≤ i ≤ n. Due to space
constraints the proofs of the following are omitted as well.

▶ Lemma 23. The minimal separators of G are N(e1), . . . , N(em) and {v⋆}.

▶ Theorem 24. CDom-Enum on bipartite graphs is at least as hard as Trans-Enum.

8 Discussion

In this paper, we investigated the complexity of Dom-Enum and its two variants TDom-
Enum and CDom-Enum in chordal bipartite graphs. We obtained polynomial-delay al-
gorithms for the first two problems, and an incremental-polynomial time algorithm for the last
problem. Then we gave evidence that the techniques used for Dom-Enum and TDom-Enum
may not be pushed directly to bipartite graphs. As of CDom-Enum, we proved a stronger
statement that CDom-Enum is as hard as Trans-Enum in bipartite graphs, with the later
problem being open since more than forty years [16].

2 After the submission of this work, it has come to our attention that there is a recent stronger result on
the subject [42]. We nevertheless leave the proof as is since it is simple and for self-containment.
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We leave open the existence of polynomial-delay algorithms for Dom-Enum and TDom-
Enum in bipartite graphs, and for CDom-Enum in chordal bipartite graphs. Concerning this
last case, we note that obtaining polynomial delay is open for Trans-Enum on hypergraph of
bounded dimension, which define a proper subclass of hypergraphs of bounded conformality.
Hence, in order to improve Theorem 21, one either has to find another strategy, or should
aim at improving the results in [16,38] first.
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