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Abstract
Given a set of n non-overlapping geometric objects, can we separate a constant fraction of them
using straight-line cuts that extend from edge to edge? In 1996, Urrutia posed this question for
compact convex objects. Pach and Tardos later refuted it for general line segments by constructing
a family where any separable subfamily has size at most O

(
nlog3 2)

. However, for axis-parallel
rectangles, they provided positive evidence, showing that an Ω(1/ log n)-fraction can be separated.

This problem naturally arises in geometric approximation algorithms. In particular, when
restricting cuts to only orthogonal straight lines, known as a guillotine cut sequence, any bound on
the separability ratio directly translates into a clean and simple dynamic programming for computing
a maximum independent set of geometric objects.

This paper focuses on the case when the objects are squares. For squares of arbitrary sizes,
an Ω(1)-fraction can be separated (Abed et al., APPROX 2015), recently improved to 1/40 (and
1/160 ≈ 0.62% for the weighted case) (Khan and Pittu, APPROX 2020). We further improve
this bound, showing that a 9/256 ≈ 3.51% can be separated for the weighted case. This result
significantly narrows the possible range for squares to [3.51%, 50%]. The key to our improvement is
a refined analysis of the existing framework.
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1 Introduction

In this paper, we investigate the following combinatorial question, posed initially by Urrutia
in 1996 [17]: Given a collection of n disjoint compact convex objects, what is the largest
subset that a sequence of straight-line cuts can separate? This combinatorial geometric
question naturally arises in two distinct scenarios:

Cutting Stock Problems: The cutting stock problem involves cutting a standard-sized
large piece of material – such as a roll of paper, a sheet of glass, or a wooden plank – into
smaller specified pieces while minimizing waste [5]. This class of problems has inspired
numerous challenges in operations research, combinatorics, and approximation algorithms
(see, e.g., [9, 13, 15]).
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16:2 An Improved Guillotine Cut for Squares

Simple Algorithms for Geometric Packing: In geometric packing, we seek to compute
the maximum independent set in the intersection graph of geometric objects, i.e., given a
collection of convex polygons, find the largest subset of non-overlapping polygons. These
problems have been extensively studied, with a focus on approximation algorithms (due to
their NP-hardness even for the simplest objects like disks or squares) [8, 2, 4, 3, 6, 10, 14, 7].

While Urrutia’s question was refuted by Pach and Tardos [16] – who constructed a family
of line segments where any separable subset has size at most O(nlog3 2) – there remains hope
for axis-parallel rectangles:

For any family of rectangles, there exists a separable set of size Ω(n/ log n) [16].
For squares, a constant fraction of any given family is separable, thus affirmatively
answering Urrutia’s original question for square objects [1].

Both [16] and [1] (and a recent follow-up [12]) rely only on a sequence of orthogonal
straight-line cuts (known as guillotine cuts) to separate the rectangles. Guillotine cuts
are particularly appealing from an approximation algorithms perspective, as they lead to
clean and simple combinatorial techniques. Specifically, any non-constructive result that
guarantees a guillotine separable γ fraction of objects immediately implies a simple DP-based
(1/γ)-approximation algorithm for geometric packing of the respective object families.

This connection, in fact, holds in a more general setting when the geometric objects
have weights, i.e., we are looking for a separable set that retains γ fraction of total weights.
For squares, the current best known factor is 1/40 (and 1/160 ≈ 0.62% for the weighted
setting) [12], while obtaining a factor better than 1/2 is not possible [1].

1.1 Our Contributions

Our main contribution is summarized in the following theorem.

▶ Theorem 1. For all families of non-overlapping weighted squares, there exists a separable
subset that retains at least 9/256 ≈ 3.51% of the total weight.

So our result improves upon the previous result by a factor of 5.6 in the weighted setting.

Broader connections to the DP framework. Our results relate to a dynamic programming
framework for geometric packing, initiated by Adamaszek and Wiese [3, 2]. Their framework
is parametrized by (α, t), where a geometric object family is called (α, t)-good if it contains
a subset of at least an α-fraction of objects that can be separated using polygonal cuts that
always create pieces with at most t edges. If a family is (α, t)-good, the framework yields
a (1/α)-approximation algorithm with running time nO(t). In Adamaszek, Har-Peled, and
Wiese’s elegant result [2], they show that every family of polygons in 2D is ((1−ϵ), poly log n)-
good, implying a quasi-polynomial time approximation scheme (QPTAS) for the independent
set of polygons.

Since the existence of a γ-fraction guillotine separable subset implies that the family is
(γ, 4)-good, our results directly contribute to a better understanding of this framework for
squares. The recent breakthrough by Mitchell [14] show that rectangles are (1/10, 5)-good,
and further refinements [11] prove that they are ( 1

2 − ϵ, O(1/ϵ))-good, leading to the best
known (2 + ϵ)-approximation algorithm for the maximum independent set of rectangles.
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1.2 Overview of Techniques

This paper builds on the techniques from [1]. There, the guillotine cut sequence is created
in two phases. In the first phase, which we call the grid drawing phase, the procedure
draws hierarchical grid lines so that each square is assigned its own cell roughly the size of
its own. Those squares that do not fit this criterion would be removed from the first phase.
We call the squares that remain after this phase the surviving squares. Denote by γ1 the
surviving ratio of the first phase. In the second phase, called conflict removal phase,
we define a conflict graph H where the vertices correspond to the surviving squares and
the edges connect the squares that are “difficult” to save simultaneously. The graph H

is defined so that every independent set in this graph corresponds to squares that can be
guillotine-separated. Therefore, the crux of this approach is to ensure that the conflict graph
is sufficiently sparse, so that the graph is k-colorable for some small value of k. This will
imply a guillotine-separable set of size γ1/k.

Using this terminology, the best known factor of 160 [12] ensures that the conflict graph
is 5-colorable and loses the factor of 32 in the grid drawing phase [12]; the earlier work by
Abed et al. [1] also aims for a simple conflict removal phase, and therefore losing a relatively
large factor in the grid drawing phase. Our improvements are obtained by looking at this
differently. We ensure that the first phase has a good surviving rate (i.e., our γ1 = 9/16),
thus naturally complicating the second phase. Our conflict graph is more sophisticated and
is no longer 5-colorable. We, nevertheless, show that the graph is 16-colorable, which implies
the factor of 9/256 as claimed.

The paper is written so that the ideas are introduced one by one. We first present the
proof where γ1 = 1/4 and k = 15 (so the factor is 1/60) and improve k to 9 and 8 respectively
(while keeping γ1 = 1/4). Finally, we present the main result with γ1 = 9/16 and k = 16.

2 Preliminaries

Assume we are given a set of non-overlapping axis-parallel squares of arbitrary sizes. We
aim to separate as many of them as possible with a sequence of axis-parallel cuts, defined as
follows.

Guillotine cuts are a series of horizontal and vertical cuts separating objects on a plane,
such that each cut is performed on a previously separated part. For example, if the first
vertical cut separates the plane into two, the next two horizontal cuts can separate the two
pieces independently.

Given a collection of non-overlapping squares R, |R| = n on a plane, the problem is to
find the largest set R ⊆ R separable by Guillotine cuts.

2.1 Grid construction

In this section, we give the random hierarchical grid construction used in all the separation
algorithms. Let M be the maximum width/height of a square in R. Instead of width/height,
we will say the size of a square.

We define a hierarchical grid structure similar to Abed et al. [1], which will act as a
scaffolding for our instance R. In our cutting strategy, we will perform cuts only along these
lines.

We choose two integers a, b ∈ [0, M) uniformly at random, corresponding to the random
horizontal and vertical shift, respectively. The positive integer r will be a “scaling factor”.

WADS 2025



16:4 An Improved Guillotine Cut for Squares

Algorithm 1 Grid drawing.

foreach i ∈ [1, 2, . . .] do
Draw vertical grid lines at x coordinates a + rM

2i · k for every integer k

Draw horizontal grid lines at y coordinates b + rM
2i · k for every integer k

We say that a grid line is level-i if it is drawn by Algorithm 1 in iteration i. Note that
all level-i grid lines are also level-(i + 1) grid lines, etc.

▶ Definition 2 (Cell levels). Any two consecutive horizontal and vertical grid lines on level-i
form a unique square, called a level-i cell.

▶ Definition 3 (Square levels). We say that S ∈ R is a level-i square, if its size is within(
M

2i+1 , M
2i

]
.

▶ Fact 4. A level-i cell is at least r times (and strictly less than 2r times) larger than a
level-i square.

▶ Proposition 5. Grid cells satisfy the following properties:
A level-i cell has a size of rM

2i .
Two cells of the same level do not intersect.
For two cells that intersect, one must contain the other.

We say that C is a subcell of D if D contains C, and D ≠ C (they are not the same
cell). We use size(C) to refer to the size of cell C and similarly for squares.

2.2 Surviving set R1

▶ Definition 6 (Original cells). Let S be any square and i be the level of S. If S does not
intersect a grid line of level i, we define the original cell of S to be the level-i cell that contains
S. We denote it as OC(S).

Note that OC(S) is not defined for every square S. The set of squares for which original
cells are defined is called the surviving set R1.

▶ Theorem 7 (Claim 2.1, [1]). The horizontal and vertical shifts a, b ∈ [0, M) can be chosen
such that the surviving set R1 is of size at least (1 − 1

r )2|R|.

The proof can be found in Appendix A.

3 Algorithmic Results

3.1 Overview

We will introduce multiple strategies for separating a set of squares by performing guillotine
cuts. All of these strategies will follow the basic structure outlined here.
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Algorithm 2 Cutting framework.

Choose r.
Choose horizontal and vertical shifts a, b ∈ [0, M) such that the surviving set R1 is at
least (1 − 1

r )2|R|.
For the surviving set of squares, define “a conflicting pair”.
Based on the definition:

Construct a conflict graph G = (R1, E), where for all squares S1, S2 ∈ R1,
{S1, S2} ∈ E, if and only if S1 and S2 conflict.

Color G with β colors, such that each color (independent set) contains no
conflicting pairs.

Show that any independent set of G can be the result of a sequence of guillotine
cuts.

This strategy leads to a set of size at least (1 − 1
r )2 · 1

β · |R|. The specific ratio depends
on r and, most importantly, on how we define a conflict, which will gradually be improved in
each section, resulting in increasingly larger sets.

3.2 A direct cutting strategy to get 1/60-separation
In this subsection, we fix r = 2, define the conflict graph G1 on R1, and show that it is
15-colorable. Thus, the cutting sequence separating any independent set of G1 will imply a
1/60-separation.

We say that two squares S1, S2 ∈ R1 conflict if the original cells of S1 and S2 are the
same, i.e., OC(S1) = OC(S2), or we have the case that OC(S1) contains OC(S2) and S1
intersects OC(S2). Note that S1 and S2 do not conflict if OC(S1) and OC(S2) are of the
same level but not the same cells. Figure 1 shows examples of conflicting and non-conflicting
squares.

level-i grid line

level-(i + 1) grid line

level-(i − 1) cell

Figure 1 Dot-filled squares conflict with the black square, but the empty squares do not. The
original cell of the black square is the black level-i cell.

Now, we define the conflict graph G1, so that the vertices are the squares in R and two
vertices are adjacent if they conflict.

For any cell C, we denote by SquaresOC(C) the set of all squares S ∈ R1, such that
OC(S) = C. Note that some higher- or lower-level squares might be drawn inside C but not
contained in SquaresOC(C).

▶ Lemma 8. The conflict graph G1 is 15-colorable.

Proof. We prove it by induction on the size of G1. If G1 is empty, it is obviously 15-colorable.
Otherwise, we take the smallest non-empty cell C1 such that SquaresOC(C1) ̸= ∅, i.e. there
exists a square S ∈ R1 such that OC(S) = C1, and for any cell C2 contained in C1, we have
SquaresOC(C2) = ∅. Let i be the level of cell C1.

WADS 2025



16:6 An Improved Guillotine Cut for Squares

C1

Figure 2 We color nine squares contained in C1 using different colors.

According to the induction hypothesis, G1\ SquaresOC(C1) is 15-colorable, so let us assume
it is already colored. We show that we can color all the squares in SquaresOC(C1) to get a 15
coloring for G1. These squares all have to have a level at most i; otherwise, their original
cell would have been smaller, and we wouldn’t have chosen C1. According to Fact 4, the size
of level-i squares is strictly bigger than 1

2r = 1
4 of the size of C1, and therefore at most 3

squares of level i fit into a cell of level i horizontally as well as vertically. Since squares of
smaller levels are larger, it follows that at most 9 squares can be inside C1 (Figure 2). If C1
contains squares of smaller levels, they will already be colored by the induction hypothesis,
and these colors will not be changed. We can color all the squares in SquaresOC(C1) with at
most nine different colors (see Figure 2), avoiding the already used colors inside C1.

Now, we bound the number of squares that conflict with any square in SquaresOC(C1)
but are not contained in C1. Since C1 is the smallest non-empty cell, any square S ∈ R1
must cross the boundary of C1. Since C1 is a level-i cell, then OC(S) is a level-j cell for
j < i. We bound the number of squares that can conflict with any square in SquaresOC(C1)
based on the way they intersect C1 (see Figure 3a): First, there can be at most four squares
containing one of the corners of C1. Next, let S be a square intersecting the side of C1
without containing any corner. Using Fact 4, we know that the size of S is strictly bigger
than half of the size of C1. Thus, there can be at most one square in this position for each
side of C1, which adds up to four squares. We can further reduce this number because two
sides of any level-i cell are also level-(i − 1) grid lines. Then, there cannot be any intersecting
square on those sides, implying that at most two squares intersecting only sides of C1 (see
Figure 3b).

(a) Without considering the geometry of
the cells.

level-(i − 1)
grid lines

(b) Such squares shouldn’t cross the level-
(i − 1) grid lines.

Figure 3 The dot-filled squares show the possible positions of squares not contained in cell C

(darkened area) and conflict with the black square in C.

We showed that at most six squares can conflict with squares in SquaresOC(C1) by
intersecting the boundary of C1 and at most 9 colors can be required to color the squares
inside C1, leading to a valid 15 coloring for G1. ◀



P. Chalermsook, A. Kugelmann, L. Orgo, S. Uniyal, and M. Zarsav 16:7

S1

S2

Figure 4 The dashed squares are OC(S1) and OC(S2), and black-line cut separates S1 and S2.

Figure 5 For the black square FC(S) = OC(S), whereas for the grey square FC(S) ̸= OC(S).

▶ Lemma 9. Any independent set of G1 is guillotine separable.

Proof. Let I ⊆ R1 be an independent set of G1. First, we can separate the two squares
with the “biggest” original cells without cutting through any other squares. Let S1, S2 ∈ I

be the squares such that size(OC(S1)) ≥ size(OC(S2)) and for any other square S ∈ I,
size(OC(S2)) ≥ size(OC(S)). Note that since S1 and S2 cannot conflict, then OC(S1) ̸=
OC(S2).

Since the grid lines defining OC(S2) cannot go through any cell smaller than itself, we can
safely cut along these grid lines and do not touch any other squares in I except for S1. Now,
we claim that one of the four grid lines defining OC(S2) separates S1 and S2 (see Figure 4).
Since S1 cannot intersect OC(S2), it must be entirely on the left, right, top, or bottom of
OC(S2). The grid line of the corresponding side then separates S1 from S2 without cutting
any square in I. We can separate all the squares by recursively and independently applying
this process to the two resulting sub-instances. ◀

3.3 Fitting Cells to get 1/44-separation
In this section, we improve coloring by using the additional concept of fitting cells. The
grid’s scaling factor remains 2.

Note that the grid structure defined in Section 2 forms a laminar family of cells. Let
the set of these cells be L1. For any laminar family of cells, we define the notion of fitting
cells as follows.

▶ Definition 10 (Fitting cells). Given a laminar family of cells L1 and a surviving set R1,
the fitting cell FC(S) of any square S ∈ R1 is the smallest cell in L1 containing S.

The fitting and original cells of square S ∈ R1 can differ when the former is too small to
qualify as an original cell because of the scaling factor r = 2 (Figure 5).

▶ Fact 11. For a level-i square S, the fitting cell FC(S) is always of level j, for i ≤ j ≤ i+1.

Proof. The bound j ≤ i + 1 is a direct result of the scaling factor: for a cell C of level i,
size(S) > 1

4 size(C) (Fact 4), therefore for a cell C1 of level i + 1, we would have size(S) >
1
2 size(C1) and for a level-(i + 2) cell C2, size(S) > size(C2). This implies that C2 cannot be
a fitting cell of S, bounding j at most i + 1. The first part of the inequality, i ≤ j, is easy to
see since every original cell must contain S, so the smallest cell that contains S cannot be
larger than OC(S). ◀

WADS 2025



16:8 An Improved Guillotine Cut for Squares

Conflict graph G2. We define the new conflict graph G2 based on the definition of conflicts
below.

▶ Definition 12 (Conflicts). Let S1 and S2 be distinct squares in R1. We say that S1
and S2 conflict if one of the following conditions is true: (i) FC(S1) = FC(S2), or (ii)
size(FC(S1)) > size(FC(S2)) and S1 intersects FC(S2).

Figure 6 shows examples of conflicting and non-conflicting squares.

level-i grid line

level-(i + 1) grid line

level-(i − 1) cell

Figure 6 Dot-filled squares conflict with the black square, and empty squares do not. The fitting
cell of the black square is the black level-i cell.

Analogously to SquaresOC for original cells, we define SquaresFC for fitting cells.

▶ Definition 13. Let C be a cell of L1. We use SquaresFC(C) to denote the set of all squares
S ∈ R1, such that FC(S) = C.

▶ Lemma 14. The conflict graph G2 is 11-colorable.

The proof can be found in Appendix A.

▶ Lemma 15. Any independent set of G2 is guillotine-separable.

The proof can be seen by replacing the concept of original cells in Lemma 9 with fitting cells.

4 Further Improvements for cutting Squares

4.1 Twin squares to reach 1/36-separation

In this subsection, we introduce the notion of twin squares. The idea is to identify pairs
of squares (belonging to the same fitting cell) that can be separated using the next level’s
vertical or horizontal grid line. We will get a sparser conflict graph G3 on R1 by removing
conflicts between such squares. We show that the new conflict graph G3 is 9-colorable, and
any independent set of this graph is guillotine separable, implying a 1/36-separation for R.
We start with the same set R1, laminar family L1, and the fitting cells defined in Section 3.3.

▶ Definition 16 (Twin squares). For a laminar family L1, Let S1 and S2 be two squares
with the same level-i fitting cell, i.e. FC(S1) = FC(S2). We say S1 and S2 are twin squares
if they can be separated by the level-(i + 1) horizontal or vertical grid line cutting through
FC(S1) (see Figure 7).



P. Chalermsook, A. Kugelmann, L. Orgo, S. Uniyal, and M. Zarsav 16:9

Level-i cell

Level-(i + 1) grid lines

Figure 7 The two gray and two black squares all have a common fitting cell.

Conflict graph G3. We define the new conflict graph G3 based on the definition of conflicts
below.

▶ Definition 17 (Conflicts). Let S1 and S2 be two squares in R1. We say that S1 and S2
conflict (up to renaming) if one of the following conditions is true:

FC(S1) = FC(S2), and S1 and S2 are not twin squares.
FC(S1) contains FC(S2), and S1 intersects FC(S2).

▶ Lemma 18. The conflict graph G3 is 9-colorable.

The proof can be found in Appendix A.

▶ Lemma 19. Any independent set of G3 is guillotine separable.

Proof. Similarly to Lemma 9, we show a recursive cutting strategy. Starting with an
independent set R2 of G3, we first separate two squares with the “biggest” fitting cell.
Let S1, S2 ∈ R2 be the squares such that size(FC(S1)) ≥ size(FC(S2)), and for any other
square S ∈ R2, size(FC(S2)) ≥ size(FC(S)). If FC(S1) ̸= FC(S2), then S1 and S2 can be
separated using the proof of Lemma 9 (see Figure 4). Otherwise, S1, S2 must be twin squares
with a common fitting cell (let C = FC(S1)), since they do not conflict. Then, we can cut
along the grid lines of C (see Figure 8). Since for any square S ∈ R2, size(C) ≥ size(FC(S)),
we can safely perform these cuts without intersecting any square in R2.

C

(1)
(2)

(3)(4)

(5)
S2

S1

Figure 8 Cutting to separate twin squares; we first cut the dashed grey lines 1 to 4 to isolate C.
We cut along the 5th light grey line to separate S1 and S2. No square can intersect the last cut.

Let i be the level of C. Since we have isolated C with the first 4 cuts, further cuts of C

can be done independently from the rest of the graph. We use the horizontal (or vertical)
level-(i + 1) grid line, which certifies that S1 and S2 are twins (see Definition 16), as a cut to
separate S1 from S2 (see Figure 8). Let S ∈ R2 be any square inside C intersecting the cut.
Since S is contained in C then size(FC(S)) ≤ size(C). S also cannot have a level-(i + 1) (or
smaller) cell as its fitting cell because of intersecting the level-(i + 1) grid line. Therefore
FC(S) = C. Since twin squares S1 and S2 intersect the vertical level-(i + 1) grid line and

WADS 2025



16:10 An Improved Guillotine Cut for Squares

their fitting cell is also C, then S conflicts with them. This implies that S ̸∈ R2 and the cut
is safe to perform. Similarly to the proof of Lemma 9, we recursively apply this process to
separate R2. ◀

4.2 Half-Cells for a 1/32-separation
In this section, we redefine the notion of cells to include rectangular cells.

▶ Definition 20 (Rectangular Cells). Any two consecutive horizontal and vertical grid lines
of level i and j form a unique rectangle, called a level-(i, j) cell.

Let square-cells be all level-(i, i) cells for some i (our old notion of cells), and half-cells
be all level-(i, i + 1) cells for some i. Note that half-cells of level (i, i + 1) can be obtained by
splitting square-cells of level (i, i) with the level-(i + 1) vertical line within them.

We will use height(C) and width(C) to refer to the height and width of a cell C, respectively.
For any pair of cells C1, C2, we will say size(C1) ≤ size(C2), if height(C1) ≤ height(C2) and
width(C1) ≤ width(C2). Note that among square-cells and half-cells, any pair of cells C1, C2 is
comparable (either size(C1) ≤ size(C2) or size(C2) ≤ size(C1)), since we are only considering
the tall halves. Adding half-cells to the laminar family L1, the resulting family L2 remains
laminar. In this section, let fitting cells be defined over the laminar family L2 (Definition 10),
while the scaling factor r remains 2. Examples of the new fitting cells are depicted on
Figure 9.

Figure 9 The black dashed square-cell is the original cell of all the squares. The fitting cell of the
black square is its original cell. The dark and light gray squares have a half-cell and a higher-level
square-cell as their fitting cells, respectively.

▶ Fact 21. For a level-i square S, the fitting cell FC(S) is
A square-cell of level j, for i ≤ j ≤ i + 1, or
A half-cell of level (i, i + 1)

Proof. The first part follows directly from Fact 11. Let us consider the second part. When
we define fitting cells over L2, the surviving set remains the same; therefore, when the fitting
cell is a half-cell, it is always two times narrower than if we defined fitting cells over L.
Similarly to the proof of Fact 11, a half-cell C of level (i, i + 1) has width(S) > 1

2 width(C),
therefore a half-cell C1 of level (i + 1, i + 2) would not be able to contain S. ◀

Twin squares. Similarly to the original definition Definition 16, we define twin squares
S1, S2 ∈ R1 to be a pair of squares in the same fitting cell C1 (which is a level-i square-cell)
that are separated by a level-(i + 1) grid line.

If their fitting cell is a half-cell, we do not consider S1, S2 ∈ R1 twin squares. Additionally,
twin squares S1, S2 ∈ R1 cannot be separated by a vertical grid line, otherwise their fitting
cells would be separate half-cells.
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Conflict graph G4. We define the new conflict graph G4 based on the same Definition 17
of conflicts with respect to the new fitting cells of L2. See Figure 10 for illustration.

level-i

level-(i + 1)

level-i

level-(i + 1)

Figure 10 The dot-filled squares conflict with the black square, and the empty squares do not.
The fitting cell of the black square is the shaded half-cell on the left and the shaded square-cell on
the right.

▶ Lemma 22. The conflict graph G4 is 8-colorable.

Proof. This proof is easier to show by using a stronger statement. We will show that there
exists an 8-coloring of G4, such that for each cell C ∈ L2, the squares SquaresFC(C) are
colored with at most 2 colors.

We will see this proof by induction over the number of squares (|V (G4)|). The base case
holds trivially. We again pick the smallest non-empty cell C1 ∈ L2 for induction. Then
SquaresFC(C1) ̸= ∅ and for any cell C2 smaller than C1 (size(C2) ≤ size(C1)), we have
SquaresFC(C2) = ∅.

We assume that the induction hypothesis holds for G4 \ SquaresFC(C1) and show that we
can use 2 colors to color SquaresFC(C1), with at most eight colors in total. We will consider
the cases where C1 is a square-cell or a half-cell separately.

Firstly, consider that C1 is a square-cell of level i. Equivalently to Lemma 8, it can be
seen that there are at most 6 squares that can conflict with any square in SquaresFC(C1).
Since these squares use at most 6 colors, at least 2 colors remain to color SquaresFC(C1). We
will count the number of squares C1 contains, which, similarly to previous proofs, is the same
as SquaresFC(C1) due to how C1 was chosen. All squares in C1 must intersect the vertical
grid line of level i + 1, splitting C1; otherwise, those squares would be contained in a subcell
of C1. According to Fact 4, these squares can be at most 3. These squares can be colored
with 2 colors since the squares above and below the horizontal grid line of the level i + 1 are
twin squares and can share a color (Figure 11).

Figure 11 Two colors (black and gray) suffice to color all squares contained in C1 since if squares
are above and below the horizontal grid line crossing C1, these are twin squares.

Secondly, we consider that C1 is a level-(i, i + 1) half-cell. Again, the squares that C1
contains among R1 are exactly SquaresFC(C1) due to how C1 was chosen. These squares
must intersect the horizontal grid line of level i + 1 within C1; otherwise, they would fit
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into a subcell of C1. The squares in SquaresFC(C1) must be of level i to have survived, and
the number of level-i squares intersecting the level-(i + 1) grid line in C1 can be at most 1
(Fact 21, Fact 4). Since SquaresFC(C1) cannot be empty, it must contain exactly one square.
Let S be that square.

It remains to bound the number of squares conflicting with S. Note that all the conflicting
squares must intersect the boundary of C1 (Definition 17). Let C0 be the level-i square-cell
such that C1 is a subcell of C0.

S1

level
i + 1

level i
and i − 1

Figure 12 Cell C1 is shaded, and cell C0 is bordered by the black grid lines of level i. We depict
that the left vertical grid line of level i is also of level i − 1.

At most, 4 squares can intersect with the corners of cell C1. Next, consider the squares
intersecting the level-i horizontal grid lines bordering C1. For these squares to survive, their
level must be at most i − 1. This implies they are too large to intersect only the level-i
horizontal grid line without intersecting a corner (Figure 12). Next, let us consider the
level-i vertical grid lines bordering C0. Similarly to Lemma 8, Figure 3b, one of those grid
lines must also be of level i − 1 and therefore cannot have a surviving square intersecting
it without also intersecting a corner. This leaves us with one square S1 as depicted on
Figure 12. Finally, let us consider the squares intersecting the level-(i + 1) vertical grid line
bordering C1 (Figure 12). Since we already counted the squares intersecting the borders
of C0 in addition to C1, these squares must be in SquaresFC(C0). By induction hypothesis,
they can be colored with 2 colors. If the colors of the corner squares and S1 are different
from these two colors, we have at most 7 colors used for the set of squares that conflict with
S. By coloring S with a different color, we have a valid 8-coloring with at most 2 colors used
for SquaresFC(C1) as stated. ◀

▶ Lemma 23. Any independent set of G4 is guillotine separable.

Proof. Similarly to Lemma 19, we show a recursive cutting strategy. Starting with an
independent set R2 of G4, we first separate two squares with the “biggest” fitting cell.
Let S1, S2 ∈ R2 be the squares such that size(FC(S1)) ≥ size(FC(S2)), and for any other
square S ∈ R2, size(FC(S2)) ≥ size(FC(S)). If FC(S1) ̸= FC(S2), then S1 and S2 can
be separated using the proof of Lemma 9 (see Figure 4). Next, we consider the case that
FC(S1) = FC(S2), e.g S1 and S2 share the same fitting cell. Let this fitting cell be C and
its level be i.

First, consider the case that C is a half-cell. This implies that S1 and S2 intersect the
same horizontal grid line of level i + 1. Otherwise, they would fit in smaller subcells. Since
there are no twin squares in half-cells, S1 and S2 conflict, which contradicts them being in
the same independent set R2.
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Secondly, consider the case that C is a square-cell. Similarly to the proof of Lemma 19,
the square-cell can be isolated from the rest of the graph by the first 4 cuts as depicted on
Figure 8. Again, these cuts will not intersect any squares outside of C, because the fitting
cells for other squares must be smaller than or equal to the size of C (due to our choice of S1
and S2). Similarly to Lemma 19, the fifth cut is a level-(i + 1) horizontal grid line if i is the
level of C. Let us now consider the squares inside C since the fifth cut will be performed
only on C. For SquaresFC(C), we can see similarly to Lemma 19 that they are not cut. For
a square S whose fitting cell is a half-cell subcell of C, there is a conflict between S and Si,
because FC(S1) ≥ FC(S) and S1 intersects FC(S). This means that S cannot exist in the
independent set R2, and the cutting strategy doesn’t cut any squares.

Similarly to the proof of Lemma 9, we recursively apply this process to separate R2. ◀

5 Using Coarser Grid (r = 4) for Squares to get 9
256-separation

We consider a set R containing n non-overlapping axis-parallel squares. In Theorem 27, we
show that we can separate at least 9

256 fraction of the squares with guillotine cuts.
For the coarser grid, we set r = 4, and get 9

16 fraction of surviving squares R1 ∈ R by
applying Theorem 7. Then, we introduce a conflict graph G5, showing that it is 16-colorable.
Finally, we show that any independent set of this graph is Guillotine separable, leading to a
9/256-separation.

Similar to Section 4.2, we consider the laminar family L3 containing all the level-i cells
together with all the level-(i, i + 1) half-cells for any i ≥ 0. For each square S, we define the
fitting cell FC(S) over the laminar family L3 (Definition 10).

Since, in this case, r = 4, the number of squares associated with a fitting cell increases.
In this section, let the surviving set R1 be redefined to be the surviving set of the new grid
structure.

▶ Fact 24. For any square S ∈ R1, one of the following must be true:
The fitting cell FC(S) is a level-i square-cell for some i. Then S intersects the level-(i+1)
vertical grid line, cutting FC(S) in half, and FC(S) can be a fitting cell for at most seven
squares (see Figure 13a).
The fitting cell FC(S) is a level-(i, i + 1) half-cell for some i. Then S intersects the
level-(i + 1) horizontal grid line, cutting FC(S) in half, and FC(S) can be a fitting cell
for at most three squares (see Figure 13b).

Proof. If the intersection property did not hold for either of the cases above, the square S

would fit into some smaller cell in L3, leading to a contradiction.
Since S intersects a level-(i + 1) grid line in both cases, S must be level-j for j ≤ i. Also,

size(S) must be strictly more than 1
8 fraction of the height of any level-i cell, because of the

Fact 4.
In case FC(S) is of level i, any such square must intersect the level-(i + 1) vertical grid

line cutting FC(S) in half. Hence, at most seven squares can fit into FC(S).
Otherwise, if FC(S) is a level-(i, i + 1) cell, the width of FC(S) is half the width of any

level-i cell. Since S must intersect the level-(i + 1) horizontal grid line cutting FC(S) into
half, then at most three squares can fit into FC(S). ◀

Conflict Graph G5. We use the same Definition 17 of conflicting squares to define our
conflict graph G5 on R1. Similar to Section 4.2, there are no twin squares separated by the
vertical line cutting through the cell; otherwise, the two squares would have different fitting
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level-(i + 1)
grid lines

(a) Square-cell.

level-i + 1
grid line

(b) Half-cell.

Figure 13 A coloring for the squares in SquaresFC(C1) when C1 is a level-i square-cell or level-
(i, i + 1) half-cell on the left and right respectively. C1 is shaded.

cells. The following lemma shows the coloring of G5, similar to the proof of Lemma 22,
involving more counting arguments. Since we have r = 4 instead of r = 2, this grid is coarser,
leading to more squares inside and intersecting the boundary of any cell C in L3.

▶ Lemma 25. The graph G5 is 16-colorable.

The proof can be found in Appendix A.

▶ Lemma 26. Any independent set of G5 is guillotine separable.

The proof of this lemma is similar to the proof of Lemma 23 in Section 4.

▶ Theorem 27. For an n-size set R of non-overlapping axis-parallel squares, there exists a
9

256 -separation with guillotine cuts.

Proof. Using Theorem 7, we can place a grid on R and define the original cells for a subset
R1 ⊂ R containing at least 9n

16 squares, with r = 4. Then, Lemma 25 ensures that the
conflict graph G5 for the squares is 16-colorable. Thus, we can extract a subset R2 ⊂ R1
containing at least 9n

256 squares, which do not conflict with any other square in R2.
Finally, Lemma 26 provides a cutting strategy for R2, showing that R2 is guillotine

separable. ◀
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Let S ∈ R be any square of level i. Let Ph and Pv be the probabilities that a level-i
horizontal or vertical grid line is drawn on S, respectively. By using Fact 4, we get that
Ph, Pv ≤ 1

r . Thus, the probability that S is in the surviving set (survives), is (1−Ph)(1−Pv) ≥
(1 − 1

r )2. In expectation, (1 − 1
r )2|R| rectangles survive. This implies that there must exist a

and b such that at least (1 − 1
r )2|R| squares survive. ◀

▶ Lemma 14. The conflict graph G2 is 11-colorable.

Proof. Similar to Lemma 8, we will prove this by induction on the number of squares
(|V (G2)|). The base case is trivial. For the inductive step, consider the smallest cell C1 that
contains a square (SquaresFC(C1) ̸= ∅). This implies that for any cell C2 smaller than C1,
SquaresFC(C2) = ∅. By induction hypothesis, G2\ SquaresFC(C1) is 11-colorable, and we will
show that we can color the squares of SquaresFC(C1) while maintaining a valid 11-coloring
of G2.

First, we bound the number of squares contained within C1. Let i be the level of C1.
Since C1 is the smallest cell containing any square, any square S within C1 must cross the
level-(i + 1) grid lines within C1, or otherwise S would be contained in a smaller level-(i + 1)
cell. According to Fact 11 and Fact 4, at most 3 consecutive squares can fit into C1 width-
or height-wise. Since all contained squares must intersect the level-(i + 1) grid lines, it is
easy to verify that the number of these squares can be at most 5 in total (Figure 14). Note
that this set of squares equals SquaresFC(C1).

level-(i + 1)

level-i

Figure 14 We color five squares of SquaresFC(C1) using different colors as shown in the figure.

We count all conflicts involving SquaresFC(C1) for coloring. The number of colors that
cannot be used for coloring SquaresFC(C1) based on the second condition of Definition 12
can be counted equivalently to Lemma 8, resulting in 6 colors that SquaresFC(C1) must
avoid. Since the counted set of squares contained within C1 is equal to SquaresFC(C1),
five additional colors suffice for coloring SquaresFC(C1). This gives us a valid 11-coloring
of G2. ◀

▶ Lemma 18. The conflict graph G3 is 9-colorable.

Proof. This proof follows a similar inductive argument on the size of G3 with an improvement
on the proof of Lemma 14, as the definition of conflict in G3 is relaxed.

The base case is trivially true, and for the inductive step, we again pick the smallest
non-empty cell C1, such that SquaresFC(C1) ̸= ∅ and for any cell C2 contained in C1,
SquaresFC(C2) = ∅. Let i be the level of C1. By the induction hypothesis, G2\ SquaresFC(C1)
is 11-colorable, and we show that we can color the squares of SquaresFC(C1) while maintaining
a valid 11-coloring of G2. By induction hypothesis, G3\ SquaresFC(C1) is 9-colorable, and we
show that we can color the squares of SquaresFC(C1) while maintaining this property. The
proof of Lemma 14, implies that | SquaresFC(C1)| ≤ 5. However, using Definition 17, there
is at most one square on each side of the vertical and horizontal level-(i + 1) line cutting
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through the center of C1. Hence, it is always possible to pair up the twin squares by giving
them the same color, such that we can color the graph G3[SquaresFC(C1)] using at most
three colors as shown in Figure 15.

C1

Figure 15 A 3-coloring for G3[SquaresFC(C1)] using the same color for twin squares.

Using the bound of six (from proof of Lemma 8) on the number of squares in G3 \
SquaresFC(C1) conflicting with any square of SquaresFC(C1) leaves three out of nine used to
color G3\ SquaresFC(C1) to color SquaresFC(C1). Eventually, we have a 9-coloring for G3. ◀

▶ Lemma 25. The graph G5 is 16-colorable.

Proof. We show a 16-coloring of G5 by induction on the size of the graph with the property
that for any cell C ∈ L3, all the squares in SquaresFC(C) are colored with at most four colors.

The base case is trivial. Let us consider the smallest cell C1 so that SquaresFC(C1) ̸= ∅,
and for any cell C2 contained in C1 we have SquaresFC(C2) = ∅. By induction hypothesis,
G\ SquaresFC(C1) is 16-colorable. We show that we can color the squares of SquaresFC(C1)
while maintaining the mentioned property. There are two possible cases:

Case 1. Consider C1 to be a level-i square-cell. Like Lemma 22, we start by counting
the number of colors needed for the squares inside C1, which are precisely SquaresFC(C1).
According to Fact 24, at most seven such squares can intersect the level-(i + 1) vertical
grid line cutting through C1. Since there can be at most three squares above and below
the level-(i + 1) horizontal grid line, we can pair up the twin squares by giving them the
same color, such that we can color the graph G[SquaresFC(C1)] with at most four colors (see
Figure 13a for illustration). Now, we consider the squares not in SquaresFC(C1) that conflict
with any square in SquaresFC(C1). Any such square must intersect the boundary of the cell
C1 (see Figure 16).

There can be at most four squares that contain a corner of C1.
We now look at the squares that do not contain any corner of C1. For the two level-(i − 1)
grid lines, there can be only one square intersecting each line without intersecting the
corner of the cell: Squares crossing a grid line of level (i − 1) must be of level-j for some
j ≤ i − 2, and according to Fact 4, their size is strictly bigger than half of the size of a
level-i cell (specifically, C1) with r = 4. Thus, at most, two additional conflicting squares
can intersect the level-(i − 1) grid lines.
Let us consider the two other sides of C1 formed by the level-i grid lines. There are at
most three squares intersecting those sides but not the corners, since the size of those
squares is strictly more than 1

4 of the size of C1. In total, there are at most six additional
conflicting squares intersecting the level-i grid lines.

We have shown that the squares in G5 \ SquaresFC(C1) conflicting with SquaresFC(C1)
can be colored by at most twelve colors. Considering the additional four colors needed to
color SquaresFC(C1), the graph is 16-colorable.
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level-i
grid lines

level-(i − 1)
grid lines

Figure 16 The black square is a square of SquaresFC(C1), where C1 (shaded) is a level-i square-cell.
The dot-filled squares are the squares of G\ SquaresFC(C1) that can conflict with any square in
SquaresFC(C1).

Case 2. Consider C1 to be a level-(i, i + 1) half-cell. The squares contained by C1 are
precisely the squares in SquaresFC(C1). According to Fact 24, at most three squares can
intersect the level-(i + 1) horizontal grid line cutting through C1, and they can be colored
using three colors as shown in Figure 13b. Now, we bound the number of colors needed to
color the squares not in SquaresFC(C1) conflicting with any square in SquaresFC(C1). Note
that those squares must intersect the boundary of C1 (see Figure 16).

There are at most four squares covering a corner of C1.
Now, consider the squares not containing any of the corners of C1. Let C0 be the smallest
level-i square-cell containing C1. Up to three squares can intersect the vertical level-i
grid line that C1 shares with C0, without intersecting a corner of C1 (Figure 17). Since
the width of C1 is half that of its height, there can be at most one square intersecting the
level-i grid lines at the top and the bottom of C1 without intersecting a corner. Hence,
at most, two squares intersect the top or bottom grid lines of C1 without intersecting its
corners.
Next, we examine the fourth side of C1, which is formed by a level-(i + 1) grid line (the
gray lines on Figure 17). We consider two possible scenarios depending on whether all
conflicting squares intersecting the level-(i + 1) grid line have C0 as their fitting cell.

(a) If all these squares belong to SquaresFC(C0), then by the induction hypothesis, they
are colored with at most four colors (see Figure 17a).

(b) Otherwise, there exists a square S that also intersects a vertical side of C0 (and not a
corner of C1) such that C0 is not its fitting cell (see Figure 17b). Then, the size of
S is bigger than half of height(C1). Moreover, the size of the other squares crossing
this side of C1 (a level-(i + 1) grid line) is strictly more than 1

8 of height(C1). Thus, at
most three more squares can fit into this space.

In both scenarios, the squares intersecting the fourth side of C1 can be colored with at
most four colors.

We showed that all the squares in G5 \ SquaresFC(C1) conflicting with any square in
SquaresFC(C1) can be colored using at most thirteen colors. Since we need at most three
more colors for the squares in SquaresFC(C1) (Figure 13b), then G5 is 16-colorable in this
case as well. ◀
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level-i
grid

level
(i + 1)

grid

(a) All the squares intersecting the gray level-(i +
1) grid line and not a corner are in SquaresFC(C0).

level-i
grid

S

level
(i + 1)

grid

(b) The square S, intersecting the level-(i+1) grid
line and not a corner, is not in SquaresFC(C0).

Figure 17 The black square is a square in SquaresFC(C1), and C1 is a level-(i, i + 1) cell
(shaded). The cell formed by the bold black lines is C0. The remaining squares are the squares
in G5\ SquaresFC(C1) that conflict with any element of SquaresFC(C1). They can all have different
colors in G5.
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