
Dynamic Streaming Algorithms for Geometric
Independent Set
Timothy M. Chan #

Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign, IL, USA

Yuancheng Yu #

Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign, IL, USA

Abstract
We present the first space-efficient, fully dynamic streaming algorithm for computing a constant-factor
approximation of the maximum independent set size of n axis-aligned rectangles in two dimensions.
For an arbitrarily small constant δ > 0, our algorithm obtains an O((1/δ)2) approximation and
requires O(Uδ polylog n) space and update time with high probability, assuming that coordinates
are integers bounded by U . We also obtain a similar result for fat objects in any constant dimension.
This extends recent non-streaming algorithms by Bhore and Chan from SODA’25, and also greatly
extends previous streaming results, which were limited to special types of geometric objects such as
one-dimensional intervals and unit disks.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric Independent Set, Dynamic Streaming Algorithms

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.17

1 Introduction

In this paper, we study dynamic streaming algorithms for a fundamental geometric optimiza-
tion problem: maximum independent set (MIS) of geometric intersection graphs. Given
a set S of n objects in d dimensions, the problem is to compute a maximum-cardinality
subset I ⊆ S of independent (i.e., pairwise-disjoint) objects. Exact geometric MIS is NP-hard
even for unit squares1 in 2D, and there has been a rich body of work on approximation
algorithms [33, 25, 26, 16, 19, 27, 22]. The dynamic version of the problem (maintaining an
approximate solution under insertions and deletions of objects in S) has also gained much
attention in the last few years [32, 6, 10, 13, 8].

In particular, MIS for rectangles in 2D has been extensively studied. Early algorithms,
based on simple divide-and-conquer, achieved logarithmic approximation ratios [2, 37, 41,
17, 5]. For (1 + ε)-approximation, Adamaszek, Har-Peled, and Weise [1] obtained a quasi-
PTAS with running time npolylog n, which was subsequently improved to npolyloglog n by
Chuzhoy and Ene [21]. For polynomial-time results, Chalermsook and Chuzhoy [14] obtained
an O(log log n)-approximation algorithm via LP rounding, and in a major breakthrough,
Mitchell [39] obtained the first O(1)-approximation algorithm, running in O(n21) time, via
dynamic programming (DP). The approximation ratio was subsequently improved to 2 + ε

for any constant ε > 0 by Gálvez, Khan, Mari, Mömke, Pittu, and Wiese [31, 30]. Recently,
the running time has also been improved to O(n1+δ) for any constant δ > 0 by Bhore and
Chan [8], with approximation ratio dependent on 1/δ (polynomially); if only an approximate
size is desired, the time bound can be further improved to O(n polylog n). With the static
time bound reduced to near linear, one can next turn to the question of efficient dynamic

1 Throughout this paper, all squares and rectangles are axis-aligned by default.

© Timothy M. Chan and Yuancheng Yu;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
https://orcid.org/0000-0002-8093-0675
mailto:yyu51@illinois.edu
https://orcid.org/0009-0003-5570-1963
https://doi.org/10.4230/LIPIcs.WADS.2025.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

17:2 Dynamic Streaming Algorithms for Geometric Independent Set

algorithms. Indeed, Bhore and Chan showed that their static algorithm can be dynamized
to obtain the first fully dynamic, constant-approximation algorithm, with O(nδ) amortized
update time.

For fat objects in any constant dimension d, PTASes were known [33, 16, 25], but the
running time is high (nΩ(1/ε)). For faster algorithms, a simple greedy strategy gives an
O(1)-approximation in quadratic time [25], and Bhore and Chan [7] recently obtained an
improved O(n log n)-time, O(1)-approximation algorithm. Bhore and Chan [8] also obtained
fully dynamic O(1)-approximation algorithms with O(nδ) amortized update time. For disks
in R2 specifically, polylogarithmic amortized update time is also known [6, 7].

Meanwhile, streaming algorithms for geometric optimization problems also have a rich
history. The dynamic streaming model, allowing streams of updates (both insertions and
deletions), is also known as the turnstile model (viewing insertions/deletions as incrementing/
decrementing the multiplicity of an element – we assume that the multiplicity of each element
is nonnegative). We seek algorithms that use one pass and small (sublinear) space. Typically,
one needs to assume that input points lie in a bounded integer universe2 [U]d, and allow
(Monte Carlo) randomization. For the streaming version of MIS, it is more natural to consider
outputting an approximate size rather than the solution itself (since the MIS itself may have
linear size).

Indyk [35] initiated the study of dynamic streaming algorithms for geometric problems,
and considered basic problems such as Euclidean minimum spanning tree (EMST), min-weight
matching, facility location, and k-median. Follow-up works investigated k-clustering [11, 29,
34], facility location [24], maximum cut [29, 38, 20], EMST [28], geometric Steiner forest [23],
width and ε-kernels [3, 18], etc.

Streaming algorithms for geometric MIS, however, have received relatively limited success.
Cabello and Pérez-Lantero [12] obtained tight approximation ratio for MIS of 1D intervals in
insertion-only streams. Bakshi, Chepurko, and Woodruff [4] extended their result to fully
dynamic (turnstile) streams, and also gave a dynamic streaming algorithm with polylogar-
ithmic space for MIS of weighted unit disks in 2D. Bhore, Klute, and Oostveen [9] gave
a 4-approximate insertion-only streaming algorithm for axis-aligned unit-height rectangles
using O(OPT polylog n) space, where OPT denotes the size of the MIS (which could be
large). They also showed that for line segments, constant-approximation algorithms require
linear space even for insertion-only streams. The above lines of work raise the following
natural question:

“Do there exist fully dynamic streaming O(1)-approximation algorithms with sublinear space
and update time for MIS for rectangles, or other types of geometric objects (more general

than 1D intervals, 2D unit-height rectangles, and 2D unit disks)?”

New results. We answer this question in the affirmative by presenting the first space-
efficient, fully dynamic streaming O(1)-approximation algorithm for MIS for rectangles in
the plane. Specifically, our algorithm computes an O((1/δ)2)-approximation of the optimal
size with O(U δ polylog n) space and update time w.h.p.,3 where coordinates are in [U]2. In
particular, for polynomially bounded universe size U = nO(1), the space and update time is
O(nδ) (after adjusting δ by a constant factor).

2 [U] denotes {0, 1, . . . , U − 1}.
3 With high probability, i.e., probability 1 − O(1/nc) for an arbitrarily large constant c.

T. M. Chan and Y. Yu 17:3

We also obtain a similar result for (unweighted and weighted) fat objects in any constant
dimension d; in particular, this is new even for arbitrary-radii disks in the plane. Here, our
algorithm computes an O((1/δ)2)-approximation of the optimal size with O(Uδ polylog n)
space and update time w.h.p., assuming that the objects are contained in [0, U)d and have
diameter Ω(1) (and weights are in [U]).

Techniques. Our algorithms are based on Bhore and Chan’s recent dynamic algorithms in
the non-streaming setting [8]. Although most dynamic data structures do not adapt well to
the streaming model and inherently require linear space or worse, we show that Bhore and
Chan’s approach does, luckily! Their approach for MIS for rectangles can be viewed as a
combination of the old divide-and-conquer method [2] with Mitchell’s constant-approximation
DP-based algorithm [39]. More precisely, they used a b-way divide-and-conquer to reduce
the problem to special subproblems in which the input rectangles are stabbable by O(b)
horizontal and vertical lines. The approximation ratio increases by an O((logb n)2) factor,
which is constant if we choose b = nδ. They observed that for these special subproblems, one
can round the input to reduce the input size to bO(1), while increasing the approximation
ratio by at most a constant; when the input size is this small, one can afford to run Mitchell’s
polynomial-time approximation algorithm as a black box.

It turns out that the rounding trick is a perfect fit for dynamic streaming. The divide-
and-conquer part, however, requires rethinking. We provide a new interpretation of the
divide-and-conquer, by directly assigning input rectangles to levels of the recursion (this is
possible due to the bounded integer universe assumption, with Uδ factors instead of nδ);
this simpler interpretation actually helps understand Bhore and Chan’s algorithm better. To
achieve sublinear space, we cannot afford to solve all subproblems across a level. Rather, we
estimate the answer by taking a small random sample of the subproblems (the idea of using
random sampling to approximate a sum appeared already in one version of Bhore and Chan’s
static algorithm [8], but not dynamic). In the dynamic setting, the right sampling rate is
not known ahead of time. Our idea is to try all sampling rates (powers of 2) simultaneously.
However, for sampling rates that are too large, the space usage would be too large. We
resolve this issue by hashing to a small universe. This ensures that space is kept small
for all sampling rates, and at the same time, for the right sampling rate, collision is likely
avoided. We remark that sampling and hashing are both commonly used in the streaming
literature, but we will keep our presentation largely self-contained, to make it accessible to
computational geometers without prior background on streaming.

MIS for fat objects can be solved in a similar way, using shifted quadtrees for the
divide-and-conquer part.

2 Preliminaries on Streaming

We begin by describing a key tool on dynamic streaming that we need. We formulate it in a
general form, as stated in Theorem 1 below (even though the ideas in the proof may not be
new to experts on streaming, our formulation will make applications easier).

The setup is roughly the following: we have a collection of subproblems, where each input
object is assigned to one subproblem (a substream). Each subproblem individually admits
an efficient dynamic streaming algorithm. We want to approximate the sum of the answers
to these subproblems, subject to a stream of updates (insertions and deletions of objects),
assuming that answers to nonempty subproblems lie in a bounded range [1, B]. Obtaining
sublinear space is a challenge, because we cannot afford to explicitly store the answers to all
subproblems.

WADS 2025

17:4 Dynamic Streaming Algorithms for Geometric Independent Set

▶ Theorem 1. Let f be any function that maps sets to {0} ∪ [1, B] and satisfies the following
two properties:

f(S) = 0 iff S = ∅;
there is a dynamic streaming algorithm for maintaining f(S) under insertions and
deletions of objects in S with s(n) space and t(n) time w.h.p., where n = |S|.

Then we can design a dynamic streaming algorithm for maintaining a (1±ε)-approximation
of T =

∑M
i=1 f(Si), for a collection of sets S1, . . . , SM , with O(s(n)(B/ε)O(1) logO(1)(nM))

space and O(t(n)(B/ε)O(1) logO(1)(nM)) time per update (insertion/deletion of an object to
Si for a given i), where n =

∑
i∈[M] |Si|, w.h.p.

Before proving the theorem, we first consider a special case stated in the lemma below:
when the number of nonempty subproblems is small, we can actually maintain the sum
exactly. The precise statement is a little subtle, since the number of nonempty subproblems
may vary over time as objects are inserted and deleted: at times when the number is larger
than the threshold τ , the maintained answer may not be correct, but when the number gets
back to below τ , the maintained answer would become correct again. The lemma is proved by
a simple bucketing approach using pairwise-independent hash functions, with O(τ2) buckets.

▶ Lemma 2. Let f be any function that maps sets to numbers and satisfies the following
two properties:

f(S) = 0 iff S = ∅;
there is a dynamic streaming algorithm A for maintaining f(S) under insertions and
deletions of objects in S with s(n) space and t(n) time w.h.p., where n = |S|.

Let τ be a parameter. Then we can design a dynamic streaming algorithm for main-
taining T̃ =

∑M
i=1 f(Si) for a collection of sets S1, . . . , SM , with O(s(n)τ2 log n) space and

O(t(n)τ2 log n) time per update (insertion/deletion of an object to Si for a given i), where
n =

∑M
i=1 |Si|. The algorithm is correct w.h.p. when |{i ∈ [M] : Si ≠ ∅}| < τ . Furthermore,

this condition can be tested w.h.p. with the same space and time.

Proof. Let h : [M] → [q] be a random function chosen from a pairwise independent hash
family, for q = 4τ2; by standard constructions (e.g. [40, Theorem 8.16]), h can be represented
using O(log m) space.

Our streaming algorithm is simple: for each a ∈ [q], we use the given algorithm A to
maintain f(Ya) for the set

Ya =
⋃

i∈[M]: h(i)=a

Si,

i.e., when we insert/delete an object in Sj , we compute a = h(j) and then insert/delete that
object in Ya using algorithm A. Finally, let

y := |{a ∈ [q] : Ya ̸= ∅}|,

and when y < τ , we output

T̂ =
∑
a∈[q]

f(Ya).

For correctness, we discuss the two cases. Suppose |{i ∈ [M] : Si ≠ ∅}| < τ . We claim
that T̂ = T̃ (and y < τ trivially) with probability at least 3/4. To see this, observe that T̂ = T̃

when there are no colliding pairs, i.e., no pairs (i, j) with i ̸= j, Si, Sj ̸= ∅, and h(i) = h(j).
The expected number of colliding pairs is at most |{i ∈ [M] : Si ̸= ∅}|2 · 1/q < 1/4. By
Markov’s inequality, the probability that there is a colliding pair is less than 1/4.

T. M. Chan and Y. Yu 17:5

Conversely, suppose |{i ∈ [M] : Si ̸= ∅}| ≥ τ . We claim that y ≥ τ with probability at
least 3/4. To see this, pick τ nonempty subsets Si. By the same argument as above, with
probability at least 3/4, there are no colliding pairs among these τ nonempty subsets Si,
implying y ≥ τ .

The error probability is bounded by a constant, but can be lowered by running logarithmi-
cally many independent copies of the algorithm and taking the majority of the answers. ◀

Note that alternatively, the above condition |{i ∈ [M] : Si ̸= ∅}| < τ can be tested by
directly applying known techniques for sampling elements (an “ℓ0-sampler”) in a turnstile
stream [28, 36] (viewing an insertion/deletion in Si as incrementing/decrementing the
multiplicity of i ∈ [M]). The proof above may be viewed as an adaptation or extension of
such techniques.

We now reduce the general case to the special case by random sampling, using logarithmi-
cally many random subsets with different sampling rates. Chebyshev’s inequality shows that
the sum of a random subset approximates the overall sum, assuming pairwise independence.

▶ Lemma 3. Let T =
∑m

i=1 ai, where ai ∈ [1, B]. Let R be a random subset of [m] such
that for each i ∈ [m], Pr[i ∈ R] = ρ, and the events “i ∈ R” over all i ∈ [m] are pairwise
independent. For ε < 1, if ρm ≥ cB/ε2, then (1/ρ)

∑
i∈R ai gives a (1 ± ε)-approximation of

T with probability 1 − O(1/c).

Proof. Let X =
∑

i∈R ai =
∑m

i=1 ai · [i ∈ R], where [·] denotes the Iverson bracket. Then
E[X] = ρT , and by pairwise independence, Var[X] =

∑m
i=1 a2

i ρ ≤ B
∑

i=1 aiρ = BρT .
By Chebyshev’s inequality, Pr[|X − E[X]| ≥ εE[X]] ≤ Var[X]/(ε2E[X]2) ≤ B/(ε2ρT) ≤
B/(ε2ρm) ≤ 1/c. ◀

Proof of Theorem 1. For each ρ = 1/2, 1/4, . . . , 1/2⌈log M⌉, let Rρ be a random subset
of [M] with sampling rate ρ, where the events “i ∈ Rρ” are pairwise independent. By
standard constructions (e.g. [40, Theorem 8.16]), such a subset can be represented using
O(log m) space (so that we can tell if a given index i is in Rρ in O(1) time).

We will apply the algorithm in Lemma 2 to try to maintain

T̃ρ =
∑

i∈Rρ

f (Si) ,

with τ = cB/ε2 for a sufficiently large constant c. Pick the largest ρ∗ for which |{i ∈ Rρ∗ :
Si ̸= ∅}| < τ (recall that this condition can be tested w.h.p. by Lemma 2). Then the
algorithm from Lemma 2 will succeed in computing T̃ρ∗ w.h.p. and we return (1/ρ∗)T̃ρ∗ .

For the analysis, let m = |{i ∈ [M] : Si ̸= ∅}|. Let ρ0 be a power of 2 with τ/4 < ρ0m ≤
τ/2. Then by Chebyshev’s inequality,

Pr[ρ∗ < ρ0] ≤ Pr[|{i ∈ Rρ0 : Si ̸= ∅}| ≥ τ] ≤ ρ0m/(τ − ρ0m)2 ≤ O(1/(ρ0m)).

On the other hand, for each ρ ≥ 8ρ0, by Chebyshev’s inequality,

Pr[ρ∗ = ρ] ≤ Pr[|{i ∈ Rρ : Si ̸= ∅}| < τ] ≤ ρm/(ρm − τ)2 ≤ O(1/(ρm)).

By a geometric series over all ρ ≥ 8ρ0, Pr[ρ∗ ≥ 8ρ0] ≤ O(1/(ρ0m)). Thus, with probability
1 − O(1/c), ρ∗ must be a value among {ρ0, 2ρ0, 4ρ0}. For each such value ρ, the probability
that ρ∗ = ρ but (1/ρ)T̃ρ is not a (1 ± ε)-approximation of T is at most O(1/c), by applying
Lemma 3 to the sum T =

∑
i∈[M]:Si ̸=∅ f(Si), which has m nonempty terms.

WADS 2025

17:6 Dynamic Streaming Algorithms for Geometric Independent Set

s

s′

Figure 1 Proof of Lemma 4. Each rectangle is stabbed by at least one horizontal line and at
least one vertical line of Γ (shown as dotted lines). The rectangles s and s′ belong to the same class.

The error probability is bounded by a constant, but can again be lowered by running
logarithmically many independent copies of the algorithm and taking the majority of the
answers. (For simplicity, we have not attempted to optimize the (B/ε)O(1) logO(1)(nM)
factors.) ◀

3 Maximum Independent Set for Rectangles

We now present our dynamic streaming algorithm for MIS for rectangles. We begin by
considering a special case in which the input rectangles are stabbable by a small number of
horizontal as well as vertical lines. Bhore and Chan [8] solved this case by a simple rounding
trick, which we observe works well in the dynamic streaming setting:

▶ Lemma 4. Let Γ be a set of O(b) horizontal/vertical lines in 2D. Let S be a set of n

axis-aligned rectangles in 2D with the property that each rectangle in S is stabbed by at
least one horizontal line and at least one vertical line in Γ. Then we can design a dynamic
streaming algorithm for maintaining an O(1)-approximation of the maximum independent
set for S with O(bO(1) logO(1) n) space and time w.h.p.

Proof. The lines in Γ form a (non-uniform) grid with O(b2) grid cells. (See Figure 1.)
Place two rectangles of S in the same class if they intersect the same subset of grid cells.
There are O(b4) classes. Let Ŝ be a subset of S where we keep one “representative” element
from each class. Then |Ŝ| = O(b4). We apply Mitchell’s algorithm [39] (or its subsequent
improvement [31, 30]) to compute an O(1)-approximation of the maximum independent set
for the rectangles in Ŝ. This takes time polynomial in |Ŝ|, i.e., bO(1) time (note that the
optimal size must be at most b2 under the input assumption). Bhore and Chan [8] proved
that this is an O(1)-approximation of the maximum independent set for S.

To implement the algorithm in the dynamic streaming model, it suffices to maintain
one representative element per class, since we can re-run Mitchell’s algorithm from scratch.
Frahling, Indyk, and Sohler [28] (see also [36]) showed how to maintain a random element of
a set in the dynamic streaming model; we can just apply their algorithm to each class and
use the random element as the representative. ◀

We now solve the main problem by reinterpreting the divide-and-conquer approach by
Bhore and Chan [8] and incorporating Theorem 1.

T. M. Chan and Y. Yu 17:7

Sξ2,η2

Sξ1,η1

Figure 2 Proof of Theorem 5. The picture shows two different sets Sξ1,η1 and Sξ2,η2 from a
common collection Sk,ℓ.

▶ Theorem 5. Given a set S of n axis-aligned rectangles in 2D with coordinates in [U] as a
dynamic geometric stream, we can compute an O((1/δ)2)-approximation of the maximum
independent set size for S using O(UO(δ) logO(1) n) space and update time w.h.p.

Proof. Write each coordinate value in base b; the number of digits in each value is ⌈logb U⌉.
Consider a rectangle s = [x, x′] × [y, y′] in S. Suppose that the most significant digit

which x and x′ differ in is the k-th most significant digit, and the most significant digit which
y and y′ differ in is the ℓ-th most significant digit. Let ξ be the k − 1 most significant digits
of x and x′. Let η be the ℓ − 1 most significant digits of y and y′. We place s in a set Sξ,η;
in turn, we place the set Sξ,η in a collection Sk,ℓ.4 (See Figure 2.)

For each k, ℓ ∈ [⌈logb U⌉], we maintain an O(1)-approximation of

Tk,ℓ =
∑

Sξ,η∈Sk,ℓ

fk,ℓ(Sξ,η)

using Theorem 1. Here, fk,ℓ(S) is defined as the maximum independent set size for S# =
{s# : s ∈ S}, where s# denotes the rectangle obtained from s = [x, x′] × [y, y′] by removing
the k −1 most significant digits from x and x′ and the ℓ−1 most significant digits from y and
y′, assuming that x and x′ differ in the k-th most significant digit and y and y′ differ in the
ℓ-th most significant digit (if the assumption is not satisfied, make s# undefined). Note that
for an individual set Sξ,η ∈ Sk,ℓ, f(Sξ,η) is the same as the maximum independent set size
for Sξ,η (although this may not be true for a general set S). Also note that every rectangle
s# is stabbed by one of the b vertical lines at x = b⌈logb U⌉−ki for some i ∈ [b], and one of the
b horizontal lines at y = b⌈logb U⌉−ℓj for some j ∈ [b], and so we can maintain fk,ℓ(S) using
Lemma 4 (note that fk,ℓ(S) ≤ b2). The conditions of Theorem 1 are fulfilled with B = b2

and s(n), t(n) = O(bO(1) logO(1) n). We return the maximum of the approximations of Tk,ℓ

over all k, ℓ ∈ [⌈logb U⌉].
Observe that Tk,ℓ is just the maximum independent set size for

⋃
Sξ,η∈Sk,ℓ

Sξ,η, because
rectangles in Sξ1,η1 do not overlap with rectangles in Sξ2,η2 for any two different sets
Sξ1,η1 , Sξ2,η2 ∈ Sk,ℓ. Thus, OPT (the maximum independent set size for S) is at most∑

k,ℓ Tk,ℓ ≤ O(logb U)2 · maxk,ℓ Tk,ℓ. It follows that the returned value is an O((logb U)2)-
approximation of OPT. Finally, we set b = Uδ. ◀

4 Roughly, Bhore and Chan’s recursion [8] generates a primary tree (essentially a b-ary interval tree in x),
where each node stores a secondary tree (a b-ary interval tree in y). Each set Sξ,η corresponds to a
node of a secondary tree. Each collection Sk,ℓ corresponds to a “level” of the whole structure (namely,
the ℓ-th level of all nodes at the k-th level of the primary tree).

WADS 2025

17:8 Dynamic Streaming Algorithms for Geometric Independent Set

Although the preceding proof is compact, the details are subtle. For example, some
readers may wonder why we didn’t define fk,ℓ(S) more simply as the maximum independent
set size for S, bypassing the definition of s#. The reason is that Theorem 1 requires working
with fk,ℓ(S) for general sets S, not just the Sξ,η’s: indeed, the proof of Lemma 2 maintains
intermediate sets that are unions of Sξ,η’s (from a common bucket); without replacing s

with s#, the rectangles in such composite sets may not be stabbable by b vertical/horizontal
lines. Admittedly, defining fk,ℓ(S) as the maximum independent set for S# is somewhat
counterintuitive, as its value seems irrelevant or meaningless when S is a union of two or more
sets Sξ,η’s. (To picture such a set S#, imagine overlaying the two violet cells in Figure 2 on
top of each other.) However, under the “right” circumstances, when we don’t have collisions,
as in the proof of Lemma 2, S would revert to a single Sξ,η, and fk,ℓ(S) would become
meaningful again.
▶ Remark 6. Curiously, the approach of Theorem 5 extends to yield a space-efficient, O(1)-
approximation streaming algorithm of boxes (hyperrectangles) in any constant dimension
beyond 2. The catch is that the update time is prohibitively large (2UO(δ)), as Mitchell’s
algorithm works only in 2D. (Obtaining a polynomial-time O(1)-approximation algorithm
for boxes in 3D is a major open problem even in the non-streaming setting.)

As in Bhore and Chan’s paper [8], our approach can also solve the minimum piercing
set problem for 2D rectangles in the dynamic streaming model, but the approximation ratio
increases to O(log log n) with O(UO(1) log n) space and update time.

4 Maximum Independent Set for Fat Objects

We now consider the case of fat objects, again adapting Bhore and Chan’s non-streaming
algorithm [8]. Our algorithm extends to the weighted version of independent set.

In the following, we adapt notation and definitions from [8]. Let diam(s) denote the
diameter of an object s, where diameter refers to L∞-diameter. A collection C of objects
is c-fat if for every hypercube γ, there exist c points piercing all objects in C that intersect
γ and have diameter at least diam(γ). A quadtree box γ is a hypercube of the form
[i12ℓ, (i1 + 1)2ℓ) × · · · × [id2ℓ, (id + 1)2ℓ) for integers i1, . . . , id, ℓ.

An object s is c0-good if it is contained in a quadtree box with diameter at most c0diam(s).

▶ Fact 7 (Shifting Lemma [15, 16]). Suppose d is even. Let vj = (jU
d+1 , . . . , jU

d+1) ∈ Rd. For
every object s ⊂ [0, U)d, there exists j ∈ {0, . . . , d} such that s + vj is O(d)-good.

Bhore and Chan [8] solved the following special case by rounding, which we observe works
well in the dynamic streaming setting:

▶ Lemma 8. Let d, c, c0 be constants. Let Γ be b disjoint quadtree boxes. Let S be a set of
n c0-good objects in Rd of constant description complexity from a c-fat collection C, with
the property that each object in S intersects the boundary of at least one quadtree box of Γ.
Each object is given a weight in [U]. Then we can design a dynamic streaming algorithm
for maintaining an O(1)-approximation of the maximum-weight independent set for S with
O(bO(1) logO(1)(nU)) space and time w.h.p.

Proof. First round the weights to powers of 2; the approximation ratio increases by at most
a factor of 2.

Place two objects of S in the same class if they intersect the same subset of cells in Γ.
There are at most bO(1) classes (as noted in [8]). Let Ŝ be a subset of S where we keep one
“representative” element from each class, namely, a largest-weight element from the class.

T. M. Chan and Y. Yu 17:9

Then |Ŝ| ≤ bO(1). We apply a known algorithm (e.g., [16]) to compute an O(1)-approximation
to the maximum-weight independent set for the fat objects in Ŝ. This takes time polynomial
in |Ŝ|, i.e., bO(1) time. Bhore and Chan [8] proved that this is an O(1)-approximation of the
maximum independent set for S (using the goodness assumption).

To implement the algorithm in the dynamic streaming model, it suffices to maintain a
representative element per class. Frahling, Indyk, and Sohler [28] (see also [36]) showed
how to maintain a random element of a set in the dynamic streaming model; we can just
apply their algorithm to each class restricted to elements of each weight, and use the random
element as the representative for the largest weight whose set is nonempty. There are only
O(log U) possible weights. ◀

We now solve the main problem, via quadtree-based divide-and-conquer, as in [8],5 but
in combination with Theorem 1.

▶ Theorem 9. For any constant dimension d, given a set S of n c-fat objects in [0, U)d as a
dynamic geometric stream, where the diameter of each object is at least 1 and each object has
a weight in [U], we can compute an O((1/δ)2)-approximation of the maximum independent
set weight for S using O(UO(δ) logO(1) n) space and update time w.h.p.

Proof. We assume that all objects of S are O(d)-good. This is without loss of generality by
the shifting lemma (Fact 7): for each of the d + 1 shifts vj (j ∈ {0, . . . , d}), we can solve the
problem for the good objects of S + vj in parallel, and return the maximum of the answers.
The approximation ratio increases by a factor of d + 1 = O(1).

Furthermore, we assume that all objects have weights in a common interval [bk, bk+1).
This is without loss of generality, if we increase the approximation ratio by an extra factor of
O(logb U) (since there are O(logb U) choices for k). By rescaling, we may now assume that
all objects have weights in [1, b).

Consider an object s ∈ S. Let γ be the smallest quadtree box containing s such that
diam(γ) is a power of b (the parameter b will be a power of 2). Suppose that diam(γ) = bℓ.
We place s in a set Sγ ; in turn, we place the set Sγ in a collection Sℓ.6

For each ℓ ∈ [logb U], we maintain an O(1)-approximation of Tℓ =
∑

Sγ ∈Sℓ
fℓ(Sγ) using

Theorem 1. Here, fℓ(S) is defined as the maximum independent set weight for S# = {s# :
s ∈ S}, where s# denotes the object s shifted by −pγ , where γ is the quadtree box containing
s with diam(γ) = bℓ, and pγ is the lexicograpically smallest vertex of γ, assuming that s is
not contained in any quadtree box with diameter bℓ−1 (if the assumption is not satisfied,
make s# undefined). Note that for an individual set Sγ ∈ Sℓ, f(Sγ) is the same as the
maximum independent set weight for Sℓ. Also note that every object s# intersects the
boundary of one of the bd quadtree boxes of diameter bℓ−1 contained in [0, bℓ)d, and so we
can maintain fℓ(S) using Lemma 4 after replacing b with bd (note that fℓ(S) ≤ bO(1), since
all objects have weights in [1, b)). The conditions of Theorem 1 are fulfilled with B = bO(1)

and s(n), t(n) = O(bO(1) logO(1)(nU)). We return the maximum of the approximations of Tℓ

over all ℓ ∈ [logb U].
Observe that Tℓ is just the maximum independent set weight for

⋃
Sγ ∈Sℓ

Sγ , because
rectangles in Sγ1 do not overlap with rectangles in Sγ2 for any two different sets Sγ1 , Sγ2 ∈ Sℓ.
Thus, OPT (the maximum independent set weight for S) is at most

∑
ℓ Tℓ ≤ O(logb U) ·

5 Bhore and Chan [8] needed a balanced version of quadtrees (requiring cells that are differences of two
quadtree boxes), but we are able to simplify the divide-and-conquer because of the bounded universe
assumption.

6 Each Sγ corresponds to a node in the b-ary variant of the quadtree. Each Sℓ corresponds to one level of
the quadtree.

WADS 2025

17:10 Dynamic Streaming Algorithms for Geometric Independent Set

maxℓ Tℓ. It follows that the returned value is an O(logb U)-approximation of OPT, under
the assumption that objects have weights in [1, b). We thus obtain approximation ratio
O((logb U)2) for the general problem. Finally, we set b = Uδ. ◀

▶ Remark 10. Without weights, the approximation ratio is O(1/δ). If the ratio of the
maximum to the minimum diameter of the objects and the ratio of the maximum to the
minimum weight of the objects are bounded by ∆, then the U δ factors can be reduced to ∆δ.

As in Bhore and Chan’s paper [8], the approach also works for the minimum piercing set
problem for fat objects.

References
1 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for independ-

ent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019. doi:10.1145/3326122.
2 Pankaj K. Agarwal, Marc J. van Kreveld, and Subhash Suri. Label placement by max-

imum independent set in rectangles. Comput. Geom., 11(3-4):209–218, 1998. doi:10.1016/
S0925-7721(98)00028-5.

3 Alexandr Andoni and Huy L. Nguyên. Width of points in the streaming model. ACM Trans.
Algorithms, 12(1):5:1–5:10, 2016. doi:10.1145/2847259.

4 Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. Weighted maximum independent set
of geometric objects in turnstile streams. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM), volume 176 of LIPIcs, pages
64:1–64:22, 2020. doi:10.4230/LIPICS.APPROX/RANDOM.2020.64.

5 Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and Suneeta Ramaswami. Improved
approximation algorithms for rectangle tiling and packing. In Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 427–436, 2001. URL: http:
//dl.acm.org/citation.cfm?id=365411.365496.

6 Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Dynamic geometric inde-
pendent set. In Abstracts of 23rd Thailand-Japan Conference on Discrete and Computational
Geometry, Graphs, and Games (TJDCG), 2021. arXiv:2007.08643.

7 Sujoy Bhore and Timothy M. Chan. Dynamic independent set of disks (and hypercubes) made
easier. In Proceedings of the 8th SIAM Symposium on Simplicity in Algorithms (SOSA), pages
485–495, 2025. doi:10.1137/1.9781611978315.36.

8 Sujoy Bhore and Timothy M. Chan. Fast static and dynamic approximation algorithms for
geometric optimization problems: Piercing, independent set, vertex cover, and matching. In
Proceedings of the 36th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2357–2386, 2025. doi:10.1137/1.9781611978322.79.

9 Sujoy Bhore, Fabian Klute, and Jelle J. Oostveen. On streaming algorithms for geometric
independent set and clique. In Proceedings of the 20th International Workshop on Approxima-
tion and Online Algorithms (WAOA), volume 13538 of Lecture Notes in Computer Science,
pages 211–224. Springer, 2022. doi:10.1007/978-3-031-18367-6_11.

10 Sujoy Bhore, Martin Nöllenburg, Csaba D. Tóth, and Jules Wulms. Fully dynamic max-
imum independent sets of disks in polylogarithmic update time. In Proceedings of the 40th
International Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs, pages
19:1–19:16, 2024. doi:10.4230/LIPICS.SOCG.2024.19.

11 Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang.
Clustering high dimensional dynamic data streams. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 576–585, 2017. URL: http://proceedings.
mlr.press/v70/braverman17a.html.

12 Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model. Theor.
Comput. Sci., 702:77–96, 2017. doi:10.1016/J.TCS.2017.08.015.

https://doi.org/10.1145/3326122
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1145/2847259
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2020.64
http://dl.acm.org/citation.cfm?id=365411.365496
http://dl.acm.org/citation.cfm?id=365411.365496
https://arxiv.org/abs/2007.08643
https://doi.org/10.1137/1.9781611978315.36
https://doi.org/10.1137/1.9781611978322.79
https://doi.org/10.1007/978-3-031-18367-6_11
https://doi.org/10.4230/LIPICS.SOCG.2024.19
http://proceedings.mlr.press/v70/braverman17a.html
http://proceedings.mlr.press/v70/braverman17a.html
https://doi.org/10.1016/J.TCS.2017.08.015

T. M. Chan and Y. Yu 17:11

13 Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic geometric
independent set. In Proceedings of the 29th Annual European Symposium on Algorithms (ESA),
volume 204 of LIPIcs, pages 25:1–25:15, 2021. doi:10.4230/LIPICS.ESA.2021.25.

14 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
892–901. SIAM, 2009. doi:10.1137/1.9781611973068.97.

15 Timothy M. Chan. Approximate nearest neighbor queries revisited. Discret. Comput. Geom.,
20(3):359–373, 1998. doi:10.1007/PL00009390.

16 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

17 Timothy M. Chan. A note on maximum independent sets in rectangle intersection graphs.
Inf. Process. Lett., 89(1):19–23, 2004. doi:10.1016/J.IPL.2003.09.019.

18 Timothy M. Chan. Dynamic streaming algorithms for epsilon-kernels. In Proceedings of the
32nd International Symposium on Computational Geometry (SoCG), volume 51 of LIPIcs,
pages 27:1–27:11, 2016. doi:10.4230/LIPICS.SOCG.2016.27.

19 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discret. Comput. Geom., 48(2):373–392, 2012. doi:10.1007/
S00454-012-9417-5.

20 Xiaoyu Chen, Shaofeng H.-C. Jiang, and Robert Krauthgamer. Streaming Euclidean max-cut:
Dimension vs data reduction. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing (STOC), pages 170–182, 2023. doi:10.1145/3564246.3585170.

21 Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles.
In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 820–829, 2016. doi:10.1109/FOCS.2016.92.

22 Jana Cslovjecsek, Michał Pilipczuk, and Karol Wegrzycki. A polynomial-time OPTε-
approximation algorithm for maximum independent set of connected subgraphs in a planar
graph. In Proceedings of the 35th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 625–638, 2024. doi:10.1137/1.9781611977912.23.

23 Artur Czumaj, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Streaming
algorithms for geometric Steiner forest. ACM Trans. Algorithms, 20(4):28:1–28:38, 2024.
doi:10.1145/3663666.

24 Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian Sohler. (1 + ϵ)
-approximation for facility location in data streams. In Proceedings of the 24th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1710–1728, 2013. doi:10.1137/1.
9781611973105.123.

25 Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures
for fat objects and their applications. Comput. Geom., 15(4):215–227, 2000. doi:10.1016/
S0925-7721(99)00059-0.

26 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.
doi:10.1137/S0097539702402676.

27 Jacob Fox and János Pach. Computing the independence number of intersection graphs. In
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1161–1165, 2011. doi:10.1137/1.9781611973082.87.

28 Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams
and applications. Int. J. Comput. Geom. Appl., 18(1/2):3–28, 2008. doi:10.1142/
S0218195908002520.

29 Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 209–217.
ACM, 2005. doi:10.1145/1060590.1060622.

WADS 2025

https://doi.org/10.4230/LIPICS.ESA.2021.25
https://doi.org/10.1137/1.9781611973068.97
https://doi.org/10.1007/PL00009390
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1016/J.IPL.2003.09.019
https://doi.org/10.4230/LIPICS.SOCG.2016.27
https://doi.org/10.1007/S00454-012-9417-5
https://doi.org/10.1007/S00454-012-9417-5
https://doi.org/10.1145/3564246.3585170
https://doi.org/10.1109/FOCS.2016.92
https://doi.org/10.1137/1.9781611977912.23
https://doi.org/10.1145/3663666
https://doi.org/10.1137/1.9781611973105.123
https://doi.org/10.1137/1.9781611973105.123
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1137/S0097539702402676
https://doi.org/10.1137/1.9781611973082.87
https://doi.org/10.1142/S0218195908002520
https://doi.org/10.1142/S0218195908002520
https://doi.org/10.1145/1060590.1060622

17:12 Dynamic Streaming Algorithms for Geometric Independent Set

30 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A (2 + ε)-approximation algorithm for maximum independent set of
rectangles. CoRR, abs/2106.00623, 2021. arXiv:2106.00623.

31 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu,
and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles.
In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 894–905, 2022. doi:10.1137/1.9781611977073.38.

32 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum
independent set of intervals, hypercubes and hyperrectangles. In Proceedings of the 36th
International Symposium on Computational Geometry (SoCG), volume 164 of LIPIcs, pages
51:1–51:14, 2020. doi:10.4230/LIPICS.SOCG.2020.51.

33 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985. doi:
10.1145/2455.214106.

34 Wei Hu, Zhao Song, Lin F Yang, and Peilin Zhong. Nearly optimal dynamic k-means clustering
for high-dimensional data. arXiv preprint, 2018. arXiv:1802.00459.

35 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, pages 373–380, 2004. doi:
10.1145/1007352.1007413.

36 Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for Lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages 49–58, 2011.
doi:10.1145/1989284.1989289.

37 Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. On approximating rectangle tiling
and packing. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 384–393, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314768.

38 Christiane Lammersen, Anastasios Sidiropoulos, and Christian Sohler. Streaming embeddings
with slack. In Proceedings of the 11th International Symposium on Algorithms and Data
Structures (WADS), volume 5664 of Lecture Notes in Computer Science, pages 483–494.
Springer, 2009. doi:10.1007/978-3-642-03367-4_42.

39 Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane.
In Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 339–350, 2022. doi:10.1109/FOCS52979.2021.00042.

40 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. doi:10.1017/CBO9780511814075.

41 Frank Nielsen. Fast stabbing of boxes in high dimensions. Theor. Comput. Sci., 246(1-2):53–72,
2000. doi:10.1016/S0304-3975(98)00336-3.

https://arxiv.org/abs/2106.00623
https://doi.org/10.1137/1.9781611977073.38
https://doi.org/10.4230/LIPICS.SOCG.2020.51
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://arxiv.org/abs/1802.00459
https://doi.org/10.1145/1007352.1007413
https://doi.org/10.1145/1007352.1007413
https://doi.org/10.1145/1989284.1989289
http://dl.acm.org/citation.cfm?id=314613.314768
https://doi.org/10.1007/978-3-642-03367-4_42
https://doi.org/10.1109/FOCS52979.2021.00042
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1016/S0304-3975(98)00336-3

	1 Introduction
	2 Preliminaries on Streaming
	3 Maximum Independent Set for Rectangles
	4 Maximum Independent Set for Fat Objects

