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Abstract
Computing a topological ordering for an n-node directed acyclic graph (DAG) G is computationally
challenging in streaming models. Chakrabarti et al. [SODA 2020] showed that in the insertion-only
streaming model, every single-pass algorithm requires Ω(n2) space, and every k-pass algorithm
requires n1+Ω(1/k) space for any constant k ≥ 1.

We study the parameterized complexity of streaming algorithms for topological sorting, consid-
ering two parameters: the independence number α and the maximum displacement δ. Our results
include an O(1/ε)-pass O(αn1+ε)-space streaming algorithm and an O(n1/2)-pass O(n + δ2)-space
streaming algorithm. For dense random DAGs, both α and δ are small, allowing us to improve the
state-of-the-art for topological sorting in random DAGs.

As applications, we show that strongly connected components (SCC) decomposition and 2-
satisfiability (2-SAT) can be solved in O(1/ε) passes using O(αn1+ε) space and O(αIn1+ε) space,
respectively, where αI denotes the independence number of the implication graph induced by the
input 2-SAT instance.
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1 Introduction

We study the problem of computing a topological ordering of a given n-node directed acyclic
graph (DAG) G = (V, E) using space subquadratic in the number of nodes. Specifically, the
goal is to output an ordering (v1, v2, . . . , vn) of the nodes in V using O(n2−ε) space for some
constant ε > 0, such that for every i, j ∈ [n]1 with j > i, there is no directed path in G from
vj to vi. This problem has been studied by Chakrabarti et al. [5], who showed that in the
insertion-only streaming model, every single-pass algorithm requires Ω(n2) space, and every
k-pass algorithm requires n1+Ω(1/k) space for any constant k ≥ 1.

For problems that require substantial space when computed with few passes in the
streaming model, a natural direction is to study their parameterized complexity. This
approach was introduced by Fafianie and Kratsch for edge dominating set [10] and by

1 We define [n] := {1, 2, . . . , n}.
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18:2 Parameterized Streaming Algorithms for Topological Sorting

Chitnis et al. for maximal matching and vertex cover [7]. Since then, the parameterized
complexity of various problems has been explored. Chitnis and Cormode studied treewidth
and dominating set [6]. Agrawal et al. studied Min-Ones SAT [1]. Oostveen and van Leeuwen
studied diameter and connectivity [21]. Lokshtanov et al. studied feedback vertex set and
multiway cut [17].

Our model of computation follows the graph streaming model [20, 18]. The edges of the
input graph G = (V, E) are presented in an order determined by an adversary who has access
to the algorithm but not its random seed. The algorithm processes the edges sequentially,
making up to p passes over the input while using at most s space. During each pass, the
algorithm can only read the stream forward and cannot backtrack. We refer to such an
algorithm as a p-pass s-space streaming algorithm. If the edges are static, meaning only edge
insertions occur in the stream, the model is called the insertion-only model. In contrast, if
both edge insertions and deletions are allowed, where deletions can only remove previously
inserted edges, the model is referred to as the turnstile model.

Our first main result shows that any n-node directed acyclic graph G with independence
number α can be topologically sorted in O(log n) passes using O(αn) space. A directed
graph G has independence number α if there exists a set of α nodes in G such that no two
nodes in the set are joined by an edge in G, and no larger set satisfies this property. The
number of passes can be further reduced to O(1/ε) for every ε > 0 if O(αn1+ε) space is
available. Additionally, we provide a smooth tradeoff between passes and space. Formally,
we have:

▶ Theorem 1. Let G be an n-node directed acyclic graph with independence number α. For
every ε > 0, there exists an O(1/ε)-pass O(αn1+ε)-space deterministic streaming algorithm
to topologically sort G in the insertion-only model. Moreover, there is a smooth tradeoff
between passes and space: for every constant r ∈ (0, 1), there exists an O(nr)-pass O(n +
αn1−r/2 log n)-space streaming algorithm with the same functionality with probability 1 −
1/nΩ(1).

Another main result is that any n-node directed acyclic graph G with an advice A of
maximum displacement δ can be topologically sorted in O(n1/2) passes using O(n + δ2)
space. For an n-node acyclic graph G = (V, E), a function A : V → Z is an advice of G

with maximum displacement δ if G admits a topological ordering (v1, v2, . . . , vn) such that
for every i ∈ [n], the displacement satisfies |i − A(vi)| ≤ δ. Note that the function A is
not required to be injective. We provide also a smooth tradeoff between passes and space.
Formally, we have:

▶ Theorem 2. Let G be an n-node directed acyclic graph with an advice A of maximum
displacement δ. For every t ∈ [n], there exists an O(n/t)-pass O(n+tδ+δ2)-space deterministic
streaming algorithm in the insertion-only model to topologically sort G.

The above two algorithms can be applied to random directed acyclic graphs (random
DAGs) G ∼ G(n, p), where each edge is included independently with probability p. In
random DAGs, the independence number can be estimated quite accurately, and an advice
A can be provided using the in-degree of the nodes. Using these facts, we have an Õ(1)-pass
Õ(np−1)-space streaming algorithm and an O(√np)-pass Õ(n)-space streaming algorithm.
These algorithms have almost identical pass and space requirement as [5]. But, unlike [5]
which requires a chain that goes through all nodes, our algorithms apply to random DAGs
G(n, p).
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Furthermore, both of our algorithm exhibit smooth trade-offs between pass and space.
Also, both of our algorithms and their analysis directly applies to graphs of type G ∪H,
where G ∼ G(n, p) is a random DAG and H can be any given graph with maximum in-degree
o(
√

np log n) that has the same node set and the same topological ordering as G.
The final main result gives a deterministic algorithm in the turnstile model to compute a

topological ordering for any directed acyclic graph, stated below:

▶ Theorem 3. Let G be an n-node directed acyclic graph. For every k ∈ [n], there exists an
k-pass O(n2/k)-space deterministic streaming algorithm in the turnstile model to topologically
sort G.

1.1 Technical Ingredients
If a directed acyclic graph G = (V, E) has independence number α, then every node-induced
subgraph of G admits a chain cover of at most α chains. This is a stronger condition
than simply assuming that a largest antichain in G contains at most α nodes, a parameter
studied extensively for algorithms on a RAM [16, 4], as our condition ensures a structural
property that holds for all node-induced subgraphs, enabling a divide-and-conquer approach
to compute a chain cover consisting of few chains. Since the chain cover consists of α chains,
the set of nodes reachable from any node x in G can be succinctly represented by a tuple of
α integers. Combined with a distributed variant of the Bellman-Ford algorithm, this forms
the basis of our first algorithm.

Our second and third algorithms rely on the concept of a source subgraph, a node-induced
subgraph of G defined by a set S such that no edge in G enters S from V \ S. The second
algorithm leverages the maximum displacement δ to construct a subgraph H that fits in
memory and contains an r-node source subgraph of G for some sufficiently large r. The
third algorithm refines G by removing a majority of out-neighbors from high-degree nodes,
producing a sparse subgraph (in terms of edge density) that also contains a large source
subgraph of G. Consequently, topological sorting of G can be performed by iteratively peeling
away a source subgraph. Since each source subgraph contains a moderate number of nodes,
the number of peeling rounds remains low.

1.2 Applications
Finally, in Section 7, we show that the idea used in our topological sort algorithm can
be applied to SCC decomposition, yielding an O(1/ε)-pass O(αn1+ε)-space deterministic
algorithm for any ε > 0, as well as a ranodmized O(k)-pass O((n2 log n)/k)-space. Since
SCC decomposition can be directly applied to solve 2-SAT, these results also extend to the
2-SAT problem.

1.3 Paper Organization
The paper is organized as follows. In Section 2, we introduce our notation. In Section 3,
we develop algorithms for topologically sorting directed acyclic graphs with independence
number α, proving Theorem 1. In Section 4, we design algorithms for topologically sorting
directed acyclic graphs given an advice function with maximum displacement δ, thereby
proving Theorem 2. We then combine the results from Section 3 and Section 4 to obtain a
result for random DAGs in Section 5. In Section 6, we introduce a deterministic algorithm in
the turnstile model for topologically sorting general DAGs. Finally, in Section 7, we discuss
selected applications of topological sorting, including SCC decomposition and 2-satisfiability.

WADS 2025
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2 Notation

Our input graph is an n-node directed acyclic graph G = (V, E) in which each directed edge
(u, v) ∈ E is from node u to node v. Let [n] denote the set {1, 2, . . . , n} and [a, b] (resp.
(a, b)) denote the closed (resp. open) interval between a and b. A topological ordering of
G is an ordering (v1, v2, . . . , vn) of the nodes in V such that there is no directed path in G

from vj to vi for any j > i with i, j ∈ [n]. We use G[S] to denote the node-induced subgraph
of G induced by the node set S; that is, G[S] = (S, ES) where all edges in E with both
endnodes in S form ES . We use G ∼ G(n, p) to denote an n-node random directed acyclic
graph G where each edge is included in G with probability p independently, and orient the
directions of all edges based on a random permutation on the n nodes from an earlier node
in the permutation to a later node.

For each node x in G, if there is a directed edge (x, y) ∈ E, we say that y is an out-neighbor
of x, and x is an in-neighbor of y. A node x with no in-neighbors (resp. no out-neighbors) is
called a source (resp. a sink). We say that a node x has in-degree (resp. out-degree) k if it
has k in-neighbors (resp. out-neighbors), denoted as din(x) = k (resp. dout(x) = k).

The transitive closure of a directed graph G = (V, E) is the graph Gtc = (V, Etc), where
(u, v) ∈ Etc if and only if there exists a directed path from u to v in G. A chain of G is a
sequence of nodes (v1, v2, . . . , vt) for some integer t ≥ 1, such that (v1, v2, . . . , vt) forms a
directed path in the transitive closure Gtc. A chain cover of G is a collection of chains such
that the nodes contained in the chains partition the node set V . An antichain of G is a set
of nodes such that no directed path exists between any two distinct nodes u, v in the set.

We say that a directed graph G has independence number α if there exists a set of α

nodes in G such that no two nodes in the set are joined by an edge in G, and no larger set
satisfies this property.

For an n-node acyclic graph G = (V, E), we say that a function A : V → Z is an advice
of G with maximum displacement δ if G admits a topological ordering (v1, v2, . . . , vn) such
that for every i ∈ [n], the displacement satisfies |i−A(vi)| ≤ δ.

In this paper, the space usage of each algorithm is measured in words, while the space
lower bound of each problem is measured in bits. Therefore, if an algorithm’s space usage
matches the problem’s space lower bound, the algorithm is considered nearly optimal in
space usage, up to an O(log n) factor.

3 An O(1/ε)-Pass O(αn1+ε)-Space Algorithm and Tradeoff

We begin with showing that the transitive closure of an n-node directed acyclic graph G

with independence number α can be represented by the transitive closure of an O(αn)-edge
subgraph H of G. Since G and H have the same transitive closure, computing a topological
ordering of H suffices to topologically sort G. Then, we devise a streaming algorithm in the
insertion-only model to compute H, which yields an O(1/ε)-pass O(αn1+ε)-space streaming
algorithm to topologically sort any given n-node acyclic directed graph with independence
number α. Moreover, there is a smooth tradeoff between passes and space: for every constant
r ∈ (0, 1), there exists an O(nr)-pass O(n + αn1−r/2 log n)-space streaming algorithm with
the same functionality with probability 1− 1/nΩ(1). This proves Theorem 1.

▶ Lemma 4. Every directed acyclic graph G with independence number α contains an
O(αn)-edge subgraph H such that G and H have the same transitive closure. Moreover, if a
graph G′ has the same transitive closure as G, then G′ also contains an O(αn)-edge subgraph
with the same transitive closure, even if the independence number of G′ exceeds α.
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Proof. Let S be an antichain in G; that is, a subset of nodes in G such that for any two
nodes u and v in the subset, there exists no directed path from u to v. Thus, S is an
independent set and |S| ≤ α. This property holds also for any largest antichain in G. By
Dilworth’s theorem [9], G has a chain cover consisting of at most α chains. For each node
x in G, if x has out-degree greater than α, then by the pigeonhole principle, there exist
two out-neighbors u and v of x that belong to the same chain in the chain cover. Let the
chain be a1 → a2 → · · · → at for some t ≥ 2 and u = ai, v = aj for some i < j. If the
edge (x, v) is removed from G, then the resulting graph has the same transitive closure as
G. This holds because x can still reach v via the edge (x, u) followed by a directed path P

that witnesses the chain ai → aj . Note that x is not on P , as G is acyclic, and neither is the
edge (x, v). Consequently, one can iteratively remove an edge from G while retaining the
transitive closure unchanged until every node in G has out-degree at most α.

The same argument works for any graph G′ that has the same transitive closure as G,
even if the independence number of G′ exceeds α. ◀

One may find that Lemma 4 still holds if the number of nodes in a largest antichain
in G is α. However, it is essential for our algorithm to have the independence number of G

bounded by α. In this way, every node-induced subgraph of G (rather than only G) has an
antichain consisting of at most α chains, which is the key to find the subgraph H efficiently
in the streaming model.

First, we find the chain cover used in the proof of Lemma 4 as follows.

▶ Lemma 5. Let G be an n-node acyclic directed graph with independence number α. For
every ε > 0, there exists an O(1/ε)-pass O(αn1+ε)-space streaming algorithm that outputs a
chain cover of G consisting of α chains.

Proof. We begin with an O(log n)-pass O(αn)-space streaming algorithm. First, we partition
the nodes of G into subsets {S2i−1, S2i : i ∈ [t]} arbitrarily for some integer t = O(n), each
containing O(1) nodes. We then scan the stream of all edges in G once. For each j ∈ [2t],
we collect all edges in the node-induced subgraph G[Sj ] in memory. Next, we apply the
approach from the proof of Lemma 4 to compute a chain cover consisting of α chains for
G[Sj ] and trim G[Sj ] into a sparse subgraph with O(α|Sj |) edges.

We then scan the stream of all edges in G again. For each pair of consecutive node-induced
subgraphs G[S2i−1] and G[S2i], we collect edges with one endnode in S2i−1 and the other in
S2i (i.e., crossing edges). Since we have a chain cover consisting of α chains for both G[S2i−1]
and G[S2i], at most α essential crossing edges per node in S2i−1 and S2i are required to
preserve the transitive closure. This can be done using O(α(|S2i−1|+ |S2i|)) space because,
for each of the α chains in the node-induced subgraph S2i−1 (resp. S2i), each node x in S2i

(resp. S2i−1) only needs to keep the single out-neighbor y that appears first in the chain.
Finally, we replace the union of G[S2i−1], G[S2i], and their essential crossing edges with an
O(α(|S2i−1|+ |S2i|))-edge subgraph H, ensuring that H and G[S2i−1 ∪ S2i] have the same
transitive closure and thus the chain cover of H consists of at most α chains. Such a sparse
subgraph H can be found because the union of G[S2i−1], G[S2i], and the essential crossing
edges has the same transitive closure as G[S2i−1 ∪ S2i] and hence we can apply Lemma 4
though the independence number of the union may exceed α.

The above process reduces the number of subsets by half. The space usage remains O(αn).
Repeating this process for O(log n) iterations merges all subsets into a single subgraph with
a chain cover of α chains.

WADS 2025
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The above approach groups two subsets at a time. More generally, we can group nε

subsets at a time. This increases space usage by a factor of nε while reducing the number of
passes to

O(lognε n) = O(1/ε). ◀

Then, we use the chain cover found in Lemma 5 to compute H as follows.

▶ Corollary 6. Let G be an n-node acyclic directed graph with independence number α. For
every ε > 0, there exists an O(1/ε)-pass O(αn1+ε)-space streaming algorithm that outputs an
O(αn)-edge subgraph H such that G and H have the same transitive closure.

Proof. By Lemma 5, we obtain a chain cover of G consisting of α chains using the claimed
number of passes and space. Then, in another pass over all edges of G, for each node x, we
store all of its out-neighbors in a list. If the list exceeds α out-neighbors, at least one can be
discarded, as established in the proof of Lemma 4. ◀

Finally, given the subgraph H, a topological ordering of G can be computed by topo-
logically sorting H. This gives an O(1/ε)-pass O(αn1+ε)-space deterministic streaming
algorithm to compute a topological ordering for any n-node directed acyclic graph G in the
insertion-only model. This proves the few-pass algorithm stated in Theorem 1.

3.1 Tradeoff Between Passes and Space
We give a smooth tradeoff between passes and space: for every constant r ∈ (0, 1), there
exists an O(nr)-pass O(n + αn1−r/2)-space streaming algorithm with the same functionality.
Our divide-and-conquer approach is inspired by the parallel topological sorting method of
Schudy [22]. However, since reachability is computationally expensive in streaming models,
we overcome this limitation by leveraging the concept of chain cover, which is a novel aspect
of our approach compared to Schudy’s result.

▶ Lemma 7. Given an n-node directed acyclic graph G and a topological ordering of Ω(k log n)
nodes, sampled independently and uniformly at random (possibly with repetition), there exists
an O(n/k)-pass O(n)-space streaming algorithm that topologically sorts G with probability
1− 1/nΩ(1).

Proof. We add a new node s to G, with a directed edge to every node in G that has in-degree
0. Let R be a set of Ω(k log n) sampled nodes, denoted as R = {v1, v2, . . . , v|R|}, such that
no directed path in G starts from vi to vj for any i > j, where i, j ∈ [|R|]. Define v0 := s.

For each integer i ∈ [0, |R|], let Ui be the set of nodes in G that are reachable from vi

but not from any vj with j > i. Since s can reach every node in G, the sets Ui for all integer
i ∈ [0, |R|] form a partition of V . Therefore, storing all Ui in memory needs O(n) space.
Given this partition, a topological ordering of G can be obtained by first sorting the nodes
within each Ui independently and then concatenating their orderings.

Since R is a randomly selected subset of Ω(k log n) nodes, the sets Ui satisfy the following
property:

▷ Claim 8. For each integer i ∈ [0, |R|] and each node x ∈ Ui, any longest path in G (with
unweighted edges) from vi to x contains at most n/k edges with probability 1− 1/nΩ(1).
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Proof. Let V be the set of nodes in G, including s. Consider any pair of nodes y, z ∈ V such
that z is reachable from y. Fix a longest path Pyz from y to z, and let C be the collection of
such paths Pyz whose lengths exceed n/k. Since there are at most

(
n
2
)

such pairs, we have
|C| ≤

(
n
2
)
.

The probability that none of the internal nodes in Pyz (excluding y and z) is included in
R is

(1− 1/k)Ω(k log n) = 1/nΩ(1).

Applying the union bound, we conclude that with probability at least 1 − 1/nΩ(1), every
path in C contains at least one internal node in R.

Consequently, if there exists a node x ∈ Ui such that a longest path P from vi to x

contains more than n/k edges, then with probability at least 1− 1/nΩ(1), some internal node
vj in P belongs to R. Since there is a path from vi to vj , we have j > i, contradicting the
assumption that x is in Ui. ◁

To match the claimed number of passes and space, we design a distributed variant of the
Bellman-Ford algorithm (stated also in Algorithm 1). Assign a weight of −1 to all edges
in G. Then, the shortest distance from s to any node x ∈ V corresponds to the length of the
longest path (in terms of edge count) from s to x. Sorting the nodes by their distances from
s yields a topological ordering. However, computing the distances from s may require many
passes or substantial space.

Instead of running the Bellman-Ford algorithm from a single source node s, we execute it
in parallel from every node in the set R. If a node x is reachable from two nodes vi and vj

with i < j, we discard the information from vi, since x does not belong to Ui. In Algorithm 1,
this behavior is enforced by the rank function r, which is set such that r(vi) > r(vj) for
all i, j ∈ [0, |R|] with i < j, ensuring that only information from the appropriate source is
retained. As a result, the space usage O(1) per node and O(n) in total. By Claim 8, the
Bellman-Ford algorithm terminates after O(n/k) iterations.

The node ordering returned by Algorithm 1 is a topological ordering of G because it
topologically sorts the nodes in each Ui by their longest distances (in term of edge count)
from vi. Moreover, the concatenation of the topological orderings of nodes in Uis for all
i ∈ [0, |R|] cannot have any edge (x, y) in G for some x ∈ Uj and y ∈ Ui with i < j, as it
would violate the definition of the sets Ui. ◀

▶ Lemma 9. Given an n-node directed acyclic graph G, a chain cover of G consisting of β

chains, and Ω(k log n) nodes sampled uniformly at random from G independently (possibly
with repetition), there exists an O(n/k)-pass O(n + βk log n)-space streaming algorithm that
topologically sorts these sampled nodes with probability 1− 1/nΩ(1).

Proof. We topologically sort the sampled nodes by ordering them based on the cardinalities
of their reachable sets. Let R be the set of sampled nodes. For each x ∈ R, we perform a
depth-O(n/k) BFS rooted at x. The β chains can be stored in memory using O(n) space.
Each BFS computation requires an additional O(β) space, as detailed below, and across all
BFSs, the exploration of nodes at depth d is performed simultaneously. Consequently, the
total number of passes is O(n/k).

We execute each of these BFSs as follows. The key difference between our BFS and a
standard BFS is that we define the child nodes of any node x to include both its out-neighbors
and the out-neighbors of all descendant nodes of x along the chain to which x belongs. Since
we are only interested in the set of nodes that x can reach, we do not need to maintain the

WADS 2025



18:8 Parameterized Streaming Algorithms for Topological Sorting

Algorithm 1 A distributed Bellman-Ford algorithm for topological sorting.

Input: A directed graph G = (V ∪ {s}, E) where s can reach all nodes and all edges
have weight −1, a random subset R ⊆ V , and a rank function
r : R ∪ {s} → N such that no directed path in G starts from a node with a
smaller r-value to one with a larger r-value.

Output: A topological ordering of G.
d[x]← (∞,∞) for all x ∈ V ;
d[y]← (r(y), 0) for all y ∈ R ∪ {s};
for i = 1 to t = O(n log n/|R|) do

foreach (u, v) ∈ E do
if d[u] + (0,−1) < d[v] then

// coordinate-wise additions and comparisons, prioritizing the first
coordinate

d[v]← d[u] + (0,−1);
end

end
end
return nodes x ∈ V in non-decreasing order of d values;

full structure of a standard BFS. Thus, for each BFS level, we only need to store at most β

nodes. This is because if two nodes belong to the same chain, where one is an ancestor of
the other, then the child nodes of the ancestor form a superset of those of the descendant.

We only need to perform depth-O(n/k) BFSs for all x ∈ R to compute the reachable sets
for all x ∈ R. For every pair of nodes x, y ∈ G, consider a shortest path from x to y. Let C
be the collection of all such shortest paths of length at least n/k. For each path in C, the
probability that none of its internal nodes belong to R is

(1− 1/k)Ω(k log n) ≤ 1/nΩ(1).

Applying the union bound over all paths in C, where |C| ≤
(

n
2
)
, we conclude that with

probability 1−1/nΩ(1), every path in C contains at least one internal node in R. Consequently,
if there exists a node y that is reachable from x via a shortest path longer than n/k, then it
must be visible from the O(n/k)-depth BFS rooted at some node in R. ◀

We are now ready to prove the tradeoff stated in Theorem 1. Let r be any constant in
(0, 1). First, we partition the node set of G into nr/2 subsets arbitrarily, each containing
O(n1−r/2) nodes. For each subset S, we apply Lemma 5, setting ε→ 1/ log n and n→ n1−r/2,
to obtain a chain cover of the subgraph induced by S, which consists of α chains. This holds
because any node-induced subgraph of G also has independence number α. Combining these
chain covers across all subsets yields a chain cover of G with O(αnr/2) chains.

Next, we use this chain cover as input for Lemma 9, setting β = αnr/2, and then apply
Lemma 7 to compute a topological ordering of G, where the parameter k in both lemmas is
set to n1−r. Consequently, the number of passes is

O(nr/2 log n + n/n1−r) = O(nr),

and the required space is

O(αn1−r/2 + n + αnr/2n1−r log n) = O(n + αn1−r/2 log n).

This establishes the smooth tradeoff in Theorem 1.
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3.2 Graph Classes with Small Independence Number
In what follows, we provide a brief proof (without claiming novelty) that a dense random
DAG G ∼ G(n, p) has a small independence number with high probability for every p ∈ (0, 1).
Given the bounds on the number of nodes in a largest antichain in a random DAG due to
Bollobás and Brightwell [3], our bound in Lemma 10 is nearly optimal, up to a logarithmic
factor. We note that a result by Frieze [12] may eliminate this logarithmic factor, but it
requires the assumption p = o(1).

▶ Lemma 10. For a random DAG G ∼ G(n, p), where each edge is included independently
with probability p, the independence number of G is O(p−1 log n) with probability 1− 1/nΩ(1).

Proof. Let p = 1/k, and define Xt as the number of independent sets of t nodes in G. Since
G ∼ G(n, p), we have

E[X⌈3k log n⌉] =
(

n

⌈3k log n⌉

)
(1− 1/k)(

⌈3k log n⌉
2 ) ≤ n⌈3k log n⌉e−1/k(3k log n

2 ) = e−Ω(k log2 n).

Since Xt is non-negative, applying Markov’s inequality gives

Pr[X⌈3k log n⌉ ≥ 1] ≤ e−Ω(k log2 n).

Thus, with probability 1−1/nΩ(1), G contains no independent set of ⌈3k log n⌉ = O(p−1 log n)
nodes or more. ◀

4 An O(n1/2)-Pass O(n + δ2)-Space Algorithm and Tradeoff

In this section, we present an O(n/t)-pass O(n + tδ + δ2)-space topological sort algorithm
assuming that an advice A with maximum displacement δ is given, where t can be any given
number in [n]. This proves Theorem 2.

The main idea is that, given any t ∈ [n], we devise a process that can find and sort a
source subgraph of at least t nodes using a single pass and O(tδ + δ2) space. We say a
node-induced subgraph G[S] of G is a source subgraph if no edge in G is from a node outside
S to a node in S. Our algorithm just repeats this process O(n/t) times. In order to find a
source subgraph, we need the following observation:

▶ Lemma 11. Let G be an n-node directed acyclic graph with an advice A of maximum
displacement δ. Given any t ∈ [n]. Let H1 be the subgraph induced by all nodes v with
A(v) ≤ t + 3δ and H2 be the subgraph induced by all nodes v with A(v) ≤ t + δ. If H3 is a
subgraph of H2 and a source subgraph of H1, then H3 is a source subgraph of G.

Proof. It suffices to show that no edge goes from G\H3 to H3. Since H3 is a source subgraph
of H1, we only need to prove that that no edge goes from G \H1 to H3.

Let σ be a topological ordering of G such that |σ(v)−A(v)| ≤ δ for all nodes v. For any
node u1 ∈ H3, we have σ(u1) ≤ A(u1) + δ ≤ t + 2δ. Similarly, for any node u2 ∈ G \H1, we
have σ(u2) > t + 2δ. Combining the two inequalities, we have σ(u1) < σ(u2). Therefore, no
edge goes from G \H1 to H3, which completes the proof. ◀

Using the above lemma, to find a source subgraph in G, it suffices to remember the
induced subgraph H1 and find the maximum source subgraph H3 that satisfies the conditions
listed. This can be done by remembering the entire induced subgraph H1 in a single pass.
The following two lemmas show that keeping the entire subgraph H1 takes O(tδ + δ2) space,
and the resulting source subgraph has size at least t.
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▶ Lemma 12. Let G be an n-node directed acyclic graph with an advice A of maximum
displacement δ. Given any t ∈ [n]. There are at most t + 4δ nodes v with A(v) ≤ t + 3δ.

Proof. Let σ be a topological ordering of G such that |σ(v)−A(v)| ≤ δ for all nodes v. Only
the first t + 4δ nodes of σ can satisfy A(v) ≤ t + 3δ. ◀

Lemma 12 shows that the subgraph H1 defined in Lemma 11 has O(t + δ) nodes. Since
the maximum displacement between the advice and the true ordering is at most δ, any pair
of nodes whose advice values differ by more than 2δ must appear in the same relative order
as suggested by the advice. Therefore, when computing a topological ordering, it suffices to
retain only the edges between nodes whose advice values differ by less than 2δ. These edges
will be referred to as relevant edges. The subgraph H1 can be stored in O(tδ + δ2) space if
we only keep the relevant edges.

▶ Lemma 13. Let G be an n-node directed acyclic graph with an advice A of maximum
displacement δ. Given any t ∈ [n]. Let H1 be the subgraph induced by all nodes v with
A(v) ≤ t + 3δ and H2 be the subgraph induced by all nodes v with A(v) ≤ t + δ. There exists
a subgraph H3 of size at least t such that H3 is a subgraph of H2 and a source subgraph of H1.

Proof. Let σ be a topological ordering of G such that |σ(v)−A(v)| ≤ δ for all nodes v. The
subgraph H induced by the first t nodes in σ has A(v) ≤ t + δ and thus is a subgraph of H2.
Since H is the first t nodes in a topological ordering, H has no incoming edges and thus is a
source subgraph of H1. ◀

We are now ready to present the algorithm stated in Theorem 2. Given a graph G

and an advice function A, the algorithm makes a single pass over the input and stores
the subgraph H1 induced by all nodes v with A(v) ≤ t + 3δ, along with all relevant edges
between them. It then identifies the largest source subgraph of H1 by iteratively expanding
H3, starting from the empty set and adding nodes whose advice values are at most t + δ

and whose in-neighbors have all already been included in H3. By Lemma 13, this source
subgraph, denoted H3, contains at least t nodes. The algorithm sorts the nodes of H3 and
places them at the front of the final topological ordering. Repeating this process O(n/t)
times yields a topological ordering of the entire graph G.

According to Lemma 12, the space requirement for keeping the subgraph H1 in each step
is O(tδ + δ2). O(n) space is needed to keep the final topological ordering. Therefore, the
total space usage for our streaming algorithm is O(n + tδ + δ2). Note that when t = n, the
algorithm just remembers all relevant edges in a single pass using space O(nδ).

5 Random DAGs

In this section, we consider the topological ordering of random directed acyclic graphs
(random DAGs) defined in Section 2. We apply our algorithms described in Section 3 and
Section 4 to random DAGs in the streaming model and obtain a hybrid algorithm comprised
of the two. We conclude this section by comparing our results to the results in [5].

First, for dense random DAGs, we can apply our algorithm in Section 3. Lemma 10
shows that, for a random DAG G ∼ G(n, p), where each edge is included independently
with probability p, the independence number of G is O(p−1 log n) with probability 1 −
1/nΩ(1). Substituting this number into our algorithm in Section 3, we have an O(1/ε)-pass
O(n1+εp−1 log n)-space streaming algorithm for every ε > 0. Choosing ε to be (log n)−1, we
have an Õ(1)-pass Õ(np−1)-space streaming algorithm.
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Second, we apply our topological sort algorithm described in Section 4. In order to apply
the algorithm, we must first obtain an advice A. For a random DAG G ∼ G(n, p), we can
obtain an advice with maximum displacement at most O(

√
p−1n log n) with probability

1 − 1/nΩ(1) using the incoming degrees of the nodes. The same technique has been used
in [5] while considering a variant of random directed acyclic graphs.

▶ Lemma 14. Let G = (V, E) be a random DAG. For every node v ∈ V , |din(v)/p− σ(v)| =
O(

√
p−1n log n) with probability 1− 1/nΩ(1).

Proof. For each node v ∈ V , the in-degree din(v) is a random variable that follows a binomial
distribution with σ(v) − 1 trials and success probability p. By applying Chernoff Bound
we have

Pr
[
|din(v)− (σ(v)− 1)p| = O(

√
pn log n)

]
= 1/nΩ(1). ◀

By Lemma 14, A(v) = din(v)/p is an advice with maximum displacement O(
√

p−1n log n)
with high probability. The calculation of A can be done in one pass and O(n) space by
counting the incoming degrees of the nodes.

Using A(v) = din(v)/p as an advice, Theorem 2 directly gives an O(n/t)-pass O(n+tδ+δ2)-
space streaming algorithm where δ = O(

√
p−1n log n). Furthermore, notice that the space

requirement O(tδ + δ2) is for keeping the O(δ) relevant edges for each of O(t + δ) nodes
in H1. However, in a random graph G(n, p), the probability that all subgraphs that could
potentially be chosen as H1 have only O(ptδ + pδ2) edges is at least 1− 1/nΩ(1). As a result,
the algorithm described in Theorem 2 only uses O(n/t)-pass O(t

√
pn log n + n log n)-space

with probability 1− 1/nΩ(1). Choosing t to be
√

np−1 log n, we have an O(
√

np/ log n)-pass
O(n log n)-space streaming algorithm.

Combining the above algorithms, we have two topological sort algorithms for random
DAGs with almost identical (up to poly-logarithmic improvement) pass and space requirement
as [5]. Unlike [5] which requires a chain that goes through all nodes, our algorithms apply to
random DAGs G(n, p).

Furthermore, both of our algorithm exhibit trade-offs between pass and space. Also, both
of our algorithms and their analysis directly apply to graphs of type G∪H, where G ∼ G(n, p)
is a random DAG and H can be any given graph with maximum in-degree o(

√
np log n)

that has the same node set and same node ordering as G. The independence number only
decreases after adding the edge set of H to G, and the advice derived from Lemma 14 is still
correct with high probability for sparse H.

6 A Deterministic Approach in the Turnstile Model

We devise a deterministic algorithm to compute a topological ordering for any directed
acyclic graph in the turnstile model. This proves Theorem 3. Our technical ingredients for
this deterministic result include a sparse certificate and the set reconciliation.

Let G = (V, E) be an n-node directed acyclic graph. We say that a subgraph H of G is
a t-certificate of topological sorting if for any topological ordering σH of H there exists a
topological ordering σG of G so that the longest common prefix of σH and σG has length at
least t. Our deterministic algorithm to compute σG (initialized as an empty sequence) is
simply computing a topological ordering σH of a t-certificate H of G, appending the first t

nodes in σH to σG, followed by reducing the problem to a subproblem. Note that the first t

nodes in σH induces a source subgraph of G. See also Algorithm 2, whose correctness follows
from the fact that the first t nodes in σH form a valid prefix of σG.
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Algorithm 2 Deterministic topological sorting.

input : a directed acyclic graph G = (V, E)
output : a topological ordering σG of G

1 σG ← null;
2 while G is not an empty graph do
3 compute a t-certificate H of G;
4 compute a topological ordering σH of H;
5 append the first t nodes in σH to σG;
6 let G be the subgraph of G induced by the nodes not containing in σG;
7 end
8 return σG;

In what follows, we present how to obtain a sparse t-certificate H. For each node v ∈ V ,
define N−(v) to be the set of edges in E that connect v’s in-neighbors to v. Define further
that N−

ℓ (v) to be any subset of N−(v) of cardinality exactly min{ℓ, |N−(v)|}. We show in
Lemma 15 that the union of N−

t (v) for all v ∈ V is a t-certificate of O(tn) edges.

▶ Lemma 15. For every integer t ≥ 1, the subgraph

H = (V, F ) where F :=
⋃

v∈V

N−
t (v)

is a t-certificate of G consisting of O(tn) edges.

Proof. Let σH be a topological ordering of H. Let S be the set of nodes placed at the first
t positions of σH . Let G[S] be the subgraph G induced by the node set S. It suffices to
show that the concatenation of any topological ordering of G[S] and G[V \S] is a topological
ordering of G.

For any node v ∈ S, N−
t (v) < t because all in-neighbors of v in H have to precede v in

σH . Combining this observation with the definition of N−
t (v), we have that for any node

v ∈ S N−
t (v) = N−(v). Hence, no edges crossing V \S and S in G can be directed from V \S

to S. Consequently, let σ1 (resp. σ2) be the topological ordering of G[S] (resp. G[V \ S]),
the concatenation σ1 ◦ σ2 will not induce any backward edge. Because G[S] and G[V \ S]
both are subgraphs of G and G is acyclic, this ensures the existence of σ1 and σ2. ◀

The remaining to show is how to obtain N−
t (v) for all v deterministically in the turnstile

model. To achieve this, we use the characteristic polynomials introduced in the study of the
set reconciliation problem [19]. The reason not to use ℓ0-samplers [15] to obtain N−

t (v), a
standard building block for the computations in the dynamic streams, is that our algorithm
has to be deterministic here. Unfortunately, we have no idea how to obtain N−

t (v) for all v

deterministically in the turnstile stream. To get around with this issue, we note that the
nodes with |N−

t (v)| = t are not involved in the computation of the first t positions in σH ,
as shown in the proof of Lemma 15. We maintain the degree of node v using O(1) space
to decide whether v has N−

t (v) = t or not. If N−
t (v) = t, the edges incident to v does

not involve the computation of the first t positions in σH , so there is no need to compute
N−

t (v); otherwise N−
t (v) < t, we use Lemma 16 to recover N−

t (v) based on the characteristic
polynomials used for the set reconciliation [19].

▶ Lemma 16. For every integer t ≥ 1, for every node v ∈ V with |N−
t (v)| < t, the set N−

t (v)
can be obtained deterministically in the turnstile model using O(t) space.
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Proof. Define the characteristic polynomial of v to be the univariate polynomial

Pv(Z) =
∏

(u,v)∈N−(v)

(Z − u) (mod p) for some prime p > 2n,

noting that the roots of P (Z) comprise the set N−(v) and the degree of Pv(v) corresponds
to |N−(v)|. Though |N−

t (v)| < t at the end of the dynamic input stream, it can be much
larger than t in the middle of processing the input. Hence, to recover N−

t (v) using O(t) space
we cannot directly maintain Pv(Z). Instead, we maintain the values of Pv(Z) at t distinct
points a1, a2, . . . , at outside the range [1, n]. That is, for each i ∈ [1, t], while processing
an edge insertion (u, v) update P (ai) with P (ai) · (ai − u) and while processing an edge
deletion (u, v) update P (ai) with P (ai) · (ai− u)−1, i.e. the multiplicative inverse of (ai− u).
Given the point-value pairs {(ai, P (ai)) : i ∈ [1, t]}, by the standard interpolation [19], if the
degree of Pv(Z) less than t at the end of the dynamic input stream (i.e. the given premise
|N−

t (Z)| < t) Pv(Z) can be recovered. ◀

We are now ready to prove Theorem 3. We use O(t)-certificates n/t times, each requiring
a single pass and using O(tn) space. Set k as n/t, so our algorithm uses O(n2/k) space as
claimed.

7 Applications

In this section, we present applications of our topological sorting algorithms. In Section 7.1,
we develop an O(1/ε)-pass O(αn1+ε)-space streaming algorithm for SCC decomposition,
based on the chain cover construction described in Section 3. We then present an O(k)-
pass O((n2 log n)/k)-space streaming algorithm for SCC decomposition, using the notion of
the t-certificate introduced in Section 6. Given these algorithms, the results for 2-SAT in
Section 7.3 follow immediately.

7.1 An O(1/ε)-Pass O(αn1+ε)-Space SCC decompisition Algorithm
In this subsection, we focus on the problem of SCC decomposition. Let G = (V, E) be an
n-node directed graph. A strongly connected component (SCC) C ⊆ V is a maximal set
of nodes such that, for all u, v ∈ C, there exists a directed path from u to v. The SCC
decomposition of G is typically defined as a partition T = {C1, C2, . . . } of V , where each Ci

is an SCC of G.
However, in many applications, it is not only the identification of SCCs that matters, but

also their topological ordering. For instance, the algorithm for finding a satisfying assignment
of 2-SAT [2] relies on such an ordering.

Therefore, we define an SCC decomposition to be an ordered collection of sets
C1, C2, . . . , Cℓ, where each Ci is an SCC,

⋃
i∈[ℓ] Ci = V , and there are no edges from

any node in Cj to any node in Ci for all i < j.
We begin with showing that the transitive closure of an n-node directed graph G (possibly

cyclic) with independence number α can be represented by the transitive closure of a subgraph
H ⊆ G containing O(αn) edges. We note that Lemma 17 extends Lemma 4, which applies
only to DAGs.

▶ Lemma 17. Every directed graph G (possibly cyclic) with independence number α contains
an O(αn)-edge subgraph H such that G and H have the same transitive closure. Moreover,
if a graph G′ has the same transitive closure as G, then G′ also contains an O(αn)-edge
subgraph with the same transitive closure, even if the independence number of G′ exceeds α.
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Proof. By the Gallai-Milgram Theorem [8], the node set of a directed graph with indepen-
dence number α can be covered by at most α node-disjoint paths. The proof of Lemma 4
can be adapted to this setting by replacing the chain cover with the above α node-disjoint
paths. ◀

▶ Lemma 18. Let G be an n-node directed graph with independence number α. For every
ε > 0, there exists an O(1/ε)-pass O(αn1+ε)-space streaming algorithm that outputs a
collection of α node-disjoint directed paths whose node sets partition the node set of G.

Proof. The algorithm is almost the same as that in Lemma 5 except that we replace the
chain cover used in Lemma 5 with the path cover stated in Lemma 17. ◀

▶ Corollary 19. Let G be an n-node directed graph with independence number α. For every
ε > 0, there exists an O(1/ε)-pass O(αn1+ε)-space streaming algorithm that outputs an
O(αn)-edge subgraph H such that G and H have the same transitive closure.

Proof. By Lemma 18, we obtain a path cover of G consisting of α directed paths using the
claimed number of passes and space. Then, in another pass over all edges of G, for each
node x, we store all of its out-neighbors in a list. If the list exceeds α out-neighbors, at least
one can be discarded, as established in the proof of Lemma 4. ◀

Finally, given the subgraph H, the SCC decomposition of G can be computed by computing
the SCC decomposition of H. This gives an O(1/ε)-pass O(αn1+ε)-space deterministic
streaming algorithm to compute the SCC decomposition for any n-node directed graph G in
the insertion-only model.

7.2 An O(k)-Pass O((n2 log n)/k)-Space SCC Decomposition
Algorithm

In this subsection we devise an SCC decomposition algorithm based on our topological sort
algorithm in Section 6. We first present an algorithm that w.h.p. identifies all SCCs that are
large enough. We then demonstrate that a modified version of our topological sort algorithm
can produce the SCC decomposition of G when all SCCs are small. Combining the two
algorithms, we obtain an algorithm for SCC decomposition in directed graphs.

For every v ∈ V , let Rout(v) be the set of nodes reachable from v, and Rin(v) be the
set of nodes that can reach v. The intersection Rout(v) ∩ Rin(v) is the SCC that includes
v. We use this property to devise our algorithm. Given an integer k ∈ [n], we sample a
set S of n log n/k nodes from V uniformly at random independently. If we can compute
Rin(v) ∩Rout(v) for each v ∈ S, then all the SCCs containing at least k nodes are identified
with high probability as shown in the following lemma.

▶ Lemma 20. Let G = (V, E) be an n-node directed graph. Given any k ∈ [n], let S be a set
of Θ(n log n/k) nodes sampled uniformly at random from V . Every SCC of G that has at
least k nodes contains some node in S with probability 1− 1/nΩ(1).

Proof. Let C be an SCC with at least k nodes. The probability that none of the nodes of C

are sampled is at most (1− c log n/k)k ≤ 1/nc for some constant c > 1. Applying a union
bound over all SCCs with at least k nodes, the probability that there exists such an SCC
containing no sampled nodes is 1/nΩ(1). ◀

In what follows, we show how to compute Rout(v) ∩Rin(v) for each v ∈ S. We perform
BFS from each v ∈ S in both forward and backward directions. Besides usual BFS steps,
whenever a node u ∈ S reaches another node v ∈ S in the i-th forward (resp. backward)



H.-L. Chen, P.-T. Lin, and M.-T. Tsai 18:15

BFS step, we merge all nodes that v can reach in i− 1 forward (resp. backward) BFS steps
to u. Formally, for all v ∈ S and a given integer i ∈ [n], let Ri

out(v) be the set of nodes that
v can reach in i BFS steps. Ri

out(v) can be obtained from Ri−1
out (v) within one pass. We

initiate Ri
out(v) to be Ri−1

out (v). For each input edge (x, y), if x ∈ Ri−1
out (v), then we add y

to Ri
out(v). If y ∈ S, then we also add Ri−1

out (y) to Ri
out(v). Before the algorithm starts, we

initiate R0
out(v) = {v} for all v ∈ S. We define Ri

in(v) similarly as above.
The following lemma shows that, with high probability, after k passes of forward and

backward BFS from each sampled node v, the intersection Rin(v) ∩ Rout(v) is correctly
identified for every sampled node v.

▶ Lemma 21. Let G = (V, E) be an n-node directed graph. Given any k ∈ [n], let S be
a set of Θ(n log n/k) nodes sampled uniformly at random from V . Then, with probability
1− 1/nΩ(1), Rout(v) ∩Rin(v) = Rk

out(v) ∩Rk
in(v) for every v ∈ S.

Proof. Consider a pair of nodes v, u where v ∈ S and u is a node in the same SCC as v. By
definition, there is a path from v to u and a path from u to v within the SCC. Let f be the
length of a shortest path P from v to u. If f ≤ k, apparently u ∈ Rk

out(v). If f ≥ k, we claim
that in each subpath of length k/2 in P , there is a node ∈ S with probaility at least 1− 1/n4.
Let v, p1, p2, · · · , pw be the sampled nodes on the path arranged by their distance from v.
By the claim, for all i ∈ [w− 1] the distance between pi, pi+1 is at most k with probability at
least 1− 1/n3. Therefore pi+1 ∈ Rk

out(pi) for all i ∈ [w− 1]. Also, by the claim, u ∈ Rk
out(pw)

and p1 ∈ Rk
out(v). Observe that, by our construction, for every pair of a, b ∈ S, if b ∈ Rk

out(a),
then Rk

out(b) ⊆ Rk
out(a). Therefore u ∈ Rk

out(v). By a similar proof, u ∈ Rk
in(v). Combining

the two, we have u ∈ Rk
out(v)∩Rk

in(v) with probability at least 1− 1/n3. Applying the union
bound, we complete the proof. It remains to prove the claim. The probability that all k/2
nodes in a subpath are not sampled is at most (1 − c log n/k)k/2 = 1/n4 for a sufficiently
large constant c, as desired. ◀

The above results lead to the following algorithm for finding all large enough SCCs.

▶ Lemma 22. Let G = (V, E) be an n-node directed graph. Given any k ∈ [n], there is an
O(k) pass O((n2 log n)/k) space streaming algorithm that determines all SCCs of G that
contain at least k nodes with probability 1− 1/nΩ(1).

Proof. Given any k, the algorithm samples Θ(n log n/k) nodes uniformly at random, and then
performs BFS from each node for k steps in parallel. Lemma 21 shows that the reachability
sets for all sampled nodes can be obtained with probability 1 − 1/nΩ(1), and Lemma 20
shows that all SCCs with at least k nodes will be found with probability 1− 1/nΩ(1). The
algorithm uses O(k) passes to simulate the k-step BFS. Performing BFS from each of the
Θ(n log n/k) sampled nodes requires O(n) space. Therefore, the space usage of the algorithm
is O((n2 log n)/k). ◀

It is unclear whether the algorithm described in Lemma 22 is optimal. Nevertheless, we
present a one-pass lower bound by first proving a lower bound for an easier problem and
then extend to it.

▶ Theorem 23. Let G = (V, E) be an n-node directed graph. Deciding whether G is strongly
connected in one pass requires Ω(n2) bits.

Proof. A reduction from s, t-reachability to this problem is shown in [13] on a RAM. For
completeness, we restate it here. Given an instance of s, t-reachability consisting of a directed
graph G = (V, E) and two designated nodes s, t ∈ V , we generate a new graph G′ by adding
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edges (t, i) for all i ∈ V \ {t} and (i, s) for all i ∈ V \ {s} to G. G′ is strongly connected if
and only if G has a path from s to t. Adding the 2n edges is straightforward in the streaming
model and hence the reduction can be done within O(n) space and without using extra
passes. Since s, t-reachability requires Ω(n2) bits to solve in one pass [11], the same lower
bound extends to this problem. ◀

Theorem 23 immediately implies the following:

▶ Corollary 24. Given any integer k ∈ [n], identifying all SCCs of G with at least k nodes
in one pass requires Ω(n2) bits.

▶ Corollary 25. Identifying all SCCs for an n-node directed graph G in one pass requires
Ω(n2) bits.

In the rest of the section, we show that our topological sort algorithm from Section 6
can be modified to produce the SCC decomposition of G when all SCCs in G are small. We
start with the following observation.

▶ Lemma 26. Let G be an n-node directed graph, and let H be a source subgraph of G.
For any SCC C of G, if C contains at least one node from H, then C is entirely contained
within H.

Proof. Suppose, for the sake of contradiction, that there exists an SCC C such that C∩H ̸= ∅
but C ̸⊆ H. That is, there exist nodes u ∈ C where u /∈ H. Take any v ∈ C ∩H, by the
definition of an SCC, there must be a path from u to v. This implies the existence of an
edge from G \H to H, which contradicts the assumption that H is a source subgraph. ◀

Using Lemma 26, we can design an algorithm for SCC decomposition. The process
proceeds as follows. We first identify a source subgraph H of G and compute the SCC
decomposition of H. We then remove H from G and repeat this procedure until we obtain
the complete SCC decomposition of G.

Here we present an efficient way to find a source subgraph. We can assume that the input
graph G = (V, E) is an n-node directed graph with all SCCs having at most k nodes, as
larger SCCs can be identified and contracted by the above algorithm. Given any t ≥ k, we
consider a subgraph

H1 = (V, F ) where F :=
⋃

v∈V

N−
2t(v).

In the following lemmas, we will show that by leveraging the structure of H1 along with the
degree information of all nodes in G, we can identify a source subgraph containing at least t

nodes.

▶ Lemma 27. Let G be an n-node directed graph. Given t ≥ 1, let Q be the set of nodes
such that for all v ∈ Q, |N−(v)| ≤ 2t. Let

H1 = (V, F ) where F :=
⋃

v∈V

N−
2t(v).

If H2 is a source subgraph of H1 and V (H2) ⊆ Q, then H2 is a source subgraph of G.

Proof. For all nodes v ∈ Q, since |N−(v)| ≤ 2t, we have N−(v) = N−
2t(v). In other words,

all nodes in Q have all their incoming edges recorded in H1. Therefore, if V (H2) ⊆ Q has no
incoming edges in H1, it also has no incoming edges in G, which completes the proof. ◀
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▶ Lemma 28. Let G be an n-node directed graph with all SCCs having at most k nodes.
Given any t ∈ [k, n], let Q be the set of nodes such that for all v ∈ Q, N−(v) ≤ 2t. Let

H1 = (V, F ) where F :=
⋃

v∈V

N−
2t(v).

There exists a subgraph H2 with at least t nodes s.t. H2 is a source subgraph of H1 and
V (H2) ⊆ Q.

Proof. Consider any topological ordering of the SCCs C1, C2, . . . , Cℓ of G. Let ∆ be the
largest integer in [1, ℓ] such that the number of nodes in the union of C1, C2, . . . , C∆ is at
most 2t. Define H2 as the subgraph induced by the nodes in the union. We will show that
this choice of H2 satisfies all the required conditions.

Note that the SCCs C1, C2, . . . , C∆ have no incoming edges from C∆+1, Ck+2, . . . , Cℓ.
Therefore, H2 is a source subgraph of G and of any subgraph of G that contains it. Since
every node contained in Ci for i ≤ ∆ has at most 2t incoming edges, each such node belongs
to Q and the subgraph induced by the nodes in the union C1, C2, . . . , C∆ is contained in H1.
Thus, H2 is a source subgraph of H1. In addition, the union of C1, C2, . . . , C∆+1 must
contain more than 2t nodes and C∆+1 has at most k nodes, it follows that the union of
C1, C2, . . . , C∆ contains at least 2t− k ≥ t nodes, as required. ◀

By Lemmas 27 and 28, we get:

▶ Theorem 29. Let G be an n-node directed graph such that all SCCs have at most k

nodes. For any integer t ≥ k, there is an O(n/t)-pass O(tn)-space streaming algorithm that
determines the SCC decomposition of G.

Proof. Combining Lemma 27 and Lemma 28, we can determine the SCC decomposition
for at least t nodes by keeping O(tn) edges in memory in one pass. We only need to repeat
n/t times to obtain the SCC decomposition of G. The space requirement is O(tn) since we
keep at most O(tn) edges in each pass, and maintaining the SCC decomposition uses O(n)
space. ◀

Combining Lemma 22 and Theorem 29, we obtain an SCC decomposition algorithm.

▶ Theorem 30. Let G be an n-node directed graph. For any k ≤
√

n, there is an O(k)-pass
O((n2 log n)/k)-space algorithm that determines the SCC decomposition of G with probability
1− 1/nΩ(1) in the insertion-only model.

Proof. We begin by applying the algorithm from Lemma 22 to G, which identifies all SCCs
containing at least k nodes. This step runs in O(k) passes and uses O((n2 log n)/k) space,
succeeding with probability at least 1− 1/nΩ(1). After identifying these SCCs, we contract
them, resulting in a new graph G′, where all SCCs contain at most k nodes.

Next, we apply the algorithm from Theorem 29 to compute the SCC decomposition of G′.
We set t = n/k, ensuring that t ≥

√
n ≥ k, which satisfies the conditions of Theorem 29.

Substituting these parameters, the total number of passes used is O(k + n/t) = O(k), and
the total space required is O((n2 log n)/k + tn) = O((n2 log n)/k). ◀

7.3 2-SAT
In this subsection, we focus on the problem of 2-SAT. A 2-SAT instance F is a conjunction
of m clauses, F =

∧
i∈[m] ci. Each clause ci = (ℓi ∨ ri) is a disjunction of two literals. Every

ℓi, ri is one of the n Boolean variables v1, v2, . . . , vn or their negations ¬v1,¬v2, . . . ,¬vn. A

WADS 2025
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satisfying assignment of F is an assignment of truth values for each variable vi that makes F

to be true, and we say F is satisfiable if there exists at least one satisfying assignment. The
task is to determine if F is satisfiable, and if so, determine a satisfying assignment. Under
streaming setting, each input of the input stream is a clause ci, and the conjunction of all m

inputs is the 2-SAT instance F under examination.
Before we show how to apply SCC decomposition to 2-SAT in streaming, we show a one

pass lower bound for 2-SAT.

▶ Theorem 31. Deciding if a 2SAT instance is satisfiable in one pass requires Ω(n2) bits.

Proof. We translate the reduction shown in [14] into streaming setting. Suppose to the
contrary that we have a 2-SAT solver that could solve 2-SAT in one pass using o(n2) bits,
then we have an algorithm that could solve s, t-reachability in one pass using o(n2) bits by
the following reduction. Given an instance of s, t-reachability consisting of a directed graph
G = (V, E) and two designated nodes s, t ∈ V , for each input edge (u, v) ∈ E, generate input
(u∨¬v) for the 2-SAT solver, and for the two nodes s, t, generate input (s∨t), (¬s∨¬t), (¬s∨t)
for the 2-SAT solver. The 2SAT instance generated is unsatisfiable if and only if s can reach
t in G. Since testing s, t-reachability in a directed graph in one pass requires Ω(n2) bits [11],
there cannot exist such a 2-SAT solver. ◀

Theorem 31 shows that, merely deciding if a 2-SAT instance is satisfiable in one pass requires
space enough to keep the whole input. Henceforth we focus on multi-pass algorithms.

We follow the approach of [2] which reduces 2-SAT to SCC-decomposition. The reduction
constructs an implication graph G from a 2-SAT instance F . The satisfiability and the
truth assignment of F can be retrieved from the SCC decomposition of G. We show that,
given an input stream of 2-SAT, the construction of a stream of its implication graph only
double the input complexity. For each variable v and its negation ¬v, construct nodes
v,¬v ∈ V . For each input clause ci = (ℓi ∨ ri), construct two edges (¬ℓi, ri), (¬ri, ℓi). The
resulting implication graph G is a graph with 2n nodes and 2m edges. We can apply our
SCC decomposition algorithms to G and obtain a solution to the 2-SAT instance.

▶ Theorem 32. Given any k ≤
√

n, 2-SAT can be solved in O(k)-pass and O((n2 log n)/k)-
space with probability 1− 1/nΩ(1) in the insertion-only model.

Let αI denote the independence number of the implication graph of the input 2-SAT
instance. We can apply our algorithm presented in Corollary 19.

▶ Theorem 33. A 2-SAT instance F can be solved in O(1/ε)-pass O(αIn1+ε)-space in the
insertion-only model.
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