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Abstract
Given a CNF formula φ with clauses C1, . . . , Cm over a set of variables V , a truth assignment
a : V → {0, 1} generates a binary sequence σφ(a) = (C1(a), . . . , Cm(a)), called a signature of φ,
where Ci(a) = 1 if clause Ci evaluates to 1 under assignment a, and Ci(a) = 0 otherwise. Signatures
and their associated generation problems have given rise to new yet promising research questions
in algorithmic enumeration. In a recent paper, Bérczi et al. interestingly proved that generating
signatures of a CNF is tractable despite the fact that verifying a solution is hard. They also
showed the hardness of finding maximal signatures of an arbitrary CNF due to the intractability of
satisfiability in general. Their contribution leaves open the problem of efficiently generating maximal
signatures for tractable classes of CNFs, i.e., those for which satisfiability can be solved in polynomial
time. Stepping into that direction, we completely characterize the complexity of generating all,
minimal, and maximal signatures for XOR-CNF’s.
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1 Introduction

Propositional formulas are ubiquitous in computer science. The complexity of the satisfiability
problem has been extensively studied from the point of view of several algorithmic tasks
such as decidability, counting, or enumeration to mention but a few. Given a CNF formula
φ with clauses C1, . . . , Cm over a set of variables V = {v1, . . . , vn}, a truth assignment
a : V → {0, 1} leads to a binary sequence σφ(a), called a signature of φ, defined by σφ(a) =
(C1(a), . . . , Cm(a)) where Ci(a) = 1 if clause Ci evaluates to 1 under assignment a, and
Ci(a) = 0 otherwise. Deciding the satisfiability of φ boils down to deciding whether the
all-one sequence is a signature of φ.

In this paper, we investigate the problems of listing all, minimal, and maximal signatures
of a CNF, where minimal and maximal are meant bitwise. The task of finding all signatures
of a CNF originates from well-designed pattern trees and has first been posed during the

© Nadia Creignou, Oscar Defrain, Frédéric Olive, and Simon Vilmin;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nadia.creignou@lis-lab.fr
https://orcid.org/0009-0005-6522-6363
mailto:oscar.defrain@lis-lab.fr
https://orcid.org/0000-0001-9203-1530
mailto:frederic.olive@lis-lab.fr
https://orcid.org/0000-0002-3552-5566
mailto:simon.vilmin@lis-lab.fr
https://orcid.org/0000-0001-6240-4981
https://doi.org/10.4230/LIPIcs.WADS.2025.19
https://arxiv.org/abs/2402.18537
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


19:2 On the Enumeration of Signatures of XOR-CNF’s

Dagstuhl Seminar on enumeration in data management [5]. However, enumerating the
signatures of a given CNF – may it be all, minimal, or maximal ones – will generally produce
an exponential number of solutions. Therefore, input sensitive complexity is not a suitable
yardstick of efficiency when analyzing enumeration algorithms performance. Instead, output-
sensitive complexity estimates the running time of an enumeration algorithm using both
input and output sizes. In that framework, an algorithm is considered tractable when it runs
in total-polynomial time (or output-polynomial time), that is, if its execution time is bounded
by a polynomial in the combined size of the input and the output. Still, further constraining
this notion to guarantee some regularity in the enumeration is sometimes desirable. For
this reason, polynomial delay and incremental-polynomial time are customarily regarded
as better notions of tractability for enumeration complexity. On the one hand, polynomial
delay means that the delay between consecutive outputs is polynomial in the input size.
Incremental-polynomial time, on the other hand, means that the time to produce the ith

solution is bounded by a polynomial in the input size plus i (see e.g., [17, 22]).
Generating all the signatures of a CNF turns out to be of great fundamental interest,

for it is an example of enumeration problem which can be solved in total-polynomial time
even though solutions cannot be recognized in polynomial time.1 In a recent contribution [2],
Bérczi et al. investigate this problem. They give an incremental-polynomial time algorithm for
listing all the signatures of a k-CNF for fixed k, and show that for tractable CNF’s, signatures
can be enumerated with polynomial delay. On the other hand, they show that generating
maximal signatures is hard, while minimal signatures can be listed with polynomial delay,
regardless of the CNF under consideration. Their positive result relies on the equivalence
with maximal independent sets enumeration in graphs, known to be tractable [23]. As of
their hardness result, it relies on the fact that the existence of at least two solutions would
imply the non-satisfiability of the CNF at hand. Thus, the difficulty of the enumeration
heavily relies on the intractability of the satisfiability of CNF’s in general. This observation
naturally leads to the following open question, where by tractable CNF’s we mean families
of CNF’s for which the satisfiability of a formula φ in the family (as well as its sub-formulas)
can be decided in polynomial time.

▶ Question 1. Can the maximal signatures of tractable CNF’s be enumerated in total-
polynomial time?

Among tractable formulas, Horn and 2-CNF’s are two natural candidates for approaching
Question 1. These two cases however proved to be very challenging, and the question of their
tractability was explicitly stated as an open problem in the 2022’s edition of the Workshop
on Enumeration Problems and Applications (WEPA’22).

Another natural step toward answering Question 1 is to consider XOR-CNF formulas,
being conjunctions of clauses using the “exclusive-or” connective instead of the usual “or”
connective. XOR-clauses were revealed in Schaefer’s famous complexity classification as a
tractable case for deciding the satisfiability of a set of generalized clauses [21]. Interestingly,
XOR-clauses are the only ones that lead to a tractable case when it comes to counting
the number of satisfying assignments [11]. They subsequently appeared in many Schaefer-
like classifications for a variety of algorithmic tasks, including enumeration [10, 14]. The
success of XOR-clauses is due to their algebraic properties. Indeed, a set of such clauses
can be seen as a system of linear equations over the 2-element field. As a result, the sets

1 These problems thus lie outside of the class EnumP which is commonly studied in algorithmic enumeration;
see e.g. [22].
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of satisfying assignments of such subsets are affine subspaces, and they allow for algebraic
tools such as Gaussian elimination and matroid algorithms. Also in the special case of
2-XOR clauses, subsets of clauses can be interpreted as graphs with 0/1-labeled edges and
benefit from several efficient graph algorithms, e.g., for computing connected components or
identifying cycles [14]. This ability to capture XOR clauses using algebraic, matroid, and
graph concepts and methods provides efficient tools for analyzing their behavior with respect
to our enumeration problem.

Note that these formulas do not fall in the framework of CNF’s though. Indeed, rewritting
an XOR-CNF as a CNF may result in a blowup on the number of clauses and signatures, as
discussed in Section 2. Hence, we remark that the positive results from [2] do not directly
apply to XOR-CNF. Yet, we show that signatures enumeration remains tractable using
flashlight search as it is done in [2]. Namely, we prove the following.

▶ Theorem 1. The set of signatures of an XOR-CNF formula can be enumerated with
polynomial delay and polynomial space.

Concerning the enumeration of minimal signatures, we show that the problem is in fact
equivalent to the case of listing maximal signatures.

▶ Proposition 2. There is polynomial-delay and polynomial space algorithm listing all
minimal signatures of an XOR-CNF formula if and only if there is one listing all maximal
signatures of an XOR-CNF formula.

This leaves us with the study of maximal signatures enumeration for XOR-CNF’s. Quite
surprisingly, we prove this problem to relate well with other problems from graph theory and
matroid theory. Specifically, we show the case of 2-XOR-CNF to generalize maximal bipartite
subgraphs enumeration, a problem which was recently shown to admit a polynomial-delay
algorithm [6]. As of the general case of XOR-CNF’s, it can be seen as listing all maximal
satisfiable subsystems of a linear system of equations, which is related to the enumeration of
circuits passing through a given element in a matroid [4]; see also [18, 19]. Relying on these
results, we derive that maximal signatures enumeration for XOR-CNF’s is tractable. Namely,
we obtain the following.

▶ Theorem 3. There is an incremental-polynomial time algorithm generating the maximal
(or minimal) signatures of an XOR-CNF.

Concerning the case of 2-XOR-CNF, we show it to be even more tractable, that is, we
show that it can be solved with polynomial delay using proximity search.

▶ Theorem 4. There is a polynomial-delay algorithm generating the maximal (or minimal)
signatures of a 2-XOR-CNF.

To prove Theorem 4, we represent the input 2-XOR-CNF as an edge-bicolored multigraph
where each color codes the parity of the XOR clause. Then, the enumeration amounts to list
maximal bipartite subgraphs with additional constraints on colored edges.

A caveat of Theorems 3 and 4 is that a queue of solutions has to be maintained in the
generation. More precisely, in [4] the queue is needed to generate a new solution as the
algorithm uses the saturation technique where new solutions are derived from obtained ones.
In [6], the queue has the other purpose of preventing repetitions. In both cases, getting rid
of a potentially exponential space use is a natural enhancement one may seek. It should
however be noted that improving the algorithm from [4] to get polynomial space is open for
two decades now. As of improving Theorem 4 to use polynomial space, it would imply such
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a result for maximal bipartite subgraphs enumeration, another open question [6]. Toward
such directions, we prove that the folklore technique of flashlight search used to obtain
Theorem 1 may probably not be of great use as deciding whether a subsequence of clauses
can be extended into a signature is NP-complete.

Organization of the paper. In the next section we introduce the notions that will be used
in this paper and basic properties. However, due to the space constraint, the proofs of the
different statements provided in this extended abstract are omitted. The interested reader
may still find the arguments in the long version of the manuscript in appendix. The steps to
prove the equivalence between maximal and minimal signatures enumeration for XOR-CNF
and Theorem 1 are given in Section 3. The paths toward Theorems 3 and 4 are detailed in
Section 4. Future directions and the limitations of flashlight search toward an improvement
of Theorem 4 are finally discussed in Section 5.

2 Preliminaries

All the objects considered in this paper are finite. If V is a set, 2V is its powerset. Let
m ∈ N and let σ ∈ {0, 1}m be a binary sequence. We write σ[i] to denote the value of the ith

element of σ. It will be furthermore convenient to note 1(σ) the set of indices I ⊆ {1, . . . , m}
whose corresponding values in σ is 1; 0(σ) is defined analogously. The complementary of σ is
the binary sequence σ̄ obtained from σ by flipping all the bits, i.e., σ̄[i] = 1 + σ[i] (mod 2)
for 1 ≤ i ≤ m. If σ, τ ∈ {0, 1}m, we write σ ≤ τ if σ[i] ≤ τ [i] for all 1 ≤ i ≤ m. In other
words, ≤ corresponds to the bitwise order, and we write σ < τ if σ ≤ τ and σ ̸= τ .

Enumeration complexity. An enumeration algorithm aims at enumerating a set of solutions
of some problem, one after the other, with no repetition. We already have defined relevant
time complexities in the introduction. However, space is also an important consideration in
the analysis of enumeration algorithms. We assume that the solutions we produce are not
stored in memory but rather flashed and discarded. Thus, when measuring space we only
consider the space needed by the algorithm in order to conduct the enumeration, in terms
of the input size. We refer to [17, 22] for more details on the complexity of enumeration
algorithms.

Graphs. Given an undirected graph G, we write V (G) its set of vertices and E(G) its set
of edges. For convenience, we will write uv instead of {u, v} for edges of G. A graph G is
bipartite if there exists a bipartition V1, V2 of V (G) such that each edge of E(G) has one
endpoint in V1 and the other in V2. Equivalently, a graph G is bipartite if and only if it
does not contain any odd cycles. In this paper we will consider multigraphs as well, meaning
graphs with potentially several edges with the same endpoints, i.e., with E(G) = {e1, . . . , em}
a multiset. In this case and to avoid any ambiguity we will refer to the edges of G by their
label rather than their endpoints.

XOR-formulas. We assume basic familiarity with propositional logic. Let V = {x1, . . . , xn}
be a set of Boolean variables. A literal is a variable xi (positive literal) or its negation ¬xi

(negative literal). A clause C is a disjunction of literals. The size |C| of C is its number of
literals. We say that C is a k-clause if |C| ≤ k. A formula in conjunctive normal form (or a
CNF for short) φ is a conjunction of clauses, i.e., φ = C1 ∧ · · · ∧ Cm where Ci is a clause for
all 1 ≤ i ≤ m. It will be convenient to denote by V (φ) the variables of φ. The (total) size of
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φ is defined as
∑

1≤i≤m |Ci|. An assignment of the variables in V is a mapping a : V → {0, 1}.
Given an assignment a, we write Ci(a) = 1 (resp. Ci(a) = 0) if Ci evaluates to 1 (resp. 0)
under assignment a. The notations φ(a) = 1 and φ(a) = 0 are defined analogously. The
formula φ is satisfiable if there exists an assignment a of V (φ) such that φ(a) = 1; it is
unsatisfiable otherwise.

An XOR-clause is a clause in which the usual connective “or” is replaced by the “exclusive-
or” connective. It is well-known that any XOR-clause can be represented as a linear equation
x1 + · · · + xk = ε, ε ∈ {0, 1} over the two-elements field F2. In particular, the 2-XOR-clause
x1 + x2 = 0 (resp. x1 + x2 = 1) is satisfied if and only if x1 = x2 (resp. x1 ̸= x2). an XOR-
clause is odd (resp. even) if ε = 1 (resp. 0). Given an XOR-clause C = (x1 + · · · + xk = ε),
with ε ∈ {0, 1}, we put C̄ = (x1 + · · · + xk = 1 − ε) and call C̄ the negation of C. In
other words, the bar operator changes the parity of C. an XOR-CNF φ is a conjunction of
XOR-clauses. Equivalently, φ can be seen as a system of linear equations over F2. For an
XOR-CNF φ = C1 ∧ · · · ∧ Cm, we denote by φ̄ the XOR-CNF C̄1 ∧ · · · ∧ C̄m and call it the
inverse of φ. We recall that the satisfiability of an XOR-CNF can be tested in polynomial
time [8, Theorem 2.18].

Signatures. The next notations and terminology are borrowed from [2]. Let φ = C1∧· · ·∧Cm

be a CNF. We refer to the introduction for the definition of a signature, and shall say that an
assignment a of φ produces the signature σφ(a) = (C1(a), . . . , Cm(a)). We will further drop
the subscript φ from this notation when it is clear from the context. Note that in particular,
φ is satisfiable if and only if (1, . . . , 1) is a signature of φ. A signature σ of φ is minimal if it
is minimal with respect to ≤ among all signatures of φ, or in other words, if σ is a minimal
element of the partial order induced by ≤ on the set of all signatures. Similarly, we call
maximal a signature which is maximal for ≤ among signatures of φ.

In this paper we are interested in the problem of enumerating all (resp. minimal, maximal)
signatures of a given XOR-CNF. Observe that in these problems, and by the previous
discussions, we may indifferently consider φ as a set of XOR clauses or as a set of binary
equations over F2. A subset of simultaneously satisfiable clauses on one side corresponds to
a feasible subset of equations on the other side. In the rest of the paper, we will assume that
φ is in this latter form. In particular, when φ is seen as a system of linear equations over F2,
there is a one-to-one correspondence between maximal signatures of φ and maximal feasible
subsets of equations.

Another remark is that any XOR-CNF may be rewritten as a CNF, i.e., the ⊕ operator
may be rewritten using ∧ and ∨. For example, the XOR-clause x1 ̸= x2 can be rewritten
as (x1 ∨ x2) ∧ (x̄1 ∨ x̄2). We however note that we do not have a bijection between the
sets of signatures of the two formulas. Typically, generalizing the above example to disjoint
clauses will produce an XOR-CNF with one minimal signature while the equivalent CNF
has exponentially many such signatures. Though this does not rule out the existence of a
reduction between (maximal) signatures of XOR-CNF’s to (maximal) signatures of CNF’s it
should be noted that the status of maximal signatures enumeration is still open for 2-CNF’s,
a point that is discussed in Section 5. As of the case of all signatures, it admits a simple and
direct proof using flashlight search, as explained in Section 3.

We finally argue that duplicate clauses in φ may be ignored as far as the enumeration of
signatures is concerned. Indeed, having one of these clauses evaluated to 1 implies that each
of its copies is also evaluated to 1. Hence, we will assume without loss of generality that all
formulas are without duplicated clauses in the rest of the paper, i.e., that they are defined as
pairwise distinct XOR-clauses.

WADS 2025



19:6 On the Enumeration of Signatures of XOR-CNF’s

3 Signatures of XOR-CNF’s and their properties

We prove that testing whether a binary sequence is a signature (resp. minimal signature,
maximal signature) of an XOR-CNF can be done in polynomial time in the size of the CNF at
hand, and use it to show that listing all signatures of an XOR-CNF is tractable. For the rest
of the section, let us fix some XOR-CNF φ = C1 ∧ · · · ∧ Cm on variable set V = {x1, . . . , xn}.
A preliminary step is the following.

▶ Proposition 5. A sequence σ ∈ {0, 1}m is a signature of φ if and only if σ is a signature
of φ̄. In particular, σ is a minimal (resp. maximal) signature of φ if and only if σ is a
maximal (resp. minimal) signature of φ̄.

From Proposition 5 we already derive Proposition 2.
Given two disjoint subsets A, B ⊆ {1, . . . , m}, we define

φ(A, B) :=
(∧

i∈A

Ci

)
∧

∧
j∈B

C̄j


to be the formula obtained from φ by taking the clauses with index in A and the negation
of clauses with index in B. We furthermore set this formula to be defined on variable set
V (φ) even though some variables in V (φ) may not appear in any of the clauses of φ(A, B) –
we want this to ensure that assignments of φ(A, B) are well-defined for φ. Remark that the
size of φ(A, B) is at most that of φ, and that it is defined on precisely m clauses whenever
A, B is a bipartition of {1, . . . , m}. In the next proposition, we show that testing whether a
binary sequence is a signature of an XOR-CNF can be reduced to satisfiability testing.

▶ Proposition 6. A sequence σ ∈ {0, 1}m is a signature of φ if and only if the formula
φ(1(σ), 0(σ)) is satisfiable.

Note that signatures are neither closed by subset or superset, i.e., they may exist binary
words σ < τ < ρ such that σ, ρ are signatures but not τ . We nevertheless show that testing
the minimality (or maximality) of a signature can be done locally in polynomial time.

▶ Proposition 7. Deciding whether σ is a minimal (resp. maximal) signature of φ can be
done in polynomial time in the size of φ.

To conclude this section, we argue that enumerating all the signatures of an XOR-CNF
is tractable using the above properties and flashlight search. We recall that the main idea of
this technique is to conduct binary search over the space of solutions. In order for flashlight
search to run with polynomial delay and polynomial space, it is sufficient to solve the so-called
“extension problem” in polynomial time: given two disjoint subsets A, B of the ground set,
decide whether there exists a solution including A and avoiding B. We refer to e.g. [3,20] for
a more detailed description of this folklore technique.

In the case of XOR-CNF signatures, A will consist of indices of clauses to be satisfied
in the signature – the 1’s in the sequence – while B will consist of indices of clauses not
to be satisfied – the 0’s in the sequence. Then, it follows from the discussion above that φ

admits a signature σ satisfying σ[i] = 1 and σ[j] = 0 for all i ∈ A and j ∈ B if and only if
φ(A, B) is satisfiable. Indeed, a satisfying assignment a of φ(A, B) satisfies the clauses of
φ with index in A, and not those with index in B. Thus the signature of φ produced by a
meets the requirements. As for the converse direction, it follows directly from the definition
of a signature. We conclude by Proposition 7 that the extension problem can be solved in
polynomial time for XOR-CNF signatures, hence proving Theorem 1 that we recall here.
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▶ Theorem 1. The set of signatures of an XOR-CNF formula can be enumerated with
polynomial delay and polynomial space.

We point out that Theorem 1 is not a direct consequence of [2, Theorem 1]. Indeed, in
the latter theorem the authors consider families of tractable CNF’s which do not contain
XOR-CNF’s in general. The arguments, however, follow the same line.

4 Maximal signatures of XOR-CNF’s

We investigate the complexity of enumerating the maximal signatures of a given XOR-CNF.
More precisely, we prove the general case to be solvable in incremental-polynomial time by
a result of Boros et al. [4], and the 2-XOR-CNF case to be solvable with polynomial delay
using proximity search.

In Section 2 we have mentioned that the clauses of a given XOR-CNF φ may be seen as
linear equations x1 + · · · + xk = ε, ε ∈ {0, 1} over the two-elements field F2. Hence φ can be
seen as a system of linear equations whose maximal feasible subsystems correspond to its
maximal signatures. In [4], the authors present an incremental polynomial-time algorithm
for enumerating all circuits of a matroid containing an element, and more generally, one
for enumerating all maximal subsets not spanning an element. Using Farkas’ lemma (more
precisely the Fredholm alternative) we can derive an algorithm which, given an infeasible
system of linear equations, enumerates all its maximal feasible (or minimal infeasible)
subsystems within the same time; see also [18, 19] on the use of this characterization of
infeasible systems. This immediately yields Theorem 3.

We now focus on 2-XOR-CNF’s. Recall from Section 2 that we can consider these formulas
as a set of 2-clauses of the form x = y or x ̸= y for positive literals x, y only, together with a
set of 1-clauses (z) with z a positive or negative literal. Furthermore we may assume that no
clause is repeated in the formula, as far as signatures enumeration is concerned. We shall
call graphic a 2-XOR-CNF with clauses of the first type only – that is, without 1-clauses –
and will assume for now on that our XOR-CNF’s are graphic. Later, we will show how to
deal with 1-clauses with small modifications on the instance.

We start by defining an underlying multigraph structure of graphic 2-XOR-CNF that
will be convenient for applying the framework of proximity search. Given such an XOR-CNF
φ we define G(φ) (or simply G when it is clear from the context) as the edge-bicolored
multigraph defined on vertex set V (φ) and where there is a blue edge xy whenever x ̸= y is
a clause of φ, and a red edge xy whenever x = y is a clause of φ. A same pair of variables
x, y can produce both a red and a blue edge: this corresponds to having clauses x = y and
x ̸= y in φ which typically makes it unsatisfiable. However as no clause is repeated in φ,
no two edges of a same color share the same endpoints. In other words, our multigraph has
edge multiplicity at most two, and two edges between a same pair of endpoints means that
one is blue and the other is red; see Figure 1 for an example of such a multigraph. In the
following, we will label edges of G as e1, . . . , em so that the edge ej corresponds to the clause
Cj in φ. We denote by R(G) the set of red edges of G, and B(G) the set of its blue edges.
Observe that by definition, R(G) and B(G) define a bipartition of the edge multiset of G. In
other words, it is convenient to see R(G) and B(G) as partitioning the set of indices of the
edges e1, . . . , em of G. In the following, when noting E ⊆ F for two edge multisets of G, we
mean inclusion of the indices of their edges, that is, by E ⊆ F we mean I(E) ⊆ I(F ) for
I(F ) ⊆ {1, . . . , m} denoting the set of indices of the edges in F .

In the rest of the section, by subgraph of an edge-bicolored multigraph G we mean a
graph H with E(H) ⊆ E(G) and V (H) ⊆ V (G) where V (H) contains at least the vertices
involved in the edges of E(H). For convenience, we may as well refer to a subgraph by its
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19:8 On the Enumeration of Signatures of XOR-CNF’s

edge set, in which case we assume its vertex set to be the one induced by the endpoints of its
edges. Finally, given two disjoint subsets X, Y of a graph G, by δG(X, Y ) we mean the set
of edges having an endpoint in X and the other in Y , and may drop G from the subscript if
no ambiguity arises.

v5

v6

v7

v8
v4

v3
v2

v1

v0

Figure 1 An edge-bicolored multigraph G on nine vertices, with red edges denoted by thin red
lines and blue edges denoted by bold blue lines.

Note that an arbitrary (simple, uncolored) graph H is bipartite whenever it admits a
bipartition (X, Y ) of its vertex set with E(H) = δ(X, Y ). In the next lemma, we relate
the satisfiability of a graphic 2-XOR-CNF to a property of its underlying edge-bicolored
multigraph which generalizes bipartiteness. Observe that this property is only stated on blue
edges, which is still reasonable as blue and red edges partition the edges of the multigraph.

▶ Lemma 8. Let φ be a graphic 2-XOR-CNF. Then φ is satisfiable if and only if there is a
bipartition (X, Y ) of the vertex set of G(φ) such that B(G) = δ(X, Y ). Moreover, every such
bipartition corresponds to a model a of φ with X = a−1(1) and Y = a−1(0).

We derive the following analogue for signatures, where by maximal subgraph we refer to
edge inclusion.

▶ Lemma 9. Let φ be a graphic 2-XOR-CNF and σ ∈ {0, 1}m. Then σ is a maximal
signature of φ if and only if the subgraph H = {ej : ej ∈ E(G), σ[j] = 1} of G(φ) is a
maximal subgraph of G admitting a bipartition (X, Y ) such that δH(X, Y ) = B(H).

In the following, given an edge-bicolored multigraph G, we call red-blue bipartite any of its
subgraph H admitting a bipartition (X, Y ) of its vertex set such that δ(X, Y ) = B(H). In
Figure 2, we give an example of a maximal red-blue bipartite subgraph H of the multigraph
G of Figure 1. Note that red-blue bipartite subgraphs do not contain both a red edge and a
blue edge between a same pair of vertices, i.e., they define edge-bicolored graphs.

v5

v6

v7

v8
v4

v3
v2

v1

v0

H0

H1

Figure 2 A maximal (connected) red-blue bipartite subgraph H of the multigraph G defined in
Figure 1. The bipartition (H0, H1) of H is highlighted. The edges of G not in H are dotted.
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▶ Theorem 10. There is a polynomial-delay and polynomial-space algorithm enumerating
the maximal signatures of a graphic 2-XOR-CNF φ if and only if there is one listing the
maximal red-blue bipartite subgraphs of its underlying multigraph G(φ).

A consequence of Theorem 10 is that the enumeration of maximal signatures of a 2-XOR-
CNF only consisting of disequalities x ̸= y is equivalent to the enumeration of maximal
(edge) bipartite subgraphs of a given graph. Indeed in that case, R(G) is empty – hence G is
a graph – and we only require E(G) = δ(X, Y ). We derive the following using a recent result
by Conte and Uno [6] on maximal bipartite subgraphs enumeration by proximity search.

▶ Corollary 11. There is a polynomial-delay algorithm listing the maximal signatures of a
2-XOR-CNF consisting of disequalities x ̸= y only.

We end the section showing that the result from [6] can be extended into our context
using proximity search, and arguing how to capture clauses of size one.

In the following, we say that an edge-bicolored multigraph G is connected if its underlying
graph (where colors are ignored and multi-edges are considered as a single edge) is connected.
Note that we can assume without loss of generality that G(φ) is connected, as far as signatures
enumeration is concerned. Indeed, if it was not the case we could enumerate the signature of
each subformula of φ corresponding to connected components of G(φ) and combine the results
by doing their Cartesian product. Hence, we may further assume that G(φ) is connected,
and shall call connected a formula such that its underlying multigraph is. We first show
that if G is connected then its maximal red-blue bipartite subgraphs are as well, yielding a
canonical bipartition.

▶ Lemma 12. Let G be a connected edge-bicolored multigraph. Then any of its maximal
red-blue bipartite subgraphs is connected.

▶ Lemma 13. If G is a connected edge-bicolored red-blue bipartite graph then it admits a
unique bipartition (X, Y ) of its vertex set with B(G) = δ(X, Y ) and X containing the vertex
of smallest label in G.

Proximity search has been introduced in [7] as a special case of solution graph traversal in
which the proof that the solution graph is strongly connected relies on a notion of proximity
between solutions that is more involved than their intersection. More precisely, the proximity
between two solutions S, S∗ is defined as the length of the longest prefix of S∗ (according to a
carefully chosen ordering of its elements) that is subset of S, and needs not to be symmetric.
We refer to [6] for more details on the technique. In [6], the authors extract the necessary
conditions that make an enumeration problem “proximity searchable” and thus to be solvable
with polynomial delay. We restate these conditions here in the context of XOR-CNF for
self-containment and better readability.

In the reformulation below, let G be an edge-bicolored multigraph and H(G) denote the
set of maximal (connected) red-blue bipartite subgraphs of G we shall call maximal solutions.
We further call solutions the connected red-blue bipartite subgraphs of G.

▶ Theorem 14 (Reformulation of [6, Definition 4.2 and Theorem 4.3]). For each H ∈ H(G),
let µ(H) denote an ordering of the edges in H and, for arbitrary H, H∗ ∈ H(G), let H ∩̃ H∗

denote the elements in the longest prefix of µ(H∗) that is a subset of H. Then, there is a
polynomial-delay algorithm enumerating H(G) whenever:
1. For any H ∈ H(G), any prefix of µ(H) is a solution;
2. There is a polynomial-time computable function COMP, which given a solution H ′ produces

H = COMP(H ′) a maximal solution such that H ⊇ H ′; and
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3. Given H ∈ H(G) and e ∈ E(G) \ E(H) there is a family K ⊆ 2E(H) of sets called
removables such that:

the family K can be computed in polynomial time;
for any K ∈ K, H \ K ∪ {e} is a solution; and
for any H∗ ∈ H(G), if e is the minimal element of µ(H∗) not in H, then there exists
K ∈ K with (H ∩̃ H∗) ∩ K = ∅.

The rest of the section is dedicated to proving that the conditions of Theorem 14 are
fulfilled for well-chosen µ and set K. The fact that COMP can be computed in polynomial
time follows from the fact that the red-blue bipartiteness is a hereditary property which can
be tested in polynomial time, hence that we can greedily obtain a maximal solution.

We start with the definition of µ. Given a maximal red-blue bipartite graph H of G

we denote by (H0, H1) the unique bipartition given by Lemma 13 where H0 is the side
containing the vertex v0 of smallest index in G. Consider a BFS ordering of the vertices
of G initiated at v0: we start with v0 which is unmarked, and at each step, we iteratively
consider unmarked vertices ordered so far, and, in order, we mark them and append the
unmarked vertices of their neighborhoods in ascending order of their label. Clearly, each
prefix of such an ordering defines a connected (vertex) induced subgraph. We define µ(H)
as the increasing ordering of the edges of H with respect to their endpoint occurring later
in the BFS ordering launched at v0, and break the tie by increasing order of their earlier
endpoint in the BFS; see Figure 3 for an example of such an edge-ordering. This choice of
an edge-ordering of a maximal solution yields the following property which will be crucial
in the rest of the proof, and from which, intuitively, we will obtain that pairs of solutions
H, H∗ must agree on their respective bipartition of the elements in H ∩̃ H∗.

v5 v6v7v8v4v3 v2v1v0

Figure 3 A BFS on the maximal red-blue bipartite subgraph H of G (Figure 2) will give the
following order on the vertices: v0, v1, v3, v4, v2, v5, v8, v7, v6. The order of the edges of H it produces
is µ(H) = v0v1, v0v3, v0v4, v3v4, v1v2, v1v5, v2v5, v1v8, v3v7, v8v6, v7v6.

▶ Observation 15. If H ∈ H(G) then any prefix of µ(H) is a connected red-blue bipartite
subgraph of G and the first edge in this ordering is incident to v0.

Let us now consider arbitrary H, H∗ ∈ H(G) and put H ′ := H ∩̃ H∗ as defined in
Theorem 14. Note that if H ′ is empty then the trivial removable K = E(G) satisfies the
above conditions. Hence we may assume for convenience (in the rest of the analysis) that
|H ∩̃ H∗| ̸= 0, while it will appear clear later that this assumption is in fact not needed. By
Observation 15 since the first edge in µ(H∗) belongs to both H ′, H and H∗ we derive that
v0 belongs to all three graphs. Again by Observation 15, H ′ is a connected red-blue bipartite
subgraph of G. Thus by Lemma 13 it admits a unique bipartition (H ′

0, H ′
1) with blue edges

lying between H ′
0 and H ′

1, and such that v0 ∈ H ′
0. Now since H and H∗ contain H ′ they

must agree with that bipartition, meaning that H ′
0 ⊆ H0 ∩ H∗

0 and H ′
1 ⊆ H1 ∩ H∗

1 , where
(H∗

0 , H∗
1 ) denote the unique bipartition of H∗ such that v0 ∈ H∗

0 as provided by Lemma 13.
In the following, for each edge e = ab in E(G) \ E(H), we use the edges incident to the
vertices of e to build the removables. More precisely, we define K1 := {av : av ∈ E(G)} and
K2 := {bv : bv ∈ E(G)} to be the two removables of (H, e) and argue that K := {K1, K2}
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meets the requirements of the theorem. We stress the fact that in K1 or K2 we may find
edges lying in both H and H∗, which is not a problem; rather, we will argue that, when
choosing e as the minimal element of µ(H∗) not in H, one of K1 or K2 will be disjoint from
H ∩̃ H∗, hence that K defines a valid set of removables.

Consider the first edge e = ab in µ(H∗) that is not an edge of H. We distinguish two
symmetric cases depending on whether e is red or blue, and only detail the blue case here.
This situation is depicted in Figure 4.

We assume without loss of generality that the endpoint a belongs to H∗
0 and that the

other endpoint b lies in H∗
1 . Recall that e ̸∈ H. Since H is maximal, it is connected by

Lemma 12, so that a, b lie in V (H). Hence since e is blue, either the two endpoints a, b belong
to H0, or they both belong to H1. Two symmetric cases arise. Let us assume {a, b} ⊆ H0,
as depicted in Figure 4. Note that in H∗ we have no blue edge between b and H ′

1, and no
red edge between b and H ′

0. In H this is the opposite: we have no blue edge between b and
H ′

0, and no red edge between b and H ′
1. Now as E(H ′) ⊆ E(H∗) ∩ E(H) we conclude that b

is not incident to blue or red edges in H ′, that is, E(H ′) ∩ K2 = ∅. This concludes the case
and the other situation of {a, b} ⊆ H1 yields the symmetric situation of E(H ′) ∩ K1 = ∅ by
the same arguments. The other situation of e being red follows the exact same arguments,
swapping red for blue. Hence, for one of K1 or K2 we have that (H ∩̃ H∗) ∩ K = ∅, as
required by the last condition of Theorem 14.

H0

H1

H∗
0

H∗
1

H ′
0

H ′
1

a

b

Figure 4 The situation occurring when considering two solutions H, H∗ in Theorem 14 with
H ′ = H ∩̃ H∗: H ′

0 ⊆ H0 ∩ H∗
0 , H ′

1 ⊆ H1 ∩ H∗
1 and the blue edge ab of H∗ satisfies E(H ′) ∩ K2 = ∅

where K2 := {bv : bv ∈ E(G)}.

We finish the proof observing that the graphic conditions of 2-XOR-CNF’s can be relaxed.
As a preliminary step, note that 1-clauses containing variables that do not appear in 2-clauses
can be removed from the instance as they will be set to true in any maximal signature.
Thus we may assume that φ does not contain such isolated 1-clauses. We code every other
1-clauses (x) and (y) – which can also be seen as clauses x = 1 and y = 0 – by a blue edge
xu and a red edge yu in the edge-bicolored multigraph G we have defined above, for some
special additional vertex u that will be connecting all such 1-clauses. Note that G stays
connected by the above assumption that φ has no isolated 1-clause. Then we set u to be the
vertex of smallest label in G, followed by v0. Then by the definition of µ(H) the vertex u will
be placed in H0 which can be seen as forcing the gadget to false, satisfying the clause y = 0
if the red edge uy is selected, and satisfying the clause x = 1 if the blue edge ux is selected.
We conclude with Theorem 4 as a consequence of Theorem 14 and the above discussion.
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5 Discussions

In this work we have showed that enumerating all (resp. minimal, maximal) signatures of an
XOR-CNF formula is tractable, namely, Theorems 1, 3 and 4. Observe that the algorithm of
Theorem 3 runs in incremental-polynomial time while the other two run with polynomial
delay. Hence it is natural to ask whether Theorem 3 can be improved to polynomial delay.

▶ Question 2. Can the maximal signatures of an XOR-CNF be listed with polynomial delay?

The algorithm by Boros et al. [4] underlying Theorem 3 relies on the enumeration of the
circuits of a matroid, for which the same question seems open since two decades. Hence,
answering Question 2 would either require new techniques, or would need to answer the
open question from [4] in the Boolean case. A natural first step is to handle the case of
k-XOR-CNF’s for fixed values of k ≥ 3.

Furthermore, except for Theorems 1 and 3 that run with polynomial space, the algorithm
of Theorem 4 requires a space that is potentially exponential as solutions must be stored
into a queue. A natural question is the following.

▶ Question 3. Can the maximal signatures of a 2-XOR-CNF be generated with polynomial
delay and polynomial space?

We however stress the fact that a positive answer to Question 3 would improve the
algorithm by Conte et al. for maximal bipartite subgraphs enumeration for which the
questions of achieving polynomial delay and space is open [6].

Toward this direction, we now argue that flashlight search may not be adapted in order to
give a positive answer to Question 3, as the extension problem is hard in that case. Moreover,
this result even holds when restricted to 2-XOR-CNF’s consisting of disequalities, that is,
in the context of maximal bipartite subgraph enumeration, which may be of independent
interest.

▶ Theorem 16. The problem of deciding, given a graph G and two disjoint edge sets
A, B ⊆ E(G), whether there exists a maximal bipartite (edge) subgraph H of G such that
A ⊆ E(H) and B ∩ E(H) = ∅ is NP-complete.

Concerning prospective research directions, let us restate here the implicit question
from [2] that motivated this work, which additionally was posed at the WEPA’19 open
problem session, and that is still open to date. Recall that a family of CNF’s is tractable if
there exists a polynomial-time algorithm to decide the satisfiability of any formula (and its
subformulas) in the family.

▶ Question 1. Can the maximal signatures of tractable CNF’s be enumerated in total-
polynomial time?

Natural examples of tractable CNF’s include 2-CNF’s and Horn CNF’s for which, to the
best of our knowledge, no progress has been made. Toward this direction, the case of Horn
2-CNF also seems open.

Another question left open by the work of Bérczi et al. deals with the dimension of
the formula, defined as the maximum size of a clause it contains. Namely, the algorithm
of [2, Theorem 4] only performs in incremental-polynomial time for fixed dimension, and it
is open whether the same result can be obtained for formulas of arbitrary dimension.

Finally, another promising direction is the parameterized study of signatures enumeration.
More particularly, it can be seen that the algorithm of [2, Theorem 4] is XP-incremental
parameterized by the dimension k, that is, it generates the ith solution in time (∥φ∥ + i)f(k)
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for some computable function f . It would be interesting to know whether this algorithm
can be improved to run with FPT-delay, that is, to run with f(k) · ∥φ∥O(1) delay; see
e.g. [1, 12, 13, 15, 16] for more details on the parameterized aspects of enumeration problems.
A preliminary step in that direction would be to get such running times for a double
parameterization. Among parameters, the maximum occurrence ω of a variable in the
formula is natural. This parameter is relevant as in [2, Theorem 3] the authors give a simpler
algorithm for signatures enumeration when both k and ω are bounded. Improving this
XP-incremental algorithm into one that run with FPT-delay parameterized by k plus ω seems
open.
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