
Routing Few Robots in a Crowded Network
Argyrios Deligkas #

Department of Computer Science, Royal Holloway, University of London, Egham, UK

Eduard Eiben #

Department of Computer Science, Royal Holloway, University of London, Egham, UK

Robert Ganian #

Algorithms and Complexity Group, TU Wien, Austria

Iyad Kanj #

School of Computing, DePaul University, Chicago, IL, USA

Dominik Leko #

Algorithms and Complexity Group, TU Wien, IL, Austria

M. S. Ramanujan #

Department of Computer Science, University of Warwick, UK

Abstract
In Graph Coordinated Motion Planning, we are given a graph G some of whose vertices are
occupied by robots, and we are asked to route k marked robots to their destinations while avoiding
collisions and without exceeding a given budget ℓ on the number of robot moves. We continue the
recent investigation of the problem [ICALP 2024], focusing on the parameter k that captures the
task of routing a small number of robots in a possibly crowded graph. We prove that the problem
is W[1]-hard parameterized by ℓ even for k = 1, but fixed-parameter tractable parameterized by k

plus the treedepth of G. We complement the latter algorithm with an NP-hardness reduction which
shows that both parameters are necessary to achieve tractability.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases graph coordinated motion planning, parameterized complexity, treedepth

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.20

Funding Argyrios Deligkas: UKRI EPSRC grant EP/X039862/1.
Robert Ganian: Projects No. 10.55776/Y1329 and 10.55776/COE12 of the Austrian Science Fund
(FWF), Project No. ICT22-029 of the Vienna Science Foundation (WWTF).
Iyad Kanj: DePaul URC Grants 606601 and 350130.
M. S. Ramanujan: Engineering and Physical Sciences Research Council (EPSRC) grant EP/V044621/1.

1 Introduction

In many diverse settings, we are faced with the task of efficiently routing a set of marked
robots through an environment while avoiding collisions (both between the marked robots
themselves and with other robots that may be present). While the meaning of “efficient” is
context-dependent, the two most-studied efficiency measures are the makespan (optimizing
the amount of time) and the energy (optimizing the total amount of movement). In this
article, we investigate the latter measure and consider the graph-theoretic setting studied
in previous works [7, 8, 13,14,16,17,26]. More specifically, our article employs the problem
definition from the recent ICALP paper on the topic [7]1:

1 See also the discussion of related work at the end of this section and the formal definitions in Section 2.

© Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, Dominik Leko, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Argyrios.Deligkas@rhul.ac.uk
https://orcid.org/0000-0002-6513-6748
mailto:eduard.eiben@rhul.ac.uk
https://orcid.org/0000-0003-2628-3435
mailto:rganian@gmail.com
https://orcid.org/0000-0002-7762-8045
mailto:ikanj@cdm.depaul.edu
https://orcid.org/0000-0003-1698-8829
mailto:dominik.leko3@gmail.com
mailto:R.Maadapuzhi-Sridharan@warwick.ac.uk
https://orcid.org/0000-0002-2116-6048
https://doi.org/10.4230/LIPIcs.WADS.2025.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

20:2 Routing Few Robots in a Crowded Network

Input: A tuple (G, R = (M, F), ℓ), where G is a graph, R = {Ri | i ∈ N} is a set
of robots partitioned into sets M and F , where each robot in M is given
as a pair of vertices (si, ti) and each robot in F as a single vertex si, and a
budget ℓ ∈ N.

Problem: Is there a schedule for R of total traveled length at most ℓ?

Graph Coordinated Motion Planning (GCMP)

Intuitively, each marked robot Ri ∈ M is provided with an origin si and a destination ti,
while the free robots in F only have origins but no destinations; these typically represent
movable obstacles or robots without specified destinations. At each time step, we can move
one2 robot from its current position to a neighboring unoccupied vertex, and a schedule is a
sequence of moves that delivers all marked robots to their destinations.

While GCMP is in NP [7, 32], it remains NP-hard when restricted to the instances where
|M| = 1 (which we call GCMP1) [26], or where |V (G)| = |R| + 1 (which generalizes the
(n2 − 1)-puzzle) [9,27]. The authors of the preceding work [7] investigated the parameterized
complexity of GCMP with respect to the two most natural parameterizations of the problem:
the total number |R| of robots and the budget ℓ. In particular, they showed that:
1. GCMP1 is fixed-parameter tractable w.r.t. |R|;
2. GCMP is fixed-parameter tractable w.r.t. |R| plus the treewidth of G; and
3. GCMP w.r.t. ℓ is W[1]-hard (and also in XP due to a trivial brute-force algorithm), but

becomes fixed-parameter tractable when the input graphs have bounded local treewidth.

In this article, we take a refined look at the problem’s parameterized complexity by
considering the number k = |M| of marked robots as the parameter. We believe this
perspective to be natural, as it better captures the setting where we need to navigate a small
number of marked robots through a congested environment that may contain a large number
of movable obstacles or other free robots. Given the NP-hardness of GCMP1, we cannot
hope for tractability when parameterizing by k alone. Our primary goal is to understand
which additional restrictions (more specifically parameterizations) allow us to solve instances
of GCMP with possibly many robots, but only few marked robots.

Contributions. A natural first question in this line of enquiry is whether GCMP is fixed-
parameter tractable w.r.t. k + ℓ. We note that the reduction underlying the aforementioned
W[1]-hardness result for GCMP [7, Theorem 4] requires a large number of marked robots
and completely breaks if we attempt to restrict |M|. Nevertheless, as our first result, we
provide a new, multi-layered reduction which strengthens the previous lower bound:

▶ Theorem 1. GCMP1 is W[1]-hard when parameterized by ℓ.

Intuitively, Theorem 1 can be seen as ruling out a uniformly polynomial algorithm for
routing a single robot even if the budget is bounded by a constant.

The alternative to restricting ℓ is to aim for tractability by combining k with natural
graph-structural restrictions; this is the approach which yielded the bulk of the algorithmic
contributions in several recent articles on the problem and its variants [7,8,13,14,16,17]. Given
the prominence of the graph parameter treewidth, a first question that arises here concerns
the complexity of GCMP when parameterized by k plus the treewidth of G. Unfortunately,

2 When minimizing energy, the considered serial motion model is equivalent to the parallel one without
cyclical moves.

A. Deligkas, E. Eiben, R. Ganian, I. Kanj, D. Leko, and M. S. Ramanujan 20:3

progress here seems difficult: the polynomial-time algorithm for GCMP1 on trees is highly
non-trivial [26], and whether this result can be lifted to routing two marked robots on trees is
a long-standing open question in the field. In other words, even an XP-algorithm for GCMP
parameterized by k in the special case of treewidth 1 would be a breakthrough.

Instead, here we propose using a stronger restriction on G –notably, its treedepth. Like
treewidth, treedepth is a fundamental graph parameter that has close connections to the theory
of sparsity [25] and has found applications as a parameter in a number of settings, ranging
from space-efficient algorithms [24] through integer programming [20], model checking [19]
and graph drawing [1, 3]. As our main algorithmic contribution, we prove:

▶ Theorem 2. GCMP is fixed-parameter tractable when parameterized by the number
k = |M| of marked robots plus the treedepth of the input graph.

The proof of Theorem 2 is non-trivial and does not directly follow from any of the
previously developed techniques for treedepth-based algorithms on their own. For the proof,
we partition instances of interest into three groups and provide different fixed-parameter
algorithms for each of the three groups:
1. Instances where the number |V (G)|−|R| of free vertices is small. Here, our main

contribution is a structural result showing that every YES-instance admits a schedule
whose length is bounded by a function of the combination of k, the treedepth and the
number of free vertices. Towards this, we show that such an instance has an optimal
schedule in which at least one robot never moves from its initial position and moreover,
such an “irrelevant” robot can be computed in FPT-time. We then show how this fact
can be used to design a reduction rule that ultimately produces a graph of bounded size
without affecting the solution size.

2. Instances where ℓ is small.3 This is by far the simplest case, as it follows by directly
adapting the previous algorithm for GCMP parameterized by ℓ on graphs of bounded
local treewidth [7, Theorem 5].

3. Instances where both ℓ and the number |V (G)| − |R| of free vertices are large.
This case is handled by providing a constructive procedure which correctly solves every
instance of GCMP. The challenge here lies in the fact that if we do not outright reject
the instance, then our procedure must terminate within at most ℓ steps on all graphs
of bounded treedepth, including those where the walks used by the marked robots may
overlap in complicated ways.

At this point, it is natural to ask whether Theorem 2 is tight in the sense of requiring
both treedepth and k to achieve tractability. On one hand, one can exclude fixed-parameter
algorithms, as well as XP-algorithms, for GCMP w.r.t. k alone due to the known NP-hardness
of GCMP1. However, none of the existing lower bounds rule out such algorithms when
parameterized by treedepth alone. As our final result, we close this gap by establishing:

▶ Theorem 3. GCMP is NP-hard even when restricted to planar graphs with treedepth at
most nine.

Theorem 3 implies that neither of the two parameters in our main algorithmic result can
be dropped, and is obtained via a reduction from 3D-Matching that is entirely different
from the one in Theorem 1 and complements other known lower bounds for coordinated
motion planning on treelike graphs [16,17].

3 To provide intuition, we use “small” and “large” to indicate whether or not a value is upper-bounded by
a specific function of the parameter.

WADS 2025

20:4 Routing Few Robots in a Crowded Network

Further Related Work. Coordinated motion planning problems – sometimes also called
multirobot pathfinding or robot routing problems – have been extensively studied by several
research communities, including computational geometry [2,21,31] and artificial intelligence [4,
22,29,30]. The energy-minimization variant of the problem (i.e., the one considered in this
article) also featured in the Third Computational Geometry Challenge at SoCG 2021 [15].

While the classical complexity of several variants of coordinated motion planning was
settled already in the ’90s [26], there has been a recent concentrated effort to obtain a deeper
understanding of these problems via the lens of parameterized complexity. Apart from the
previously mentioned work on GCMP [7], recent advances include a parameterized study of
the setting with fast robots [14], fixed-parameter algorithms on solid grids [13], parameterized
lower bounds for tree-like and other well-structured graphs [16, 17] and fixed-parameter
approximation algorithms on trees [8]. We remark that the latter three articles primarily
consider the task of makespan minimization in the parallel motion setting, which exhibits
different complexity-theoretic behavior than the energy minimization setting targeted in our
work. For instance, determining the existence of a schedule of constant makespan is NP-hard
even when restricted to solid grid graphs [13], but schedules involving constant energy can
be computed in polynomial time (and this can even be lifted to fixed-parameter tractability
on graph classes of bounded local treewidth [7, Theorem 5]).

2 Preliminaries

All graphs considered in this paper are undirected and simple. We assume familiarity with
standard graph-theoretic concepts and terminology [10] as well as with basic notions in
parameterized complexity, including fixed-parameter tractability and W[1]-hardness [6, 11, 18].
For a subgraph H of a graph G and two vertices u, v ∈ V (H), we denote by distH(u, v) the
length of a shortest path in H between u and v. For n ∈ N, we let [n] and [n]0 denote the
sets {1, . . . , n} and {0, . . . , n}, respectively.

Treewidth and Treedepth. Treewidth is a fundamental graph parameter which can be seen
as a measure of how similar a graph is to a tree; trees have treewidth 1, while the complete
n-vertex graph has treewidth n − 1. A formal definition of treewidth will not be necessary to
obtain our results; however, we will make use of Courcelle’s Theorem [5], which essentially
says that problems expressible in a certain fragment of logic can be solved efficiently on
graphs of bounded treewidth. Hence, we proceed by defining our other parameter of interest.

▶ Definition 4 (Forest embedding and treedepth). A forest embedding of a graph G is a pair
(F, f), where F is a rooted forest and f : V (G) → V (F) is a bijective function, such that for
each {u, v} ∈ E(G), either f(u) is a descendant of f(v), or f(v) is a descendant of f(u). The
depth of the forest embedding is the number of vertices in the longest root-to-leaf path in F .
The treedepth of a graph G, denoted by td(G), is the minimum over the depths of all possible
forest embeddings of G. When G is connected, F is a tree and we call it a tree embedding.

Below, we state three facts about treedepth which will be useful for our considerations.

▶ Proposition 5 ([25]). The treewidth of a graph G is at most its treedepth.

▶ Proposition 6 ([25]). For a graph G and any vertex v ∈ V (G), it holds that td(G) ≤
1 + maxi∈[p] td(Gi), where G1, . . . , Gp are the connected components of G − v.

▶ Proposition 7 ([25]). For a graph G, the maximum distance between any two vertices in
G is at most 2td(G).

A. Deligkas, E. Eiben, R. Ganian, I. Kanj, D. Leko, and M. S. Ramanujan 20:5

Problem Definition. In our problems of interest, we are given an undirected graph G and a
set R = {R1, R2, . . . , Rk} of k robots where R is partitioned into two sets M and F . Each
Ri ∈ M, has a starting vertex si and a destination vertex ti in V (G) and each Ri ∈ F
is associated only with a starting vertex si ∈ V (G). We refer to the elements in the set
{si | i ∈ [k]} ∪ {ti | Ri ∈ M} as terminals. The set M contains robots that have specific
destinations they must reach, whereas F is the set of remaining “free” robots. We assume
that all the si’s are pairwise distinct and that all the ti’s are pairwise distinct. A vertex
v ∈ V (G) is free at time step x ∈ [0, t] if no robot is located at v at time step x; otherwise, v

is occupied. We use a discrete time frame [0, t], t ∈ N, to reference the sequence of moves of
the robots and in each time step x ∈ [0, t], exactly one robot moves from its current vertex
to an adjacent free vertex.

A route for robot Ri is a tuple Wi = (u0, . . . , ut) of vertices in G such that (i) u0 = si

and ut = ti if Ri ∈ M and (ii) ∀j ∈ [t], either uj−1 = uj or uj−1uj ∈ E(G). Put simply,
Wi corresponds to a “walk” in G, with the exception that consecutive vertices in Wi may
be identical (representing waiting time steps), in which Ri begins at its starting vertex at
time step 0, and if Ri ∈ M then Ri reaches its destination vertex at time step t. Two
routes Wi = (u0, . . . , ut) and Wj = (v0, . . . , vt), where i ≠ j ∈ [k], are non-conflicting if
∀r ∈ {0, . . . , t}, ur ≠ vr. Otherwise, we say that Wi and Wj conflict. Intuitively, two routes
conflict if the corresponding robots are at the same vertex at the end of a time step.

A schedule S for R is a set of pairwise non-conflicting routes Wi, i ∈ [k], during a time
interval [0, t] such that at every time step x ∈ [0, t − 1], exactly one robot moves; i.e., there
is i ∈ [k] with route Wi = (u0, . . . , ut) such that ux+1 ̸= ux and for every other robot
j ∈ [k] \ {i} with route Wj = (v0, . . . , vt), it holds vx+1 = vx. The (traveled) length of a route
(or its associated robot) within S is the number of time steps j such that uj ̸= uj+1. The
total traveled length of a schedule is the sum of the lengths of its routes; this value is often
called the energy in the literature (e.g., see [15]).

We denote by GCMP1 the restriction of GCMP to instances where |M| = 1. We remark
that even though GCMP is stated as as a decision problem, all the algorithms provided in
this paper are constructive and can output a corresponding schedule (when it exists).

3 The Hardness Results

In this section, we establish our lower bounds. We start by excluding algorithms for GCMP
parameterized by treedepth alone:

▶ Theorem 3. GCMP is NP-hard even when restricted to planar graphs with treedepth at
most nine.

Next, we will prove that GCMP is W[1]-hard when parameterized by the energy ℓ even
when we have only one marked robot, i.e., GCMP1. Hence, our results show that in order to
derive any positive results it is necessary to combine the structural parameters of the graph
and the number of marked robots.

To prove the W[1]-hardness for GCMP1, we provide a parameterized reduction from the
W[1]-complete problem Multicolored Clique (MCC) parameterized by the number k of
colors. We describe the reduction here.

▶ Theorem 1. GCMP1 is W[1]-hard when parameterized by ℓ.

WADS 2025

20:6 Routing Few Robots in a Crowded Network

Towards a proof for Theorem 1, we construct an instance I of GCMP1 given
an instance I ′ of MCC. Let I ′ consist of G′ = (V ′, E′) and a partitioning (W1 =
{w1,1, . . . , w1,|W1|}, . . . , Wk = {wk,1, . . . , wk,|Wk|}) of V ′ into k disjoint subsets. From this
we construct an instance I = (G, R = ({(s1, t1)}, F), ℓ) of GCMP1 that is a YES-instance if
and only if there is a clique of size k in G′. Furthermore, ℓ is bounded by a function of k.

The main idea of the construction is to force R1, the only robot with a destination, to
gradually choose k “lanes” to traverse on his path from s1 to t1. Every lane corresponds
to exactly one vertex in V ′. The construction and the precise selection of the budget force
(i) the robot to choose exactly one lane (and thus vertex) of each color and (ii) the existence
of an edge between any two vertices corresponding to chosen lanes. The combination of
(i) and (ii) implies a k-clique in G′. For an intuitive understanding of the reduction, see
Figures 1a and 2 which illustrate the full construction through a simple example.

For the remainder of this section, we call a path empty (resp. full) if it consists solely of
free (resp. occupied) vertices. We say we connect two disjoint sets of vertices V1 and V2 with
a full (or empty) path of length n, if we create a new path P = (p1, . . . , pn) and connect
(with an edge) p1 to the vertices in V1 and connect pn to the vertices in V2. The sets V1
and V2 are the endpoints of P . If an endpoint Vi is a singleton {v∗

i }, we may directly refer
to v∗

i as the endpoint instead. We proceed with a formalization of the gadgets used in the
reduction.

Decision Component. Intuitively, the decision component GD is the part of the construction
where R1 will choose the aforementioned lanes, and it is depicted in reference to Figure 1b.
Let a lane be a full path of length k − 1. For each color Wm, the component GD contains an
induced subgraph called a layer consisting of |Wm| many vertex-disjoint lanes – one for each
vertex in Wm.

The reason each lane has length precisely k − 1 is that each vertex on it will be used to
check adjacency between the vertex it represents in G′ and a chosen vertex in one of the
remaining k − 1 colors. To facilitate this intuition, we use the following indexing for the
individual vertices over the layers and lanes. Refer to Figure 1b for visual aid. For m, n ∈ [k]
with m ̸= n and j ∈ [|Wm|], we define vm,j,n as follows:

if m < n, then vm,j,n is the (n − 1)-st vertex in the j-th lane of the m-th layer, and
if m > n, then vm,j,n is the n-th vertex in the j-th lane of the m-th layer.

Connect s1 to each {v1,j,2 | j ∈ [|W1|]} with an edge. For m ∈ [k − 1], connect {vm,j,k | j ∈
[|Wm|]} and {vm+1,j,1 | j ∈ [|Wm+1|]} with an empty path Qm = qm,1, . . . , qm,k6 of length k6.
Q = G[{Qm | m ∈ [k − 1]}] are the tiny separators. Let Lm = G[{vm,j,n | n ∈ [k] \ {m}, j ∈
|Wm|}] be the m-th layer and let L = G[Lm | m ∈ [k]] be the graph induced on all lanes of
all layers. We add two more sets of paths, the clear paths and the return paths.

Create for every 1 ≤ m < n ≤ k a free vertex cm,n. Then connect {cm,n} to {vm,j,n | j ∈
|Wm|} with a full path Cm,n of length k5 − 1. The set of all Cm,n constitutes the clear paths.
We define C = {{cm,n} ∪ Cm,n|1 ≤ m < n ≤ k}.

For every edge (w′
m,j1

, w′
n,j2

) ∈ E′ with m < n, connect {vm,j1,n} and {vn,j2,m} with a full
path Tm,j1,n,j2 of length k4(n − m) − 1. The set T = G[{Tm,j1,n,j2 | (w′

m,j1
, w′

n,j2
) ∈ E′, m <

n}] constitutes the return paths. Let the decision component be GD = G[L ∪ Q ∪ C ∪ T].

Separator Component. The separator component GS is an empty path (x, b2, . . . , bk20−1, y)
of length k20. The first vertex x is connected to all vertices in {vk,j,k−1 | j ∈ [|Wk|]}. We
further partition GS into GS,1 = G[{x, b2, . . . , bk8}] and GS,2 = G[{bk8+1, . . . , bk20−1, y}].

A. Deligkas, E. Eiben, R. Ganian, I. Kanj, D. Leko, and M. S. Ramanujan 20:7

C1
C2 C3

C4

(a) The MCC in-
stance from which
to reduce.

s1 x

3 ∗ k4 − 1

2 ∗ k4 − 1

k6 k6 k6

k5 − 1

c1,2 c1,3 c1,4

v1,3,2
v1,3,3

v1,3,4

(b) The decision component GD plus s1 plus the first vertex of the separator
component x. The clear paths are green and the return paths are blue. Filled
(resp. unfilled) vertices are occupied (resp. free) and dot dashed lines signify
full paths.

Figure 1 An instance of MCC and the decision component for that instance.

s1

t1
k11 − 1

x y
k8

k20

Figure 2 The full construction for the previous MCC-instance. L and Q are black, C is green, T

is blue, GS is orange and GT is turquoise. All other edges are black. Filled (resp. unfilled) vertices
are occupied (resp. free), dot dashed lines signify full paths and the dotted edges in GT signify that
those edges are each subdivided k8 times.

Test Component. Connect {y} and {t1} with a full path P of length k6(k−1)+
(

k
2
)

+k8 +1.
Connect vertices in P with vertices in GD and GS,1 with full paths consisting of k11 − 1
vertices, the so-called test paths. To define how the test paths are connected to the remainder
of the graph, partition P into the following sequence of consecutive subpaths: P0, P1, P ′

1,
P2, P ′

2, . . . , P ′
k−1, Pk, P ∗

k .

1. P0 consists of a single vertex and is connected to {s1} with a test path.

2. For each m ∈ [k], we set |Pm| = m − 1 (hence P1 is empty and only listed for uniformity)
and let Pm = p1, . . . , pm−1. For n ∈ [m − 1], connect {vm,j,n | j ∈ [|Wm|]} and {pn} with
a test path.

3. For each m ∈ [k − 1], we set |P ′
m| = k6 and let P ′

m = pm,1, . . . , pm,k6 . For each i ∈ [k6],
we connect {pmi

} and {qm,i} with a test path.

4. We set |P ∗
k | = k8 and let P ∗

k = p1, . . . , pk8 . Connect {p1} and {x} with a test path. Then
for i ∈ {2, . . . , k8}, connect {pi} and {bi} with a test path.

Finally, subdivide every edge in P , k8 times. The vertices created in the subdivisions
should not hold robots. The resulting path is the test component GT . Note that for
m ∈ [k], n ∈ [k] \ {m}, j ∈ [|Wm|], the vertex vm,j,n ∈ L is incident to a clear path if m < n.
Otherwise it is incident to a test path. We set ℓ = ℓ1,1 + ℓ1,2 + ℓ2 + ℓ3 + ℓ4, where the terms
have the values shown in Table 1. This completes the description of the reduction.

WADS 2025

20:8 Routing Few Robots in a Crowded Network

Table 1 The respective parts of the budget used in the proof of Theorem 1.

Budget Value Use
ℓ1,1 k(k − 1) + k6(k − 1) + 1 Move R1 from s1 onto x.
ℓ1,2 k20 + (k8 + 1)(k6(k − 1) +

(
k
2

)
+ k8) + 2 Move R1 from x onto t1.

ℓ2 k5(
k
2

)
Shift over clear paths.

ℓ3
1
6 k5(k2 − 1) Shift over return paths.

ℓ4 k11(k6(k − 1) +
(

k
2

)
+ k8 + 1) Shift over test paths.

4 Fixed-Parameter Tractability Parameterized by Treedepth + |M|

In this section, we establish the following theorem:

▶ Theorem 2. GCMP is fixed-parameter tractable when parameterized by the number
k = |M| of marked robots plus the treedepth of the input graph.

The proof of Theorem 2 is based on a win-win argument that distinguishes whether or
not the number of free vertices in the underlying graph is upper-bounded by a function of the
treedepth k. We will assume henceforth that the underlying graph in the problem instance
is connected; otherwise, the problem can be solved on each connected component separately.

4.1 The Case of Few Free Vertices
The main goal of this subsection is to prove the following lemma. Recall that k denotes the
number of marked robots, i.e., those in M.

▶ Lemma 8. Let I = (G, R = (M, F), ℓ) be an instance of GCMP where G has treedepth
at most td and there are at most nf free vertices. If there is a schedule for I, then there is
an optimal schedule that uses energy at most γ(nf , k, td) for some computable function γ.
Moreover, an optimal schedule (if it exists) can be computed in time γ(nf , k, td) · nO(1).

In what follows, let I = (G, R = (M, F), ℓ) be an instance of GCMP. We assume that
robots R1, . . . , Rk are the marked robots. Let S be a schedule for I. A vertex set X is said
to be fully blocked in S at time step t if at the end of this time step, every vertex in X is
occupied by a robot from F .

▶ Definition 9 (Configurations). A pseudo-configuration for I is a pair (τ, Q) where τ =
(τ [1], . . . , τ [k]) is a tuple of vertices and Q ⊆ V (G) is a vertex set. Let V (τ) = ∪i∈k{τ [i]}.
A configuration for I is a pseudo-configuration (τ, Q) where (i) |V (τ)| = k, (ii) |Q| = |F|
and (iii) V (τ) ∩ Q = ∅. We say that a configuration (τ, Q) is the starting configuration if for
each i ∈ [k], τ [i] is the starting vertex of Ri and Q is the set of starting vertices of the robots
in F . We say that a configuration (τ, Q) is a destination configuration if for each i ∈ [k],
τ [i] is the destination vertex of the robot Ri.

The intuitive meaning of a configuration is that at any time step, a configuration precisely
describes the positions of the robots in M using the tuple τ and the positions of the robots in
F (which are essentially indistinguishable from each other) are given by the set Q. Naturally,
we do not want two robots to occupy the same vertex of G, hence we require that V (τ)∩Q = ∅.
Moreover, note that since we do not care about the destinations of the robots in F , there
could be multiple destination configurations.

A. Deligkas, E. Eiben, R. Ganian, I. Kanj, D. Leko, and M. S. Ramanujan 20:9

▶ Definition 10 (Moves between configurations). We say that there is a move from a
configuration (τ1, Q1) to a configuration (τ2, Q2) if:

either Q1 = Q2 and τ1 and τ2 differ at exactly one index i ∈ [k] and τ1[i]τ2[i] ∈ E(G); or
τ1 = τ2 and Q1∆Q2

4 has exactly two vertices u, v and uv ∈ E(G).

In the above definition, the first condition corresponds to moving exactly one of the
robots in M from the vertex τ1[i] to the vertex τ2[i] along an edge, and the second condition
corresponds to moving one of the robots in F between the vertices u and v while the rest
remain stationary.

▶ Definition 11 (Induced configurations). Given a schedule S for the instance I = (G, R =
(M, F), ℓ), we define the configuration induced by S at each time step s in the natural way,
that is, it is the tuple (τs, Qs) where τs[i] is the vertex occupied by robot Ri ∈ M at time step
s and the robots in F occupy exactly the vertices in Qs at the same time step.

▶ Definition 12 (Legal sequences). A sequence (τ0, Q0), . . . , (τt, Qt) of configurations is
called legal if: (i) (τ0, Q0) is the starting configuration; and (ii) (τt, Qt) is a destination
configuration; and (iii) for every i ∈ [t − 1]0, there is a move from (τi, Qi) to (τi+1, Qi+1).

▶ Observation 13. Suppose that a schedule S for the instance I = (G, R = (M, F), ℓ) takes
t time steps. For each s ∈ [t]0, let (τs, Qs) denote the configuration induced by S at time
step s. Then, (τ0, Q0), . . . , (τt, Qt) is a legal sequence of configurations. Conversely, from
every legal sequence of configurations (τ0, Q0), . . . , (τt, Qt), one can obtain a schedule S for
I where the configuration induced by S at time step s is precisely (τs, Qs).

We say that a legal sequence of configurations is optimal if its length is one plus the
number of time steps in an optimal schedule.

▶ Definition 14. Consider two disjoint vertex sets Z1 and Z2 and a bijection ϕ : Z1 → Z2.
The bijection ϕ⋆ : V (G) → V (G) is defined as follows. For every v ∈ V (G), (i) if v ∈ Z1,
then ϕ⋆(v) = ϕ(v), (ii) if v ∈ Z2, then ϕ⋆(v) = ϕ−1(v), and (iii) ϕ⋆(v) = v, otherwise.

The function ϕ⋆ above simply swaps the vertices of Z1 with the vertices of Z2 while keeping
the remaining vertices the same. In what follows (Definition 15 to Lemma 17), fix a legal
sequence of configurations Γ = (τ0, Q0), . . . , (τt, Qt) for the instance I = (G, R = (M, F), ℓ).

▶ Definition 15. Consider two disjoint vertex sets Z1 and Z2 and a bijection ϕ : Z1 → Z2.
The operation of applying the bijection ϕ to Γ from time step s onwards involves defining a
new sequence Γ̂ = (τ̂0, Q̂0), . . . , (τ̂t, Q̂t) of pseudo-configurations as follows. For every i < s,
set (τ̂i, Q̂i) := (τi, Qi). For every i ≥ s, (i) set Q̂i := ∪v∈Qiϕ

⋆(v); and (ii) for every j ∈ [k],
set τ̂i[j] := ϕ⋆(τi[j]).

In words, Γ̂ mimics Γ exactly, except that from time step s onward, any vertex in Z1
(respectively, Z2) is swapped with its image (pre-image) under ϕ.

Applying the bijection ϕ to Γ does not necessarily yield a sequence of configurations in
general. However, we will demonstrate that when ϕ and the sets Z1, Z2 are chosen carefully,
the pseudo-configurations in Γ̂ are in fact, configurations – this will be useful for our analysis.

4 The symmetric difference ∆ is defined as: Q1∆Q2 = (Q1 \ Q2) ∪ (Q2 \ Q1).

WADS 2025

20:10 Routing Few Robots in a Crowded Network

▶ Definition 16. Let Z ⊆ V (G). We say that a pair of connected components C1 and C2 of
G − Z are strongly isomorphic with respect to Z if there is a bijection ϕ : V (C1) → V (C2)
such that ϕ is an isomorphism from C1 to C2, and moreover, for every u ∈ V (C1) and v ∈ Z,
uv ∈ E(G) if and only if ϕ(u)v ∈ E(G). We drop the explicit reference to Z if it is clear
from the context. We also say that ϕ is a witness for C1 and C2 being strongly isomorphic.

▶ Lemma 17. Let Z ⊆ V (G) and consider a pair of connected components C1 and C2 of
G − Z that are disjoint from the set of terminals of M. Suppose that C1 and C2 are strongly
isomorphic with respect to Z, witnessed by ϕ. Suppose also that at time step c, V (C1) and
V (C2) are fully blocked in S and both components are disjoint from the terminals of M. Let
Γ̂ = (τ̂0, Q̂0), . . . , (τ̂t, Q̂t) denote the sequence of pseudo-configurations obtained by applying
the bijection ϕ to Γ from time step c > 0 onward. Then, the following hold:
1. The length of Γ̂ is the same as that of Γ.
2. The sequence Γ̂ is a legal sequence of configurations.

▶ Lemma 18. Let I = (G, R = (M, F), ℓ) be an instance of GCMP with at most nf free
vertices. Consider a set Z in G and a set C = {C1, . . . , Cr} of connected components of
G − Z such that:

they are pairwise strongly isomorphic with respect to Z;
r > nf + 3k + 1; and
Cr is fully blocked at time step 0 and disjoint from the terminals of M.

If there is a schedule for I, then there is an optimal schedule in which V (Cr) is fully blocked
at every time step.

The most important consequence of Lemma 18 can be easily summarized in the following,
which enables us to remove an “irrelevant” vertex without affecting an optimal schedule.

▶ Corollary 19. Let I = (G, R = (M, F), ℓ) be an instance of GCMP. Suppose there is a
vertex v that remains occupied at every time step of an optimal schedule by a robot R. Then
the energy used by an optimal schedule for I ′ = (G − v, R = (M \ {R}, F \ {R}), ℓ) is the
same as the energy used by an optimal schedule for I. Moreover, given an optimal schedule
for I ′, one for I can be produced in polynomial time.

We next argue that if the graph is sufficiently large, then an irrelevant vertex can be
found efficiently.

▶ Lemma 20. There are computable functions µ1, µ2 : N × N → N and an algorithm that,
given a connected graph G, a tree embedding (F, f) of G of depth at most d and a number
η ∈ N, runs in time µ1(η, d) · nO(1) and if G has more than µ2(η, d) vertices, then it produces
a set Z ⊆ V (G) and a set C = {C1, . . . , Cη} of components of G−Z that are pairwise strongly
isomorphic with respect to Z.

We are now ready to prove the main result of this subsection.

Proof of Lemma 8. We may assume that G is connected. Otherwise, at most k of the
connected components of G can contain a robot from M and we simply multiply the bound
obtained for a connected graph by a factor of k. Consider a tree embedding (F, f) of G of
depth td. This can be computed in time 2O(td2) · nO(1) [23, 28].

Let r = nf + 3k + 2. If G has more than µ2(r, td) vertices, then by Lemma 20, in time
µ1(r, td) · nO(1), we can compute a set Z ⊆ V (G) and a set C = {C1, . . . , Cr} of components
of G − Z that are pairwise strongly isomorphic with respect to Z. Since r is chosen to be
large enough compared to nf and k, we may assume without loss of generality that Cr is
fully blocked at time step 0 and is also disjoint from the terminals of M.

A. Deligkas, E. Eiben, R. Ganian, I. Kanj, D. Leko, and M. S. Ramanujan 20:11

By Lemma 18 and Corollary 19, deleting the vertices in Cr (and the robots occupying them)
leads to a strictly smaller, equivalent instance. We repeat this exhaustively until we obtain
an instance I ′ = (G′, R′ = (M′, F ′), ℓ) where the graph G′ has at most µ2(nf + 3k + 1, td)
vertices. Moreover, obtaining an optimal schedule (if one exists) for I ′ can be done by a
brute-force computation on G′. Since we may assume that configurations do not repeat in
an optimal schedule, the number of possible legal sequences is bounded by ν!, where ν is the
number of possible configurations, which is clearly bounded by a function of |V (G′)|. ◀

4.2 The Case of Many Free Vertices
We begin by noting that if ℓ ≤ g(k, td), where g(k, td) is any computable function of k and
td, then the problem is FPT. This follows by an adaptation of the proof of [7, Theorem 5]:

▶ Lemma 21. GCMP is FPT parameterized by |M| + tw(G) + ℓ.

Since, it is well know that td(G) ≤ tw(G), we get the following corollary.

▶ Corollary 22. GCMP is FPT parameterized by |M| + td(G) + ℓ.

By Corollary 22 and Lemma 8, we may assume in what follows that both the budget ℓ and
the number nf of free vertices are “large”. We start by establishing the following structural
“subgraph-freeing” lemma:

▶ Lemma 23. Let H be a connected subgraph in a connected graph G, where G has treedepth
td(G) and contains at least |V (H)| many free vertices. There exists a polynomial-time
computable schedule of length at most 2td(G) · |V (H)| that frees up all the vertices in H.

We use the above lemma to resolve the special case of GCMP where |M| = 1, that is,
GCMP1.

▶ Lemma 24. Given an instance I of GCMP1 with nf ≥ 2td(G), in polynomial time we
can compute a schedule for I with a total travel length of at most 22td(G)+2.

Proof. Let I be an instance of GCMP1 whose underlying graph is G. Let R be the only
robot in M, and let s and t be its starting and destination vertices, respectively. Let P be a
shortest path from s to t in G. Let CP be the connected component of G − s containing
V (P) − {s}. If the number of free vertices in CP is at least |V (P)| − 1, then we can apply
Lemma 23 to CP to free up all the occupied vertices in V (P)−{s}. (Note that |V (P)| ≤ 2td(G)

by Proposition 7.) Afterwards, we route R from s to t. Suppose now that the number of free
vertices in CP is smaller than |V (P)| − 1 < 2td(G). Since nf ≥ 2td(G), there is a connected
component in G − s other than CP that contains a free vertex; let v be a free vertex in
G − CP , and let Q be a shortest path from s to v in G − CP . Note again that |V (Q)| ≤ 2td(G)

by Proposition 7. Moreover, s cuts V (Q) \ {s} from t. We shift all robots, including R, on
V (Q) by one vertex towards v. We obtain a new instance I ′ with the same underlying graph
G, where the starting vertex of robot R is a neighbor s′ of s. Moreover, s is a cut-vertex
between s′ and t, and hence this operation increases the distance between the starting vertex
and the destination vertex of R. We repeat the above argument on I ′. Note that every time
we are unable to free the chosen path for R, the distance between its source and destination
in the current instance increases by one from the previous iteration. Since the shortest
path between any two vertices in G has length at most min(2td(G), |V (G)|), we repeat this
operation polynomially-many times, afterwards, we can free an s-t path, and the total length
traveled is at most 22td(G). ◀

WADS 2025

20:12 Routing Few Robots in a Crowded Network

We now show how the above lemma can be employed for routing all robots with destina-
tions, in the case where both the budget and the number of free vertices are large. Before
doing that in Lemma 26, we first establish the following auxiliary result:

▶ Lemma 25. Let G be a connected graph and p ∈ N such that |V (G)| ≥ 2td2(G) · ptd(G).
Then there exists a separator S of size at most td(G) and a set C = {C1, . . . , Cp} of p many
connected components of G − S such that, for all i ∈ [p], it holds that N(Ci) = S and
|N(Ci)| ≤ 2td2(G) · ptd(G)−1. Moreover, we can compute S and C in FPT time parameterized
by p + td(G).

▶ Lemma 26. Given an instance I = (G, R = (M, F), k, ℓ) of GCMP with nf ≥ 2td2(G) ·
(3k)td(G), in FPT-time parameterized by td + k we can compute a schedule for I with a total
travel length of at most 22td(G)+2 · (3k + td(G)).

Proof. Note that |V (G)| ≥ nf ≥ 2td2(G) · (3k)td(G), and hence by Lemma 25, we can find a
set S of vertices of size at most td(G) and a family C = {C1, . . . , C3k} of connected components
in G − S such that, for all i ∈ [3k], it holds that N(Ci) = S and |Ci| ≤ 2td2(G) · (3k)td(G)−1.
Without loss of generality, we can assume that, for all i ∈ [k], Ci does not contain a starting
vertex or a destination vertex of any robot in M.

Our goal is to navigate, one-by-one, the robots in M to N(S) ∩ (C1 ∪ C2 ∪ · · · ∪ Ck) such
that, when we navigate Ri to Ci, the robots R1, R2, . . . , Ri−1 are already in components
C1, C2, . . . , Ci−1 and we perform the navigation in G − (C1 ∪ C2 ∪ · · · ∪ Ci−1); so none of
the robots R1, . . . , Ri−1 move when we navigate robot Ri. Notice that the graph G − (C1 ∪
C2 ∪ · · · ∪ Ci−1) is connected, as each of the components Ci, . . . , C3k provides the same
connectivity as (C1 ∪ C2 ∪ · · · ∪ Ci−1) outside of C, and that G is connected to start with.
Hence, G − (C1 ∪ C2 ∪ · · · ∪ Ci−1) has at least 2td2(G) · (3k)td(G)−1 · (3k − i + 1) ≥ 2td(G) many
free vertices, and we can navigate Ri to Ci using Lemma 24 with total travel length at most
22td(G)+2 during this computation. However, there is one caveat. If during the execution of
the schedule computed by Lemma 24, a robot Rj , for j ∈ {i + 1, i + 2, . . . , k}, enters Ci, we
stop the execution of the schedule at that point and swap the names of robots Ri and Rj .
That is, robot Rj will be in Ci, and hence we manged to navigate a robot (that has not been
navigated before) to Ci, and robot Ri will be navigated at a later point.

When all robots in M are in N(S) ∩ (C1 ∪ C2 ∪ · · · ∪ Ck), we compute a minimum
Steiner tree T of S ∪ {ti | (si, ti) ∈ M} in G − (C1 ∪ C2 ∪ · · · ∪ Ck). We can compute a
minimum Steiner tree in a graph in FPT-time parameterized by the number of terminals [12].
Moreover, since a shortest path between any two vertices in a graph of treedepth td has
length at most 2td and we are connecting k + td(G) many terminals, it is easy to see
that |V (T)| ≤ (k + td(G) − 1) · 2td(G) (as we can connect one terminal to the remaining
ones by shortest paths), which is less than nf −

∑
i∈[k] |Ci|. We apply Lemma 23 to T

in G − (C1 ∪ C2 ∪ · · · ∪ Ck). This frees all vertices of T with a schedule of total travel
length at most 2td(G) · |V (T)| ≤ 22td(G) · (k + td(G) − 1). Finally, we navigate the robots
in M inside T , one by one, to their destinations in the right order. This can done by
choosing the robot whose destination in T is the farthest from S, and navigating it to its
destination in T . Note that the treedepth is closed under taking induced subgraphs and
G[V (T)] has treedepth at most td(G) as well. Hence, during this final navigation each robot
in M does at most 2td(G) many moves. Hence, the total length of the schedule is at most
22td(G)+2 · k + 22td(G) · (k + td(G) − 1) + k · 2td(G) ≤ 22td(G)+2 · (3k + td(G)). ◀

A. Deligkas, E. Eiben, R. Ganian, I. Kanj, D. Leko, and M. S. Ramanujan 20:13

Proof of Theorem 2. Let I = (G, R = (M, F), ℓ) be an instance of GCMP. If nf ≤
2td2(G) · (3k)td(G) then I can be solved in FPT-time by Lemma 8. Otherwise, we have
nf > 2td2(G) · (3k)td(G). If ℓ < 22td(G)+2 · (3k + td(G)) then I can be solved in FPT-time by
Corollary 22. Finally, if both nf and ℓ are at least 2td2(G) · (3k)td(G), then I can be solved in
FPT-time by Lemma 26. It follows that I can be solved in FPT-time, and GCMP is FPT. ◀

5 Concluding Remarks

The algorithms and lower bounds presented in this paper provide novel insights into the
complexity of GCMP, specifically targeting the natural case where we need to route a
small number of robots through a complicated environment. Nevertheless, we believe it
is important to conclude by highlighting the prominent gaps in our understanding of the
problem’s complexity which remain unresolved. Even in the special case where |R| = |M|,
the fixed-parameter tractability of planar GCMP when parameterized by the number |R| of
robots remains open; here, the planar case is interesting not only because of the many usage
scenarios where planar environments occur, but also because it would represent a natural
generalization of the fixed-parameter tractability of the problem on solid grids [13]. In a
similar vein, one might wonder whether GCMP parameterized by |M| is fixed-parameter
or at least XP-tractable on trees – while highly non-trivial, a natural starting point in this
direction is to target a polynomial-time algorithm solving the case with two marked robots on
trees, which would generalize the classical algorithm for routing a single marked robot [26].

References
1 Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized complexity of

1-planarity. J. Graph Algorithms Appl., 22(1):23–49, 2018. doi:10.7155/JGAA.00457.
2 Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning Fernau, Dan

Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled multi-robot motion
planning with tighter separation bounds. In SoCG, volume 224, pages 12:1–12:16, 2022.
doi:10.4230/LIPICS.SOCG.2022.12.

3 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
algorithms for queue layouts. J. Graph Algorithms Appl., 26(3):335–352, 2022. doi:10.7155/
JGAA.00597.

4 Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Solomon Eyal Shimony. ICBS: Improved conflict-based search algorithm for multi-agent
pathfinding. In IJCAI, pages 740–746, 2015. URL: http://ijcai.org/Abstract/15/110.

5 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan. Paramet-
erized algorithms for coordinated motion planning: Minimizing energy. In Karl Bringmann,
Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on
Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia,
volume 297 of LIPIcs, pages 53:1–53:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPICS.ICALP.2024.53.

8 Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and Ramanujan Sridharan.
Parameterized algorithms for multiagent pathfinding on trees. In Proceedings of the 2025
International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2025, 2025.
to appear.

WADS 2025

https://doi.org/10.7155/JGAA.00457
https://doi.org/10.4230/LIPICS.SOCG.2022.12
https://doi.org/10.7155/JGAA.00597
https://doi.org/10.7155/JGAA.00597
http://ijcai.org/Abstract/15/110
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPICS.ICALP.2024.53

20:14 Routing Few Robots in a Crowded Network

9 Erik D. Demaine and Mikhail Rudoy. A simple proof that the (n2 − 1)-puzzle is hard.
Theoretical Computer Science, 732:80–84, 2018.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

12 Stuart E. Dreyfus and Robert A. Wagner. The steiner problem in graphs. Networks, 1(3):195–
207, 1971. doi:10.1002/NET.3230010302.

13 Eduard Eiben, Robert Ganian, and Iyad Kanj. The parameterized complexity of coordinated
motion planning. In SoCG, volume 258, pages 28:1–28:16, 2023. doi:10.4230/LIPICS.SOCG.
2023.28.

14 Eduard Eiben, Robert Ganian, Iyad Kanj, and Ramanujan Sridharan. A minor-testing
approach for coordinated motion planning with sliding robots. In SoCG, 2025. doi:10.4230/
LIPIcs.SoCG.2025.44.

15 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell. Computing
coordinated motion plans for robot swarms: The CG: SHOP challenge 2021. ACM Journal on
Experimental Algorithmics, 27:3.1:1–3.1:12, 2022. doi:10.1145/3532773.

16 Foivos Fioravantes, Dusan Knop, Jan Matyás Kristan, Nikolaos Melissinos, and Michal
Opler. Exact algorithms and lowerbounds for multiagent path finding: Power of treelike
topology. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors, Thirty-
Eighth AAAI Conference on Artificial Intelligence, pages 17380–17388. AAAI Press, 2024.
doi:10.1609/aaai.v38i16.29686.

17 Foivos Fioravantes, Dusan Knop, Jan Matyás Kristan, Nikolaos Melissinos, and Michal Opler.
Exact algorithms for multiagent path finding with communication constraints on tree-like
structures. In AAAI, 2025. to appear. doi:10.48550/arXiv.2412.08556.

18 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006. doi:10.1007/
3-540-29953-X.

19 Fedor V. Fomin, Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca.
Distributed model checking on graphs of bounded treedepth. In Dan Alistarh, editor, 38th
International Symposium on Distributed Computing, DISC 2024, October 28 to November 1,
2024, Madrid, Spain, volume 319 of LIPIcs, pages 25:1–25:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024. doi:10.4230/LIPICS.DISC.2024.25.

20 Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional
parameters for ILP. Artif. Intell., 257:61–71, 2018. doi:10.1016/J.ARTINT.2017.12.006.

21 Paul Liu, Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng. Coordinated motion
planning through randomized k-Opt (CG challenge). In SoCG, volume 189, pages 64:1–64:8,
2021. doi:10.4230/LIPICS.SOCG.2021.64.

22 Hang Ma, Craig Tovey, Guni Sharon, TK Kumar, and Sven Koenig. Multi-agent path finding
with payload transfers and the package-exchange robot-routing problem. In AAAI, volume
30(1), 2016.

23 Wojciech Nadara, Michal Pilipczuk, and Marcin Smulewicz. Computing treedepth in polynomial
space and linear FPT time. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz
Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9,
2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 79:1–79:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ESA.2022.79.

24 Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamilto-
nian cycle parameterized by treedepth in single exponential time and polynomial space. SIAM
J. Discret. Math., 37(3):1566–1586, 2023. doi:10.1137/22M1518943.

25 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1002/NET.3230010302
https://doi.org/10.4230/LIPICS.SOCG.2023.28
https://doi.org/10.4230/LIPICS.SOCG.2023.28
https://doi.org/10.4230/LIPIcs.SoCG.2025.44
https://doi.org/10.4230/LIPIcs.SoCG.2025.44
https://doi.org/10.1145/3532773
https://doi.org/10.1609/aaai.v38i16.29686
https://doi.org/10.48550/arXiv.2412.08556
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.4230/LIPICS.DISC.2024.25
https://doi.org/10.1016/J.ARTINT.2017.12.006
https://doi.org/10.4230/LIPICS.SOCG.2021.64
https://doi.org/10.4230/LIPICS.ESA.2022.79
https://doi.org/10.1137/22M1518943
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

A. Deligkas, E. Eiben, R. Ganian, I. Kanj, D. Leko, and M. S. Ramanujan 20:15

26 Christos H. Papadimitriou, Prabhakar Raghavan, Madhu Sudan, and Hisao Tamaki. Motion
planning on a graph (extended abstract). In STOC, pages 511–520, 1994. doi:10.1109/SFCS.
1994.365740.

27 Daniel Ratner and Manfred Warmuth. The (n2 − 1)-puzzle and related relocation problems.
Journal of Symbolic Computation, 10(2):111–137, 1990.

28 Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. A faster
parameterized algorithm for treedepth. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt,
and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
volume 8572 of Lecture Notes in Computer Science, pages 931–942. Springer, 2014. doi:
10.1007/978-3-662-43948-7_77.

29 Pavel Surynek. An optimization variant of multi-robot path planning is intractable. In
Proceedings of the AAAI conference on artificial intelligence, volume 24(1), pages 1261–1263,
2010. doi:10.1609/AAAI.V24I1.7767.

30 Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot path planning.
Artificial Intelligence, 219:1–24, 2015. doi:10.1016/J.ARTINT.2014.11.001.

31 Hyeyun Yang and Antoine Vigneron. A simulated annealing approach to coordinated motion
planning (CG challenge). In Kevin Buchin and Éric Colin de Verdière, editors, SoCG, volume
189, pages 65:1–65:9, 2021. doi:10.4230/LIPICS.SOCG.2021.65.

32 Jingjin Yu and Daniela Rus. Pebble motion on graphs with rotations: Efficient feasibility tests
and planning algorithms. In WAFR, volume 107 of Springer Tracts in Advanced Robotics,
pages 729–746, 2014. doi:10.1007/978-3-319-16595-0_42.

WADS 2025

https://doi.org/10.1109/SFCS.1994.365740
https://doi.org/10.1109/SFCS.1994.365740
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1609/AAAI.V24I1.7767
https://doi.org/10.1016/J.ARTINT.2014.11.001
https://doi.org/10.4230/LIPICS.SOCG.2021.65
https://doi.org/10.1007/978-3-319-16595-0_42

	1 Introduction
	2 Preliminaries
	3 The Hardness Results
	4 Fixed-Parameter Tractability Parameterized by Treedepth + |M|
	4.1 The Case of Few Free Vertices
	4.2 The Case of Many Free Vertices

	5 Concluding Remarks

