
A WSPD, Separator and Small Tree Cover for
c-Packed Graphs
Lindsey Deryckere #

The University of Sydney, Australia

Joachim Gudmundsson #

The University of Sydney, Australia

André van Renssen #

The University of Sydney, Australia

Yuan Sha #

The University of Sydney, Australia

Sampson Wong #

The University of Copenhagen, Denmark

Abstract
The c-packedness property, proposed in 2010, is a geometric property that captures the spatial
distribution of a set of edges. Despite the recent interest in c-packedness, its utility has so far been
limited to Fréchet distance problems. An open problem is whether a wider variety of algorithmic
and data structure problems can be solved efficiently under the c-packedness assumption, and more
specifically, on c-packed graphs.

In this paper, we prove two fundamental properties of c-packed graphs: that there exists a
linear-size well-separated pair decomposition under the graph metric, and there exists a constant
size balanced separator. We then apply these fundamental properties to obtain a small tree cover
for the metric space and distance oracles under the shortest path metric. In particular, we obtain a
tree cover of constant size, an exact distance oracle of near-linear size and an approximate distance
oracle of linear size.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Well-separated pair decomposition, separator, tree cover, distance oracles,
realistic graphs

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.21

Related Version Full Version: https://arxiv.org/abs/2505.06884

Funding This research was partially funded by the Australian Government through the Australian
Research Council (project number DP240101353).
Joachim Gudmundsson: This research was partially funded by the Australian Government through
the Australian Research Council (project number DP240101353).
André van Renssen: This research was partially funded by the Australian Government through the
Australian Research Council (project number DP240101353).
Sampson Wong: This research was partially funded by the European Union through the Marie
Skłodowska-Curie Actions Postdoctoral Fellowship (project number 101146276).

1 Introduction

The study of graphs and their properties is a cornerstone of theoretical computer science. A
wide variety of graph properties have been proposed in the literature, such as planarity [34],
treewidth [4] and doubling dimension [23]. By assuming these graph properties, one can
often obtain better algorithmic or data structure solutions to graph theoretic problems.

© Lindsey Deryckere, Joachim Gudmundsson, André van Renssen, Yuan Sha, and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lindsey.deryckere@sydney.edu.au
https://orcid.org/0009-0008-1415-4162
mailto:joachim.gudmundsson@sydney.edu.au
https://orcid.org/0000-0002-6778-7990
mailto:andre.vanrenssen@sydney.edu.au
https://orcid.org/0000-0002-9294-9947
mailto:ysha3185@uni.sydney.edu.au
https://orcid.org/0000-0002-4065-2885
mailto:sawo@di.ku.dk
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.4230/LIPIcs.WADS.2025.21
https://arxiv.org/abs/2505.06884
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

21:2 A WSPD, Separator and Small Tree Cover for c-Packed Graphs

The c-packedness property [14], proposed in 2010, is a geometric property that captures
the spatial distribution of the edges in a graph. A graph is c-packed if, for any positive real r

and any ball of radius r, the length of the edges contained in the ball is at most c · r. Driemel,
Har-Peled and Wenk [14] introduced the c-packedness property for polygonal curves, and
showed that one can compute the Fréchet distance between a pair of c-packed curves in
near-linear time. In 2013, Gudmundsson and Smid [21] adapted the c-packedness definition
to graphs, and proposed a Fréchet distance data structure on c-packed trees with long edges
that decides if there is a path in the tree with small Fréchet distance to a query curve.
In 2023, Gudmundsson, Seybold and Wong [20] generalised the result of [21] by proposing a
Fréchet distance data structure for all c-packed graphs.

Despite the recent interest in c-packedness, its utility so far has been limited to Fréchet
distance problems. Moreover, the fundamental properties of c-packed graphs are not well
studied, thereby limiting the number of problems that can be solved efficiently on c-packed
graphs. An open problem is whether c-packed graphs have applications beyond Fréchet
distance problems.

1.1 Our Results
We show that c-packed graphs lie in the intersection of two important graph classes, that is,
doubling metrics and bounded treewidth graphs. Using the properties of doubling metrics and
bounded treewidth graphs, one can obtain, for c-packed graphs, a linear-size well-separated
pair decomposition, a linear-size exact distance oracle, a linear-size approximate distance
oracle, and a constant-size tree cover. However, these constructions have processing times
that are either (i) randomised, (ii) depend on the spread of the c-packed metric, or (iii) are
exponential in the treewidth. See Table 1, Column 31.

We provide the first deterministic constructions that are independent of the spread of the
c-packed metric, for the aforementioned structures. Moreover, our preprocessing times and
data structure sizes are polynomial in both c and ε, whereas previous constructions are not.

We summarise the main results of our paper. First, we show that any c-packed graph in
Rd admits a well-separated pair decomposition (WSPD) of size O((c3/ε) · n), where 1/ε is
the separation constant of the WSPD. Note that we avoid the (1/ε)d factor that appears
in the sizes of many other WSPD constructions [7, 25]. Then, we show that any c-packed
graph in Rd admits an O(c)-size separator. We use this separator to show that c-packed
graphs have O(c) treewidth, and admits an exact distance oracle (EDO) of size O(cn log n).
Finally, we combine our WSPD and the EDO to construct a (1 + ε) distortion tree cover
with O(c2d+2/εd) trees. Our tree cover implies an approximate distance oracle (ADO) of
size O((c2d+2/εd) · n) and O(c2d+2/εd) query time. We summarise our results in Table 1.

1.2 Related work
The c-packedness property is a popular model for realistic curves. A wide range of Fréchet
distance problems have been studied on c-packed curves, including map matching [11], the
mean curve [27], the shortcut Fréchet distance [13], subtrajectory clustering [5,18] and the
approximate nearest neighbour data structure [12]. However, c-packed graphs are less well
understood [20, 21], despite often being used as a vital stepping stone towards a related
property called λ-low density, which was also introduced by Driemel and Har-Peled [13].

1 A reviewer pointed us to the tree-like properties of the graph and the possibility of adapting the work
by Chazelle [10]. However, such adaptations would be likely to incur an exponential dependency on c.

L. Deryckere, J. Gudmundsson, A. van Renssen, Y. Sha, and S. Wong 21:3

Table 1 In the table, c = the c-packedness value, ε = either an ε−1 separation constant or
a (1 + ε) approximation ratio, Rand. = randomised algorithm, ∆ = spread of the doubling metric, d

= dimension of the Euclidean space, dd = previous results using doubling dimension, tw = previous
results using treewidth.

Previous New

Preprocessing Size Source Preprocessing Size Source

WSPD dd
(1/ε)O(log c) · n log(∆n)

(1/ε)O(log c) · n
[38]

(c3/ε) · n log n (c3/ε) · n Thm 3
Rand. (1/ε)O(log c) · n log n [25]

EDO tw 2O(c3)n c2n [9]+ [15] c2n log2 n cn log n Thm 18

Tree cover dd (1/ε)O(log c) · n log2(∆n) (1/ε)O(log c) [3] + [38] (c2d+6/εd+1) · n log n c2d+2/εd Thm 5

ADO dd (1/ε)O(log c) · n log2(∆n) (1/ε)O(log c) · n [3] + [38] (c2d+6/εd+1) · n log n (c2d+2/εd) · n Thm 6

Low density graphs have been studied in map matching [6, 11]. The well-separated pair
decomposition of [22] has size polynomial in λ and ε, but its disadvantage over those stated
in Table 1 is that it has size O(n log n).

Well-Separated Pair Decompositions (WSPD) are used for compact representation of the
quadratic distances between pairs of points in the metric. For metrics that allow for a sub-
quadtratic size WSPD, they have therefore been used as fundamental tools to approximate
solutions to a range of proximity problems that require looking at the distances between all
pairs of points, such as nearest neighbour, diameter, stretch and minimum spanning tree.
Not all metrics allow for a WSPD of subquadratic size, an example of which is the metric
induced by a star tree with unit weight on all edges. For this metric, any WSPD requires a
quadratic number of pairs. For a point set in Rd, where d is considered a constant, Callahan
and Kosaraju [7] showed that there exists a WSPD with separation factor σ of size O(σdn)
that can be computed in O(n log n+σdn) time. In contrast to this, we show that for c-packed
graphs, the size of the WSPD is not exponential in d, while maintaining that the size is
linear. For graphs with bounded doubling dimension (dim), Har-Peled and Mendel [25]
designed a O(2O(dim)n log n + nε−O(dim)) expected time randomised algorithm to construct
a WSPD of linear size with logarithmic query time. They also designed a deterministic
construction which incurs a logarithmic dependency on the aspect ratio of the metric space.
In the full version of this paper we show that a c-packed graph has doubling dimension
O(log c). However, in contrast to previous results, our deterministic construction of the
WSPD is, to the best of our knowledge, the first that does not depend on the aspect ratio
of the metric space and does not incur any factors exponential in the dimension, assuming
constant dimension.

Distance oracles are shortest path data structures for graphs. For planar graphs, Lipton
and Tarjan [34, 35] proved the planar separator theorem, which states that any planar
graph with n vertices has a balanced separator of size

√
n. Using the separator to build a

separator hierarchy, they constructed an exact distance oracle of size O(n
√

n). Thorup [39]
and Klein [30] independently presented (1+ε)-approximate distance oracles for planar graphs
of size O(n log n), for any constant ε > 0. Subsequent works [28, 29, 33, 41] improved the
preprocessing time, space, and query time. Dvořák and Norin [15] showed that if a graph
admits a small size balanced separator, it also has small treewidth. Combined with our
separator results this implies that c-packed graphs have treewidth O(c). Chaudhuri and
Zaroliagis [9] designed an exact distance oracle whose preprocessing time is single exponential
in the treewidth of the graph. In contrast to these results, our algorithms do not incur any
terms exponential in c.

WADS 2025

https://arxiv.org/abs/2505.06884

21:4 A WSPD, Separator and Small Tree Cover for c-Packed Graphs

Approximate distance oracles have been studied on non-planar graphs. Thorup and
Zwick [40] constructed a (2k − 1)-approximate distance oracle of O(kn1+1/k) size on any
general graph, and showed that the size bound is optimal under the Erdös girth conjecture.
Gudmundsson, Levcopoulos, Narasimhan and Smid [19] provided a (1 + ε)-approximate
distance oracle of size O(n log n) on any t-spanner, assuming ε, t > 0 are constants. Gao
and Zhang [16] constructed a (1 + ε)-approximate distance oracle of size O(n log n) for any
unit-disk graph, assuming ε > 0 is a constant.

Balanced separators of sublinear size have been found for planar graphs [34], graphs
of bounded genus [17], graphs that exclude a fixed minor [1], and graphs that are the 1-
skeletons of simplicial complexes in 3-dimensions [36]. They have been used as a fundamental
tool in devising efficient algorithms for graphs [1,17,35] and in numerical analysis [32,36].
Randomized balanced separators can be found in expected linear time for c-packed graphs [26].

Metric embeddings approximate harder metric spaces by simpler, well-structured metric
spaces, such as tree metrics. A tree cover for a finite metric space is a small number of trees
such that the distance between any two points in the metric is preserved with low distortion
in at least one of the trees. Tree covers with (1 + ϵ)-distortion and a constant number of
trees have been found for Euclidean metrics [2], doubling metrics [3] and planar metrics [8].

2 Preliminaries

Let G(V, E) be a geometric graph in Rd consisting of the point set V and edge set E. In
this paper, we consider graphs in a fixed d-dimensional space that satisfy c-packedness. We
denote the graph distance between two nodes u, v ∈ V as distG(u, v), and their Euclidean
distance as dist(u, v). We first define a Well-Separated Pair Decomposition [7] for Euclidean
point sets, followed by its counterpart for geometric graphs.

▶ Definition 1 (Geometric Well-Separated Pair). Let σ be a real positive number, and let
A and B be two finite sets of points in Rd. We say that A and B are well-separated with
respect to σ if the distance between the bounding boxes CA and CB of A and B, respectively,
is at least σ · max(rad(CA), rad(CB)).

Here rad(CA) refers to the radius of CA, which is half its diameter.

▶ Definition 2 (Geometric Well-Separated Pair Decomposition (WSPD)). Let S be a set of
n points in Rd, and let σ be a real positive number. A well-separated pair decomposition
(WSPD) for S, with respect to σ, is a sequence {A1, B1}, . . . {Am, Bm} of pairs of nonempty
subsets of S, for some integer m, such that (i) for each i with 1 ≤ i ≤ m, Ai and Bi are
well separated w.r.t. σ, and (ii) for any two distinct points p and q of S, there is exactly one
index i with 1 ≤ i ≤ m, such that p ∈ Ai and q ∈ Bi, or vice versa.

The notion of well-separated pairs and WSPD can easily be extended to graphs. For the
graph version we will simply replace all the geometric distances with the distances in the
graph. We will refer to a WSPD in a graph G as WSPDG.

3 Technical Overview

In Section 3.1, we describe our deterministic WSPDG construction. In Section 3.2, we discuss
our separator theorem. Finally, in Section 3.3 we show how to use the WSPDG and the exact
distance oracle to construct a (1 + ε)-distortion tree cover of size O(c2d+2(1

ε)d) for c-packed
metrics. Due to space limitation, all omitted proofs are available in the full version of the
paper on ArXiv.

https://arxiv.org/abs/2505.06884
https://arxiv.org/abs/2505.06884

L. Deryckere, J. Gudmundsson, A. van Renssen, Y. Sha, and S. Wong 21:5

3.1 A Well-Separated Pair Decomposition for c-packed Graphs
Split trees [7] or quadtrees [37] are commonly used in the construction of a geometric WSPD
of a point set. An essential property of these is that the maximum Euclidean distance between
two points contained in the same cell is always bounded by a function of the diameter of
the cell. We construct a tree that fulfills a similar purpose to the trees above but for graph
distances between points. We call this new type of tree a δ-connected tree (δ-CT). Each cell,
corresponding to a cube s, of the δ-connected tree is a δ-connected set, meaning that points
contained in the cell are within a graph distance of at most δ · diam(s) from one another. To
construct the δ-CT, we use a bottom up approach. The leaves of the compressed quadtree
are already δ-connected sets. At higher levels of the compressed quadtree, we consider the
δ-connected sets of its children, and merge together pairs of previously δ-connected sets that
are also a δ-connected set in the higher level. To obtain an efficient running time, we make
two observations. First, when computing the δ-connected sets for a higher level, it suffices
to maintain a vertex representative for each δ-connected set of the lower level. Second, to
check if a pair of sets are δ-connected, it suffices to check whether their representatives are
path-connected in the cube centred at the cell but with double its radius.

To upper bound the graph diameter of the δ-connected set in each cell of the δ-CT
we compute the length of intersection of edges with the cell and the 3d surrounding cells
in a canonical grid. To do this efficiently, we note that not all edges intersecting with a
cell can contribute to a δ-connected component inside the cell. We therefore construct a
data structure that can be queried for the total length of all edges that can contribute to a
δ-connected component contained in a cell.

Combining these ideas obtains the following theorem. For details refer to Section 4.2.

▶ Theorem 3. Given a c-packed graph G in Rd, for fixed d, one can construct a WSPDG

with separation factor σ of size O(c3σn) in O(cn log n + c3σn) time, using O(cn) space.

3.2 A Separator Theorem for c-packed Graphs
We prove that every c-packed graph admits a balanced vertex separator of size O(c). We start
with the ring separator of Har-Peled and Mendel [25], which states that for a point set in Rd,
one can efficiently compute a pair of balls so that n/2λ3 of the points are inside the inner
ball, and n/2λ3 of the points are outside the outer ball, where λ is the doubling constant
of Rd. Using the ring separator, we construct a max-flow instance in a similar fashion to
Gudmundsson et al. [20] to locate a cut of size O(c). This cut (1 − 1/2λ3)-separates the
graph, in that it separates the graph into two components each with at most n · (1 − 1/2λ3)
points. We obtain the following theorem, for details refer to Section 5.

▶ Theorem 4. Given a c-packed graph G in Rd, where d is fixed, with n vertices, one can
find a separator of size O(c) that (1 − 1

2λ3)-separates G, in O(c2n) time.

3.3 A Small Tree Cover for c-packed Graphs
Our approach follows that of the celebrated “Dumbbell Theorem” [2] for Euclidean metrics.
For c-packed graphs, we construct a linear number of dumbbells from the WSPDG, which is
constructed using the graph distances. The dumbbells are partitioned into groups, each of
which satisfies the length-group property and the empty-region property with respect to the
graph distance. The c-packedness property enables us to partition the dumbbells into a small
number (depending only on the packedness value c and the separation ratio σ of WSPDG) of
groups, each of which satisfies the empty-region property. The main difficulty is proving the
packing lemmas required for establishing the empty-region property. A dumbbell tree, which

WADS 2025

21:6 A WSPD, Separator and Small Tree Cover for c-Packed Graphs

connects the dumbbells in a group hierarchically, is built for each group of dumbbells. The
c-packedness property and the c-CT also enable us to do range searching and efficiently build
the dumbbell trees. The dumbbell trees together constitute a tree cover for the c-packed
metric. We obtain the following theorem. For details refer to the full version of the paper.

▶ Theorem 5. Given a c-packed graph G in Rd of fixed d and any 0 < ε < 1. In
O(n log n(c2d+6(1

ε)d+1 + c log n)) time, one can construct O(c2d+2(1
ε)d) dumbbell trees, each

of size O(n), such that the dumbbell trees constitute a (1 + ε)-distortion tree cover for the
graph metric induced by G.

The tree cover of Theorem 5 immediately implies a (1 + ε)-approximate distance oracle
for the c-packed metric.

▶ Corollary 6. Given a c-packed graph G in Rd of fixed d, and any 0 < ε < 1, one can
preprocess it in O(n log n(c2d+6(1

ε)d+1 + c log n)) time, using O(c2d+2(1
ε)dn) space, to answer

a (1 + ε)-approximate distance query between any two vertices in G in O(c2d+2(1
ε)d) time.

4 A Well-Separated Pair Decomposition for c-packed Graphs

Given a c-packed graph G(V, E) in d dimensions, where d is fixed, and a positive constant σ,
we show how to deterministically construct a linear-size WSPDG with separation factor σ

(Section 4.2). Section 4.1 introduces some important terminology. In Section 4.2 we show
that one can construct such a well-separated pair decomposition in O(n log n + c3σn) time.

4.1 Notation and Preliminaries
Given a geometric graph G(V, E) and cube s in Rd, we define the diameter of s to be the
length of a diagonal and denote it as diam(s). We define the radius of s to be half the
diameter and denote it as rad(s). We define V (s) to be the subset of vertices of V within s.
We will need the following definitions.

▶ Definition 7 (δ-Connected Set). Given a geometric graph G(V, E) and a cube s in Rd. Let
s+ be the concentric cube with twice the diameter. Two vertices u, v ∈ V (s) are δ-connected
if there is a path between u and v that lies within s+ and has length at most δ · diam(s).
We say that a set of vertices C ⊆ V (s) is a δ-connected set with respect to s if all pairs of
vertices in C are δ-connected, and no vertex in V (s) \ C is δ-connected to a vertex in C.

▶ Definition 8 (Partition into δ-Connected Sets). Let s be a cube in Rd. A partition Ψδ(V (s)) =
{C1, ...Ck} of V (s) into δ-connected sets is a set of k disjoint subsets of V (s) that satisfies
the following properties:
1.

⋃
1≤i≤k Ci = V (s).

2. For all i s.t. 1 ≤ i ≤ k, Ci is a δ-connected set with respect to s.

4.2 Constructing a WSPD for c-packed graphs
Split trees [7] or quadtrees [37] are commonly used in the construction of a geometric WSPD
of a point set. An essential property of these is that the Euclidean distance between two
points contained in the same cell is always bounded by the diameter of the cell. In order to
construct a WSPDG we construct a new type of tree, which we will refer to as a δ-connected
tree (δ-CT). This tree will satisfy the similar property, but relative to graph distances between
the points in the graph, rather than their Euclidean distances. The main difference is that
cells in a δ-connected tree may overlap. We formally define this tree below.

https://arxiv.org/abs/2505.06884

L. Deryckere, J. Gudmundsson, A. van Renssen, Y. Sha, and S. Wong 21:7

▶ Definition 9 (δ-Connected Tree (δ-CT)). Given a connected geometric graph G(V, E) in
Rd and a quadtree Q of V , a δ-connected tree T of G is a rooted tree, where every node u

stores a cube s, corresponding to a cell of Q, and a representative point of a δ-connected set
with respect to s. The root of T stores the cube s corresponding to the cell stored in the root
of Q, and every leaf contains a single point in V . In particular, the leaves contained in the
subtree rooted at u contain the points in V that are represented by the point stored at u.

Once we have a δ-CT, it remains to upper bound the graph diameter of the δ-connected set
represented in each cell. With this upper bound, one can then follow a standard approach to
compute a WSPDG with separation factor σ from the δ-CT.

In Subsection 4.2.1 we show how to construct a c-CT, T , of a c-packed graph G. In
Subsection 4.2.2 we then show how to upper bound the diameter of the c-connected set
represented in each cell of T . In Subsection 4.2.4 we analyze the complexity of the construction.

4.2.1 Constructing a c-Connected Tree
The algorithm to compute a c-CT takes as input a c-packed graph G, as well as its cor-
responding compressed quadtree Q. Without loss of generality we assume that the cell
representing the root of Q is a unit cube. The level value of a node u in Q is said to be i if
the cell/cube s(u) stored at u has side length 2−i. The root of Q has level value 0.

We are now ready to construct a c-CT, T . Initially, every leaf in Q becomes a leaf in T ,
and are then deleted from Q. Assume w.l.o.g. that the number of distinct level values in the
remaining compressed quadtree Q′ is ℓ and let I = ⟨i1, i2, . . . , iℓ⟩ be the level values sorted
in decreasing order. Let Uij

be the set of nodes in Q′ having level value ij , 1 ≤ j ≤ ℓ.
Next, we iteratively process the values in I in decreasing order. For each value ij in I we

will build a graph Hij from Hij−1 . Initially we set Hi0(Vi0 , Ei0) = G.
Set Hi1 = Hi0 . For each node u ∈ Ui1 , let s+(u) be a concentric cube of twice the

diameter of s(u). The algorithm picks an arbitrary point p in Vi1(s(u)) and merges all nodes
in Vi1(s(u)) that are path-connected to p in Hi0 within the cube s+(u). For all edges (u, v), if
both u and v have been merged, we remove the edge. If only one endpoint has been merged,
we move this endpoint to p and redefine the length of the edge to be the Euclidean distance
between this point and p. Finally, we remove any parallel edges. Note that all changes are
made to Hi1 , while Hi0 stays unaffected. The surviving node p is the representative point
in Hi1 of the merged set of nodes in Hi0 . A node is added to T storing p and its children
are the nodes in T storing the points that were merged into p. The algorithm repeats this
process until all the points in Vi1(s(u)) have been merged into representative points and the
process has been complete for each u ∈ Ui1 .

In the next iteration, we let Hi2 = Hi1 . The nodes in Ui2 are now processed using Hi1

as input to merge the nodes in Hi2 . This continues until all the level values in I have been
processed. The process for iteration j of the algorithm is visualised in Figure 1.

The proof of Lemma 10 can be found in the full version of the paper.

▶ Lemma 10. Given a c-packed graph G(V, E) the above algorithm produces a valid c-
connected tree T of G(V, E).

4.2.2 Bounding the Graph Diameter of a Cell in the c-CT
In order to construct the well-separated pairs, it is necessary to upper bound the graph
diameter of the c-connected set represented in each cell of the c-CT, T , constructed above.
Let u be a node in Q. Denote the corresponding canonical cube as s(u), and a concentric cube

WADS 2025

https://arxiv.org/abs/2505.06884

21:8 A WSPD, Separator and Small Tree Cover for c-Packed Graphs

s(u), u ∈ Q

s+(u)

u1 ∈ T u2 ∈ T u3 ∈ T

Q T

Figure 1 An illustration of iteration j of the algorithm constructing the c-connected tree.

of twice its diameter as s+(u). We call a connected subgraph of G a connected component of
a cell u if it is fully contained within s+(u), with at least one vertex inside s(u). To compute
an upper bound on the graph diameter of the c-connected set we instead give an upper
bound on any connected component of u ∈ Q. This upper bound can then be copied across
during the construction of T . We show how to compute this upper bound below.

Observe that in order for an edge to contribute to a connected component of u, its length
can be at most twice the diameter of s(u). Let us call the set of edges of length at most
twice the diameter, which overlap with s(u), relevant edges w.r.t. s(u) (see Figure 2).

s(u)

s+(u)

Figure 2 Set of relevant edges w.r.t. s(u) (green edges) and irrelevant edges (red edges).

Let N(s(u)) be the set of 3d − 1 neighboring canonical cubes on a grid (note that not all
members of N(s(u)) may correspond to cells in Q). Observe that all edges in any connected
component associated with u must be a subset of the union of the relevant edges w.r.t. s(u),
and all the relevant edges w.r.t. cubes in N(s(u)). We refer to the total overlapping length
of s(u) with relevant edges w.r.t. s(u) as REL(s(u)). The above observation allows us to
upper bound the graph diameter of any connected component associated with u ∈ Q by
REL(s(u)) +

∑
sn∈N(s(u)) REL(sn).

L. Deryckere, J. Gudmundsson, A. van Renssen, Y. Sha, and S. Wong 21:9

It thus remains to compute, for all u ∈ Q, REL(s(u)) and REL(sn) for all sn ∈ N(s(u)).
Let ℓ(e) denote the length of an edge e ∈ E. For all e ∈ E we compute the canonical cubes
of size 2−i such that 2−i = ⌈ℓ(e)/2⌉. Denote this set of canonical cubes as S. For each cube
s ∈ S, store the length of the overlap of the edge with the cube. Note that this correctly
gives us the value REL(s) for all s ∈ S. One can now use Lemma 2.11 from [24] to compute
a compressed quadtree QS from S. For any cell v in QS whose corresponding cube is not in
S, initialize its value REL(v) = 0. Next, one can use a bottom-up approach to compute, for
every cell in QS its relative edge length. For each parent, simply add the relative edge lengths
stored in the children to its current value. In order to perform efficient searching on QS we
preprocess it into a finger tree, Tf , using similar techniques to Theorem 2.14 in [24]. We are
now ready to compute, for each cell u ∈ Q, an upper bound on the graph diameter of any
connected component. For each u ∈ Q, search for the largest cell in Tf whose corresponding
cube is fully contained within s(u), and return the relative edge length stored at the cell. If
such a cell does not exist, return zero. Repeat the search for each s ∈ N(s(u)) and add up
the results. The resulting value is our upper bound on the graph diameter of any connected
component of the cell u. We call this value dubG(u).

When constructing the c-CT from Q using the algorithm in Section 4.2.1, we upper bound
the graph diameter of any connected component of u ∈ Q by dubG(u).

The proof of Lemma 11 can be found in the full version of the paper.

▶ Lemma 11. The value dubG(v) for any cell in v ∈ T upper bounds the graph diameter of
the connected subgraph represented in the cell v.

We are now ready to describe the construction of a WSPDG for c-packed graphs.

4.2.3 Constructing the WSPDG

Construct a compressed quadtree Q and compute, for each cell u ∈ Q, dubG(u) using the
techniques described in Section 4.2.2. Next, construct a c-CT, T , from Q using the algorithm
described in Section 4.2.1 and store, for each cell v ∈ T , created from u ∈ Q, dubG(u) as an
upper bound on the graph diameter of the connected component represented in v. Apply the
algorithm of [24] (Section 3.1.1) to compute a WSPDG from T . To determine whether a pair
of nodes is well-separated we use the upper bound on the graph diameter and the Euclidean
distance between their representatives.

To bound the size of the resulting WSPDG we first bound the size of T by observing that
each cell u ∈ Q contains at most O(c) c-connected sets w.r.t. u.

▶ Lemma 12. For all u ∈ Uij
, 1 ≤ j ≤ ℓ, each vertex in Hij

within s(u) represents a
c-connected component in Hij−1 with respect to s(u).

Proof. We argue the algorithm maintains this property by induction on the number of
iterations. The algorithm initially uses as input the c-packed graph Hi1 = Hi0 = G. After
the first iteration of the algorithm, for each node u ∈ Ui1 , each surviving point x in Vi1

represents a set of points in Vi0 that were connected to x within s+(u). Since Hi0 = G is
c-packed, we can conclude that the distance between x and any point merged into x is at
most c times the radius of s+(u), and therefore c times the diameter of s(u).

Assume that the algorithm maintains the invariant for iterations 1 to k < ℓ. Note
that the graph Hik

, used as input for iteration k + 1, is no longer guaranteed to satisfy
c-packedness. However, observe that after each merge step, the representative nodes in
Vik+1 always correspond to original nodes present in G. Since the process of merging each
connected set into a single node can only reduce the length of the paths between the

WADS 2025

https://arxiv.org/abs/2505.06884

21:10 A WSPD, Separator and Small Tree Cover for c-Packed Graphs

remaining representatives, the graph distances between the remaining nodes in Hik
can only

have decreased in comparison to their original graph distance in G. We therefore maintain
the property that, for every node u ∈ Uik+1 , for each representative point in Vik+1 within u,
the points in Vik

that it represents can be at most c times the diameter of u apart in Hik
. ◀

With the help of Lemma 12 one can bound the size of T .

▶ Lemma 13. For every node u ∈ Q, the number of nodes added to T is at most O(c).

Proof. From Lemma 12 we know that each node in Vil
(s(u)) must represent a valid c-

connected set in Hil−1(s(u)). We now observe that one can upper bound the number of
c-connected sets in Hil−1(s(u)) by the number of c-connected sets in G(s(u)). This observation
follows from the fact that for any 1 ≤ j ≤ ℓ, Hij

was constructed by merging c-connected
sets w.r.t. s(u) in Hij−1 , for every u ∈ Uij . Note that the argument used in the proof of
Lemma 12 shows that this process, for every j, can only cause the length of the paths between
surviving nodes to become smaller. Since the position of surviving nodes does not change
from their original position in G, it follows that the number of c-connected components in
Hij

within s(u) can only be smaller than that in G within s(u). It thus remains to argue
that the number of c-connected components within each s(u), for all u ∈ V is at most O(c).
To this end, note that in order for any pair of points in V (s) to be disconnected within s+,
every path between them must contain a subpath which intersects the boundaries of s and
s+ and therefore has length at least r√

d
, as shown in Figure 3. From the c-packedness of G

we conclude there cannot be more than 2cr
√

d
r = 2c

√
d such paths in s+. We conclude there

can be at most O(c) c-connected sets found by the algorithm. ◀

s

s+

rad(s)√
d

rad(s)

diam(s)

Figure 3 Two c-connected components in s must be separated by a path of length at least rad(s)√
d

.

With the help of the above lemma we can analyse the size of the resulting WSPDG using
a simple charging argument inspired by the one used in [24].

▶ Lemma 14. The resulting WSPDG, W , is σ-well separated and is of size O(c3σn).

Proof. The fact that W is σ-well separated follows from our use of the Euclidean distance as a
lower bound on the distance between two representatives, and our use of dubG (Section 4.2.2)
as upper bound on the graph diameter, to determine whether a pair is σ-well separated.

To prove the size of W we use a simple charging argument. For a pair (u, v) ∈ W , let
π(v) denote the parent of v in T . Assume the last call to the algorithm in [24] (Section
3.1.1) was via (π(v), u). We charge the pair to u and argue any node can be charged at most
O(c2σ) times. Since the pair (π(v), u) was considered not well-separated by the algorithm, it

L. Deryckere, J. Gudmundsson, A. van Renssen, Y. Sha, and S. Wong 21:11

follows that d(π(v), u) ≤ dG(π(v), u) < dubG(π(v))σ. Consider a geometric ball B(u, r) of
radius r = (1 + σ)dubG(π(v)) centered at u. Note that the connected set in G represented
by π(v) must be fully contained inside B. By c-packedness, there can be at most cσ + 1
candidates for π(v). Since π(v) can have at most 2d · O(c) children, it follows that there are
O(c2σ) candidates for v. We conclude a node u can be charged at most O(c2σ) in this way.
By Lemma 13 there are O(cn) nodes in T . This concludes the lemma. ◀

We now argue the runtime and space complexity of our construction.

4.2.4 Complexity analysis
In Lemma 15 the runtime of the construction of the c-CT is analysed, as well as the size of
the resulting tree. We then analyse the runtime and space complexity for computing the
upper bound on the graph diameter of the subgraph represented in each cell of the c-CT in
Lemma 16. Finally, with the help of these lemmas we analyse the construction time and
space complexity of our WSPDG in Theorem 3. The proofs of Lemma 15 and Lemma 16 can
be found in the full version of the paper.

▶ Lemma 15. Given a c-packed graph G, one can construct a c-CT of size O(cn) in
O(n log n + c2n) time.

▶ Lemma 16. Let G be a c-packed graph and Q its corresponding compressed quadtree. One
can compute an upper bound on the graph diameter of any c-connected component contained
in u, for all u ∈ Q, in O(cn log n) time, using at most O(cn) space.

With the help of the above lemmas we obtain the following theorem.

▶ Theorem 3. Given a c-packed graph G in Rd, for fixed d, one can construct a WSPDG

with separation factor σ of size O(c3σn) in O(cn log n + c3σn) time, using O(cn) space.

Proof. Constructing the compressed quadtree Q requires O(n log n) time and O(n) space.
Upper bounding the diameter using the techniques introduced in Section 4.2.2 can be done
in O(cn log n) time, using O(cn) space (Lemma 16). We conclude from Lemma 15 that we
can construct a c-CT, T , from Q in O(c2n) time, using O(cn) space. Finally, using the
construction from [24] we can compute the WSPDG from T in O(c3σn) time using O(cn)
space. This concludes the proof. ◀

5 A Separator Theorem for c-packed Graphs

A subset of vertices C of a graph with n vertices is called a (balanced) separator if the
remaining vertices can be partitioned into two sets A and B such that there are no edges
between A and B, with |A| < α · n and |B| < α · n for some constant 1/2 ≤ α < 1. The
subset C is said to α-separate the graph.

In this section we show how to compute a separator of size O(c) for any c-packed graph
that (1 − 1

2λ3)-separates the graph. The constant λ is the doubling constant of Rd.
We have the following separating lemma.

▶ Lemma 17. Given a set P of n points in Rd, where d is fixed, one can compute a ball
b(p, r), which is centered at p and has radius r, such that b(p, r) contains at least n/(2λ3)
points of P , where λ is the doubling constant of Rd, and b(p, 2r) of twice the radius contains
at most n/2 points of P . The running time of the algorithm is O(λ3dn).

WADS 2025

https://arxiv.org/abs/2505.06884

21:12 A WSPD, Separator and Small Tree Cover for c-Packed Graphs

Proof. Let ropt(P, k) be the radius of the smallest ball enclosing k points of P . Har-Peled
and Mazumdar [24] gave an algorithm for computing a k-enclosing ball with radius at most
2ropt(P, k) in O(n(n/k)d) time. As a result, one can compute a (n/(2λ3))-enclosing ball
b(p, r) in O(λ3d · n) time.

Now one can prove that b(p, 2r) contains at most n/2 points. Since r ≤ 2ropt(P, n/(2λ3)),
by the doubling property, b(p, 2r) can be covered by at most λ3 balls of radius
ropt(P, n/(2λ3))/2. Note that any ball of radius ropt(P, n/(2λ3))/2 contains strictly less
than n/(2λ3) points. Thus b(p, 2r) contains at most n/2 points. This concludes the proof of
the lemma. ◀

Based on Lemma 17, we can show that one can construct separators of size O(c) that
(1 − 1

2λ3)-separate c-packed graphs, as shown in Theorem 4.

▶ Theorem 4. Given a c-packed graph G in Rd, where d is fixed, with n vertices, one can
find a separator of size O(c) that (1 − 1

2λ3)-separates G, in O(c2n) time.

Proof. First we construct a separator C. Then we prove that C satisfies the required
properties. Finally we analyze the running time of the algorithm.

Let P be the vertices of c-packed graph G and run the algorithm described in Lemma 17.
Let b(p, r) be the computed ball that contains at least n/(2λ3) vertices of G. Let Â be the
vertices of G contained in b(p, r) and let B̂ be the vertices of G lying outside b(p, 2r). See
Figure 4 for an illustration.

Now set up a max-flow instance. A similar construction was used in Lemma 11 of [20].
Set the capacity of each edge of G to 1. Let the vertices in Â be the sources, and let the
vertices in B̂ be the sinks. Run the Ford-Fulkerson algorithm ([31], Chapter 7) on the
instance. According to the max-flow min-cut theorem ([31], Chapter 7), the max-flow of
the instance is equal to its min-cut. Let (S, T) be a min-cut and let {e1, . . . , el} be the set
of edges from S to T , where Â ⊆ S and let B̂ ⊆ T . Choose one endvertex for each edge in
{e1, . . . , el} and add it to C (C is initially empty). Let A = S \ C and let B = T \ C. This
finishes the construction of C.

Â

B̂

r

p

Figure 4 Illustration of the proof of Theorem 4 where p is the center of ball b(p, r). Vertices in
Â are drawn in red. Vertices in B̂ are drawn in blue. The value of the min-cut in the figure is 4.

Next we show that C (i) has size O(c), and (ii) (1 − 1
2λ3)-separates G. Property (ii)

follows from (S, T) being a min-cut. Since Â contains at least n/(2λ3) vertices of G and
Â ⊂ S, A contains at least n/(2λ3) vertices of G. Since B̂ contains at least n/2 vertices of G

and B̂ ⊂ T , B contains at least n/2 vertices of G. Property (i) follows from c-packedness. In
the max-flow instance, the value of the max-flow is l. Since all the edges have capacity 1,
there are l edge-disjoint paths from Â to B̂. Each such path pierces both the inner and the

L. Deryckere, J. Gudmundsson, A. van Renssen, Y. Sha, and S. Wong 21:13

outer boundaries of the d-dimensional spherical shell b(p, 2r) \ b(p, r). Due to c-packedness,
the length of edges inside the spherical shell is at most 2cr. Since the width of the spherical
shell is r, there are at most 2c edge-disjoint paths from Â to B̂. Therefore |C| = l ≤ 2c.

Finally we analyze the running time of the algorithm. Running the algorithm in Lemma 17
on the vertices of G takes O(λ3dn) time. We use the Ford-Fulkerson algorithm to solve the
max-flow instance. The running time of the algorithm is proportional to the number of edges
in G times the value of the max-flow. Since l ≤ 2c and there are O(cn) edges in G, solving
the max-flow instance takes O(c2n) time. Since λ = O(d), the overall running time of the
algorithm is O(c2n). ◀

Putting the above results together gives us an exact distance oracle. We refer the reader
to the full version of the paper for further details.

▶ Theorem 18. Given any c-packed graph G with n vertices, using O(c2n log n + cn log2 n)
preprocessing time and O(cn log n) space, a distance query between any two vertices in G can
be answered in O(c log n) time.

This enables us to obtain Theorem 5 and Corollary 6 (see the full version of the paper for
details).

References
1 N. Alon, P. D. Seymour, and R. Thomas. A separator theorem for graphs with an excluded

minor and its applications. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing (STOC), pages 293–299, 1990.

2 S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M. Smid. Euclidean spanners: short,
thin, and lanky. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC), pages 489–498, 1995.

3 Y. Bartal, O. N. Fandina, and O. Neiman. Covering metric spaces by few trees. J. Comput.
Syst. Sci., 130:26–42, 2022. doi:10.1016/J.JCSS.2022.06.001.

4 U. Bertele and F. Brioschi. Nonserial dynamic programming. Academic Press, Inc., 1972.
5 F. Brüning, J. Conradi, and A. Driemel. Faster approximate covering of subcurves under

the Fréchet distance. In Proceedings of the 30th Annual European Symposium on Algorithms,
(ESA), volume 244 of LIPIcs, pages 28:1–28:16, 2022. doi:10.4230/LIPICS.ESA.2022.28.

6 K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong. Map matching queries
under Fréchet distance on low-density spanners. In Proceedings of the 40th Annual Symposium
on Computational Geometry (SoCG), 2024.

7 P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.
doi:10.1145/200836.200853.

8 H. Chang, J. Conroy, H. Le, L. Milenkovic, and C. Than. Covering planar metrics (and beyond):
O(1) trees suffice. In Proceedings of the 64th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 2231–2261, 2023.

9 S. Chaudhuri and C. D. Zaroliagis. Shortest paths in digraphs of small treewidth. part I:
sequential algorithms. Algorithmica, 27(3):212–226, 2000. doi:10.1007/S004530010016.

10 B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica,
2:337–361, 1987. doi:10.1007/BF01840366.

11 D. Chen, A. Driemel, L. J. Guibas, A. Nguyen, and C. Wenk. Approximate map matching
with respect to the Fréchet distance. In Proceedings of the 13th Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 75–83, 2011.

12 J. Conradi, A. Driemel, and B. Kolbe. (1+ϵ)-ANN data structure for curves via subspaces
of bounded doubling dimension. Comput. Geom. Topol., 3(2):6:1–6:22, 2024. URL: https:
//www.cgt-journal.org/index.php/cgt/article/view/45.

WADS 2025

https://arxiv.org/abs/2505.06884
https://arxiv.org/abs/2505.06884
https://doi.org/10.1016/J.JCSS.2022.06.001
https://doi.org/10.4230/LIPICS.ESA.2022.28
https://doi.org/10.1145/200836.200853
https://doi.org/10.1007/S004530010016
https://doi.org/10.1007/BF01840366
https://www.cgt-journal.org/index.php/cgt/article/view/45
https://www.cgt-journal.org/index.php/cgt/article/view/45

21:14 A WSPD, Separator and Small Tree Cover for c-Packed Graphs

13 A. Driemel and S. Har-Peled. Jaywalking your dog: Computing the Fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013. doi:10.1137/120865112.

14 A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic
curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. doi:10.1007/
S00454-012-9402-Z.

15 Z. Dvorák and S. Norin. Treewidth of graphs with balanced separations. J. Comb. Theory B,
137:137–144, 2019. doi:10.1016/J.JCTB.2018.12.007.

16 J. Gao and L. Zhang. Well-separated pair decomposition for the unit-disk graph metric and
its applications. SIAM J. Comput., 35(1):151–169, 2005. doi:10.1137/S0097539703436357.

17 J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of bounded
genus. J. Algorithms, 5(3):391–407, 1984. doi:10.1016/0196-6774(84)90019-1.

18 J. Gudmundsson, Z. Huang, A. van Renssen, and S. Wong. Computing a subtrajectory
cluster from c-packed trajectories. In Proceedings of the 34th International Symposium
on Algorithms and Computation (ISAAC), volume 283 of LIPIcs, pages 34:1–34:15, 2023.
doi:10.4230/LIPICS.ISAAC.2023.34.

19 J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Approximate
distance oracles for geometric spanners. ACM Trans. Algorithms, 4(1):10:1–10:34, 2008.
doi:10.1145/1328911.1328921.

20 J. Gudmundsson, M. P. Seybold, and S. Wong. Map matching queries on realistic input graphs
under the Fréchet distance. In Proceedings of the 34th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1464–1492, 2023.

21 J. Gudmundsson and M. H. M. Smid. Fast algorithms for approximate Fréchet matching
queries in geometric trees. Comput. Geom., 48(6):479–494, 2015. doi:10.1016/J.COMGEO.
2015.02.003.

22 J. Gudmundsson and S. Wong. A well-separated pair decomposition for low density graphs.
CoRR, abs/2411.08204, 2024. doi:10.48550/arXiv.2411.08204.

23 A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion
embeddings. In Proceedings of the 44th Annual Symposium on Foundations of Computer
Science (FOCS), pages 534–543, 2003.

24 S. Har-Peled. Geometric Approximation Algorithms. American Mathematical Society, 2011.
25 S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their

applications. SIAM J. Comput., 35(5):1148–1184, 2006. doi:10.1137/S0097539704446281.
26 S. Har-Peled and K. Quanrud. Approximation algorithms for polynomial-expansion and

low-density graphs. SIAM J. Comput., 46(6):1712–1744, 2017. doi:10.1137/16M1079336.
27 S. Har-Peled and Benjamin Raichel. The Fréchet distance revisited and extended. ACM Trans.

Algorithms, 10(1):3:1–3:22, 2014. doi:10.1145/2532646.
28 K. Kawarabayashi, P. N. Klein, and C. Sommer. Linear-space approximate distance oracles

for planar, bounded-genus and minor-free graphs. In Proceedings of the 38th International
Colloquium on Automata, Languages and Programming (ICALP), volume 6755 of Lecture
Notes in Computer Science, pages 135–146, 2011. doi:10.1007/978-3-642-22006-7_12.

29 K. Kawarabayashi, C. Sommer, and M. Thorup. More compact oracles for approximate
distances in undirected planar graphs. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 550–563, 2013.

30 P. N. Klein. Preprocessing an undirected planar network to enable fast approximate distance
queries. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 820–827, 2002.

31 Jon M. Kleinberg and Éva Tardos. Algorithm design. Addison-Wesley, 2006.
32 R. Kyng, R. Peng, R. Schwieterman, and P. Zhang. Incomplete nested dissection. In Proceedings

of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 404–417,
2018.

https://doi.org/10.1137/120865112
https://doi.org/10.1007/S00454-012-9402-Z
https://doi.org/10.1007/S00454-012-9402-Z
https://doi.org/10.1016/J.JCTB.2018.12.007
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1016/0196-6774(84)90019-1
https://doi.org/10.4230/LIPICS.ISAAC.2023.34
https://doi.org/10.1145/1328911.1328921
https://doi.org/10.1016/J.COMGEO.2015.02.003
https://doi.org/10.1016/J.COMGEO.2015.02.003
https://doi.org/10.48550/arXiv.2411.08204
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1137/16M1079336
https://doi.org/10.1145/2532646
https://doi.org/10.1007/978-3-642-22006-7_12

L. Deryckere, J. Gudmundsson, A. van Renssen, Y. Sha, and S. Wong 21:15

33 H. Le and C. Wulff-Nilsen. Optimal approximate distance oracle for planar graphs. In
Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 363–374, 2021.

34 R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Appl. Math,
36(2):177–189, 1979.

35 R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM J. Comput.,
9(3):615–627, 1980. doi:10.1137/0209046.

36 G. L. Miller and W. P. Thurston. Separators in two and three dimensions. In Proceedings of
the 22nd Annual ACM Symposium on Theory of Computing (STOC), pages 300–309, 1990.

37 G. Narasimhan and M. H. M. Smid. Geometric spanner networks. Cambridge University
Press, 2007.

38 K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In László Babai,
editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC),
pages 281–290, 2004.

39 M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
J. ACM, 51(6):993–1024, 2004. doi:10.1145/1039488.1039493.

40 M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005. doi:
10.1145/1044731.1044732.

41 C. Wulff-Nilsen. Approximate distance oracles for planar graphs with improved query time-
space tradeoff. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 351–362, 2016.

WADS 2025

https://doi.org/10.1137/0209046
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1145/1044731.1044732

	1 Introduction
	1.1 Our Results
	1.2 Related work

	2 Preliminaries
	3 Technical Overview
	3.1 A Well-Separated Pair Decomposition for c-packed Graphs
	3.2 A Separator Theorem for c-packed Graphs
	3.3 A Small Tree Cover for c-packed Graphs

	4 A Well-Separated Pair Decomposition for c-packed Graphs
	4.1 Notation and Preliminaries
	4.2 Constructing a WSPD for c-packed graphs
	4.2.1 Constructing a c-Connected Tree
	4.2.2 Bounding the Graph Diameter of a Cell in the c-CT
	4.2.3 Constructing the WSPD_G
	4.2.4 Complexity analysis

	5 A Separator Theorem for c-packed Graphs

