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Abstract
Much prior work has been done on designing computational geometry algorithms that handle input
degeneracies, data imprecision, and arithmetic round-off errors. We take a new approach, inspired
by the noisy sorting literature, and study computational geometry algorithms subject to noisy
Boolean primitive operations in which, e.g., the comparison “is point q above line ℓ?” returns
the wrong answer with some fixed probability. We propose a novel technique called path-guided
pushdown random walks that generalizes the results of noisy sorting. We apply this technique to
solve point-location, plane-sweep, convex hulls in 2D and 3D, and Delaunay triangulations for noisy
primitives in optimal time with high probability.
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1 Introduction

In 1961, Rényi [37] introduced a binary search problem where comparisons between two values
return the wrong answer independently with probability p < 1/2; see also, e.g., Pelc [33, 34].
Subsequently, in 1994, Feige, Raghavan, Peleg, and Upfal [15] showed how to sort n items
in O(n log n) time, with high probability,1 in the same noisy comparison model. Building
on this classic work, in this paper we study the design of efficient computational geometry
algorithms using Boolean geometric primitives, such as orientation queries or sidedness tests,
that randomly return the wrong answer (independently of previous queries and answers) with
probability at most p < 1/2 (where p is known) and otherwise return the correct answer.

The only prior work we are aware of on computational geometry algorithms tolerant to
such non-persistent errors is work by Groz, Mallmann-Trenn, Mathieu, and Verdugo [19]
on computing a d-dimensional skyline of size k and probability 1 − δ in O(nd log(dk/δ))
time. We stress that, as in our work, this noise model is different than the considerable prior
work on geometric algorithms that are tolerant to uncertainty, imprecision, or degeneracy
in their inputs, some of which we review below. Indeed, the motivation for our study does

1 In this paper, we take “with high probability” (w.h.p.) to mean that the failure probability is at most
1/nc, for some constant c ≥ 1.

© David Eppstein, Michael T. Goodrich, and Vinesh Sridhar;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
https://www.ics.uci.edu/~eppstein/
mailto:goodrich@uci.edu
https://www.ics.uci.edu/~goodrich/
https://orcid.org/0000-0002-8943-191X
mailto:vineshs1@uci.edu
https://orcid.org/0009-0009-3549-9589
https://doi.org/10.4230/LIPIcs.WADS.2025.24
https://arxiv.org/abs/2501.07707
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


24:2 Computational Geometry with Probabilistically Noisy Primitive Operations

not come from issues that arise, for example, from round-off errors, geometric measurement
errors, or degenerate geometric configurations. Instead, our motivation comes from potential
applications involving quantum computing, where a quantum computer is used to answer
primitive queries, which return an incorrect answer with a fixed probability at most p <

1/2; see, e.g., [2, 23, 24]. We see our contribution as a complement to prior work that
applies quantum algorithms in a black-box fashion to quickly solve geometric problems, e.g.,
see [3]. Our technique gives greater flexibility to algorithms that rely on noisy primitives
or subprocessors and may be useful in further developing this field. A second motivation
for this noise model comes from communication complexity, in which hash functions can be
used to reduce communication costs in distributed algorithms at the expense of introducing
error. Viola models this behavior with noisy primitives to efficiently construct higher-level,
fault-tolerant algorithms [40].

A simple observation, made for sorting by Feige, Raghavan, Peleg, and Upfal [15], is
that we can use any polynomial-time algorithm based on correct primitives by repeating
each primitive operation O(log n) times and taking the majority answer as the result. This
guarantees correctness w.h.p., but increases the running time by a log n factor. In this
paper, we design computational geometry algorithms with noisy primitive operations that
are correct w.h.p. without incurring this overhead. In the full version, we show that the
logarithmic overhead is unavoidable for certain problems, including closest pairs and detecting
collinearities.

1.1 Related Work
There is considerable prior work on sorting and searching with noisy comparison errors. For
example, Feige, Raghavan, Peleg, and Upfal [15] show that one can sort in O(n log n) time
w.h.p. with probabilistically noisy comparisons. Dereniowski, Lukasiewicz, and Uznanski [9]
study noisy binary searching, deriving time bounds for constant factors involved. A similar
study has also been done by Wang, Ghaddar, Zhu, and Wang [41]. Klein, Penninger, Sohler,
and Woodruff solve linear programming in 2D under a different model of primitive errors [25],
in which errors persist regardless of whether primitives are recomputed.

Other than the work by Groz et al. [19] mentioned above, we are not aware of prior work on
computational geometry algorithms with random, independent noisy primitives. Nevertheless,
considerable prior work has designed algorithms that can deal with input degeneracies, data
imprecision, and arithmetic round-off errors. For example, several researchers have studied
general methods for dealing with degeneracies in inputs to geometric algorithms, e.g.,
see [13, 42]. Researchers have designed algorithms for geometric objects with imprecise
positions, e.g., see [27, 28]. In addition, significant prior work has dealt with arithmetic
round-off errors and/or performing geometric primitive operations using exact arithmetic,
e.g., see [16,30]. While these prior works have made important contributions to algorithm
implementation in computational geometry, they are orthogonal to the probabilistic noise
model we consider in this paper.

Emamjomeh-Zadeh, Kempe, and Singhal [14] and Dereniowski, Tiegel, Uznański, and
Wolleb-Graf [10] explore a generalization of noisy binary search to graphs, where one vertex
in an undirected, positively weighted graph is a target. Their algorithm identifies the target
by adaptively querying vertices. A query to a node v either determines that v is the target
or produces an edge out of v that lies on a shortest path from v to the target. As in our
model, the response to each query is wrong independently with probability p < 1/2. This
problem is different than the graph search we study in this paper, however, which is better
suited to applications in computational geometry. For example, in computational geometry
applications, there is typically a search path, P , that needs to be traversed to a target vertex,
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but the search path P need not be a shortest path. Furthermore, in such applications, if
one queries using a node, v, that is not on P , it may not even be possible to identify a node
adjacent to v that is closer to the target vertex.

Viola [40] uses a technique similar to ours to handle errors in a communication protocol.
In one problem studied by Viola, two participants with n-bit values seek to determine which
of their two values is largest. This can be done by a noisy binary search for the highest-order
differing bit position. Each search step performs a noisy equality test on two prefixes of
the inputs, by exchanging single-bit hash values. The result is an O(log n) bound on the
randomized communication complexity of the problem. Viola uses similar protocols for other
problems including testing whether the sum of participant values is above some threshold.
The noisy binary search protocol used by Viola directs the participants down a decision tree,
with an efficient method to test whether the protocol has navigated down the wrong path in
order to backtrack. One can think of our main technical lemma as a generalization of this
work to apply to any DAG.

1.2 Our Results
This work centers around our novel technique, path-guided pushdown random walks, described
in Section 3. It extends noisy binary search in two ways: it can handle searches where the
decision structure of comparisons is in general a DAG, not a binary tree, and it also correctly
returns a non-answer in the case that the query value is not found. These two traits allow us
to implement various geometric algorithms in the noisy comparison setting.

However, to apply path-guided pushdown random walks, one must design an oracle
that, given a sequence of comparisons, can determine if one of them is incorrect in constant
time. Because different geometric algorithms use different data structures and have different
underlying geometry, we must develop a unique oracle for each one. The remainder of the
paper describes noise-tolerant implementations with optimal running times for plane-sweep
algorithms, point location, convex hulls in 2D and 3D, and Delaunay triangulations. We also
present a dynamic 2D hull construction that runs in O(log2 n) time w.h.p. per operation.
See Table 1 for a summary of our results.

Our algorithms to construct the trapezoidal decomposition, Delaunay triangulation, and
3D convex hull are adaptions of classic randomized incremental constructions. A recent paper
by Gudmundsson and Seybold [20] published at SODA 2022 claimed that such constructions
produce search structures of depth O(log n) and size O(n) w.h.p. in n, implying that the
algorithms run in O(n log n) time w.h.p. Unfortunately, the authors have contacted us
privately to say that their analysis of the size of such structures contains a bug. In this
paper, we continue to use the standard expected time analysis.

2 Preliminaries

Noisy Boolean Geometric Primitive Operations

Geometric algorithms typically rely on one or more Boolean geometric primitive operations
that are assumed to be computable in O(1) time. For example, in a Delaunay triangulation
algorithm, this may be determining if some point p is located in some triangle ∆; in a 2D
convex hull algorithm, this may be an orientation test; etc. Here we assume that a geometric
algorithm relies on primitive operations that each outputs a Boolean value and has a fixed
probability p < 1/2 of outputting the wrong answer. As in earlier work for the sorting
problem [15], we assume non-persistent errors, in which each primitive test can be viewed as
an independent weighted coin flip.

WADS 2025



24:4 Computational Geometry with Probabilistically Noisy Primitive Operations

Table 1 Our main results in the noisy setting. All algorithms succeed w.h.p. in n. Runtimes
marked with a ⋆ are in expectation. Runtimes marked with a † are optimal despite having faster
algorithms in the non-noisy setting.

Algorithm Runtime Section
Trapezoidal Map Θ(n log n)⋆ Section 4

Trapezoidal Map with k Crossings O((n + k) log n) Section 5.2
2D Closest Points Θ(n log n)† Section 5.3
2D Convex Hull Θ(n log n)† Section 6.1

Dynamic 2D Convex Hull O(log2 n) per update Section 6.2
3D Convex Hull Θ(n log n)⋆† Section 6.3

Delaunay Triangulation Θ(n log n)⋆ Section 7

In each section below, we specify the Boolean geometric primitive operation(s) relevant
to the algorithm in consideration. We note here that, while determining whether two objects
a and b have equal value may be a noisy operation, determining whether two pointers both
point to the same object a is not a noisy operation. We also note that manipulating and
comparing non-geometric data, such as pointers or metadata of nodes in a tree (e.g., for
rotations), are not noisy operations. This is true even if the tree was constructed using noisy
comparisons.

The Trivial Repetition Strategy

As mentioned above, Feige, Raghavan, Peleg, and Upfal [15] observed in the context of the
noisy sorting problem that by simply repeating a primitive operation O(log n) times and
choosing the decision returned a majority of the time, one can select the correct answer
w.h.p. The constant in this logarithmic bound can be adjusted as necessary to make a
polynomial number of correct decisions, w.h.p., as part of any larger algorithm. Indeed, this
naive method immediately implies O(n log2 n) algorithms for a majority of the geometric
constructions we discuss below. The goal of our paper is to improve this to an optimal
running time using the novel technique described in Section 3.

General Position Assumptions

For the sake of simplicity of expression, we make standard general position assumptions
throughout this paper: no two segment endpoints in a trapezoidal decomposition and no two
events in a plane sweep algorithm have the same x-coordinate, no three points lie in a line and
no four points lie on a plane for 2D and 3D convex hulls respectively, and no four points lie
in a circle for Delaunay triangulations. Applying perturbation methods [29] or implementing
special cases in each algorithm would allow the relaxation of these assumptions.

3 Path-Guided Pushdown Random Walks

In this section, we provide an analysis tool that we use repeatedly in this paper and which
may be of independent interest (e.g., to analyze randomized routing protocols). Specifically,
we introduce path-guided pushdown random walks, which are related to biased random walks
on a graph (e.g., see [5, 17]) and generalize the noisy binary search problem [15, 18]. See
Figure 1 for a depiction of path-guided pushdown random walks.



D. Eppstein, M. T. Goodrich, and V. Sridhar 24:5

Figure 1 Here we show a sample execution of path-guided pushdown random walks in some DAG
G. The transition oracle acts arbitrarily when it lies, so we may end up with the sequence shown
here, a correct move prior to our current node but an incorrect move to v2. To apply path-guided
pushdown random walks, we must be able to determine whether we are on P in O(1) comparisons,
no matter where we are in G.

A path-guided pushdown random walk is defined in terms of a directed acyclic graph
(DAG), G, that has a starting vertex, s, a target vertex, t, and a path, P = (s, v1, v2, . . . , t),
from s to t, in G (we assume s ̸= t). We start our walk from the start vertex, v ← s, and we
use a stack, S, which initially contains only s, and a transition oracle, T (v), to determine
our walk. For each vertex, v, during our walk, we consult the transition oracle, T (v), which
first tells us whether v ∈ P and if so, then T (v) tells us the next vertex in P to visit to make
progress towards t. T (v) can return v, which means we should stay at v, e.g., if v = t.

Our model allows T to “lie.” We assume a fixed error probability,2 pe < 1/15, such that T

gives the correct answer with probability 1− pe, independently each time we query T . With
probability pe, T (v) can lie, i.e., T (v) can indicate “v ∈ P” when v ̸∈ P , T (v) can indicate
“v ̸∈ P” when v ∈ P , or T (v) can return a “next” vertex that is not an actual next vertex
in P (including returning v itself even though v ̸= t). Importantly, this next vertex must be
an outgoing neighbor of v. This allows us to maintain the invariant that S holds an actual
path in G (with repeated vertices). Our traversal step, for current vertex v, is as follows:

If T (v) indicates that v ̸∈ P (and v ̸= s), then we set v ← S.pop(), which may be v again,
for the next iteration. This is a backtracking step.
If T (v) indicates that v ∈ P , then let w be the vertex indicated by T (v) as next in P ,
such that v = w or (v, w) is an edge in G.3

If v = w, then we call S.push(v) and repeat the iteration with this same v, since this
is evidence we have reached the target, t.
Else (v ≠ w) if v = S.top(), then we set v ← S.pop(). That is, in this case, we don’t
immediately transition to w, but we take this as evidence that we should not stay at
v, as we did in the previous iteration. This is another type of backtracking step.
Otherwise, we call S.push(v) and set v ← w for the next iteration.

2 The threshold of 1/15 simplifies our proof. We can tolerate any higher error probability bounded below
1/2, by repeating any query a constant number of times and taking the majority answer.

3 If w ̸= v and (v, w) is not an edge in G, we immediately reject this call to T and repeat the call to T .

WADS 2025
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Figure 2 An instance of a path-guided pushdown random walk in the trapezoidal map history
DAG. R represents the initial bounding box, the leaf nodes represent currently visible trapezoids.
The remaining nodes represent destroyed trapezoids. We are at node C in a path-guided pushdown
random walk, so we test if our query point lies in trapezoid C, the shaded region in the decomposition.

We repeat this step until we are confident we can stop, which occurs when enough copies
of the same vertex occur at the top of the stack.

▶ Theorem 1. Given an error tolerance, ε = n−c for c > 0, and a DAG, G, with a path, P ,
from a vertex, s, to a distinct vertex, t, the path-guided pushdown random walk in G starting
from s will terminate at t with probability at least (1− ε) after N = Θ(|P |+ log(1/ε)) steps,
for a transition oracle, T , with error probability pe < 1/15.

The proof of Theorem 1 can be found in Section A. In short, we show that each “good”
action by T can undo any “bad” action by T . By applying a Chernoff bound, we then show
that, w.h.p., we reach t after N steps and terminate after another O(log(1/ε)) steps. The
requirement that ε be polynomially small is used to ensure that premature termination
is unlikely. For the remainder of the paper, we assume that ε = 1/nc for some constant
c > 0. A majority of the algorithms below invoke path-guided pushdown random walks
at most O(n) times. Taking the union bound over all O(n) invocations still shows that
path-guided pushdown random walks fails with probability O(1/nc−1). Thus, for c ≥ 2, all
invocations succeed w.h.p. This choice of ε adds O(log nc) = O(log n) to the time for each
walk. However, in our applications it can be shown that |P | = O(log n), so this does not
change the asymptotic complexity of the operation.

4 Noisy Randomized Incremental Construction for Trapezoidal Maps

In this section, we show how a history DAG in a randomized incremental construction (RIC)
algorithm can be used as the DAG of Theorem 1. Suppose we are given a set of n non-crossing
line segments in the plane and wish to construct their trapezoidal decomposition, D. We
outline below how the history DAG for a (non-noisy) RIC algorithm for constructing D can
be used as the DAG of Theorem 1. We show that, even in the noisy setting, such a DAG
can perform point location in the history of trapezoids created and/or destroyed within the
algorithm to locate the endpoints of successively inserted line segments. In particular, we
consider a history DAG where any trapezoid destroyed in a given iteration points to the
new trapezoids that replace it. This is in contrast to another variant of a history DAG that
represents the segments themselves as nodes in the DAG [8], which seems less usable when
primitives are noisy. To make our RIC algorithm noise-tolerant, we must solve two issues.
The first is to navigate the history DAG in O(log n) time w.h.p.; the second is to walk along
each segment to merge and destroy trapezoids when it is added.
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To navigate down the history DAG, we apply a path-guided pushdown random walk. To
do so we must test, with a constant number of operations, whether we are on the path that
a non-noisy algorithm would search to find the query endpoint q of a new segment, si. See
Figure 2 for an example of this process. Each node of our history DAG represents a trapezoid
(either destroyed if an internal node or current if a leaf node). Importantly, each of the at
most four children of a node cover the parent’s trapezoid, but do not overlap. Therefore, we
can define a unique path, P w.r.t query q, to be a sequence of trapezoids beginning at the
root of the history DAG and ending at the leaf-node trapezoid containing q. Each node on
the path is the unique child of the previous node that contains q. Thus, all our transition
oracle must do to determine if we are on the correct path is to check whether q is contained
by the trapezoid mapped to our current node v. If this test succeeds, the oracle determines
(rightly or wrongly) that v is on a valid path, and it proceeds to compare q against the
segment whose addition split trapezoid v in order to return the next node of the walk. If one
or more of these tests fails, the oracle says that v is not on a valid path. Let ℓi be the sum of
the lengths of the two unique paths corresponding to the endpoints of si. If we set our error
probability for path-guided pushdown random walks to be w.h.p. in n, the point-location
cost to insert the ith segment is O(ℓi + log n).

For the second issue, suppose there are di trapezoids between the left and right endpoint
of the ith segment to be inserted, and that we need to walk left-to-right in the current
subdivision to find them. To find the next trapezoid in this walk, we simply test if the
segment endpoint that defines the right boundary of the current trapezoid lies above or
below segment si, e.g., determining whether to choose its upper-right or lower-right neighbor.
Combining this above-below test with the trivial repetition strategy from Section 2, we can
compute the correct sequence of trapezoids in O(di log n) time w.h.p.

Via the standard backwards analysis,
∑n

i=1 ℓi = O(n log n) and
∑n

i=1 di = O(n) in
expectation [8]. It has been shown [8, 38] that the search depth of the final history DAG
is O(log n) w.h.p. Therefore, after constructing the decomposition, we can use path-guided
pushdown random walks to answer planar point-location queries in O(log n) time w.h.p. We
conclude the following.

▶ Theorem 2. We can successfully compute a trapezoidal decomposition map of n non-
crossing line segments w.h.p. in expected O(n log n) time, even with noisy primitives, and
thereby construct a data structure (the history DAG) that answers point location queries in
O(log n) time w.h.p.

It is natural to hope that this can be extended to line segment arrangements with
crossings, for which the best non-noisy time bounds are O(n log n + k), achieved with
a similar randomized incremental approach. We show in the full version that an extra
logarithmic factor may be necessary, however.

5 Plane-Sweep Algorithms

In this section, we show that many plane-sweep algorithms can be adapted to our noisy-
primitive model.

5.1 Noisy Balanced Binary Search Trees
We begin by noting that we can implement binary search trees storing geometric objects
to support searches and updates in O(log n) time w.h.p. by adapting the noisy balanced
binary search trees recently developed for numbers in quantum applications by Khadiev,

WADS 2025
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Savelyev, Ziatdinov, and Melnikov [24] to our noisy-primitive framework for geometric
objects. Plane-sweep algorithms require us to store an ordered sequence of events that are
visited by the sweep-line throughout the course of the algorithm while maintaining an active
set of geometric objects for the sweep line in a balanced binary tree. Some plane-sweep
algorithms, such as the one of Lee and Preparata that divides a polygon into monotone
pieces [26], have a static set of events that can simply be maintained as a sorted array that
is constructed using an existing noisy sorting algorithm [15]. Others, however, add or change
events to the event queue as the algorithm progresses. In addition, the algorithms must
also maintain already-processed data in a way that allows for new data swept over to be
efficiently incorporated. The two most common dynamic data structures in plane-sweep
algorithms are dynamic binary search trees and priority queues. Throughout this section,
noise is associated with the comparison “a ≤ b?” where a and b are geometric objects.

Once a data structure is built, its underlying structure can be manipulated without
noise. For example, we need no knowledge of the values held in a tree to recognize that it
is imbalanced and to perform a rotation, allowing implementation of self-balancing binary
search trees. For example, Khadiev, Savelyev, Ziatdinov, and Melnikov [24] show how to
implement red-black trees [21] in the noisy comparison model for numbers. We observe
here that the same method can be used for ordered geometric objects compared with noisy
geometric primitives, with a binary search tree serving as the search DAG and a root-to-leaf
search path as the path. See Section B for an explanation for how to instantiate path-guided
pushdown random walks on a binary search tree.

5.2 Noisy Trapezoidal Decomposition with Segment Crossings
We can implement an event queue as a balanced binary search tree with a pointer to the
smallest element to perform priority queue operations in the noisy setting.

▶ Theorem 3. Given a set, S, of n x-monotone pseudo-segments4 in the plane, we can
construct a trapezoidal map of S in O((n + k) log n) time w.h.p., where k is the number of
pairs of crossing segments, even with noisy primitive operations.

Proof. Bentley and Ottmann [6] compute a trapezoidal map of line segments S via a now
well-known plane-sweep algorithm, which translates directly to x-monotone pseudo-segments.
Pseudo-segment endpoints and intersection points are kept in an event queue ordered by x-
coordinates and line segments intersecting the sweep line are kept in a balanced binary search
tree, both of which can be implemented to support searches and updates in O(log n) time
w.h.p. in the noisy model, as described above. Given the O((n + k) log n)-time performance
of the Bentley-Ottmann algorithm, this implies that we can construct the trapezoidal map
of S in O((n + k) log n) time w.h.p. ◀

We note that this running time matches the construction time in Theorem 2 for non-
crossing line segments, but it does not give us a point-location data structure as in Theorem 2.
Further, the upper bound of Theorem 3 is optimal with noisy primitive operations for
k = Θ(n2) via a reduction from computing line arrangements to computing trapezoidal
decompositions. We show in the full version that computing an arrangement of n lines in
the noisy setting takes Ω(n2 log n) time.

4 A set of x-monotone psuedo-segments is a set of x-monotone curve segments that do not self-intersect
and such that any two of them intersect at most once [1, 7].
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5.3 Noisy Closest Pair

Here, we present another plane-sweep application in the noisy setting.

▶ Theorem 4. We can find a closest pair of points, from n points in the plane, with noisy
primitives, in time O(n log n) w.h.p.

Proof. Hinrichs, Nievergelt, and Schorn show how to find a pair of closest points in the plane
in O(n log n) time [22] by sorting the points by their x-coordinate and then plane-sweeping
the points in that order. They maintain the minimum distance δ seen so far, and a y-table
of active points. A point is active if has been processed and its x-coordinate is within δ

of the current point; once this condition stops being true, it is removed from the y-table.
The y-table may be implemented using a balanced binary tree. When a point is processed,
the y-table is updated to remove points that have stopped being active, by checking the
previously-active points sequentially according to the sorted order until finding a point that
remains active. The new point is inserted into the y-table, and a bounded number of its
nearby points in the table are selected. The distances between the new point and these
selected points are compared to δ, and δ is updated if a smaller distance is found.

In our noisy model, sorting the points takes O(n log n) time w.h.p. [15]. Checking whether
a point has stopped being active and is ready to be removed from the y-table may be
done using the trivial repetition strategy of Section 2; its removal is a non-noisy operation.
Inserting each point into the y-table takes O(log n) time w.h.p. Selecting a fixed number
of nearby neighbors is a non-noisy operation, and comparing their distances to δ may be
done using the trivial repetition strategy with a noisy primitive that compares two distances
determined by two pairs of points. In this way, we perform O(log n) work for each point
when it is processed, and O(log n) work again later when it is removed from the y-table.
Overall, the time is O(n log n) w.h.p. ◀

We give this result mostly as a demonstration for performing plane sweep in the noisy
model, since a closest pair (or all nearest neighbors) may be found by constructing the
Delaunay triangulation (Section 7) and then performing min-finding operations on its edges.

An algorithm by Rabin [36] finds 2D closest points in O(n) time, beating the O(n log n)
plane sweep implementation that our solution is based on, in a model of computation allowing
integer rounding of numerical values derived from input coordinates. However, computing
the minimum of n elements takes O(n log n) time for noisy comparison trees [15], and Rabin’s
algorithm includes steps that find the minimum among O(n) distances, so it is not faster
than our algorithm in our noisy model. In the full version, we prove that if data is accessed
only through noisy primitives that combine information from O(1) data points (allowing
integer rounding), then finding the closest pair w.h.p. requires time Ω(n log n). Thus, the
plane-sweep closest-pair algorithm is optimal in this model.

6 Convex Hulls

In this section, we describe algorithms for constructing convex hulls that can tolerate
probabilistically noisy primitive operations. Here, primitive operations are orientation tests
and visibility tests for 2D and 3D convex hulls respectively. Sorting is also used throughout,
so comparing the x or y coordinates of two points is also a noisy primitive.

WADS 2025
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6.1 Static Convex Hulls in 2D
We begin by observing that it is easy to construct two-dimensional convex hulls in O(n log n)
time w.h.p. Namely, we simply sort the points using a noise-tolerant sorting algorithm [15]
and then run Graham scan [8]. The Graham scan phase of the algorithm uses O(n) calls to
primitives, so we can simply use the trivial repetition strategy from Section 2 to implement
this phase in O(n log n) time w.h.p. We note that this is the best possible, however, since
just computing the minimum or maximum of n values has an Ω(n log n)-time lower bound
for a high-probability bound in the noisy primitive model [15].

6.2 Dynamic Convex Hulls in 2D
Overmars and van Leeuwen [32] show how to maintain a dynamic 2D convex hull with
O(log2 n) insertion and deletion times, O(log n) query time, and O(n) space. They maintain
a binary search tree, T ∗, of points stored in the leaves ordered by y-coordinates and augment
each internal node with a representation of half the convex hull of the points in that subtree.
They define an lc-hull of P as the convex hull of P ∪ {(∞, 0)}, which is the left half of the
hull of P (rc-hull is defined symmetrically). It is easy to see that performing the same query
on both the lc- and rc-hull of P allows us to determine if a query point is inside, outside, or
on the complete convex hull. We follow this same approach, showing how their approach can
be implemented in the noisy-primitive model using path-guided pushdown random walks.

Overmars and van Leeuwen show that two lc-hulls A and C separated by a horizontal
line can be merged in O(log n) time. Rather than being a single binary search, however,
their method involves a joint binary search on the two trees that represent A and C with
the aim of finding a tangent line that joins them. At each step, we follow one of ten cases
to determine how to navigate the trees of A and/or C. Because each decision may only
advance in one tree, noisy binary search is not sufficient. Fortunately, as we show, the
path-guided pushdown random walk framework is powerful enough to solve this problem in
the noisy model. The challenge, of course, is to define an appropriate transition oracle. Say
that the transition oracle has the ability to identify which case corresponds to our current
position in A and C. This decision determines which direction to navigate in A and/or C

and corresponds to choosing a child to navigate down an implicit decision DAG wherein
each node has ten children. It remains to show how a transition oracle acting truthfully can
determine if we are on the correct path.

We have each node of A and C maintain v.l and v.r pointers as described in Section B.
The values at v.l and v.r are ancestors of v whose keys are just smaller and just larger than
v respectively. They determine the interval of possible values of any node in v’s subtree,
which corresponds to an interval of points on each hull. See Figure 3 for an example.

Say we are currently at node a ∈ A and node c ∈ C. We can perform four case
comparisons: a.r with c.r, a.r with c.l, a.l with c.r, and a.l with c.l. Each outputs a region
of A and C that the two tangent points must be located in. If the intersection of all four
case comparisons contains the regions bounded by a.r and a.l as well as c.r and c.l, then
we are on a valid path by the correctness of Overmars and van Leeuwen’s case analysis [32].
Since the noise-free process takes O(log n) time, with a path-guided pushdown random walk
using the transition oracle described above, this process takes O(log n) time w.h.p.

To query a hull, we can perform noisy binary search on the lc- and rc-hull structures
using the transition oracle of Section B. Updating the convex hull utilizes the technical
lemma discussed above along with split and join operations on binary search trees [32]. We
conclude the following.
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Figure 3 Here we show one of four comparisons computed by the transition oracle. The points a

and c represent the node we are at in each structure. The highlighted regions represent all possible
values in that node’s subtree, bordered by points a.r and a.l (resp. c.r and c.l). This comparison is
valid as it does not eliminate the highlighted regions. If all four are valid, then we must be on the
right path in our double binary search.

Figure 4 A depiction of how the radial-search structure is embedded into the history DAG.
T (Sj−1) represents the history DAG before the jth point was added to the hull. Every node that
was a leaf in T (Sj−1) now points to each node created in T (Sj). Destroyed nodes have pointers to
all created nodes. The dashed lines between the nodes in T (Sj), represent the connections of the
radial search structure, represented as a BST.

▶ Theorem 5. We can insert and delete points in a planar convex hull in O(log2 n) time
per update w.h.p., even with noisy primitives.

6.3 Convex Hulls in 3D
In this section, we show how to construct 3D convex hulls in O(n log n) time w.h.p. even
with noisy primitive operations. The main challenges in this case are first to define an
appropriate algorithm in the noise-free model and then define a good transition oracle
for such an algorithm. For example, it does not seem possible to efficiently implement the
divide-and-conquer algorithm of Preparata and Hong [35] in the noisy primitive model as each
combine step performs O(n) primitive operations. We begin by constructing a tetrahedron
through any four points; we need the orientation of these four points, which can be found by
the trivial repetition strategy in O(log n) time. The points within this tetrahedron can be
discarded, again using the trivial repetition strategy in O(log n) time per point. The main
challenge to designing a transition oracle for the history DAG in this method is its nested
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nature. We have the nodes in the DAG themselves representing facets and pointing to the
facets that replaced them when they were deleted. We also have the radial search structures,
which maintain the set of new facets produced in a given iteration in sorted clockwise order
around the point that generated them. See Figure 4 for a depiction of this.

Our transition oracle needs to be able to determine if we are on the correct path. Say
we are given a query point, qi, being inserted in the ith iteration of the RIC algorithm and
are at node v of the history DAG. To see if we are performing the right radial search, we
first check if the ray from the origin to q passes through v’s parent (in the history DAG, not
the radial search structure). Then we must determine if we are performing radial search
correctly. To do so, we can augment the radial search tree as described in Section B and
perform two more orientation tests to determine if v is on the right path in our current radial
search structure. If a comparison returns false, then we use our stack to backtrack up the
radial search structure or, if we are at its root, back to the parent node in the history DAG
and its respective radial search tree. Thus, in just three comparisons, we can determine if we
are on the right path in the history DAG. Similar to our trapezoidal decomposition analysis,
we observe that the point-location cost in each iteration is O(ℓi + log n), where ℓi is the
length of the unique path in the history DAG corresponding to our query q. An analysis by
Mulmuley [31] shows that, over all n iterations,

∑n
i=1 ℓi = O(n log n) in expectation. As a

result, total point-location cost is O(n log n) in expectation.
Once a conflicting facet is found through the random walk, we can again walk around

the hull and perform the trivial repetition strategy of Section 2 to determine the set of all
conflicting facets, Xi, in O(|Xi| log n) time. Each facet must be created before it is destroyed,
so

∑n
i=1 |Xi| is upper-bounded by the total size of the history DAG. The same analysis by

Mulmuley [31] shows that the expected size of the history DAG is O(n). We conclude the
following.

▶ Theorem 6. We can successfully compute a 3D convex hull of n points w.h.p. in expected
O(n log n) time, even with noisy primitives.

7 Delaunay Triangulations and Voronoi Diagrams

In this section, we describe an algorithm that computes the Delaunay triangulation (DT) of a
set of points in the plane in the noisy-primitives model. Noise is associated with determining
whether a point pi lies within some triangle ∆ and whether a point pi lies in the circle defined
by some Delaunay edge e. Here, we describe the algorithm under the Euclidean metric. In
the full version, we show how to generalize our algorithm for other metrics.

Once again, we use a history DAG RIC similar to what we described in the previous
section. This time, each node in the DAG represents the triangles that exist throughout the
construction of the triangulation (see [31] for details). A leaf node is a triangle that exists
in the current version, and an internal node is a triangle that was destroyed in a previous
iteration. When we wish to insert a new point pi, we first use the history DAG to locate
where pi is in the current DT. If pi is within a triangle ∆, we split ∆ into three triangles and
add them as children of ∆. Otherwise pi is on some edge e, and we split the two adjacent
triangles ∆1 and ∆2 into two triangles each. Once this is done, we repeatedly flip edges
that violate the empty circle property so that the triangulation becomes a DT again (see [8]
Chapter 9.3). As described in [31], we store the new triangles in a radial search structure
sorted CCW around the added point pi. Using a path-guided pushdown random walk in the
history DAG to find the triangle containing pi is broadly similar to the process used to find
conflicting faces in the 3D convex hull RIC. Once again, we use the ray-shooting and radial
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search queries described in Section 6.3. With a similar transition oracle to 3D convex hulls,
we can determine where pi is in the current DT in O(ℓi + log n) time, where ℓi is the length
of pi’s unique path in the history DAG. Unlike for 3D convex hulls, there is a unique triangle
or edge that is in conflict with pi, which simplifies the process of determining a unique path
through the history DAG. We observe that if pi is not located in the triangle ∆ represented
by the current node in the DAG, then we are not on the right path. Once we have found
the triangle containing pi and added in new edges, we begin edge flipping. Using the trivial
repetition strategy, each empty circle test costs O(log n) time. The number of empty circle
tests is proportional to the number of edges flipped, which is less than the total number of
triangles created throughout the algorithm. Once again, Mulmuley’s [31] analysis shows that∑n

i=1 ℓi = O(n log n) in expectation and the number of empty circle tests needed to update
the DAG after point-location is O(n) in expectation. We conclude the following.

▶ Theorem 7. We can successfully compute a Delaunay triangulation of n points w.h.p. in
expected O(n log n) time, even with noisy primitives.

We remark that this also leads to an algorithm for constructing a Euclidean minimum
spanning tree, in which we construct the Delaunay triangulation, apply a noisy sorting
algorithm to its edge lengths, and then (with no more need for noisy primitives) apply
Kruskal’s algorithm to the sorted edge sequence. In the following section, we generalize
our Delaunay triangulation algorithm to work for a wider class of metrics, including all Lp

metrics for 1 < p <∞.

7.1 Generalized Delaunay Triangulations
In this section, we show the following:

▶ Theorem 8. Given n points in the plane, we can successfully compute a generalized
Delaunay triangulation generated by homothets of any smooth shape w.h.p. in expected time
O(n log n), even with noisy primitives.

A shape Delaunay tessellation is a generalization of a Delaunay triangulation first defined
by Drysdale [12]. Rather than a circle, we instantiate some convex compact set C in R2 and
redefine the empty circle property on an edge pq like so: given a set of points S and some
shape C, the edge pq exists in the shape Delaunay tessellation DTC(S) iff there exists some
homothet of C with p and q on its boundary that contains no other points of S [4]. We will
consider smooth shapes, as arbitrary non-smooth shapes may cause DTC(S) to not be a
triangulation under certain point sets [4]. Note that all Lp metrics for 1 < p <∞ correspond
to smooth shapes (rather than a unit circle, they are unit rounded squares) and furthermore,
all smooth shapes produce triangulations of the convex hull of S [4,39]. Similar to above, we
use the general position assumption that no four points lie on a homothet of C.

After inserting a point, pr, in the incremental algorithm, we draw new edges that
connect pr to the points that comprise the triangle(s) that p landed in. These new edges are
Delaunay as either they are fully enclosed by the homothets of C that covered the triangle(s)
p was located in or they are enclosed by the union of previously-empty shapes that covered
each edge of the triangles. After this, the algorithm finds adjacent edges, tests if they obey
the empty shape property, and flips them if not. In Theorem 3 of a work by Aurenhammer
and Paulini [4], the authors prove that for any convex shape C, local Delaunay flips lead to
DTC(S) by showing that there exists some lexicographical ordering to these triangulations
similar to how the Delaunay triangulation in L2 maximizes the minimum angle over all
triangles. Thus, the flipping algorithm used after an incremental insertion will terminate at
a triangulation that is DTC(Pr), where Pr is the set {p1, ..., pr}.

WADS 2025



24:14 Computational Geometry with Probabilistically Noisy Primitive Operations

Because the flipping process works as before, the point location structure can be easily
adapted to this setting. As stated above, using a smooth shape C guarantees that DTC(S) is
an actual triangulation as opposed to a tree. Thus, in every iteration, there exists a triangle
that the new point is enclosed by. The history DAG data structure is agnostic to the specific
edge flips being made during the course of the algorithm and so works as expected. Our
transition oracle also behaves the same.

In the Euclidean case, the backwards analysis of [8] uses the fact that a Delaunay
triangulation of r points has O(r) edges, any new triangle created in iteration r is incident to
the newly inserted point pr, and triangles are defined by at most three points. By planarity
and by construction of the algorithm, all three hold true in this generalized case. Thus, we
have the desired result.

8 Discussion

We have shown that a large variety of computational geometry algorithms can be implemented
in optimal time or, for dynamic 2D hull, in time that matches the original work’s complexity
with high probability in the noisy comparison model. We believe that this is the first
work that adapts the techniques of noisy sorting and searching to the classic algorithms of
computational geometry, and we hope that it inspires work in other settings, such as graph
algorithms.
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A Path-guided Pushdown Random Walks

A.1 Correctness and analysis
In this section we prove that w.h.p. the path-guided random walk terminates with the correct
answer to its search problem (Theorem 1). To do so we first need to define a termination
condition for the walk. It is not adequate to terminate merely after an appropriate number
of steps: with constant probability, the final step of the walk will be taken after an erroneous
oracle result, and may be incorrect. On the stack used to guide the algorithm, we store along
with each vertex a repetition count, equal to one if the vertex is different from the previous
vertex on the stack, and equal to the previous repetition count otherwise. We terminate the
algorithm when this repetition count reaches an appropriately large value, Θ(log(1/ε)).

▶ Lemma 9. If it does not terminate earlier, the path-guided random walk will reach the
correct goal vertex t, within Θ(|P |+ log(1/ε)) steps, with high probability, with a constant
factor determined by the analysis below.

Proof. Define a call to the transition oracle, T , in our random walk as “good” if it returns
the correct answer (i.e., T does not lie) and “bad” otherwise, so that each call is bad
independently with probability at most pe. Note that if we are at a node, v ∈ P , and v ̸= t,
then a good call with either undo a previous bad call to stay at v or it will move to the next
vertex in P . Also, if we are already at t, then a good call will keep us at t, adding another
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copy of t to the top of the stack, S. Alternatively, if we are a node, v ̸∈ P , then a good call
with either undo a previous bad call to stay at v or it will move back to a previous node
in our traversal, which undoes a previous bad call to move to v. Moreover, if we repeat
this latter case, we will eventually return back to a node in P . Thus, every good call either
undoes a previous bad call or makes progress towards the target vertex, t. Admittedly, if
we are at a node, v ∈ P , then a bad call can undo a previous good call (e.g., which was to
move to v or stay at v if v = t). Also, a sequence of bad calls can even deviate from P and
return back to it – but because G is a DAG, a series of bad calls cannot return back to a
previously visited vertex of P . Thus, a path-guided pushdown random walk will successfully
reach the target vertex, t, if the difference between the number of good calls and bad calls
is at least |P |, the length of the path, P . Let Xi be an indicator random variable that is
1 iff the ith call to the transition oracle is bad, and let X =

∑N
i=1 Xi. Since each call is

bad independent of all other calls, we can apply a Chernoff bound to determine an upper
bound on the probability that the difference between the number of good calls and bad calls
is less than |P |, i.e., if (N −X)−X < |P |, that is, if X > (N − |P |)/2. Further, note that
µ = E[X] = peN ≤ (1/15)N . Then, for N = 3(|P |+ log(1/ε)), the failure probability is

Pr
(

X >
N − |P |

2

)
= Pr

(
X > |P |+ 3

2 log(1/ε)
)

= Pr
(

X >
1
3

(
3|P |+ 9

2 log(1/ε)
))

≤ Pr
(

X >
1
3N

)
.

Further, by a Chernoff bound from Dillencourt, Goodrich, and Mitzenmacher [11] (The-
orem 7),

Pr
(

X >
1
3N

)
< 2−N/3 ≤ 2− log(1/ε) = ε.

This establishes the proof. ◀

As mentioned above, the condition pe < 1/15 can, with the same asymptotic performance
as in Theorem 1 be replaced with any error probability bounded away from 1/2. We caution,
however, that while Theorem 1 provides a high-probability guarantee we reach the target
vertex, t, it does not provide a high-probability guarantee we visit every vertex of the path, P .
There is an exception to this, which we describe now.

▶ Corollary 10. If G is a tree, then the path-guided pushdown random walk in G will visit
every node in P .

Proof. By definition, there is a unique path P ∗ from the root of G to the target vertex t.
Thus, according to Theorem 1, with high probability after N steps, the path represented by
the stack S must equal the intended path P ∗, which also must equal P . ◀

▶ Lemma 11. If it does not terminate earlier, the path-guided pushdown random walk will
accumulate Θ(log(1/ε)) copies of the goal vertex t on its stack, after Θ(|P |+ log(1/ε)) steps,
and therefore terminate, with high probability.

Proof. This follows by applying Lemma 9 to a modified DAG G′ in which we expand each
vertex v of G into a chain of copies (v, 1), (v, 2), (v, 3), . . . of v with a repetition count, as
used in the termination condition of the algorithm. ◀
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▶ Lemma 12. The path-guided pushdown random walk will not terminate with any other
vertex than t, with high probability.

Proof. By another application of Chernoff bounds, and by the assumption that ε is poly-
nomially small, the probability that the algorithm terminates at step i with an incorrect
vertex is itself polynomially small, with an exponent that can be made arbitrarily large
(independent of our original choice of ε) by an appropriate choice of the constant factor in
the Θ(log(1/ε)) repetition count threshold used for the termination condition. By choosing
this constant factor appropriately, we can make the probability of termination at any fixed
step smaller than ε by a factor at least as large as the high-probability bound on the number
of steps of the walk in Lemma 11. The result follows by applying the union bound to all the
steps of the walk. ◀

Proof of Theorem 1. Termination of the algorithm w.h.p. follows from Lemma 11, and
correctness once terminated follows from Lemma 12. For a given high-probability bound
1− ε, we apply Lemma 11 and Lemma 12 with ε/2 and then apply the union bound to get a
bound on the probability that the algorithm terminates with a correct answer. ◀

A.2 Counterexample to Generalizations
It is very tempting to consider a generalization of the path-guided pushdown random walk
defined by a set of valid nodes and goal nodes, with the property that a non-noisy search
starting from any valid node will reach a goal node and then stop. With a noisy oracle that
determines whether a node is valid and if so follows a noisy version of the same search, one
could hope that this generalized algorithm would quickly reach a goal state. The path-guided
pushdown random walk would then be a special case where the valid nodes are exactly the
nodes on the non-noisy search path from the root node. However, as we show in this section,
this generalization does not work with the same fast high-probability termination bounds,
unless additional assumptions are made (such as the assumptions giving the special case of
the path-guided pushdown random walk).

Consider the following search problem: the DAG to be searched is simply a complete
binary tree with height log2 n. One root-to-leaf path on this DAG is marked as valid, with
the nodes on this path alternating between non-goal and goal nodes, so that the non-noisy
search from the root stops after one step but other later stops would also produce a valid
result. We have a noisy oracle with the following behavior:

At a leaf node of the binary tree, or an invalid node, it always produces the correct result.
At a valid non-leaf node, it follows the same behavior as a non-noisy oracle with probability
14/15: that is, it correctly identifies whether the node is a goal, and if not returns the
unique valid child. With probability K log log n/ log n (for some suitably large constant
K) it returns the valid child regardless of whether the node is a goal. And with the
remaining probability 1/15−K log log n/ log n it returns the invalid child.

Now consider the behavior on this problem of a path-guided random walk, as defined
above with a repetition-count termination condition. It will follow the valid path in the
binary tree, with brief diversions whenever the noisy oracle causes it to walk to a node not
on the path. At any goal node, it will wait at that node, accumulating more repetitions of
the node, until either it achieves C log n repetitions (with a constant factor C determined
by the desired high probability bound) or the noisy oracle tells it to take one more step
along the valid path. The probability of reaching C log n repetitions without taking one more
step is (1 − K log log n/ log n)C log n ≈ exp−(K/C) log log n, and by adjusting K relative
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to C we can make this probability less than 1/(2 log n). With this choice, by the union
bound, the random walk will eventually take one more step from each goal node until finally
reaching the leaf goal node. The expected number of steps that it waits at each goal node will
be Θ(log n/ log log n), so the expected number of steps in the overall random walk, before
reaching the leaf goal node and then accumulating enough repetitions to terminate, will be
Θ(log2 n/ log log n).

It also would not work to use a termination condition of making enough steps to have
high probability of reaching a goal node, and then stopping. If this number of steps is not
enough to reach the leaf goal node, the probability of stopping at a non-goal node would be
too high.

Thus, without either a change of algorithm or more assumptions on the valid and goal
node sets, this generalized random walk can be made to take a number of steps that is longer
than |P |+ log 1/ε by a non-constant factor.

B Transition Oracle for Binary Search Trees

While path-guided pushdown random walks applies to many DAGs, many fundamental
computational geometry algorithms rely on binary search trees. In this appendix, we present
a transition oracle for BSTs.

Say that we are attempting to find some value x in a binary search tree T . By properties
of BSTs, there is a unique path from the root to the node containing x. If there is no such
node, there is still a unique path to the nonexistent leaf that would contain x. When a call
to the transition oracle T is good, we expect it to correctly determine if we are on said valid
path only using a constant number of comparisons. To do so, we add a constant amount of
extra data to each node.

For each node v of the BST, let Pv be the unique path from the root to v. Let v.l be the
lowest ancestor of v whose right child is in Pv (or a sentinel representing −∞). Likewise,
let v.r be the lowest ancestor of v whose left child is in Pv (or a sentinel representing ∞).
One of {v.l, v.r} is v’s parent. Observe that, if we have correctly navigated to v, x must be
in between the values held by v.l and v.r. Thus, by adding two pointers to each node, the
transition oracle can determine if we are on the correct path using two comparisons. See
Figure 5 for a visual depiction of the pointers v.l and v.r and their effect. Augmenting the
tree with these pointers can be done in O(log n) extra time per insertion and deletion. With
slight modification, we can also support inexact queries such as for predecessors or successors.
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Figure 5 Here we have depicted the v.l and v.r pointers for the node v. Notice that v.l is v’s
first ancestor whose value is smaller than v’s. Likewise, v.r is its first ancestor whose value is larger
than v’s. The dotted lines map nodes to their relative ordering on a number line. It is clear that the
values held by v.l and v.r form the interval of possible values that could be held by nodes in v’s
subtree. If the query is located strictly in this interval and if it is in the tree at all, then it must be
within v’s subtree. If the query is not in this interval, then it cannot be in v’s subtree and we have
made an errant comparison earlier.
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