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Abstract
We study a classic scheduling problem on uniformly related machines for which we show an effi-
cient polynomial time approximation scheme (EPTAS), where an EPTAS is a fast and practical
approximation scheme. For a desired approximation ratio of 1 + ε for ε > 0, the running time of an
EPTAS is a function of ε multiplied by a polynomial function of the input length. New methods
and techniques are essential in developing such improved approximation schemes, and their design is
a primary goal of this research agenda. We present an EPTAS for the scheduling problem of a set
of jobs on uniformly related machines so as to minimize the total weighted completion time. The
problem is NP-hard in the strong sense, and therefore an EPTAS is the best possible approximation
scheme for the problem, unless P=NP. Prior to our work, only a PTAS was known for the problem,
while an EPTAS was known only for the special case of identical machines.
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1 Introduction

We consider one of the most basic multiprocessor scheduling problems: scheduling on
uniformly related machines with the goal of minimizing the total weighted completion time
of jobs. More precisely, our scheduling problem is defined as follows. We are given a set of n

jobs, where each job has a positive size and a positive weight associated with it. We are also
given a set of m machines to be used for the processing of jobs, such that each machine has
a given positive speed. Running job j on machine i requires the allocation of a time interval
on this machine, whose length is precisely the size of j divided by the speed of i, which is
called the processing time of j on i.

We consider non-preemptive schedules and thus every job is assigned to a machine and to
a single (continuous) time slot (or interval) on that machine, under the following conditions.
The length of the time slot assigned to job j (on one of the machines) has to be the processing
time of j on that machine. A machine can process at most one job at each time so the time
intervals assigned to two jobs that are assigned to a common machine do not intersect in an
inner point. Given such a schedule, the completion time of job j is defined as the ending
point of the time interval of j, and the weighted completion time of j is the product of its
weight and its completion time. The goal is to find a schedule for which the sum of the
weighted completion times of all jobs.

In the scheduling community there is a consensus that the objective of weighted sum of job
completion times is the most important min-sum objective, and together with the makespan
minimization these are the two most important objective functions in the scheduling literature.
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A special case of our problem is that of identical machines, where each machine has speed 1.
A generalization of these problems is the one where each job also has a release date associated
with it, which restricts its starting time such that it cannot start running before its release
date. Here, all release dates are equal to zero. Another well-motivated special case of our
problem is the unweighted one, where all weights are equal to 1.

We study here a core problem in scheduling theory. We refer to [13, 27, 16, 29, 35, 5] for
some recent work on the problem with respect to various aspects.

Now, we define the notions of approximation algorithms and the different types of
approximation schemes. An R-approximation algorithm for a minimization problem is a
polynomial time algorithm that always finds a feasible solution of cost at most R times
the cost of an optimal solution. The infimum value of R for which an algorithm is an
R-approximation is called the approximation ratio or the performance guarantee of the
algorithm. A polynomial time approximation scheme (PTAS) is a family of approximation
algorithms such that the family has a (1 + ε)-approximation algorithm for any ε > 0. An
efficient polynomial time approximation scheme (EPTAS) is a PTAS whose time complexity
is of the form f( 1

ε ) multiplied by poly(n) where f is some (not necessarily polynomial)
computable function, and poly(n) is a polynomial function of the length of the (binary)
encoding of the input. A fully polynomial time approximation scheme (FPTAS) is a stronger
concept, defined like an EPTAS, but the function f must be a polynomial in 1

ε .
In this paper, we are interested in EPTAS’s and we say that an algorithm (for some

problem) has a polynomial running time complexity if its time complexity is of the form
f( 1

ε ) · poly(n). Note that while a PTAS may have time complexity of the form ng( 1
ε ), where

g can be polynomial or even super-exponential, this cannot be the case for an EPTAS. The
notion of an EPTAS is modern and finds its roots in the FPT (fixed parameter tractable)
literature (see [7, 9, 14, 31]). It was introduced in order to distinguish practical from
impractical running times of PTAS’s, for cases where an FPTAS does not exist (unless
P=NP). In this work, we design an EPTAS for the scheduling problem defined above for
which an FPTAS cannot exist unless P=NP.

The seminal work of Smith [34] established the existence of a polynomial time algorithm
(of time O(n log n)) for solving the problem of minimizing the total weighted completion time
on a single machine. This algorithm can be described as follows. The jobs are scheduled
according to a non-increasing order of their densities, starting at time zero, and without any
idle time (where the density of job j is the ratio between its weight and its size). This ratio is
called Smith’s ratio, and any tie breaking policy leads to an optimal solution. The correctness
of this algorithm follows by a simple exchange argument. This algorithm generalizes the
SPT (shortest-processing-time) approach for the case of equal weights. In our settings, we
can conclude the following property for the problem. Once the jobs have been assigned to
machines (but not to time slots), the permutation of jobs assigned to a given machine is
fixed according to Smith’s algorithm.

For a constant number of machines (at least two machines), the problem is NP-hard in
the ordinary sense, but it is solvable in pseudo-polynomial time and has an FPTAS [32].
For the case where the number of machines is a part of the input, the problem is strongly
NP-hard (see e.g. problem SS13 in [15]). The case of equal weights is polynomially solvable
even for the more general case of unrelated machines [22]. The property that our problem is
strongly NP-hard excludes the possibility to design an FPTAS for it, and thus an EPTAS is
the best possible result (unless P=NP).

The development of good approximation algorithms for problems studied here was fairly
slow. Till the late 1990’s, only constant approximation algorithms were developed for
min-sum scheduling problems such as the ones we study. We refer to the papers cited in
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[33, 1, 8] for a survey of such results. Here we elaborate on the approximation schemes in the
literature. The first approximation scheme for a special case of our problem was introduced
by Skutella and Woeginger [33], which was designed for the special case of identical machines.
Moreover, the last scheme is in fact an EPTAS for this special case. Shortly afterwards,
Afrati et al. [1] presented a PTAS for the problem on identical machines with release dates.
Their approach was generalized by Chekuri and Khanna [8], who showed the existence of
a PTAS for uniformly related machines with release dates (see also [2]). The discussed
schemes of [1, 8] are not EPTAS’s, and they cannot be converted into EPTAS’s (using known
methods) even for the case without release dates studied here.

Before explaining the methods and techniques of these last schemes, as well as the
limitations of those approaches, we mention the state of the art of approximation schemes
for general load balancing problems on identical machines and uniformly related machines.
The relation between the problem studied here and this family of problems will become
clear later. In load balancing problems, the goal is to minimize functions of the vector of
machine completion times (and not job completion times as we study here). Hochbaum and
Shmoys presented the dual approximation framework and used it to show that the makespan
minimization problem has a PTAS for identical machines [20] and for uniformly related
machines [21]. In the dual approximation framework, the problem is converted into a bin
packing type problem by fixing the machine loads. It was noted in [18] that the PTAS of [20]
for identical machines can be converted into an EPTAS by using an integer program in
fixed dimension instead of dynamic programming. Jansen [23] developed an EPTAS for the
makespan minimization problem on uniformly related machines (see [24] for an alternative
EPTAS for this problem and [25, 6] for improved time complexity EPTAS’s for this problem).
The ℓp norm minimization problem (of the vector of machine completion times) has an
EPTAS for identical machines [3, 4], and a PTAS and an EPTAS for uniformly related
machines [10, 11]. The EPTAS for the ℓp norm minimization problem on uniformly related
machines presented in [11] provides a method for constructing an EPTAS for our problem if
all job densities are equal. However, this does not translate into an EPTAS for the problem
even if there are only a constant number of distinct job densities. After the preliminary
version of our work here was posted [12], Kones and Levin [28] have used the framework
we present here for the case of constant number of job densities in order to establish an
alternative EPTAS for the ℓp norm minimization problem on uniformly related machines,
and they used this framework to approximate a generalization of this problem.

Previous directions. Next, we elaborate on the known approximation schemes for related
problems. Skutella and Woeginger [33] observed that for identical machines the ℓ2 norm
minimization of the vector of machine loads is equivalent to minimizing the total weighted
completion time, if the jobs have equal densities. This equivalence means that an optimal
solution to one problem is an optimal solution to the other as the values of the two objective
functions differ by an additive constant (which is common to all feasible solutions). Using
this approach, they showed that if the ratio between the maximum density and the minimum
density of jobs is upper bounded by a constant, then one can adapt the ideas of Alon et
al. [3, 4] and obtain an EPTAS for this restricted setting.

The scheme [33] for the problem on identical machines follows the next ideas. First,
round all the job sizes and job weights (up or down) to integer powers of 1 + ε. Next, apply
randomized geometric partitioning of the jobs based on their (rounded) density, solve each
sub-instance consisting of all jobs of one partition using the scheme (which is similar to the
one of [3, 4]), and schedule the partial solutions for every machine sorted by non-decreasing
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job densities. This last step of combining the solutions for the different parts in the partition
was more delicate in [33], but as noted in [1], the last step could be made much simpler.
Afrati et al. [1] also noted that this approach can be extended to obtain an approximation
scheme (a PTAS) for the problem without release dates in other machine environments (see
the last remark in [1]). Chekuri and Khanna [8] extended the techniques of [1] to the setting
of uniformly related machines (with release dates). The methods of [1, 8] fail completely
when one tries to obtain an EPTAS for these problems with or without release dates (even
for identical machines).

Our results. An EPTAS for the total weighted completion time on uniformly related
machines was not known prior to our work, and it was only known for the much simpler case
of identical machines. We design such an EPTAS here, using a number of methods explained
in the next section. In an accompanying article (see the second part of [12]), we design an
EPTAS for total weighted completion time on uniformly related machines with release dates.
The current EPTAS is designed for the important special case without release dates, and
while this EPTAS requires new ideas, this scheme is significantly simpler than the one of the
general case. Before presenting the detailed description of the scheme and its analysis, we
present an overview of the scheme. A forthcoming full version will contain additional details
and omitted proofs.

2 An Overview of Our Scheme

In our scheme, all parameters are rounded to integer powers of a parameter 1 + δ (where
δ = ε

Υ for a constant Υ > 0 that is independent of ε) [33, 1]. Thus, the first step is rounding
the job sizes, the job weights, and the speeds of the machines to integer powers of 1 + δ.
Observe that this step has a minor effect on the performance guarantee of the approximation
algorithm, and it is used to structure the input in the later steps. This is a standard approach
which is suitable here. We say that a set of values is discrete if for every interval [L, U ] (for
every 0 < L < U) we have at most O(log U

L ) distinct values of the set in the interval. Then,
we would like to consider discrete values for sizes, weights, and speeds, which gives us also
discrete densities and discrete job processing times on the machines.

Next, we use the shifting technique [19] by modifying the weights of some jobs to separate
the input into bounded instances in terms of job sets. For each bounded instance, it will
hold that its jobs have sufficiently similar densities. We eliminate intervals of densities from
the input (and not intervals of weights). This is done by increasing weights of jobs whose
densities belong to intervals that will be forbidden, so not just one interval of densities is
removed but a regular pattern of densities is removed, creating gaps between density intervals.
Finding the best sequence of gaps requires running our algorithm for all options.

Once there are regular gaps between density intervals, we show that each instance can be
solved separately and independently from other instances, and the solutions can be combined
without further modifications. That is, we apply an approach that is similar to [33], where we
replace the randomized geometric partitioning by the stronger shifting technique (resulting
in a slightly simpler analysis as one of the cases in [33] of jobs of similar densities in different
instances is avoided, because there will be no such cases). In our shifting procedure, we
ensure the following for a pair of jobs j and j′ such that the density of j is not smaller
than the density of j′. If j and j′ belong to a common bounded instance, then the ratio
between the density of j and the density of j′ is upper bounded by a constant (that depends
on ε), while if j and j′ belong to different bounded instances the ratio between the two
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densities is very large (at least a larger constant that also depends on ε). When we obtain an
approximated solution for each such bounded instance, we simply concatenate the solutions
by processing each job on the machine it is assigned to (in the solution to its bounded
instance) and processing the jobs assigned to each machine according to their Smith’s ratios.
By the separation of densities, we justify this, and conclude that the cost of the resulting
solution is only slightly larger than the sum of costs of the solutions to the bounded instances.
Therefore, if we are able to ensure a (1 + δ)-approximation for each bounded instance, we
will get an EPTAS for the instance resulting from this shifting technique.

The new part, where we cannot follow previous work, is where we solve each bounded
instance (due to shifting, there is a polynomial number of such instances). Unlike the approach
in [33], since we deal with machines of possibly different speeds, we use configuration mixed-
integer linear programs (MILPs), where we require a variable of a machine configuration to
be integral if the machine is heavily loaded, that is, if it receives a large total size of jobs. A
configuration is a list of jobs assigned to one machine of a certain speed, where the list of
relatively small jobs is not defined precisely, but the total size is within a given short interval.
In order to define the notion of a heavily loaded machine, we “guess” the (approximate)
load of the fastest machine (breaking ties in favor of low indices) counting the job set of the
current bounded instance. Then, for the correct guess we can upper bound the load of each
one of other machines (where the load of a machine is its completion time, that is the work
divided by the speed, where the work of a machine is the total size of jobs of the current
bounded instance assigned to it). In this way, we obtain a valid upper bound on the work of
every other machine. This upper bound on the load of every machine or on its work could be
seen as an alternative to the dual approximation method of Hochbaum and Shmoys [20, 21]
for cases where this dual approximation method cannot be applied. In that case there is one
upper bound for the completion time of every machine, which is not possible here since our
objective is not the makespan.

We say that a machine is heavily loaded if its assigned work is at least a constant fraction
of this upper bound. By splitting the machine set into slow and fast machines, we show
that a slow machine is never heavily loaded in optimal solutions. Moreover, as mentioned
earlier there is a limit to how much a fast machine can be loaded (in terms of the load of the
first fastest machine, which we guess approximately), and as a result, the number of heavy
configurations is a constant.

A machine configuration consists of the speed of the machine having this configuration,
the load of this machine, and a complete list of relatively large jobs together with their
densities (the jobs are large compared to the total size of jobs assigned to this machine)
where a job is specified by its size and weight but not by its identity, and additionally, a
configuration contains an approximate total size of smaller jobs of each density. The partition
of jobs to small and large (for a given configuration) is based on both the load and on the
speed of that machine (it is not based only on the speed, in the way that it is defined in many
approximation schemes). This property is essential since this problem does not allow the
use of the dual approximation method. The assignment of jobs that are scheduled as small
jobs is carried out by another set of assignment variables. These last assignment variables
can be fractional in a feasible solution to the MILP. The job sets that are small for their
configurations are different for distinct configurations due to different load and speed. Such
jobs are assigned (fractionally) to configurations. Thus, for every job type (which consists
of a rounded size and a rounded density), there are variables counting how many copies of
the job are assigned as large jobs to each configuration (so every machine scheduled based
on such a configuration receives this number of jobs of this type) and how many jobs are
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assigned as small jobs to such a configuration (in which case the job is not assigned to a
specific copy of the configuration). We find that no jobs are treated as “sand” and every
job is assigned to a configuration since (due to speeds) jobs cannot be just partitioned into
small and large, but assigning jobs to specific copies of configurations will not allow us to
obtain the required running time. It is required to know the speed of the machine that will
receive a certain job, because the objective of the MILP has only a part of the cost incurred
by small jobs, and the residue has to be added (where it depends on the speed).

As in [33], we approximate the increase of cost due to the contribution of slightly larger
set of small jobs using the total size of jobs of the configuration (in the sense that the increase
is minor compared to this total size), and thus, the usage of a fractional assignment becomes
possible, and it can be converted in turn into an integral one by slightly increasing the cost of
each configuration. As for fractional configurations, we round down the number of machines
with each such configuration. The total size of jobs that remain unassigned is sufficiently
small to be combined into the schedule of a heavily loaded machine (at least one such fastest
machine must exist, and this is sufficient for our purposes). Using the fact that we solve a
bounded instance, we conclude that slightly increasing the load of a machine with respect to
its value in the optimal solution to the MILP has a minor impact on the cost of the resulting
solution.

Our scheme for the bounded instance is of independent interest as it extends the methods
of [23] for the ℓ2-norm minimization problem (the case of one density for all jobs) to obtain
an EPTAS for a constant number of densities (where the constant depends on δ), whereas
extending the original EPTAS for this ℓ2-norm minimization problem [11] results in (only)
a PTAS for the case of constant number of densities. Thus, presenting a new EPTAS for
the ℓ2-norm minimization problem is indeed necessary for our generalization. We refer to
Section 3 for a complete description of the approximation scheme explained in this overview,
and we conclude that there is an EPTAS for our problem.

3 The Detailed Description and Formal Analysis of Our EPTAS

In this section we present our scheme and prove its correctness.

Properties. Obviously, since any job can start running at any time, an optimal solution (or
schedule) never introduces idle time, and moreover, every machine runs its assigned jobs in
an optimal order, that is, the jobs are sorted by Smith’s ratios. As any tie-breaking policy
leads to the same objective function value, we use a specific tie-breaking policy in this section.
More specifically, we will always break ties in favor of running larger jobs first, and in the
case of equal size jobs (of the same weight), jobs of smaller indices are scheduled earlier.
We call this ordering the natural ordering. Thus, we can define a solution or a schedule as
a partition of the jobs to m subsets, one subset for each machine, and the order for each
machine will always be the natural one. In some cases, we will compute the total weighted
completion time of another permutation (not of the natural ordering). This will be done for
the sake of analysis when this calculation is easier for cases where we are interested in an
upper bound on the objective value and this upper bound is sufficient.

For an input X and a solution B, we let B(X) denote the output and the objective value
of B for the input X. Recall that for a job j, the density of j is the ratio between its weight
and its size. Thus, running the jobs sorted according to the natural ordering is equivalent
to first sorting them by non-increasing density, and for each density, the jobs are sorted
by non-increasing size, breaking ties (among equal size jobs) in favor of scheduling jobs of
smaller indices earlier.
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For a fixed schedule, the work of machine i is the total size of jobs assigned to it, and
its load is its completion time, that is, the work divided by the speed (as we only consider
schedules without any idle time). Let the original input instance be denoted by A, where
job j has size aj > 0 and weight ωj > 0, and machine i has speed vi > 0.

Let Cj denote the completion time of j under a given schedule, that is, the total size
of jobs that run before j on the same machine (including j), divided by the speed of this
machine. We let Γj be defined as ωj(Cj − aj

2vi
), where Cj − aj

2vi
is the time when half of

job j is completed (known as the mean busy time of job j [17]). We call these values
Γ-values, and obviously, the cost of a solution is at least the sum of Γ-values. Moreover, for
identical machines, the difference between the cost of a solution and the sum of the Γ-values
is independent of the solution (see also [33]) whereas for uniformly related machines, this
difference depends on the speeds as we establish in the following lemma.

▶ Lemma 1. Consider a set of jobs Ĩ ⊆ A assigned to machine i. Let Φ =
∑

j∈Ĩ aj and let
ϕ = minj∈Ĩ

ωj

aj
be the minimum density of any job of Ĩ. The sum of Γ-values (and the cost)

of any solution that selects to run all jobs of Ĩ on machine i (possibly with other jobs) is at
least ϕ·Φ2

2vi
.

Rounding. Given the original instance A, where job j has size aj and weight ωj , and
machine i has speed vi, we create a (rounded) instance A′ as follows. Let 0 < δ ≤ 1/8 be an
accuracy factor, that is a function of ε (where δ < ε), and such that 1

δ is an integer. The
sets of jobs and machines in A′ are the same as in A. Let si = (1 + δ)⌊log1+δ vi⌋ be the speed
of machine i in instance A′. Let wj = (1 + δ)⌈log1+δ ωj⌉, and pj = (1 + δ)⌈log1+δ aj⌉ be the
weight and size (respectively) of job j in instance A′. That is, we round up the weights and
the sizes of jobs while we round down the speeds of the machines. We will sometimes use
Θj = log1+δ

wj

pj
, which is always an integer due to the rounding.

Next, we bound the increase of the approximation ratio due to this step. Our goal is to
conclude that we can safely consider A′ instead of A. Let O and O′ denote optimal solutions
for A and A′ respectively. Let SOL denote a given solution for both instances, where a
solution consists of a partition of the set of jobs to the machines. The ordering for each
machine may be different for the two inputs since the natural ordering is used. Using the
new notation, for a given schedule, the completion time of j is still denoted by Cj , and its
weighted completion time is wj · Cj .

▶ Proposition 2. We have SOL(A) ≤ SOL(A′) ≤ (1 + δ)3 · SOL(A) and O(A) ≤ O′(A′) ≤
(1 + δ)3 · O(A). Furthermore, if a solution SOL satisfies SOL(A′) ≤ (1 + kδ) · O′(A′) for
some k > 0, then it holds that SOL(A) ≤ (1 + (2k + 4)δ) · O(A).

By the last proposition, we only consider the instance A′, and use the obtained schedule
as an output for A. Thus, it suffices to present an EPTAS for the rounded instance A′.

On the use of Γ-values for A′. Given the input A′, if j is executed on machine i, then
Γj = wj(Cj − pj

2si
) where Cj − pj

2si
is the time when half of the job is completed. We say

that for a given schedule, a block of jobs is a set of jobs of equal density that are assigned
to one machine to run consecutively on that machine (there may be additional jobs of the
same density, each assigned to run later or earlier than these jobs). The next well-known
lemma shows that the sum of Γ-values for a block of jobs is a function of their total size,
their common density, and the starting time of the block, and it is independent of the other
properties of these jobs (but it depends on the speed of the machine). We prove the lemma
for completeness similarly to the proof of Lemma 1.
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▶ Lemma 3. Let Ī ⊆ A′ be a set of jobs, all having densities equal to some ∆ > 0, and
assume that these jobs are scheduled to run consecutively on machine i starting at time τ .
Then

∑
j∈Ī Γj = ∆ ·

(
τ + 1

2si

∑
j∈Ī pj

)
·
(∑

j∈Ī pj

)
.

Shifting. Based on the value of δ we define a new parameter ξ for the shifting step. Its
value is a constant (as a function of δ). Let ξ = ⌈ℓ · log1+δ

1
δ ⌉ = ⌈log1+δ( 1

δ )ℓ⌉ for a fixed
integer 3 ≤ ℓ ≤ 5. Thus, 1

δ3 ≤ 1
δℓ ≤ (1 + δ)ξ < 1+δ

δℓ < 2
δℓ < 1

δℓ+1 ≤ 1
δ6 . Next, we use the

integrality of 1
δ2 and of ℓ. We have (1 + δ)

ℓ
δ2 > (1 + δ · 1

δ2 )ℓ > ( 1
δ )ℓ, and we have ξ ≤ ℓ

δ2 < 1
δ3 .

However, ( 9
8 )ξ ≥ (1 + δ)ξ ≥ 1

δℓ ≥ 83, so ξ ≥ 53.
We form a partition of integers based on the value of ξ, such that every subset has ξ

consecutive integers. For an integer c ∈ Z, let Ωc = {c · ξ + 1, . . . , (c + 1) · ξ}. The next step
will be to partition the collections of integers in a cyclic way. There will be 1

δℓ+1 possible
collections. Let 0 ≤ ζ ≤ 1

δℓ+1 − 1 be an integer. The collection for the value of ζ will consist
of indices of sets for which the index modulo 1

δℓ+1 is equal to ζ. We will be interested in
densities that are powers of 1 + δ that belong to Ωc where it holds that (c mod 1

δℓ+1 ) = ζ,
and the densities for jobs with densities that belong to such a set will be increased by a
constant multiplicative factor.

We define the instance Aζ by modifying the weights of some jobs in A′. For a job j, if for
some (not necessarily positive) integer v, Θj ∈ Ωv/δℓ+1+ζ (recall that the density of j is an
integer power of 1 + δ and Θj = log1+δ

wj

pj
), then wζ

j = wj · (1 + δ)ξ, and otherwise wζ
j = wj .

We let Θζ
j = log1+δ

wζ
j

pj
which means that in the first case Θζ

j = ξ · Θj and in the second case
Θζ

j = Θj . In the first case, Θζ
j ∈ Ωv/δℓ+1+ζ+1 (where v/δℓ+1 + ζ + 1 < (v + 1)/δℓ+1 + ζ, so it

was moved to a different density collection out of the 1
δℓ+1 collections). Furthermore, weights

(and densities) are increased by a multiplicative factor of at most (1 + δ)ξ ≤ 1+δ
δℓ . For any ζ,

let Oζ be an optimal solution for Aζ . As the set of jobs and machines is the same in A, A′,
and Aζ , the sets of feasible solutions for the three instances are the same.

Bounding the increase of the cost due to modifying A′ into Aζ. Next, we bound the
increase of the cost due to the transformation from A′ to Aζ . As a result of increasing weights
for jobs with densities in a fixed density collection, no job j ∈ Aζ has a density such that

Θζ
j = log1+δ

wζ
j

pj
∈ Ωv′/δℓ+1+ζ for any integer v′. Any value (1 + δ)β where β ∈ Ωv/δℓ+1+ζ

for an integer v is called a forbidden density for ζ, and other values (1 + δ)β′ for integer
values of β′ are called allowed density for ζ. The next lemma compares costs for O′(A′)
(which was defined to be an optimal solution for A′) and Oζ for specific values of ζ (for the
corresponding input Aζ). This will allow us to guess a suitable value of ζ (by enumeration)
and approximate Oζ rather than O′.

▶ Lemma 4. Given a solution SOL, any 0 ≤ ζ ≤ 1
δℓ+1 − 1 satisfies SOL(A′) ≤ SOL(Aζ),

and there exists a value 0 ≤ ζ̄ ≤ 1
δℓ+1 − 1 such that we have SOL(Aζ̄) ≤ (1 + 2δ) · SOL(A′).

Additionally, there exists a value 0 ≤ ζ ′ ≤ 1
δℓ+1 − 1 such that O′(A′) ≤ Oζ′(Aζ′) ≤ (1 + 2δ) ·

O′(A′), and if a solution SOL1 satisfies SOL1(Aζ′) ≤ (1 + k′δ) · Oζ′(Aζ′) for some k′ > 0,
then SOL1(A′) ≤ (1 + (2k′ + 2)δ) · O′(A′).

The exhaustive enumeration algorithm implementing the shifting step. Down below we
present an algorithm that receives an input where the ratio between the maximum density
of any job and the minimum density of any job is constant (as a function of δ), and outputs
a solution of cost at most 1 + δ times the cost of an optimal solution for this input. The
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ratio between densities will be at most (1 + δ)y, where y = ξ
δℓ+1 − ξ − 1, The motivation for

the value of y is that every density collection has ξ different densities, and since there are
1

δℓ+1 options for ζ, there are 1
δℓ+1 − 1 options of ζ for which the density collections were not

removed. Sequences of possible densities without gaps introduced by considering Aζ for a
fixed value of ζ will contain ξ · ( 1

δℓ+1 − 1) = y + 1 densities which are integer powers of 1 + δ,
such that the largest one will be larger than the smallest one by a multiplicative factor of at
most (1 + δ)y.

We next use this algorithm as a black box. For every value of ζ, we apply the following
process and create a schedule for the input Aζ . Afterwards, we choose a solution of minimum
cost among the 1

δℓ+1 resulting solutions.
Let 0 ≤ ζ ≤ 1

δℓ+1 −1. Decompose the allowed densities for ζ into collections of consecutive
densities that are separated by intervals of forbidden densities for ζ. Since densities were
rounded, two densities are consecutive if the large one is larger by a factor of exactly 1 + δ

from the smaller one. By our construction, this results in subsets of allowed densities with
very different densities, such that each subset has allowed densities in an interval of the form
[(1 + δ)−yρ, ρ], where ρ = (1 + δ)(v/δℓ+1+ζ)ξ for some integer v (this is the last density in
the density collection just before Ωv/δℓ+1+ζ), y is as defined above (y = ξ

δℓ+1 − ξ − 1), and
additionally there is a gap between the allowed densities of one set and another set (because
there are no jobs with densities in Ωv/δℓ+1+ζ in Aζ). More precisely, if I and I ′ are two such
subsets and the allowed densities for I are smaller than those of I ′, then the largest allowed
density for I is smaller by a multiplicative factor of (1 + δ)ξ+1 ≥ 1+δ

δℓ than the smallest
allowed density of I ′.

A sub-instance is defined to be a non-empty subset of the jobs corresponding to an
interval of allowed densities together with the complete set of machines. Let q denote the
number of such (sub-)instances (where q ≤ n). Let the instances be denoted by I1, . . . , Iq,
such that the maximum allowed density in Ip is ρp, and for p > 1, ρp > ρp−1, and in fact
ρp ≥ (1 + δ)

ξ

δℓ+1 · ρp−1 ≥ ( 1
δℓ )

1
δℓ+1 · ρp−1.

Given a set of solutions SOLp, for 1 ≤ p ≤ q (where SOLp is a solution for Ip), define a
combined solution SOL, where the jobs assigned to machine i in SOL are all jobs assigned
to this machine in all the solutions. Obviously, in SOL the jobs are scheduled sorted by
non-increasing indices of their sets Ip.

Bounding the cost of the combined solution. We will prove that the effect of concatenating
solutions is not harmful even though earlier solutions delay the processing of later solutions.
This will hold due to the gap between densities of jobs of different instances.

▶ Lemma 5. We have OPT (Aζ) ≥
∑q

p=1 OPT (Ip). Furthermore, if for every 1 ≤ p ≤ q it
holds that SOLp(Ip) ≤ (1 + ν) · OPT (Ip) for a fixed value ν > 0, then the combined solution
SOL satisfies SOL(Aζ) ≤ (1 + ν) · (1 + 8δ) · OPT (Aζ).

In what follows we design a (1+δ)-approximation algorithm for the bounded ratio problem,
that gives a (1 + δ)(1 + 8δ)-approximation algorithm for Aζ . Since (1 + δ)(1 + 8δ) < 1 + 10δ,
for an appropriate choice of ζ, we get an (1 + 22δ)-approximation algorithm for A′, and a
(1+48δ)-approximation algorithm for A. Thus, letting δ = ε

48 will give a (1+ε)-approximation
algorithm for the general problem. The algorithm for the bounded ratio problem is applied
at most n times for each choice of ζ, i.e., at most n

δ6 times in total. The reason is that we
split every input Aζ into parts with similar densities, and the number of parts cannot exceed
the number of jobs.

WADS 2025



25:10 An EPTAS for Total Weighted Completion Time Minimization on Related Machines

An EPTAS for the bounded ratio problem. Let I be a bounded instance such that all
densities are in [1, ρ = ρ(δ) = (1 + δ)y], where y is a function of δ (y and ξ are as defined
in the previous section). We will use not only the property that the number of distinct
densities is a constant but also the constant maximum ratio between densities. By scaling
(and possibly increasing the interval of densities), any valid input of the bounded ratio
problem can be transformed into this form. We have the following properties. First, we have
y = ξ

δℓ+1 − ξ − 1 ≥ ξ
δℓ > 400 (since 1

δℓ+1 − 1
δℓ − 1 = 1−δ−δℓ+1

δℓ+1 > 1 > 1
ξ as 2δℓ+1 + δ < 1 by

ℓ ≥ 3 and δ ≤ 1
8 , and since ξ ≥ 53). Second, y + 2 < y + ξ + 1 ≤ ξ

δ6 ≤ 1
δ9 since ℓ ≤ 5 and

ξ ≤ 1
δ3 and due to integrality, y + 3 ≤ 1

δ9 . Third, we also have (using the properties of ξ) that
(1 + δ)y ≥ (1 + δ)

ξ

δℓ ≥
( 1

δℓ

) 1
δℓ ≥ ( 1

δ3 )
1

δ3 > 1
δ1500 , and (1 + δ)y ≤ (1 + δ)ξ/δℓ+1 ≤ ( 1

δℓ+1 )
1

δℓ+1 ≤
( 1

δ )6/δ6 ≤ ( 1
δ )1/δ7−12, and last, we conclude that y + 1 ≤ δ2(1 + δ)y since y + 1 ≤ 1

δ9 while
(1 + δ)y ≥ 1

δ1500 .
Since the density of every job is in [1, (1 + δ)y], every job j ∈ I has pj = (1 + δ)k,

wj = (1 + δ)k′ , for some integers k, k′ such that 0 ≤ k′ − k ≤ y. Let γ = δ12

(1+δ)y . We have
γ ≥ δ1/δ7 and γ ≤ δ1512. Let I denote the set of values i such that there is at least one
job of size (1 + δ)i. Clearly, |I| ≤ n. Let nr,i denote the number of jobs of size (1 + δ)i

and density (1 + δ)r. By scaling the machine speeds (that are integer powers of 1 + δ) and
possibly reordering the machines, let the speeds of machines be s1 ≥ s2 · · · ≥ sm, where
without loss of generality, s1 = 1, and for i ≥ 2, si = (1 + δ)ki , for some non-positive integer
ki ≤ 0. It is possible that there is more than one machine of speed 1, and we consider all
such machines in the next paragraph.

First guessing step and its analysis. Recall that the work of a machine is the total size of
jobs assigned to it. We would like to assume that job sizes are scaled such that the work of
the most loaded machine (the most loaded machine in terms of work without taking speeds
into account) of speed 1 is in [1/(1 + δ), 1) (while since we have jobs of varying densities,
the work of slower machines may be arbitrary). We will now show that this is possible. For
a job j, and 1 ≤ b ≤ n

δ , let Dj,b be the interval [(1 + δ)b−1pj , (1 + δ)bpj) (we have that
(1 + δ) n

δ ≥ n + 1 holds by a direct calculation since n
δ is integral).

Without loss of generality we consider solutions where at least one machine of speed 1
has at least one job. This holds since otherwise it is possible to move an arbitrary job to
such a machine and get a solution of a smaller cost.

▶ Lemma 6. For any solution, there exist a job 1 ≤ j′ ≤ n and an integer 1 ≤ b′ ≤ n
δ , such

that the work of the most loaded machine out of works of machines of speed 1 is in Dj,b′ .

For every choice of a pair j, b (n2

δ choices in total), we scale (i.e., divide) job sizes by
(1 + δ)bpj (which is an integer power of 1 + δ), and apply the algorithm described later in
this section (this algorithm enforces the existence of a fastest machine with a suitable load,
where it is possible that there is no such solution for some choices). By the claim, given an
optimal solution OPT , for at least one choice of j, b the assumption regarding the work of
the most loaded machine of speed 1 (that the work is at least (1 + δ)−1 and below 1) holds as
a result of the scaling. We will pick the best solution, whose objective function value cannot
be larger than that of the solution obtained for the correct choice of j, b. In what follows we
analyze the properties of the correct choice of j, b for a given optimal solution OPT after the
scaling. Moreover, the job sizes are according to the scaling.
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Machine configurations – preliminaries. Let U be a threshold on job sizes separating jobs
seen as relatively large and jobs seen as relatively small. Let Î be the subset of jobs assigned
to machine i in some solution. The U -cost of machine i in this solution is defined as the total
weighted completion time of jobs whose sizes are at least U , plus the Γ-values of jobs whose
sizes are below U . The cost for machine i is therefore its U -cost plus 1

2si

∑
j∈Î,pj<U wj · pj .

Obviously, the U -cost never exceeds the cost, for any value of U . Additionally, similarly to
the cost, the U -cost for a fixed value of U is monotone in the sense that removing a job from
the machine decreases its U -cost, and thus, if we consider a block of jobs of a common density
each of which shorter than U , decreasing the total size of jobs in a block also decreases the
U -cost.

We use the following two functions of δ: f(δ) and g(δ), both integral, non-decreasing,
and negative. A machine i is called slow if its speed is at most (1 + δ)f(δ) (and otherwise we
say that it is not slow or that it is fast). We say that a machine is lightly loaded if its work
does not exceed (1 + δ)g(δ) (and otherwise it is heavily loaded). Let

f(δ) = g(δ) − 2
δ2 and g(δ) = −(1

δ
)

1
δ300 .

Consider a fixed optimal solution OPT (for the input considered in this section which consists
of a subset of jobs, and given the scaling of machine speeds and job sizes).

▶ Lemma 7. No machine has a load strictly above 2
δ in OPT , and this is an upper bound on

the work of any machine as well. Furthermore, in OPT every slow machine is lightly loaded.

Formal definition of machine configuration. Next, we define machine configurations. A
configuration is a vector that defines most properties for the schedule of one machine. This
consists of a set of jobs assigned to it in terms of the types of jobs, that is, a job is specified
by its size and weight but not by its identity, and jobs that are relatively small are defined
by their approximate total sizes and densities. The set of all configurations will be denoted
by C. For a configuration C ∈ C, the first component is an integer j1(C) ∈ Z, such that
the total work of the machine is in ((1 + δ)j1(C)−2, (1 + δ)j1(C)]. The second component is
a non-positive integer j2(C) such that the speed of the machine is (1 + δ)j2(C). The third
component is an integer j3(C) ∈ Z, such that j3(C) = j1(C) − j2(C), and therefore the
completion time (or load) of the machine is in ((1 + δ)j3(C)−2, (1 + δ)j3(C)].

Recall that γ = δ12

(1+δ)y . For integers r, i such that 0 ≤ r ≤ y, i ≤ j1(C), and γ(1 +
δ)j1(C)−1 ≤ (1 + δ)i ≤ (1 + δ)j1(C) (i.e., j1(C) − 1 + ⌈log1+δ γ⌉ ≤ i ≤ j1(C)), there is an
integer component nr,i(C) ≥ 0 stating how many jobs of size (1 + δ)i and density (1 + δ)r

are assigned to this machine. These jobs are called large (large for configuration C, or
large for a machine that has configuration C). We let nr,i(C) = 0 for other (smaller or
larger) values of i (these are constants that are not a part of the configuration). There are
additional components for other jobs assigned to a machine whose configuration is C. These
jobs (which are not taken into account in the components of the form nr,i(C)) must have
smaller values of i, as jobs with larger values of i (jobs of sizes above (1 + δ)j1(C)) cannot be
assigned to a machine that has configuration C. This is so since they are too large, given the
upper bound on the work of the machine. These remaining jobs are called small jobs for
C, or small jobs for a machine whose schedule is according to configuration C. For every
r, there is an integer component tr(C) ≥ 0 such that the total size of small jobs (of sizes
in (0, γ(1 + δ)j1(C)−1)) of density (1 + δ)r assigned to a machine with configuration C is in
((tr(C) − 1) · γ(1 + δ)j1(C)−1, tr(C) · γ(1 + δ)j1(C)−1]. We have tr(C) = 0 if and only if there
are no such jobs for a machine with this configuration.
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Valid configurations. Recall that I is the set of indices i such that there is at least one
job of size (1 + δ)i. A configuration C is valid if the total size of jobs is sufficiently close
to its required work, and its load does not exceed 2

δ . Formally, letting I(C) = {i ∈ I :
j1(C) − 1 + ⌈log1+δ γ⌉ ≤ i ≤ j1(C)} it is required that

∑
0≤r≤y,i∈I(C)(1 + δ)i · nr,i(C) +∑y

r=0 tr(C) · γ(1 + δ)j1(C)−1 ∈
(
(1 + δ)j1(C)−2, (1 + δ)j1(C)+1]

. The reason for the increased
exponent of the right endpoint is that for every density the total size of small jobs may
be smaller by an additive term of γ(1 + δ)j1(C)−1 compared to its upper bound, and since
(y + 1) · γ < δ, it suffices to increase the right endpoint by a multiplicative factor of 1 + δ.
We also let I ′(C) = {i ∈ I : i ≤ j1(C) − 2 + ⌈log1+δ γ⌉}, and require (1 + δ)j3(C)−2 < 2

δ . In
the remainder of this section, given C, we will use the threshold U(C) = γ(1 + δ)j1(C)−1

for computing the U -cost of a machine with configuration C (this is the value U of the
configuration C).

Bounding the number of configurations. The number of components is therefore at most
3+(y+1)·(⌈log1+δ

1
γ ⌉+2)+(y+1) ≤ 3+(y+1)(log1+δ

1
γ +3). Since log1+δ

1
γ = y+log1+δ

1
δ12 ≤

y + 1
δ13 , and y + 1 ≤ 1

δ9 , we have 3 + (y + 1)(log1+δ
1
γ + 3) ≤ 3 + 1

δ9 ( 1
δ9 + 1

δ13 + 3) < 1
δ23 . We

will use the following bounds.

▶ Lemma 8. For every pair of value j1 and j2, there are at most ( 1
δ )1/δ33 configurations C

with j1(C) = j1 and j2(C) = j2.

▶ Lemma 9. The number of options for j1, j2, j3 (for which there are valid configurations)
is O( n2m

δ )

Let J = {σ1, σ2, . . . , σκ} be the set of all κ different speeds of machines (where 1 ≤ κ ≤ m)
such that 1 = σ1 > σ2 > · · · > σκ, and let Ni ≥ 1 be the number of machines of speed σi.

An auxiliary mathematical program. Consider the following mathematical program P.
The goal of P is to determine a partial schedule via machine configurations. For every
configuration C, XC is a decision variable stating how many machines have this configuration.
Obviously, the number of used configurations whose second component is σi cannot exceed
Ni (it is not required to use all machines, but it is required to assign all jobs). For every
triple of density, size, and a configuration (density (1 + δ)r, size (1 + δ)i, and configuration
C), there is a decision variable Yr,i,C corresponding to the number of jobs of this size and
density that are assigned to machines whose configurations are C as small jobs for this
configuration. The variable Yr,i,C may be positive only if a job of size (1 + δ)i is small for
configuration C, i.e., i ≤ j1(C) − 2 + ⌈log1+δ γ⌉, and in all other cases we set Yr,i,C = 0 to
be a constant rather than a variable. Each such variable is used for all copies of C together
since jobs assigned as small jobs within the copies of the configuration may be of different
sizes. Based on these decision variables we define a set of constraints and solve the resulting
mixed-integer linear program P.

A configuration C has a cost denoted by cost(C) associated with it, which is the U -cost
for the threshold U(C) = γ(1 + δ)j1(C)−1. Recall that for the purpose of calculating the
U -cost of a machine, a list of its large jobs is needed. However, for its jobs of size below U

(i.e., small jobs), the exact list of such small jobs is not needed. The only needed property
of the subset of small jobs (for configuration C) of each one of the densities is their total
size. This allows us to assign very different jobs that are small to machines with the same
configuration, as long as these jobs are indeed small for the configuration and have the same
density.
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For large jobs, the exact identities of jobs are not needed as well, but a list of densities
and sizes is needed. Thus, the U -cost for configuration C is calculated assuming that the
machine has exactly nr,i(C) jobs of size (1 + δ)i and weight (1 + δ)i+r (i.e., density (1 + δ)r)
assigned to it, and the total size of small jobs (of sizes in (0, γ(1 + δ)j1(C)−1)) with densities
equal to (1 + δ)r is exactly tr(C) · γ(1 + δ)j1(C)−1. The objective of P is to minimize the
sum of costs of configurations plus the missing parts of the costs of jobs that are assigned as
small. For that, for a job of size (1 + δ)i and density (1 + δ)r that is assigned to a machine
of speed s as a small job for its configuration, an additive term of (1+δ)r+2i

2s is incurred (this
is the difference between the actual cost for this job, and its Γ-value, which is the part of
the cost already included in the U -cost). This last term only depends on the speed of the
machine that runs the job rather than the specific machine. Thus, for each r and i we add

(1 + δ)r+2i ·
∑
C∈C

Yr,i,C

2(1 + δ)j2(C)

to the cost of configurations to get the total cost of the schedule, where
∑

C∈C Yr,i,C is the
number of jobs of size (1 + δ)i and density (1 + δ)r that are assigned as small jobs for their
configurations.

min
∑
C∈C

cost(C) · XC +
y∑

r=0

∑
i∈I

(1 + δ)r+2i ·
∑
C∈C

Yr,i,C

2(1 + δ)j2(C) s.t.

∑
C∈C:(1+δ)j2(C)=σi

XC ≤ Ni ∀σi ∈ J (1)

∑
C∈C

nr,i(C) · XC +
∑
C∈C

Yr,i,C = nr,i ∀0 ≤ r ≤ y, i ∈ I (2)

∑
i∈I′(C)

(1 + δ)i · Yr,i,C −
(

(tr(C) + 1) · γ · (1 + δ)j1(C)−1
)

· XC ≤ 0 (3)

∀0 ≤ r ≤ y, C ∈ C∑
C∈C:j1(C)∈{−1,0,1},j2(C)=0

XC ≥ 1 (4)

Yr,i,C ≥ 0 ∀C ∈ C, 0 ≤ r ≤ y, i ∈ I ′(C) (5)
XC ≥ 0 ∀C ∈ C (6)

Motivation for the constraints. Later, we will use the last mathematical program to direct
our algorithm. Before we continue we explain the intuition behind its constraints. We
stress that the formal proof does not use this intuition, so it is given to assist the reader.
Condition (1) ensures that the number of used machines for each speed does not exceed the
existing number of such machines. Condition (2) states that every job is assigned (either it is
a large job or a small job). Condition (3) considers jobs of density (1 + δ)r that are assigned
as small to machines scheduled according to configuration C, and verifies that sufficient
space is allocated for them if the space for them is slightly extended (this extended space
may be used as we show later). Condition (4) ensures that indeed there is a machine of the
maximum speed that has a work that is close to 1, that is, above 1

(1+δ)2 and at most 1 + δ

(the condition that the work is in [1/(1 + δ), 1) is slightly relaxed).
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Observe that we distinguish between large and small jobs for a machine based on the
configuration and not solely by its speed. This feature is needed since our problem does
not allow the use of the dual-approximation method (because the objective is not based on
machine loads).

Formal definition of the subset of integer variables. We define the set of heavy configura-
tions CH as CH = {C ∈ C : j1(C) > g(δ)}, (note that the definition of a heavy configuration
or a heavily loaded machine depends only on the work, and it is independent of the speed)
and the complement set of light configurations is CL = C \ CH . By Lemma 7 it is sufficient to
consider light configurations for slow machines. Therefore, we delete heavy configurations for
slow machines and do not consider them (which is justified later in the comparison between
the cost of an optimal schedule and the optimal solution of P).

We see P as a mixed-integer linear program and thus we define next the set of variables
that are forced to be integral and the set of variables that are allowed to be fractional.
All variables Yr,i,C may be fractional. The variables of (light) configurations corresponding
to slow machines and variables of light configurations of fast machines may be fractional,
whereas the variables of heavy configurations corresponding to fast machines must be integral.
The number of variables is polynomial, and the number of integral variables will be constant
(a function of δ).

Recall that for every pair of speed and work (i.e, a pair j1, j2), the number of different
valid configurations is constant (as a function of δ). The number of different speeds of fast
machines is at most |f(δ)| = −f(δ). The number of different values of j1(C) such that C is
a heavy configuration is at most −g(δ) + ⌈log1+δ

2
δ ⌉ ≤ 2

δ2 − g(δ) = −f(δ), and j2(C) of a
heavy configuration C must be a fast speed (so there are at most −f(δ) values for it). As
the number of integral variables is constant (as a function of δ), an optimal solution can be
found in polynomial time [30, 26] that is a function of δ multiplied by a polynomial in the
input encoding length.

Presenting a feasible solution to P whose cost is at most the cost of an optimal schedule.
We will first compare the cost of the optimal schedule OPT to the cost of an optimal solution
of P. Later, we will show how to obtain an actual schedule given a solution of P, such that
the cost of the schedule is larger only by a factor of at most 1 + δ than the objective function
value of the solution to P. Let (X∗, Y ∗) denote an optimal solution to the mixed-integer
linear program, and let Z∗ be its objective value. Let ZOP T denote the cost of OPT .

▶ Theorem 10. If (X∗, Y ∗) is an optimal solution of P, then Z∗ ≤ ZOP T .

Using the solution (X∗, Y ∗) for finding an approximate schedule. Our last rounding
steps are designed in order to use (X∗, Y ∗) for getting an approximate schedule for the
rounded ratio problem. These steps are the constructive methods for establishing our scheme.

We start with constructing an alternative set of values of the variables and bounding
the resulting cost from above. We will later convert this alternative solution (that may
violate some of the constraints of P) into a schedule. For every C ∈ C, let X ′

C = ⌊X∗
C⌋.

If X∗
C = 0, then we set X ′

C = 0. In this case Y ∗
r,i,C = 0 must hold for all r, i by (3), and

we set Y ′
r,i,C = 0. If X∗

C > 0, we consider two cases. If C ∈ CH , then the variables of
configurations are integral, and therefore X ′

C = X∗
C . In this case we set Y ′

r,i,C = ⌈Y ∗
r,i,C⌉ for

any 0 ≤ r ≤ y, i ∈ I ′(C). Otherwise, that is, in the case C ∈ CL, let Y ′
r,i,C =

⌊
X′

C

X∗
C

· Y ∗
r,i,C

⌋
.
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Using these definitions, in the case Y ′
r,i,C > 0, if C ∈ CH , then we have Y ′

r,i,C ≤ Y ∗
r,i,C + 1,

and otherwise we have Y ′
r,i,C ≤ X′

C

X∗
C

· Y ∗
r,i,C . Moreover, if C ∈ CL and X∗

C > 0, then we have

Y ′
r,i,C >

X′
C

X∗
C

· Y ∗
r,i,C − 1 > Y ∗

r,i,c − Y ∗
r,i,C

X∗
C

− 1, by X∗
C < X ′

C + 1 (that holds even if X ′
C = 0).

Bounding the cost of (X′, Y ′). We will define a schedule and find an upper bound
on its objective function value. Before that, we analyze the first increase in the cost
which is due to the transformation from (X∗, Y ∗) to (X ′, Y ′), and show that it is by an
additive factor of at most δ100 · Z∗. The solution (X ′, Y ′) that we consider is not a feasible
solution for P , as (for example) constraint (2) does not necessarily hold as it is possible that∑

C∈C nr,i(C)X ′
C +

∑
C∈C ·Y ′

r,i,C ̸= nr,i, but we can still bound its objective function value
using the objective function value of the optimal (and feasible) solution.

Since X ′
C ≤ X∗

C for C ∈ C, and Y ′
r,i,C ≤ Y ∗

r,i,C for all C ∈ CL, 0 ≤ r ≤ y, and i ∈ I ′(C),
the objective function value for these variables is at most Z∗ plus∑y

r=0
∑

i∈I(1 + δ)r+2i
∑

C∈CH :i∈I′(C)
Y ′

r,i,C −Y ∗
r,i,C

2(1+δ)j2(C)

≤
∑y

r=0
∑

C∈CH

∑
i∈I′(C)(1 + δ)r+2i X∗

C

2(1+δ)j2(C) ,

since for C ∈ CH it holds that Y ′
r,i,C = 0 if X∗

C = 0, and otherwise Y ′
r,i,C − Y ∗

r,i,C ≤ 1 ≤ X∗
C .

Next, we show that
y∑

r=0

∑
i∈I′(C)

(1 + δ)r+2i 1
2(1 + δ)j2(C) ≤ δ100 · cost(C)

for any C ∈ CH , and thus we will conclude that the objective function value of the set of
variables X ′

C , Y ′
r,i,C is at most (1 + δ100) · Z∗. We have cost(C) ≥ (1+δ)2j1(C)−4

2(1+δ)j2(C) (by Lemma 1,
since cost(C) is computed for jobs of total size above (1 + δ)j1(C)−2, and the jobs densities
are no smaller than 1). Let i′ = max I ′(C). We have

(1 + δ)2i′
≤ (γ(1 + δ)j1(C)−1)2

and∑
i≤i′

(1 + δ)2i < (1 + δ)2i′+1/δ .

Additionally,
∑y

r=0(1 + δ)r < (1 + δ)y+1/δ. For a given C ∈ CH , we get∑y
r=0

∑
i∈I′(C)(1 + δ)r+2i 1

2(1+δ)j2(C) ≤ (1+δ)y+2i′+2

2δ2(1+δ)j2(C) ≤ (1+δ)y+2(γ(1+δ)j1(C)−1)2

2δ2(1+δ)j2(C)

=
(1+δ)y+2 δ24

(1+δ)2y (1+δ)2j1(C)−2

2δ2(1+δ)j2(C) ≤ cost(C) · δ22(1 + δ)4−y ≤ δ100 · cost(C)

(since (1 + δ)y ≥ 1
δ1500 ). Thus the claim regarding the cost of (X ′, Y ′) holds.

Defining a schedule of most jobs while leaving a small subset of unassigned jobs. We will
define a schedule that is based on the rounded variables. The schedule will require additional
space for jobs that are small for their configurations (in some configurations) both due to
rounding of variables, and the actual assignment of jobs to machines which does not exist in
P (for such jobs). Due to the rounding of numbers of copies of configurations, some jobs that
are large for their configurations will also remain unassigned. Such jobs will obviously have
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to be assigned, thus increasing the cost. For the resulting schedule, the objective function
value of P may be no longer correct, though we show that the true objective is not much
larger.

Next, we find additional upper bounds that are based on the rounded variables (only
those that were rounded up). We prove upper bounds on the space used for jobs that are
small for their configurations where a possible increase is due to the rounding of variables
only. Additional space to be used for such jobs will be defined and analyzed later, and here
we only analyze the space that was already defined.

Using condition (3), for every C ∈ CL such that X∗
C > 0 and 0 ≤ r ≤ y, we have∑

i∈I′(C)

(1 + δ)i · Y ′
r,i,C ≤

∑
i∈I′(C)

(1 + δ)i · X ′
C

X∗
C

· Y ∗
r,i,C

≤ X ′
C

X∗
C

· (tr(C) + 1) · γ · (1 + δ)j1(C)−1 · X∗
C = (tr(C) + 1) · γ · (1 + δ)j1(C)−1 · X ′

C .

Similarly, for every C ∈ CH such that X∗
C > 0 and 0 ≤ r ≤ y, we have∑

i∈I′(C)(1 + δ)i · Y ′
r,i,C ≤

∑
i∈I′(C)(1 + δ)i · (Y ∗

r,i,C + 1)

≤ (tr(C) + 1) · γ · (1 + δ)j1(C)−1 · X∗
C +

∑
i∈I′(C)(1 + δ)i

≤ (tr(C) + 2 + 2
δ ) · γ · (1 + δ)j1(C)−1 · X ′

C

as X ′
C = X∗

C ≥ 1, and

∑
i∈I′(C)

(1 + δ)i ≤ γ(1 + δ)j1(C)−1
∞∑

i=0

1
(1 + δ)i

= γ(1 + δ)j1(C)−1 · 1 + δ

δ
.

If X∗
C = 0, then the corresponding upper bound (the first one if C ∈ CL, and the second one

if C ∈ CH) hold trivially, as all variables are equal to zero.
We let n′

r,i = nr,i −
∑

C∈C nr,i(C)X ′
C −

∑
C∈C Y ′

r,i,C . If n′
r,i > 0, then we say that n′

r,i is
the number of unassigned jobs of size (1 + δ)i and density (1 + δ)r. These jobs will be called
unassigned jobs, as they will remain unassigned if we assign jobs exactly using configurations
that are based on the modified set of variables (including the assignment to configurations of
jobs that are small for their configurations). We explain this assignment, which is called the
first assignment step, before we proceed.

The first assignment step will be to assign jobs according to the configurations for which
X ′

C > 0, such that there will be X ′
C machines whose sets of large jobs will be as required

(based on the definition of C). We will then assign Y ′
r,i,C jobs of size (1 + δ)i and density

(1 + δ)r to the machines whose configuration is C (these are small jobs for C). In order to
ensure that all jobs can be scheduled, for each machine that is assigned the configuration C,
additionally to total size of at most tr(C) · γ · (1 + δ)j1(C)−1 jobs of density (1 + δ)r that are
small jobs for configuration C that the machine can contain, such jobs of total size at most
3γ
δ · (1 + δ)j1(C)−1 are allocated to this machine. These jobs are called additional jobs, and

we will calculate the increase in the total cost as a result. The unassigned jobs will all be
assigned to a machine of speed 1 whose configuration C ′ has j1(C ′) = 0 or j1(C ′) = −1. We
will compute an upper bound on the total size of these unassigned jobs that will allow us to
find an upper bound on the increase in the cost.

Consider the machines whose configuration is C. For every 0 ≤ r ≤ y, create X ′
C bins of

size tr(C) · γ · (1 + δ)j1(C)−1 each (these bins are called bins of the first kind), and X ′
C bins

of size 3γ
δ · (1 + δ)j1(C)−1 (these bins are called bins of the second kind); if tr(C) = 0, then
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we introduce only the second kind of bins. The additional jobs are those that are packed
into bins of the second kind. We define the allocation of jobs to machines by packing them
as items into these bins. If the number of items of a certain type assigned using this packing
process exceeds the existing number of jobs, then some of the spaces allocated in this process
for items will not receive jobs. For every i ∈ I ′(C), pack Y ′

r,i,C items of size (1 + δ)i into
these bins using First Fit.

We show that all items are packed. Assume by contradiction that this is not the case. Since
the size of each item is below γ(1+δ)j1(C)−1 and there is an item that cannot be packed, each
bin of the first kind (if such a bin exists) is occupied by at least (tr(C) − 1) · γ · (1 + δ)j1(C)−1,
and each bin of the second kind is occupied by at least ( 3

δ − 1) · γ · (1 + δ)j1(C)−1. We find
that the total size of items of density (1 + δ)r that are to be packed into these bins as small,
which is equal to

∑
i∈I′(C)(1 + δ)iY ′

r,i,C is above (tr(C) + 3
δ − 2) · γ · (1 + δ)j1(C)−1 · X ′

C ,
contradicting the upper bound that we proved on

∑
i∈I′(C)(1+δ)i ·Y ′

r,i,C , since 3
δ −2 > 2+ 2

δ

(since δ ≤ 1
8 ).

Bounding the increase in the cost of a machine due to the first assignment step. The
increase in the cost of each machine (since the total size of small jobs of density (1 + δ)r for
each 0 ≤ r ≤ y may become larger) can be upper bounded as follows. A possible schedule,
i.e., a permutation of the job set of the machine, is obtained by assigning the items of the
bins of the first kind as a block for each value of r of size at most tr(C) · γ(1 + δ)j1(C)−1, and
the jobs of the bins of the second kind as a block of the last jobs assigned to the machine
(this is possibly not an optimal ordering). For a job j that is small for its configuration the
difference between its cost and Γj is already included in the objective function value (since
it is assigned as a small job), and thus we compute the total Γ-values of the added blocks.
Instead of considering these blocks (for different values of r) separately, we see it as one
block assuming that all densities are equal to (1 + δ)y (this assumption cannot reduce the
cost). We assume without loss of generality that j2(C) = 0. Let

W =
∑

0≤r≤y,i∈I(C)

(1 + δ)i · nr,i(C) +
y∑

r=0
tr(C) · (γ · (1 + δ)j1(C)−1)

be the work that was used for calculating cost(C) in P. The total size of this united block
of small jobs added to this machine is at most 3(y+1)γ

δ (1 + δ)j1(C)−1, and thus, the sum of
Γ-values for all these blocks is at most

(1 + δ)y ·
(

W + 3 · (y + 1) · γ(1 + δ)j1(C)−1

2δ

)
· 3(y + 1)γ(1 + δ)j1(C)−1

δ

by Lemma 3. We use W ≥ (1+δ)j1(C)−2, δ ≤ 1/8, y+1 ≤ 1
δ9 , γ ≤ δ1512, and (1+δ)y ·γ = δ12,

and get

3(y + 1)γ(1 + δ)j1(C)−1

2δ
≤ δ1501 · W ,

and (1 + δ)y · 3(y+1)γ(1+δ)j1(C)−1

δ ≤ 3(1 + δ)δ2 · W and get that the total Γ-values of the added
blocks is at most

(1 + δ1501)W · 3(1 + δ) · δ2 · W ≤ 7δ2 · W 2/2 .

By Lemma 1, we have cost(C) ≥ W 2/2 as all densities are at least 1. Thus, the second
increase in the cost is by an additive factor of at most 7δ2 · Z∗.
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Bounding the cost of scheduling the unassigned jobs. Recall that n′
r,i is the number

of unassigned jobs of size (1 + δ)i and density (1 + δ)r, and for C ∈ CH , X ′
C = X∗

C and
Y ′

r,i,C ≥ Y ∗
r,i,C . Using (2), we have

n′
r,i = nr,i −

∑
C∈CH

nr,i(C) · X ′
C −

∑
C∈CH :i∈I′(C) Y ′

r,i,C

−
∑

C∈CL
nr,i(C) · X ′

C −
∑

C∈CL:i∈I′(C) Y ′
r,i,C

≤ nr,i −
∑

C∈CH
nr,i(C) · X∗

C −
∑

C∈CH :i∈I′(C) Y ∗
r,i,C

−
∑

C∈CL
(nr,i(C) · (X∗

C − 1)) −
∑

C∈CL:i∈I′(C),X∗
C

>0(Y ∗
r,i,C − Y ∗

r,i,C

X∗
C

− 1)

=
∑

C∈CL
nr,i(C) +

∑
C∈CL:i∈I′(C),X∗

C
>0( Y ∗

r,i,C

X∗
C

+ 1) .

The total size of unassigned jobs is at most∑y
r=0

∑
C∈CL

∑
i∈I(C)(1 + δ)i · nr,i(C)

+
∑y

r=0
∑

C∈CL:X∗
C

>0
∑

i∈I′(C)(1 + δ)i · ( Y ∗
r,i,C

X∗
C

+ 1) .

Using

∑
i∈I′(C)

(1 + δ)i ·
Y ∗

r,i,C

X∗
C

≤ (tr(C) + 1) · γ · (1 + δ)j1(C)−1

for C ∈ CL such that X∗
C > 0 (which holds by constraint (3) divided by X∗

C), the total size
of unassigned jobs is at most∑y

r=0
∑

C∈CL

(
(tr(C) + 1)γ(1 + δ)j1(C)−1 +

∑
i∈I(C)(1 + δ)inr,i(C)

)
+

∑y
r=0

∑
C∈CL

∑
i∈I′(C)(1 + δ)i .

Using

∑
0≤r≤y,i∈I(C)

(1 + δ)inr,i(C) +
y∑

r=0
tr(C)(γ(1 + δ)j1(C)) ≤ (1 + δ)j1(C)+1

(by the definition of a configuration) and
∑

i∈I′(C)(1 + δ)i ≤ γ(1 + δ)j1(C)/δ for any C ∈ C,
the total size of unassigned jobs is at most∑

C∈CL
(1 + δ)j1(C)+1 +

∑y
r=0

∑
C∈CL

γ(1 + δ)j1(C)−1

+
∑y

r=0
∑

C∈CL
γ(1 + δ)j1(C)/δ <

∑
C∈CL

2(1 + δ)j1(C) .

since (1 + δ + (y + 1)γ(1/δ + 1)) ≤ 1 + δ + 1
δ9 · δ1500 · 2

δ < 2.
The proof of the following lemma is derived using the definition of g(δ).

▶ Lemma 11. The total size of unassigned jobs is at most 2γ.

Now we show that this leads to the required result. The jobs are assigned to a machine
with a configuration C ′ such that j1(C ′) ∈ {1, 0, −1}. Let x be the completion time of this
machine before modifications, where x ∈ ( 1

(1+δ)3 , (1 + δ)2]. The modifications described so
far during the first assignment step may increase the completion time of the machine by at
most

3
δ

· γ(y + 1) < δ1400
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(since 3γ(y + 1)/δ ≤ 3
δ · δ1500 1

δ9 < δ1400). Even if the density of each such job is (1 + δ)y,
and the unassigned jobs are now assigned as a block on the most loaded machine of speed 1
starting at time x + δ1400, the sum of their weighted completion times will be at most

2γ(1 + δ)y · (x + δ1400 + 2γ) < 2δ12(x + δ1399) ,

while the value of cost(C ′) is at least x2/2. It holds that

2δ12(x + δ1399)
x2/2 = 4δ12

x
+ 4δ1411

x2 ≤ 4δ12(1 + δ)3 + 4δ1411(1 + δ)6 < 6δ12 ,

so the increase in the cost is at most by an additive factor of 15δ12 · Z∗. The total cost will
be at most Z∗(1 + δ100 + 7δ2 + 6δ12) < (1 + δ) · Z∗, and thus the following theorem holds.

▶ Theorem 12. There exists a schedule whose cost is at most (1+δ) ·Z∗, and such a schedule
can be constructed in polynomial time from (X∗, Y ∗).

Summary of the algorithm for the bounded ratio problem. In summary, in this section
we provided an (1 + δ)-approximation algorithm for the bounded ratio scheduling problem.
The algorithm tests all possible intervals Dj,b, and for each one it constructs the MILP P,
and finds an optimal solution. The best solution is converted into a schedule. We conclude
the paper with the statement of our main result.

▶ Theorem 13. There is an EPTAS for the problem of minimizing the total weighted
completion time on uniformly related machines.
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