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—— Abstract

We consider the performance of standard bin packing algorithms in the random order model. We
provide an improved lower bound of 1.15582656 on the asymptotic approximation ratio of Best Fit
(BF) for randomly ordered inputs. We also show lower bounds on the asymptotic approximation
ratio for two bounded space bin packing algorithms in this model, namely for 2-BF and 2-FF. These
are well-studied bounded space algorithms and the first one has the same asymptotic worst-case
performance as BF. However, the resulting lower bounds on their performances in the random order
model are much higher than that of BF.
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1 Introduction

Bin packing (BP) or standard bin packing [31, 30, 36, 6, 7] is a combinatorial optimization
problem introduced in the early 1970’s. In this problem, a set of items of positive rational
sizes of at most 1 is to be partitioned into subsets of total sizes not exceeding 1. The subsets
are called bins, the process of assigning an item to a bin is called packing, and the goal is
to minimize the number of (non-empty) bins. The variant where the input is a set of items
is called (standard or classic) offline BP. In the online variant of standard BP, items are
presented one by one, such that each item has to be packed into a bin before the next item
is presented. Many natural algorithms for offline BP process items as a list, and can be seen
as online algorithms.

Since standard BP is NP-hard (and so are many other versions of BP), it is frequently
studied with respect to approximation. The approximation ratio of an algorithm for a
minimization problem and an input is the ratio between the costs of the algorithm and
of an optimal solution for this input. The absolute approximate ratio of an algorithm is
the worst-case approximation ratio over valid inputs. The asymptotic approximation ratio,
which is the standard measure for bin packing type problems, is the superior limit of the
sequence of approximation ratios with fixed optimal costs (when these fixed costs grow
without bound). For online algorithms, the approximation ratio is also called competitive
ratio, but the definitions are identical. Since the studied algorithms are of interest both as
offline algorithms and as online algorithms, we use the terms asymptotic approximation ratio
and absolute approximation ratio.

Here, we consider online bin packing algorithms with respect to randomly ordered
inputs and the asymptotic approximation ratio, and we briefly comment on the absolute
approximation ratio of one algorithm. For worst-case analysis, the best possible asymptotic
approximation ratio of an online algorithm is in the interval [1.54278,1.57829] [6, 7] and the
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best absolute approximation ratio is % [8]. Bin packing was also analyzed with respect to
average case analysis for various input distributions including U0, 1] [17, 9, 37, 32, 5], where

these models are different from our model, which is defined below.

The algorithms that we analyze. The Best Fit (BF) algorithm [31, 20, 38] is defined as
follows. It starts with an empty set of active bins. Whenever a new item is revealed, it
computes the subset of active bins in which the new item can be added without exceeding
the bound of 1 on the total size of items including the new item. If this subset is non-empty,
the algorithm picks a bin of maximum total size of items from the subset and packs the item
there. If the subset is empty, it opens a new (empty) bin that is defined as an active bin and
it packs the item there. The asymptotic (and absolute) asymptotic approximation ratio of
BF is 1.7 [31, 20].

In addition to BF, we analyze two well-studied bounded space algorithms, namely 2-BF
and 2-FF. Bounded space algorithms also have an active set of bins, but their number is
bounded from above by a constant integer parameter. Thus, a bounded space algorithm
may close a bin in order to open a new active bin, in which case the closed bin cannot be
used again. Next Fit (NF) [30] is a greedy bounded space algorithm that has at most one
active bin. If it has no active bin, NF opens a new bin which becomes active, and the item is
packed into that bin. If NF has an active bin and the item can be packed into that bin with
respect to its size, this is done. Otherwise, if there is an active bin, it is closed, and a new
bin is opened, such that it receives the new item and becomes active.

Bounded space algorithms with larger numbers of active bins were studied as well
[36, 43, 41, 40, 18, 44, 42]. The algorithm 2-BF has at most two active bins at all times, and
initially it has no active bins. When a new item is presented, it is packed into an active bin
with the maximum already packed total size (where it fits). If this is not possible and the
number of active bins is 2, the most loaded active bin is closed (and it will not be able to
receive new items), and (no matter whether a bin was closed or not) a new active bin is
opened for the new item. A related algorithm is called 2-FF, and the difference is that in the
case where there are two active bins such that each one of them can receive the new item,
the bin that was opened first is used (and not the fullest bin). The latter algorithm can be
seen as the bounded space version of First Fit (FF) [31], which packs every item into the bin
of minimum index where it can be added. The two algorithms were analyzed with respect to
the worst-case asymptotic approximation ratio. The asymptotic approximation ratio of 2-BF
is 1.7 [19], as for BF (and FF) [31, 20], and the asymptotic approximation ratio of 2-FF is 2
(as for NF) [40, 44].

Randomly ordered inputs. The random order model was introduced for comparison and
for contrast with worst-case analysis. In this model, the expected cost or profit over
all permutations for an input is compared to the optimal offline cost or profit. For bin
packing, this means that all n! permutations of a set of n items are considered with a uniform
distribution over the permutations (which are input sequences). For an offline optimal solution,
there is no meaning to the permutation, since the input of an offline bin packing algorithm is
a set of items rather than a sequence. Such inputs were studied for various problems such as
graph coloring [10, 25] and scheduling [2, 1], and other problems [33, 39, 14, 35, 27, 4, 28, 26].
Here, we study it with respect to bin packing [34, 16, 3, 5, 29]. We follow previous work
and use a stochastic process for presenting lower bounds on the performance guarantee in
the random order model. This stochastic process is a Markov chain with a finite number of
states whose transition probabilities are provided by the family of permutations of a common



L. Epstein and A. Levin

set of items. This Markov chain allows us to compute the equilibrium probabilities of the
states using standard approaches, and these equilibrium probabilities allow us to find the
resulting lower bound in a straightforward computation. Thus, the crux is to define the input
set of items and the corresponding set of states and transition probabilities of the Markov
chain. Note that a related model where algorithms are compared directly based on inputs
with their random permutations and not with comparison to an optimal offline solution was
studied for several problems including bin packing [11, 21, 15, 13, 12].

Kenyon [34] started the study of BF with respect to randomly ordered inputs. She proved
a lower bound of approximately 1.08 on the asymptotic approximation ratio of BF with
randomly ordered inputs, and wrote that 1.15 may be a lower bound. Many years later,
Albers, Khan, and Ladewig [3] improved the lower bound to 1.1037, and finally Hebbar,
Khan, and Sreenivas [29] improved the lower bound to 1.144. Kenyon [34] also proved the
surprising result that the asymptotic approximation ratio of BF in this model is at most
1.5. By using various ingredients, this result was improved to slightly below 1.5 [29]. For
the special case of items of sizes in ( i, %]7 an upper bound of approximately 1.4941 on the
asymptotic approximation ratio of BF for randomly ordered inputs was shown [5].

Randomly ordered inputs with items larger than 1/3 (inputs with large items) were
studied by Albers, Khan, and Ladewig [3], who showed that the asymptotic approximation
for this case is at most 1.25. It was proved afterwards [5] that the asymptotic approximation
ratio for this case is in fact 1. Interestingly, the absolute ratio for general inputs and even for
inputs with large items is not 1. Lower bounds of 1.3 and 1.2, respectively, were shown [3] for
the absolute approximation ratio for general inputs and for items of sizes above %, respectively
(where for the last case an upper bound of % = 1.3125 on the absolute approximation ratio
of BF was proved in the same work).

Coffman et al. analyzed NF for BP with random order [16], and showed that the asymptotic
competitive ratio is unchanged (as opposed to the situation with BF [34]). The main idea for
the lower bound proof is to use the worst-case input of NF that alternates between items of
size % and very small items of size ¢ > 0. It is possible to add multiple items of size € instead
of just one between every two items of size %7 and applying NF on almost every permutation

of this input will result in bins with one item of size % and many items of size ¢, and a very
1
§.
Bin packing has different variants. A dual problem to BP is bin covering (BC) (see for

small number of bins with two items of size

example [13, 22, 23]), which is a maximization problem. BC can also be offline or online.

The input is the same as for bin packing, but subsets should be covered in the sense that
total sizes of bins that count towards the objective should be at least 1. Bin covering and
other related problems were studied with respect to inputs permuted in a random order
[13, 22, 23, 24]. Fischer [24] presented algorithms of asymptotic approximation ratios that
are 1 or close to 1 using definitions of the analysis of the type that we perform here, though
those are not natural algorithms, and they are randomized.

Our results. We provide lower bounds on the asymptotic approximation ratio for three
online algorithms for standard bin packing. Two of these algorithms are the bounded space
algorithms 2-BF and 2-FF, and the third algorithm is BF, which was already studied with
respect to random orders. We provide an improved lower bound for BF, and much higher
lower bounds for algorithms whose performance is the same as BF (2-BF) and not much
worse than BF (2-FF) in terms of worst-case analysis. Our lower bound for Best Fit is
1.15582656, while the previous bound was 1.1440 [29]. Our lower bound for 2-BF is %,
and our lower bound for 2-FF is above 1.41. The last two bounds for the bounded space
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algorithms are based on common input sets of items. We start our study by considering
this type of input and the resulting bounds for 2-BF and 2-FF in Section 2. Then, we turn
our attention to BF, and present our lower bound in Section 3. Our lower bound for the
asymptotic approximation ratio of BF is based on Markov chains on finite sets of item sizes
(and so are the other lower bounds). The cardinalities of the sets of item sizes are (positive)
integer parameters of our construction. Previous lower bounds for BF were also based on the
approach of Markov chains [34, 3, 29] (as described above), but there was a single (constant
cardinality) set of items for each proof (with at least two and at most seven item sizes)
rather than a class of sets of sizes. Our lower bound for BF holds even for items of sizes in
(1, 3], which is the special case that was studied by Ayyadevara et al. [5] with respect to
an upper bound for BF, while the current best lower bound for this special case is the one
of Kenyon [34]. In Section 4, we prove a new lower bound on the absolute approximation
ratio of BF for randomly ordered inputs, improving the lower bound of 1.3 [3] to 1.5. A
forthcoming full version will contain additional details and omitted proofs.

2 Lower Bounds for Two Bounded Space Algorithms

We start with defining the common new input for the lower bounds of 2-BF and 2-FF and
common characteristics of the two Markov chains. Then we will show how to construct
a chain for proving a lower bound on the asymptotic approximation ratio for this input
with random order for 2-BF. The resulting proof for 2-BF is a complete analytical analysis
of the state probabilities at equilibrium. Then, we turn our attention to the analysis of a
corresponding lower bound for 2-FF. This last bound is computed using a computer assisted
program to solve a (large) system of linear equations. We augment the last computer assisted
proof with a very close bound derived using an analytic (and complete) proof.

2.1 The Common Input and Common Aspects of the Two Markov
Chains

We define an input for these algorithms. There will be large, medium, and small items. Let
n > 0 be a large integer, and let N = 2kn, where k > 1 is an integral parameter. The total
number of items will be NV, Let & < W A small item has size N2 - ¢ and the probability

for such an item is % The expected number of items that are not small is V. The
remaining probabilities (for medium and large items) will be equal, and there are 2k item
sizes, where there are k sizes of large items and k sizes of medium items. For 1 < i < k,
an i-large item has size % +1i- ¢, and these items (for all values of ) are called large. For
1 <i <k, an i-medium item has size % —i- ¢, and these items (for all values of i) are called
medium. A feasible solution (that provides an upper bound on the optimal cost) assigns all
small items to a single bin. It also assigns every i-medium item with a ¢-large item, whenever
this is possible. The remaining items are packed into bins alone, and the resulting number of
bins is approximately k- n + o(n). See [29] for details regarding the property that this is
indeed the optimal cost for inputs with a constant number of input sizes. The articles [3, 29]
also show precisely that using an input drawn from a distribution on a discrete set of item
sizes also gives a lower bound on the asymptotic approximation ratio of randomly ordered
items.

Given an integer parameter k > 1, the Markov chains we define in what follows consist of
2k + 1 states. There is an initial state denoted by A, k states denoted by Bj, Bs, ..., By and
k states denoted by C1,Cs, ..., Ck. For each state, the transition probabilities are integer
multiples of ﬁ such that the sum over all transitions out of each state is 1 for the state.
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We define the transitions of each state where we write these values multiplied by 2k, then
we write the probability of each state explicitly and show that they are consistent with the
transitions. Since every transition corresponds to the arrival of one item out of specific types
in the constructions, we discuss even transitions for which the state is unchanged.

Our Markov chains will have a well-defined equilibrium. We use the notation p(A), p(B;)
(for 1 <4 < k), and p(C;) (for 1 < i < k) for the equilibrium probabilities of the states. We
also use p(B) = Zle p(B;) and p(C) = Zf:l p(Cy).

2.2 Analysis for 2-BF

We first define the transition probabilities of the Markov chain that we use. Next, we will
use those transition probabilities to obtain the corresponding equilibrium probabilities. Last,
we show that this Markov chain allows us to prove our lower bound of the performance
guarantee of 2-BF in the random order model.

The transition probabilities. These probabilities are given as follows.
For A, there is one transition to each other state with value 1 (that is, with probability
5-). The value of the transition to A is zero.
For B; (where 1 <4 < k) the value for the transition to A is ¢ + k. The value for the
transition back to B; is k — i (so for ¢ = k it is zero), and for B; such that j # ¢ the value
of the transition to B; is zero. The values of all remaining transitions (to states of the
form Cy) are also equal to zero.
For C; (where 1 < i < k) the value for the transition to A is k —i+ 1. The corresponding
value for Bj is 1 if j < 7, and otherwise it is zero. The corresponding value for Cj is 1 if
j<i,itisk—i+1if j =14, and it is zero if j > i.

Observe that this chain has a unique equilibrium (i.e., the equilibrium the chain tends to
when the number of transitions grows without bound does not depend on the initial state).

The equilibrium probabilities. We show that the following probabilities satisfy the require-
ments, and since there is a unique solution, they give this solution. We define the probabilities
based on p(A) and ensure that the sum of probabilities is 1.

» Lemma 1. Let \; = Zle W We have the three following claims.
1. It holds that

1

p(A) =p(C) = m :

2. For1 <i<k, it holds that

C2kep(4)  2k-p(A) _ 2k-p(A)

POV = i1 ki (i) (ki)

3. For1 <1<k, it holds that

_ 2k-p(A)

P(Bi)—m>0-

Observe that for large values of k it holds that Ay ~ ka b I—lzda:, and the value of this
definite integral is ;. Thus, p(A) = 57555 is approximately equal to 5 when k grows
without bound.

WADS 2025
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The usage of the Markov chain for the analysis of 2-BF. Our goal is to prove the following
theorem.

» Theorem 2. The asymptotic approzimation ratio of 2-BF on randomly permuted inputs is
at least 3 ~ 1.33333.

Proof. The small items are sufficiently small such that all of them would fit into a bin
together with one medium item or one large item. However, once a small item is packed
with an item that is not small, since N2e > 2ke, the bin cannot contain another item that is
not small. We use the property of the packing that after a bin receives one medium or large
item and at least one small item, it will only receive small items. On the other hand, by the
same argument, a bin that contains two items that are not small (two medium items or a
medium item and a large item) cannot contain any small items. Thus, such a bin cannot
contain any additional items, and with a slight abuse of notation we assume that it is closed
when it receives the second item.

With high probability it holds that there is at least one small item between every two
items that are not small, and there is at least one small item in the beginning of the input.
We assume the process of arrival of items and packing them by 2-BF has the following form.
Consider the prefix of the input before and including the first item that is not small. This
bin has a total size above % + ke after the prefix arrives. At this time, there is one active
bin, and this bin can only receive small items. From this time on, there will be either one
active bin or two active bins. There will always be an active bin that can only receive small
items, and if there is a second active bin, it will have one item, where this item is not small.
State A will correspond to having a single active bin. Transitions will be defined for times
that an item that is not small arrives (after the prefix).

The other 2k states are defined as follows. For each such state there is one bin that
already has one item that is not small and at least one small item, so it can only receive
small items, and one bin that contains a single item, where this item is medium or large.
State B; (for 1 < i < k) is the state where the second bin has an i-medium item, and state
C; (for 1 <i < k) is the state where the second bin has an ¢-large item.

If the stochastic process is currently in state B; and a j-medium item arrives, the new
item is packed into the bin that has no small items, and there is a transition to state A. If
the process is currently in state B; and a j-large item arrives, in the case j < ¢, the new item
is packed into the bin that has no small items, and there is a transition to state A. In the
case j > i, the bin with small items (which has the largest total size) is closed and the new
item is packed into a new bin. One of the two bins will receive at least one small item (with
high probability) before the next medium or large item arrives and this is the bin with the
large item. Thus, in this case the transition is to the same state (B;).

If the process is currently in state C; and a j-large item arrives, the bin with small items
(which has the largest total size) is closed and the new item is packed into a new bin. One
of the two bins will receive at least one small item (with high probability) before the next
medium or large item arrives and this is the bin with the larger large item. This is the new
bin if j > 4, and otherwise it is the bin with the i-large item. The state remains C; if j > 4,
and otherwise the transition is to the state C;. If the process is currently in state C; and a
j-medium item arrives, the transition is to state A if j > . Otherwise, the bin with at least
one small item is closed, and the new item is packed into a new bin. The larger item packed
alone in a bin is the large item, and therefore in the case j < i the new state is B;.

The resulting chain is thus the one analyzed earlier in Lemma 1. The expected cost of
2-BF is 1 — p(A) times the number of items that are not small. The expected cost of an
optimal solution is  times the number of items (that are not small). For k growing without
bound we find a lower bound of %. <
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2.3 Analysis for 2-FF

Next, we discuss the difference with 2-FF. Since the closing rule is unchanged, the algorithm
will close the bin that has a small item for this algorithm as well. The states are therefore
unchanged, but the bin which will start receiving small items out of the two bins that have
one item each (where these items are not small) is the older one. There is no change in the
transitions to state A, but in cases where the transition is to another state, it is always to
C; when the new item is j-large, and to B; when the new item is j-medium. These changes
are reflected in the proof of the following theorem.

» Theorem 3. The asymptotic approrimation ratio of 2-FF on randomly permuted inputs is
at least 1.41318399.

The bound in the last theorem is proved using a computer assisted solution of a system of
linear equations. In the full version of this work, we provide an analytic proof showing a

. 8355970560
slightly weaker bound of =57c=2c00 ~ 1.41177.

Proof. We again use a Markov chain with 2k + 1 states. The transition probabilities of this
chain are given as follows.
For A, there is one transition to each other state with probability i The probability of
the transition to A is zero.
For B; (where 1 < i < k) the probability for the transition to A is “£E. The probability
for the transition to C; for j > i is i All other transition probabilities are equal to zero.
For C; (where 1 < i < k) the probability for the transition to A is 5. The probability
for the transition to C; (for any j) is 5. The probability for the transition to B; is 5z
if j < i and otherwise it is zero (thus the probability for the transition to By is always

7€ero).
We solved this chain numerically for & = 10000000 and found that p(A) =~ 0.29340800445.
This shows a lower bound of 1.41318399 for 2-FF with random orders. |

3 An Improved Lower Bound for Best Fit

In this section, we turn our attention to Best Fit in the random order model. We consider a
class of inputs parameterized by an integer parameter £ > 1. Item sizes are slightly smaller
than % (k such sizes) and slightly larger than % (k such sizes), and there is also a size of
exactly % (so there are 2k + 1 different sizes). Let ¢ > 0 be a small constant such that
€ < 1oo5- Let Z=1. Fori=1,2,... Fk, let

k k—j+1 k
L 2y’ 1 k—j+1
Uizf—fand‘/}:g—i—g £ .

j=i

It holds that the sequence U; is monotonically increasing as a function of ¢ and the sequence
V; is monotonically decreasing as a function of 4.
We say that a bin is ready if it cannot receive an additional item. Since the smallest item

size is Uy, this means that its total size of items is above 1 — U;. Note that Uy > % — ke > i,

and therefore no bin can contain more than three items. On the other hand, no item is

larger than % since V; < % + ke < % A packing pattern is a non-empty set of three item

sizes out of the 2k + 1 item sizes which can be packed into a bin. A multiset of items that
cannot be packed into a bin is called an invalid pattern (and a pattern is sometimes called

a valid pattern). For example, it is not possible to pack two items of size Uy and an item

26:7
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of size Vi_1 into a bin since 2- Uy, + Vi_1 = 1 — ¢ + (¢ + €2) > 1 (so this is an invalid
pattern), but it is possible to pack two items of size Uy and an item of size V} into a bin
since 2- Uy + Vi, =1 —¢e+ € =1 (so this is a pattern or a valid pattern).

» Lemma 4. The following packing patterns are a complete list of packing patterns.
Any pattern consisting of a single item (2k + 1 patterns in total).
Any pattern consisting of two items (less than (2k + 1)? patterns in total).
Any pattern consisting of three items of sizes below %
Any pattern consisting of three items which are Uy, Uj,, and Vj, such that j3 >

max{jl,jg},

» Corollary 5. Any bin with one of the following packing patterns is ready.

Any valid pattern consisting of three items.

1

g.

Any pattern with an item of size Uj, and an item of size V;, such that jo < ji.

Any pattern consisting of two items of sizes above

Proof. For patterns with three items the claim holds since there are no patterns with four
items. For patterns with two items the claim holds by Lemma 4 since there is no valid
pattern containing such a pair of items and an additional item. <

Thus, bins that are not ready are those with a single item, with two items smaller than %,
and with a pair of items of sizes Uj,, V}, such that jo» > j;. The following lemma establishes
that although BF is not a bounded space algorithm, when we restrict our attention to this
class of inputs, BF is in fact bounded space.

» Lemma 6. BF never encounters a situation where it has two bins with the same pattern
that are not ready. Moreover, it never has two bins with a single item each, it has at most
one bin with two items smaller than %, and if it has such a bin, then there is no bin with a
single item of size below %

Proof. The claim holds for bins with a single item since any two items can be packed into a
bin together and BF does not open a new bin when it can pack an item into an existing bin.

Assume that there are two bins with one or two items smaller than % packed into each of
these bins. When the second one of these bins was opened, its first item could have been
packed into the first one of these two bins, while BF does not open a new bin when it can
pack an item into an existing bin.

Finally, consider two bins, each with a pair of items of sizes Uj,, Vj, such that jo > j;.
When the second such bin is opened, the first such bin already has two items, since any two
items can be packed together into a bin. When the item of size Uj, of the second bin arrives,
its bin has at most one item. Thus, the first bin has a total size U;, + V}, while the second
bin has at most Vj,. Since a pattern with one item of size Vj, and two items of size Uj, is
valid, the item of size U;, should have preferred to be packed into the first bin by BF. <«

We use the following names for bins that are not ready.

A bin with a single item is called OH if it has an item of size Z, it is called OS; if it has
an item of size U; and it is called OL; if it has an item of size V;. Recall that there is at
most one such bin (out of all 2k + 1 types for such a bin) at every time.

A bin with two items of sizes Uj, and Uj;, where j, > j; is called T'S;,. Note that we
only remember the size of the larger item of the two, and recall that there is at most one
such bin (out of all k& types for such a bin) at every time.

A bin with items of sizes Uj, and Vj, where jo > j; is called SL;,. Note that we only
remember the size of the larger item of the two.
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To summarize we recall the number of items in a bin as well as the size of its largest item.

» Lemma 7. BF never encounters a situation where it has the following pairs of bins that
are not ready.

An SLj, bin and a T'S;, bin such that j» < ji.

An SLj, bin and an OS;, bin such that jo < ji.

A TS;, bin and an OLj, bin such that jo > ji.

Proof. We assume by contradiction that one of the stated pairs of bins exists, and show that
none of the two orders of creation (by BF) for the two bins is possible. Since every pair of
items can be packed into a bin together, the first bin of the two already has two items when
the second one receives its first item. This excludes the option that an SL;, bin receives its
first item though an OS5}, bin exists for jo» < ji, and that a T'S;, bin receives its first item
while an OL;, bin exists for jo > ji. We are left with four cases where a new bin is opened
when the other bin already has two items. Moreover, we use the property that no item is
larger than % while every item is larger than i, so the total size of two items is always larger
than that of one item.

Consider an SL;, bin and a T'S;, bin such that j, < j; that were created in this order.
Neither the first item nor the second item of the TS}, could be packed into the SL;, bin
(since two items are larger than one item, BF would have preferred the SL;, bin). Since
the SL;, bin is not ready, it has an item of size Vj,, and an item of size at most Uj,. The
T'S;, bin has an item at most U;, < Uj, (in fact it has two such items). This contradicts
the fact that no item of the 7S}, could be packed into the SL;, bin. Similarly, consider the
case of an SL;, bin and an OSj;, bin such that jo < ji, that were created in this order. A
contradiction is reached in the same way (the second bin has just one item of size U;, but
this is sufficient for the contradiction.

Consider a T'S;, bin and an SL;, bin that were created in this order. The smaller item
of the SLj, bin could have been packed into the T'S;, bin (no matter what the values ji, jo
are). Consider a T'S;, bin and an OL;, bin such that jo > j; that were created in this order.
The total size of two items of size at most U;, each and one item of size V;, <V}, can be
packed together. |

We have seen that there can be at most one T'S; bin that is not ready (for some 7). We
extend this claim for SL;, bins that are not ready (for some ji).

» Lemma 8. BF never encounters a situation where there are two SLj, bins that are not
ready.

Proof. Let Uj,,Uj;, be the sizes of items packed with items of sizes Vj, into these bins. Since
the bins are not ready, it holds that j; > j2, j3. Assume that the item of size U}, is packed
into the bin that was created later by BF. Since Uj,, U;, < Uj,, the item of size Uj, could be
packed into the first SL;, bin, and BF would have packed it there. <

Note that we did not exclude the option of a pair of bins that are an SL;, bin and a
SL;, bin (for j1 # ja) that are not ready, and this is in fact possible. For example, if an item
of size V7 was packed with an item of size U; and then an item of size V5 arrives followed by
an item of size U, BF will have one SL; bin and one SLs bin, none of which is ready.

To define a suitable Markov chain for the analysis of BF on our family of instances, we
discuss its states and transition probabilities. Every state has a subset of bins that is not
ready. The initial state has an empty set of such bins. Since there are k options for SL;
bins where each state may have at most one bin for every index, every state has a subset of
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indexes of {1,2,...,k} of such bins. We discuss the set of states as a function of the larger
index ¢ such that the state has an SL; bin (and also states without such bins for which we
let i = 0).

For a fixed value of i and any set of values for j < i (2°~! possible subsets of SL; bins
for j < 7) the following states exist (where the selected subset is called the specific subset),
such that they are partitioned into seven types:

1. In addition to the specific subset there are no other bins that are not ready.
2. In addition to the specific subset there is an OH bin and no other bins.
3. In addition to the specific subset there is an OL; bin and no other bins. Such a state

exists for any 1 < /¢ < k.

4. In addition to the specific subset there is an OS, bin and no other bins. Such a state

exists for any 1 + 1 < ¢ < k.

5. In addition to the specific subset there is a T'S; bin and no other bins. Such a state exists
forany i +1 < /¢ <k.
6. In addition to the specific subset and a T'S, for a fixed ¢, there is also an OH bin. Such

a state exists for any i +1 < /¢ < k.

7. In addition to the specific subset and a T'S, for a fixed ¢, there is also an OL, bin. Such

a state exists forany i+ 1 </ < kand 1 <¢g</{-—1.

This set of states includes all possible states based on the properties proved above. The
next lemma enumerates the possible states.

» Lemma 9. The set of states has evactly 2% - (2k + 3) — 1 states.

Next, we explain the transitions for all states with a new item of each one of the sizes.
The probability of the transition is equal to the probability of the item, as explained later.
For an item of size Z, given a state which is a collection of bins that are not ready, there
are two cases. If there is a bin with a single item, the new item is packed there, and the
transition it to the state which has the same set of bins excluding the bin with the single
item that became ready. Since there is at most one bin with a single item for each state, the
transition is well-defined. If the state has no bin with a single item, the transition is to a
state that contains the same collection of bins and also OH.

For an item of size V;, the transition is as follows. If the collection of bins of the current
state has a T'S; bin such that j <, the transition is to a state with the same collection of
bins excluding the T'S; bin. Otherwise, if the collection of bins of the state has a bin with a
single item, the new item is packed there and we find whether the bin becomes ready. If it is
a OH bin or a OL, bin for some value of ¢, it becomes ready. If the bin with a single item
is OSy it becomes ready if ¢ > i, and otherwise it becomes a SL; bin. Thus the transition
is to a state that contains the same collection of bins excluding the bin that was used to
pack the item. If this bin did not become ready, an SL; bin is added to the collection of the
state. Note that in the case that the state has an additional bin there was no SL; bin in the
state because in the case ¢ < ¢ there cannot be an OS, bin and an SL; bin with ¢ > ¢ at the
same time by Lemma 7. If there is also no bin with a single item, an OL; bin is created, and
the transition is to a state that contains the same collection of bins as the previous state,
together with an OL; bin.

For an item of size U;, the transition is as follows. If there is an SL; bin such that ¢ < j,
the item is packed there and the bin becomes ready. Since there may be multiple such bins
of the form SL; (with ¢ < j and different values of j), the one with the smallest value of j
is chosen. In this case we show that this is indeed the selection of BF. For two bins that
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are SL;, and SLj, bins for j; > jo, it holds that the total size for the first bin is at most
Vj, + Uj, and the total size of the second bin is at least V}, + U;. It holds that the difference
is at least

Ji—1 Jji—1 Jji—1 j2—1
‘/j2 + Ul _ ‘/] _ []‘71 — Z £k7£+1 _ (Z Ek*fﬁfl)/Q — (Z sk*fﬁfl _ Z Ek*[+1)/2 > O,
=3y =1 =32 =1

since j; > j2 + 1 and j > 1, and similarly to previous calculations. If there is no SL; bin
with 4 < j, but there is an T°S; bin, that bin is used and becomes ready. Otherwise, if there
is a bin with a single item, the new item is packed there. The bin becomes ready if it is an
OH bin. If it is an OS; bin, it does not become ready and it turns into an 7S, bin where
p =max{i, j} (and there was no bin with two items of size below & before this). If it is an
OL; bin, it becomes ready if j < i and otherwise it becomes an SL; bin (which did not exist
because there was no SL; bin for j > ¢ if we reach this stage). If there was also no bin with
a single item, a new OS; bin is created. The collection of bins of the state is modified as
follows. If an existing bin was used for the item and the bin became ready, it is removed from
the collection. If it did not become ready, the previous bin is removed from the collection
and the new one is added instead. If the item is packed into a new bin, the new bin is added
to the collection.

Using the set of states and the corresponding transitions, we construct the Markov chain,
and define the system of equations corresponding to the equilibrium as a system of linear

equations. We solved it for different sets of probabilities for input items using online tools.

We used the property that a lower bound for a randomly created input can be used as a
lower bound for randomly permuted inputs.

For inputs with N items, we use probabilities pg for an item of size Z and p1,ps, ..., Pk
such that an item of size U; has probability of p; while an item of size V; has probability
Pit+k < pi/2. Obviously we ensure that pg + Zfil p; = 1. An optimal solution has cost that
is very close to

k
Zlepi) N po N

bo
+ 3 6

N .
(2 3

This holds since for every 1 < i < k, if there are exactly p; - IV items of size U; and p;yx - N
items of size V;, it is possible to pack the items in triples with at most one item of size V; in
each triple (if p; > 2p;y some triples have three items of size U;).

The (expected) cost of the algorithm is the sum of probabilities of transitions from a
state without a bin consisting of a single item to a state with such a bin multiplied by N.
The calculation requires the equilibrium probabilities of states, and transition probabilities
are calculated using the probabilities for different items.

We have compared the results of our program on multiple inputs to the outputs of the
program of [29] and always obtain the same result (at least eight first digits after the decimal
point). However, for our largest inputs (for £ = 9) we could only run our program.

In this way we get the lower bound 1.15539228 using both programs (with a cost of
approximately 0.40092127 - N for BF) using the probabilities

po = 0.0820008, p; = 0.0848666, p2 = 0.0802666, ps = 0.0762666, py = 0.0724666,
ps = 0.0688666, ps = 0.0650666, p; = 0.0610666, ps = 0.0566666, pg = 0.0697,

p1o = 0.0424333, p11 = 0.0401333, pi2 = 0.0381333, p13 = 0.0362333,

P14 = 0.0344333, p15 = 0.0325333, p1s = 0.0305333, p17 = 0.0283333, and pi1g =0.
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The improved bound for £ = 9 is a lower bound of 1.15582656 (with a cost of approximately
0.398760164 - N for BF) using the probabilities (where for 1 < i <9, we let p; = 2 p;y9):

po = 0.07, p1o = 0.0411, p1; = 0.0386, pro = 0.0376, p13 = 0.0361, pi4 = 0.0346,
p1s = 0.0329, pig = 0.0311, pi7 = 0.0295, pig = 0.0285 .

We have thus proved the next theorem.

» Theorem 10. The asymptotic approximation ratio of BF on randomly permuted inputs is
at least 1.15582656.

4 The Absolute Approximation Ratio for Best Fit

In this section we improve the lower bound on the absolute approximation ratio of BF with
random order from 1.3 to 1.5.

» Proposition 11. The absolute approximation ratio of BE with random order is at least 1.5.

Proof. We use a direct proof, considering all permutations of a fixed set of items. Let N > 0
be a large integer. The input consists of N items of size % each (larger items) and N + 1
items of size ﬁ each (smaller items). An optimal offline solution packs two completely full
bins, such that one bin has all larger items and the other bin has all smaller items.

In order for a solution to use two bins rather than three bins, each bin has to contain
items of total size exactly 1. We claim that a bin that has at least one item of each size
cannot have a total size of exactly 1. Assume that a bin has x > 1 larger items and
y > 1 smaller items, and it has a total size of 1. We have % + NLH = 1, and equivalently
(N+1)-2+N-y = N(N+1). Since the two variables xz, y are integral, we use simple number
theory arguments. The numbers N 4+ 1 and N are coprime. Since (N+1)-2 = N(N+1—y),
we find that z is divisible by N. Since N -y = (N +1)(N — z), we conclude that y is divisible
by N 4+ 1. Thus, x > N and y > N + 1, and we get a total size of at least 2, which is a
contradiction since these items fit into one bin.

There are (2N + 1)! possible input permutations. We find those permutations that BF
packs two bins for. If the first item of the permutation is larger, all larger items have to
appear consecutively in the permutation such that the first bin will not contain a smaller
item. If the first item of the permutation is smaller, the first bin has to receive at least N
smaller items that have to appear consecutively. This property guarantees that there is no
space for a larger item (and one additional smaller item may appear later). The number
of permutations where all larger items appear as the first N items is N!- (N + 1)!, due
to permuting the prefix of larger items and permuting the suffix of smaller items. The
permutations where there are N smaller items at the beginning differ not only by the order
but also by the smaller item that appears in the suffix of length N + 1. Thus, this number is
(N +1)-N!-(N+1)!. In total, for (N +1)(N +2)-(N!)? = (N +2)! - N! permutations, the
number of bins is 2, while any other permutation results in (at least) three bins for BF.

We would like to show that the expected number of bins tends to 3 as N grows. Thus,

we find an upper bound on %
(N+2)!-N' TN+ 1) _ 1

CN+D! NN 4i42) T 2N

since s < § for i < N. The expected number of bins of BF for the given input is

therefore at least 3 — sx—. <
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