
Approximation Algorithms for the Generalized
Point-To-Point Problem
Zachary Friggstad #

Department of Computing Science, University of Alberta, Edmonton, Canada

Mohammad R. Salavatipour #

Department of Computing Science, University of Alberta, Edmonton, Canada

Hao Sun #

Department of Computer Science, University of Houston, TX, USA

Abstract
We consider the Generalized Point-to-Point (GP2P) problem in which we have an edge-weighted
graph G with (possibly negative) node charges ϕ(v) ∈ Z. The goal is to find a minimum-cost set
of edges such that each component has nonnegative total charge. Viewing the positive charges
as specifying supply and negative charges as demand quantities at various nodes, the problem is
equivalent to build the cheapest network so that it is possible to satisfy all demands by routing
supplies across the network.

This problem is a significant generalization of other network design problems such as the well-
studied Steiner Forest problem. Even the special case of only having one single demand point
(having charge −k and all the other nodes having charge +1) is capturing the k-Minimum Spanning
Tree problem. Earlier work by Hajiaghayi et al. (2016) [10] gave an O(log n) approximation in
pseudo-polynomial time with further improved guarantees if the total supply is not much larger
than the total demand, and also a 2-approximation if the total supply equals the total demand.

Our contributions are four-fold: (a) we show how known k-Minimum Spanning Tree approx-
imations can be extended to GP2P approximations while losing only a ϵ-factor if the number of
demand points in the instance is bounded by a constant, (b) we improve the running time to be
Fixed-Parameter Tractable (FPT) in the number of demand points in constant-dimensional Euc-
lidean metrics, (c) we give a 2-approximation in instances where edge costs are all 1 and ϕ(v) = ±1
for each node v and show such instances are APX-hard, and (d) we show how the logarithmic
approximations in earlier work can be modified to run in truly polynomial time.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Approximation algorithms analysis

Keywords and phrases Point-to-Point Network design, Approximation, Steiner Forest, k-MST

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.28

Funding Zachary Friggstad: Supported by NSERC.
Mohammad R. Salavatipour : Supported by NSERC.

1 Introduction

Consider the following setting in a network: some locations have a finite supply of goods and
some locations have a given demand for goods. The goal is, naturally, to route supplies to
the demand locations in order to satisfy all demands. For example, in the Minimum-Cost
Transportation the goal is to do this in a way that minimizes the total travel cost of
all goods. However, it is natural to consider variations of this problem. A network-design
version would be to install a minimum-cost set of connections (edges between locations) so
that it is possible to find a routing satisfying demands such that each unit of supply only
travels along installed connections. That is, we only pay one for each link. Such a setting is
captured by the following problem.

© Zachary Friggstad, Mohammad R. Salavatipour, and Hao Sun;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zacharyf@ualberta.ca
https://orcid.org/0000-0003-4039-3235
mailto:mrs@ualberta.ca
https://orcid.org/0000-0002-7650-2045
mailto:hsun33@cougarnet.uh.edu
https://orcid.org/0000-0002-2000-8080
https://doi.org/10.4230/LIPIcs.WADS.2025.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

28:2 Approximation Algorithms for the Generalized Point-To-Point Problem

▶ Definition 1. In the Generalized Point to Point Connection problem (GP2P), we
are given a tuple (G = (V, E), c, ϕ) where G is an undirected graph with edge costs c(u, v) ≥ 0,
for all e ∈ E and (possibly negative) node charges ϕ(v) ∈ Z, for all v ∈ V . The goal is to
find a minimum-cost F ⊆ E such that

∑
v∈C ϕ(v) ≥ 0 for each connected component C ⊆ V

of (V, F).

A convenient view is that ϕ(v) < 0 corresponds to a demand point, ϕ(v) > 0 corresponds
to a supply point, and ϕ(v) = 0 is a location that is a Steiner point. For brevity, throughout
this paper when the instance is clear from the context we let Φ =

∑
v∈V max{1, |ϕ(v)|}. This

way, Φ represents the total charge in absolute value but also ensures to count the zero-charge
nodes.

It seems the first study of GP2P was actually for a directed variant of the problem and
was conducted by Di Gaspero et al.[5] in the course of studying a practical problem related to
scheduling shifts. The undirected version itself was formally proposed by Even, Kortsarz, and
Slany [6] under the name Infinite Capacity Minimum Edge Cost Flow problem and
an O(log Φ)-approximation was given. The most recent work on GP2P is by Hajiaghayi et
al. [10] where they give a 2-approximation when ϕ(V) = 0 and an O(log(min{n, ϕ(V) + 2}))-
approximation in general time that is polynomial in Φ. This is achieved by an adaptation of
the primal-dual algorithm of [9] for the classic Steiner Forest problem and its generalization
(e.g. when we have a proper function). As pointed out in [6], many special cases of GP2P
were already well-studied. For example:

Steiner Forest: We are given terminal pairs (s1, t1), . . . , (sk, tk) in an edge-weighted
graph and the goal is to buy the cheapest set of edges so each pair has both endpoints in
the same component. This is modelled by GP2P by letting ϕ(si) = 2i and ϕ(ti) = −2i

(and ϕ(v) = 0 for all non-terminals). Goemans and Williamson give a 2-approximation
for Steiner Forest [9].
k-Minimum Spanning Tree (k-MST): We are given a particular root node r ∈ V and
an integer k ≥ 0. The goal is to find the cheapest tree including r and at least k other
nodes. This is modelled by GP2P by letting ϕ(r) = −k and ϕ(v) = 1 for all other
v ∈ V − {r}. Note, this instance of GP2P has only a single demand point. The history of
approximating k-MST is storied, currently the best approximation is a 2-approximation
[8, 4].
Knapsack Covering: We are given n items with sizes s1, . . . , sn and costs c1, . . . , cn

plus a demand value D. The goal is to find a minimum-cost set of items with total
size at least D. This modelled by GP2P by using a star with center r and leaf nodes
v1, . . . , vn. The cost of rvi is ci and the charges are ϕ(r) = −D and ϕ(vi) = si. An
FPTAS for Knapsack Covering is known, e.g. by slightly modifying the standard
dynamic programming based FPTAS for standard for standard Knapsack.

Notably, all these cases have constant-factor approximations or better. An open problem is to
determine if GP2P has a constant-factor approximation even if we allow pseudo-polynomial
running time, i.e. running time that is polynomial in Φ; note for the purposes of getting an
O(1)-approximation we can assume without loss of generality that the edge costs are bounded
by a polynomial in n (see Lemma 19 in Appendix A). Even special cases of GP2P that
generalize some of the classic problems stated above are open. For instance, for generalization
of k-MST to the situation where we have more than one root node, say r1, r2, . . . , rd, and
the goal is to find a minimum cost subgraph where the connected component of each ri has
at least k nodes, it is not known if one can get an O(1)-approximation or not. This is one of
the cases we study in this paper.

Z. Friggstad, M. R. Salavatipour, and H. Sun 28:3

1.1 Our Results
For brevity, we say an instance (G, c, ϕ) of GP2P is metric (Metric-GP2P) if G is a
complete graph and edge costs satisfy the triangle inequality c(u, v) ≤ c(u, w) + c(w, v) for
any distinct u, v, w ∈ V . As is usual with single-connectivity network design problems, e.g.
Steiner Forest, assuming the graph is metric can be done without loss of generality. The
standard proof is found in Lemma 18 in Appendix A. We also say an instance (G, c, ϕ) of
GP2P is graphical (Graphical-GP2P) if all edge costs are 1 but G is not necessarily
complete.

Our results need approximation algorithms for slight generalizations of k-MST.

▶ Definition 2. In k-MST with required nodes (k-MST-R), instead of a single root
node r ∈ V we are given a subset R ⊆ V . The goal is to find the cheapest tree spanning R

and at least k other nodes in V − R. In weighted k-MST-R (W-k-MST-R), each vertex
v ∈ V − R is given an integer weight wv ≥ 0 and the goal is to find the cheapest tree spanning
R plus a subset of nodes in V − R with total weight at least k.

We note all k-MST approximations we consider in this paper can be readily adapted to
the generalization k-MST-R. One can also extend them to W-k-MST-R that would run in
pseudo-polynomial time (the simple reduction can be found in Appendix A).

▶ Observation 3. If there is a polynomial-time α-approximation for k-MST-R then there is
an α-approximation for W-k-MST-R whose running time is polynomial in the number of
nodes and the total weight of all nodes.

Let nd be the number of demand points in a given instance, i.e. |{v ∈ V : ϕ(v) < 0}|.
Recall from above that k-MST is a special case of GP2P when there is only one demand
point, i.e. nd = 1. We consider the case of GP2P with nd ≥ 1. This is akin to generalizing
k-MST to multiple roots, each with its own size requirement, but there is one key difference.
One might imagine a multiple-root k-MST generalization would want to keep the trees
disjoint but in GP2P we can have multiple demand points in a single component as long as
the total supply in the component is at least the total demand in the component.

Our main result shows how an α-approximation for W-k-MST-R can be used to give a
(1 + ϵ) · α-approximation for GP2P.

▶ Theorem 4. For any ϵ > 0, given an α-approximation algorithm A for W-k-MST-R,
there is a (1 + ϵ)α-approximation for GP2P. This algorithm makes nO(nd/ϵ) calls to A.
For D-dimensional Euclidean metrics the running time of the GP2P approximation can be
improved to O((16 · nd/ϵ)D·nd) calls to A.

We also show how existing algorithms for k-MST (the (2 + ϵ)-approximation for k-MST
in [3] for general metrics and the PTAS for k-MST in constant-dimensional Euclidean
metrics [2, 11]) can be suitably adapted to given the same approximation guarantees for
W-k-MST-R, which combined with the above theorem imply the following:

▶ Corollary 5. For any ϵ > 0, there is a (2 + ϵ)-approximation for GP2P that runs in time
is nO(nd/ϵ). For D-dimensional Euclidean metrics there is a (1 + ϵ)-approximation for GP2P
with running time O((16 · nd/ϵ)D·nd · ΦO(D/ϵ))

Note that the (2 + ϵ)-approximation for W-k-MST-R and for GP2P runs in truly
polynomial time for any fixed nd but the (1 + ϵ)-approximation for the Euclidean metrics is
polynomial in Φ, hence only pseudo-polynomial, as it is not clear how to get a PTAS for
W-k-MST-R in the Euclidean metrics.

WADS 2025

28:4 Approximation Algorithms for the Generalized Point-To-Point Problem

We also mention that this would also extend to doubling metrics using the quasi-polynomial
time (1 + ϵ)-approximation for k-MST in metrics with constant doubling dimension by
Talwar [12]. The running time would be quasipolynomial in Φ but still FPT in nd.

Our next collection of results is for Graphical-GP2P. First, we observe that particular
restrictions of GP2P remain essentially as hard to approximate as the general problem.

▶ Observation 6. If there is a polynomial-time α-approximation for instances of GP2P with
ϕ(v) ∈ {−1, +1} for each v ∈ V , then there is a 2α-approximation for general instances of
GP2P with running time being polynomial in Φ.

▶ Observation 7. If there is a polynomial-time α-approximation for instances of Graphical-
GP2P with ϕ(v) ∈ {−1, 0, +1} for each v ∈ V , then for any ϵ > 0 there is a (1 + ϵ) · α-
approximation for general instances of GP2P with running time being polynomial in 1/ϵ

and Φ.

These simple observations are proven in Appendix B. Our main contribution here is that the
intersection of these two restrictions of GP2P is still APX-hard but does at least admit a
simple approximation.

▶ Theorem 8. The restriction of Graphical-GP2P with ϕ(v) = {−1, +1} for each v ∈ V

is APX-hard and admits a polynomial-time 2-approximation.

Finally, we improve the running time of the logarithmic approximations in [10] by making
them run in truly polynomial time (i.e. removing the dependence on Φ).

▶ Theorem 9. There is an O(log(min{n, ϕ(V) + 2}))-approximation for GP2P running in
polynomial time.

1.2 Notation
For a graph G = (V, E) and a subset of edges F ⊆ E, we let V (F) denote the set of all nodes in
V that appear as the endpoint of at least one edge in F and say that F spans V (F). We refer
to a component of G as a subset of vertices corresponding to a connected component of G. For
a given instance (G = (V, E), c, ϕ) of GP2P, let Vs = {v ∈ V : ϕ(v) > 0} be the supply points,
Vd = {v ∈ V : ϕ(v) < 0} be the demand points, and V0 = {v ∈ V : ϕ(v) = 0} be the Steiner
points. Correspondingly, let ns, nd, and n0 denote their sizes with n := |V | = ns + nd + n0.
We also use the convention c(F) :=

∑
e∈F c(e) for F ⊆ E and, similarly, ϕ(C) :=

∑
v∈C ϕ(v)

for C ⊆ V . Note ϕ(V) differs from Φ :=
∑

v∈V max{1, |ϕ(v)|}, the former measures the
excess of positive charge in the input and the latter measures the absolute value of all charges
while ensuring Steiner points are still counted.

1.3 Organization
The algorithms proving Theorem 4 appear in Section 2. Theorem 8 is proven in Section 3
and Section 4 then concludes the paper with the proof of Theorem 9. The proofs of some
supporting results as well as Observations 6 and 7 appear in the appendix.

2 Approximations for Constant nd

The algorithms proving Theorem 4 are obtained by reducing to W-k-MST-R. Recall that
in W-k-MST-R, we are given a set of required nodes R along with (integer) node weights
wv ≥ 0 and the goal is to find a minimum cost tree spanning R such that the total weight of
the nodes in the tree is at least a given integer k. The special case of |R| = 1 and wv = 1

Z. Friggstad, M. R. Salavatipour, and H. Sun 28:5

for all v ̸= r is the traditional k-MST problem. Despite its generality, W-k-MST-R can be
approximated as well (or nearly as well) as the simpler k-MST problem by adapting the
known algorithms.

▶ Theorem 10. The k-MST algorithm described [3] can be adapted to give a polynomial-time
(2 + ϵ)-approximation for W-k-MST-R for any constant ϵ > 0. Similarly, the PTAS for
k-MST in D-dimensional Euclidean metrics described in [11] with running time O(nO(D/ϵ))
can be adapted to give a PTAS for k-MST-R with the same asymptotic running time and a
(1 + ϵ)-approximation for W-k-MST-R with running time O((nΦ)O(D/ϵ)).

These adaptations are discussed in Appendix C. We emphasize both algorithms run in
polynomial time (for constant ϵ) even if the number of required nodes R is not bounded by a
constant. It is possible that the 2-approximations for k-MST in [8] or [4] could be extended
to W-k-MST-R and that the PTAS for Euclidean k-MST in [2] could be similarly extended.
We focus on these particular algorithms due to the ease in describing how to extend them.

We present the proof of Theorem 4 in two parts. First for the general metrics and then
the improved FPT time for D-dimensional Euclidean metrics.

2.1 Theorem 4: General metrics
Throughout, let OPT denote the cost of an optimum solution. Fix ϵ > 0 to be a sufficiently
small constant, ϵ < 1/5 suffices. From Lemma 18 (Appendix A), we may assume G is a
complete graph with edge costs satisfying the triangle inequality. For any r ≥ 0 and any
v ∈ V we let B(v, r) = {u ∈ V : c(u, v) ≤ r} be the ball of radius r around v.

The intuition for our algorithm is the following. If the optimum solution consisted of only
a single tree containing all nodes with negative charge, we could treat it as a W-k-MST-R
instance where R = Vd and k = −ϕ(R) while setting wv = 0 for v ∈ R and wv = ϕ(v) for
v /∈ R. However, this may not be the case. To cope, we show how to decompose the instance
into disjoint subproblems that have single-tree optimal solutions whose total costs are close
to OPT .

To perform the decomposition, we first show that a near-optimum solution to the original
instance (G, c, ϕ) exists such that any two trees in this solution notably far apart. Then we
guess a small “net” of points in each tree, the union of balls with a particular common radius
around each net point covers all trees, but two balls from different trees are disjoint. This
allows us to partition the instance into disjoint instances, one per tree in the near optimum
solution.

The first step is to show some near-optimum solution has its components being bounded
away from each other.

▶ Lemma 11. There is a solution F ′ ⊆ E with c(F ′) ≤ (1 + ϵ) · OPT such that for any two
components C1, C2 of (V, F ′) with C1 ∩ Vd ̸= ∅ and C2 ∩ Vd ̸= ∅ we have c(u, v) ≥ ϵ

nd
· OPT

for any u ∈ C1, v ∈ C2.

Proof. Let F ′ initially be an optimum solution. While there are two components C1, C2 of
(V, F ′) with C1 ∩ Vd ̸= ∅ and C2 ∩ Vd ̸= ∅ such that c(u, v) < ϵ

nd
· OPT for some u ∈ C1 and

v ∈ C2, add uv to F ′. Each such addition increases the cost of F ′ by at most ϵ
nd

· OPT

and this procedure will be executed fewer than nd times since there are initially at most nd

components containing a node in Vd. ◀

Of course, we may also assume, by discarding edges, that F ′ is a minimal solution meaning
F ′ − {e} is not feasible for any e ∈ F ′. So F ′ consists of m ≤ nd vertex-disjoint trees, say
T1, . . . , Tm ⊆ F that collectively span all of Vd plus some other nodes in V0 ∪ Vs. Any other
node v not in a tree has ϕ(v) ≥ 0 and forms an isolated component of (V, F ′).

WADS 2025

28:6 Approximation Algorithms for the Generalized Point-To-Point Problem

Next, we identify a net of nodes in the trees T1, . . . , Tm that will be small enough for our
algorithm to guess.

▶ Lemma 12. For any tree T and any r > 0 there is a set N ⊆ V (T) with |N | ≤ 1 + c(T)/r

such that c(v, N) ≤ r for each v ∈ V (T).

Similar constructions have been considered many times before, one example is in the (2 + ϵ)-
approximation for k-MST [3]. We include a proof for completeness.

Proof. We prove this by induction on |V (T)|. Root T at an arbitrary node w. The base
case is when c(w, v) ≤ r for each v ∈ V (T). If so, we simply let N = {w}.

Otherwise, for two u, v ∈ V (T) let cT (u, v) be the cost of the unique u−v path in T . Pick
any v ∈ V (T) that has maximum value cT (w, v). Note cT (w, v) ≥ c(w, v) > r. Now let u be
the furthest node along the v − w path such that cT (v, u) ≤ r. Since c(v, u) ≤ cT (v, u) ≤ r,
then u ̸= w. Let p(u) be the parent of u in T . By our choice of u we also have cT (v, p(u)) > r.

Let Tu denote the subtree of T rooted at u. For any v′ ∈ V (Tu) we have c(v′, u) ≤
cT (v′, u) ≤ cT (v, u) ≤ r. Let T ′ be the tree obtained by removing the subtree rooted at u

from T . This removes all edges of the v − p(u) path, so c(T ′) ≤ c(T) − r. By induction, we
can find a set N ′ ⊆ V (T ′) with |N ′| ≤ 1 + c(T ′)/r ≤ c(T)/r such that c(w′, N) ≤ r for each
w′ ∈ V (N ′).

Finally, set N = {u} ∪ N ′ and note |N | = 1 + |N ′| ≤ 1 + c(T)/r. Every u′ ∈ V (T) is now
within distance r from some node in N , as required. ◀

The entire algorithm is summarized in Algorithm 1. The high-level idea is that it guesses
a value ν very close to OPT and then guesses the “nets” N1, . . . , Nm from Lemma 12 applied
to each tree of the near-optimum solution F ′ using r = ϵ

4·nd
· ν. Below, we show for the

proper guess of N1, . . . , Nm that the sets Vi obtained by the union of balls B(v, r) for v ∈ Vi

are disjoint. This instance of GP2P then naturally decomposes into disjoint instances of
W-k-MST-R. Supporting results demonstrating the performance of our algorithm are found
below.

Algorithm 1 GP2P approximation.

1: if F 0 = {e ∈ E : c(e) = 0} is feasible then
2: return F 0

3: for each integer b such that ν := (1 + ϵ)b ∈ [mine c(e),
∑

e c(e)] do
4: for each 1 ≤ m ≤ nd and each m-tuple N1, . . . , Nm ⊆ V with

∑m
i=1 |Ni| ≤ 5 · nd/ϵ

do
5: let r := ϵ

4nd
· ν and Vi := ∪v∈Ni

B(v, r) for each 1 ≤ i ≤ m

6: if Vi ∩ Vj ̸= ∅ for distinct i, j or if Vd ̸⊆ ∪m
i=1Vi then

7: continue to the next iteration
8: for each 1 ≤ i ≤ m do
9: construct the W-k-MST-R instance on the subgraph G[Vi] with R = Vd ∩ Vi

and k = −ϕ(R)
10: let T ′

i be the tree obtained by running an α-approximation on this instance
11: Record ∪m

i=1T ′
i as a candidate solution.

12: return the cheapest candidate solution found over all iterations.

We first discuss the running time. The number of iterations of the outer loop is logarithmic
in the ratio c(E)/ mine c(e), which is polynomial in the number of bits used to represent the
costs in the instance. There are clearly only nd possible values for m and the number of

Z. Friggstad, M. R. Salavatipour, and H. Sun 28:7

m-tuples satisfying the stated bounds is at most nO(5·nd/ϵ). So when nd is regarded as a
constant, the total number of iterations is polynomial in the input size and, thus, the entire
algorithm makes a polynomial number of calls to a k-MST-R approximation on instances
with at most n nodes and, otherwise, runs in polynomial time.

Towards the performance guarantee, we show for the “correct” guess of values in the
loops the algorithm will perform well.

▶ Lemma 13. Let ν ∈ [OPT, (1 + ϵ) · OPT] and T1, . . . , Tm be the trees in the near-optimum
solution F ′ from Lemma 11. For each 1 ≤ i ≤ m, let Ni be the set identified by Lemma 12
when applied to Ti using r = ϵ

4·nd
· ν. Also let Vi = ∪v∈Ni

B(v, r) for each 1 ≤ i ≤ m.
Then (a)

∑m
i=1 |Ni| ≤ 5 · nd/ϵ, (b) Vi ∩ Vj = ∅ for distinct i, j, and (c) Vd ⊆ ∪m

i=1Vi.

Proof. For (a), we have

∑
i

|Ni| ≤ m + c(F ′)
r

≤ nd + (1 + ϵ) · OPT

OPT
· 4nd

ϵ
≤ 5

ϵ
· nd.

For (b), if, say, w ∈ Vi ∩ Vj for some distinct i, j then there would be some u ∈ Ni and
v ∈ Nj such that

c(u, v) ≤ c(u, w) + c(w, v) ≤ r + r = ϵ

2 · nd
· ν ≤ ϵ(1 + ϵ)

nd
· OPT ≤ ϵ

nd
· OPT.

But this contradicts Lemma 11, which showed c(u, v) > ϵ
nd

· OPT . Finally, (c) follows
because the balls B(v, r) for v ∈ Ni collectively cover all of V (Ti) and each node of Vd lies
on some Ti. ◀

To finish the analysis, consider the iteration of the algorithm for the particular setting
of ν and T1, . . . , Tm described in Lemma 13. With these values, the algorithm proceeds to
run the k-MST-R approximations. In the instance corresponding to Vi, we know Ti itself
is a feasible solution so the returned tree T ′

i satisfies c(T ′
i) ≤ α · c(Ti). Thus, the candidate

GP2P solution found in this iteration has cost
∑m

i=1 c(T ′
i) ≤ α · c(F ′) ≤ α · (1 + ϵ) · OPT .

2.2 Theorem 4: Euclidean metrics
We simply describe how to modify Algorithm 1. Clearly, we can use a (1 + ϵ)-approximation
for W-k-MST-R in Euclidean metrics to make Algorithm 1 a (1 + ϵ)-approximation in
Euclidean metrics. The pseudo-polynomial running time in the statement of Theorem 4
comes from the fact that we only know how to adapt k-MST PTASes to k-MST-R and then
rely on Observation 3 to get a pseudo-polynomial time W-k-MST-R (1 + ϵ)-approximation.
One small comment is that even though the distances are not necessarily rational numbers,
the number of iterations of the outer loop is still polynomial in the number of bits used to
describe the locations of the points in V .

To improve the running time to be FPT in nd, we change how the nets are guessed. Let
D be the dimension of the metric, recall that D is assumed to be a constant. For brevity, let
δ := ϵ/(16nd). Note 4δ · ν is the value r from Algorithm 1. The idea of the improvement
is the following. For simplicy let’s consider the case of D = 2. If one considers a square of
side length L, the number of disjoint balls of radius ϵ · L/nd that can be placed inside that
square is O((nd/ϵ)2). This simple packing argument can be used to bound the number of
guessed points for the nets N to be bounded by O((nd/ϵ)D).

WADS 2025

28:8 Approximation Algorithms for the Generalized Point-To-Point Problem

For each guess ν in the outer loop, we first let N be any δ · ν-net of V . That is, every
v ∈ V has c(v, N) ≤ δ ·ν yet c(u, v) > δ ·ν for any u, v ∈ N . Such a set N can be constructed
by greedily adding points while maintaining the property that c(u, v) > δ · ν until no more
points can be added. For each v ∈ V , let τ(v) be its closest point in N . So τ(v) = v for
v ∈ N and, otherwise, we at least know c(v, τ(v)) ≤ δ · ν.

Now let N1, . . . , Nm be the sets identified by applying Lemma 12 using r = δ · ν and let
N ′

i = {τ(v) : v ∈ Ni}. For u ∈ N ′
i and v ∈ N ′

j for i ̸= j we still have that B(u, δ)∩B(v, δ) = ∅.
That is, suppose otherwise and let u′ ∈ Ni be such that τ(u′) = u and v′ ∈ Nj be such that
τ(v′) = v. Then when ν ∈ [OPT, (1 + ϵ) · OPT] we have

c(u′, v′) ≤ c(u, u′) + c(u′, v′) + c(v′, u) ≤ δ · ν + 2δ · ν + δ · ν ≤ ϵ

4nd
· τ ≤ ϵ

nd
· OPT

which contradicts Lemma 11 and the fact that u′ and v′ lie in different trees in F ′.
So it suffices to guess N ′

1, . . . , N ′
m in the algorithm. But now we leverage packing property

of Euclidean metrics to help reduce the number of guesses to a constant depending on D, nd

and ϵ.

▶ Lemma 14. For each v ∈ V , |B(v, ν) ∩ N | is bounded by O((4/δ)D).

Proof. The Euclidean balls of radius δ/2 · ν about points in B(v, ν) ∩ N are disjoint by
construction of N and are completely contained in the Euclidean ball of radius (1+δ/2)·ν ≤ 2·ν
about v. The volume a D-dimensional ball with radius r is within an absolute constant
factor of f(R) := 1√

D
·
(2πe

D

)D/2 · RD. Therefore, |B(v, ν) ∩ N | is at most a constant factor
times f(2ν)/f(δ/2 · ν) = (4/δ)D. ◀

The steps for guessing N ′
1, . . . , N ′

m are to first try all ways to partition Vd into m nonempty
groups, a coarse upper bound on the number of such choices is nnd

d . For each such partition,
let v1, . . . , vm ∈ Vd be any particular representatives from the m parts. We try all tuples
N ′

1, . . . , N ′
m where each N ′

i ⊆ B(vi, ν) ∩ N such that
∑

i |N ′
i | ≤ 17/ϵ · nd (as opposed to

5/ϵ · nd as in Lemma 13 since the radius δ is smaller). For each such tuple that passes the
other requirements of Lemma 13, we partition the instance into disjoint Euclidean k-MST-R
instances and approximate these with a PTAS. A coarse upper bound on the number of such
tuples N ′

1, . . . , N ′
m is O((4/δ)D·nd).

3 Approximation Algorithms and Hardness for Graphical-GP2P with
±1 Charges

Observations 6 and 7 show GP2P is not much easier to approximate if we assume either
that ϕ(v) ∈ {−1, +1} for each v ∈ V or that the instance is graphical and ϕ(v) ∈ {−1, 0, +1}
for each v ∈ V . We begin this section by showing the common intersection of these two
special cases does admit a 2-approximation. After this, we complete the proof of Theorem 8
by showing such GP2P instances remain APX-hard.

3.1 Graphical Instances with Unit Charges
Let (G = (V, E), c, ϕ) be an instance of Graphical-GP2P where ϕ(v) ∈ {−1, +1} for each
v ∈ V . As usual, let OPT denote the optimum solution cost which, in this case, is just
measuring the minimum size feasible solution F ⊆ E.

▶ Theorem 15. Let F ⊆ E be any minimal feasible solution (i.e. F − {e} is not feasible
for any e ∈ F). Then |F | ≤ 2 · OPT .

Z. Friggstad, M. R. Salavatipour, and H. Sun 28:9

A 2-approximation is then straightforward as one could simply start with F being any
spanning tree and then iteratively try to drop an edge from F while retaining feasibility until
no such drop is possible.

Proof. Recall Vd = {v ∈ V : ϕ(v) = −1} and nd = |Vd|. So Vs = V − Vd as no charge is zero
in this case. We claim nd ≤ OPT and that any minimal solution has size at most 2 · nd.
Thus, any minimal solution F satisfies |F | ≤ 2 · nd ≤ 2 · OPT , as required.

For the first bound, let F ∗ be an optimum solution and C any connected component
in (V, F ∗) that contains at least one node in Vd. If C has, say, nC

d ≥ 1 nodes in Vd then C

must contain at least nC
d nodes in Vs as well. That is, |C| ≥ 2nC

d so F ∗ contains at least
2nC

d − 1 ≥ nC
d edges in component C. Summing over all components that contain at least

one node in Vd, we see |F ∗| ≥ nd.
Now let F be any minimal feasible solution. Let C be any connected component of (G, F)

and let FC be the edges of F in component C. If C ∩ Vd = ∅ then minimality of F means C

is a single node v with ϕ(v) = +1 (i.e. it has no edges). If C ∩ Vd ̸= ∅, we claim ϕ(C) = 0. If
so, then |C ∩ Vd| = |C ∩ Vs| so |FC | < 2 · |C ∩ Vd| as FC is a tree (by minimality). Summing
over all components would complete the claim that |F | < 2 · nd.

To see ϕ(C) = 0, again recall FC is a tree. Further, for each e ∈ FC we have that deleting
e would produce a component with negative charge but it could not be that both components
have negative charge since ϕ(C) ≥ 0. Consider the orientation of edges that directs each
edge e toward the side that would have negative charge if e was deleted. Since (C, FC) is a
tree, the orientation of edges produces a directed acyclic graph. Let r be any source node in
this DAG.

View the tree (C, FC) as being rooted at r and say r has m children. Let C1, . . . , Cm ⊆ C

be such that Ci are the nodes in the subtree under the i’th child of r. Since C ∩ VD ̸= ∅ and
ϕ(C) ≥ 0, we know C has at least two nodes so m ≥ 1.

By the orientation of edges, we have ϕ(Ci) ≤ −1 for each 1 ≤ i ≤ m. Therefore

ϕ(C) = ϕ(r) +
m∑

i=1
ϕ(Ci) ≤ ϕ(r) − m ≤ ϕ(r) − 1 ≤ 0

which, by feasibility of F , means ϕ(C) = 0. ◀

It may be possible to get a better-than-2 approximation through a more involved approach.
For example, notice in our proof nd ≤ OPT is only tight if all components C of the optimum
solution F ∗ with C ∩ Vd ̸= ∅ had |C| = 2 (i.e. F ∗ is a matching). So if the optimal solution
F ∗ has at least, say, 0.01 · nd nodes of Vd in components of size greater than 2 then any
minimal solution would be a 1.99-approximation. Otherwise, nearly all nodes of Vd are in
components that consist of a single edge. In this case, a maximum-size matching between Vd

and Vs would then create components of charge 0 that collectively include most nodes of Vd.
One can even show there is a way to “alternate” the matching so that a greedy algorithm
yields a good approximation (i.e. by alternating so our matching edges largely agree with
the optimum matching edges), but efficiently finding such an alternation seems challenging.

One would reasonably wonder if instances of GP2P with unit-cost edges and ±1 charges
are actually hard. Indeed, we conclude this section by showing APX-hardness.

▶ Theorem 16. The restriction of Graphical-GP2P to instances with unit edge costs and
±1 charges is APX-hard.

WADS 2025

28:10 Approximation Algorithms for the Generalized Point-To-Point Problem

Proof. We reduce from the Minimum Vertex Cover Problem in simple, cubic graphs
which is known to be APX-hard [1]. That is, for some constants 0 ≤ β < α ≤ 1 it is
NP-hard to distinguish if a cubic graph on n vertices has a vertex cover of size at most β · n

or if all vertex covers have size exceeding α · n.
So let G = (V, E) be an n-vertex cubic graph with m = 3n/2 edges. We obtain a graph

H = (V ′, E′) and set the charges of v ∈ V ′ as follows.
Initially let H = G and set ϕ(v) = +1 for every v ∈ V . Then subdivide each edge e with

a single vertex ue with ϕ(ue) = −1. Then for each v we add new vertices v+, v−, v0, v1, v2, v3
and edges {v0v, vv+, v+v−, v+v1, v+v2, v+v3}. Here, v, v+, v1, v2, v3 all have positive charge
and v0, v− have negative charge. See Figure 1 for an illustration of this process.

<latexit sha1_base64="ORpC/vZ0LRABDF6tW/rEbUtjM/A=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUxEGp7FbcBcg68XJShhyNQemrP4xZGqE0TFCte56bGD+jynAmcFbspxoTyiZ0hD1LJY1Q+9ni0Bm5tMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJqz5GZdJalCy5aIwFcTEZP41GXKFzIipJZQpbm8lbEwVZcZmU7QheKsvr5P2dcWrVqrNm3K9lsdRgHO4gCvw4BbqcA8NaAEDhGd4hTfn0Xlx3p2PZeuGk8+cwR84nz/J/Yzq</latexit>e
<latexit sha1_base64="mJrLvbJ6r3MenTc+QqSf4ZUcY/Q=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUDAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1xWvWqk2b8r1Wh5HAc7hAq7Ag1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ay4GM6w==</latexit>

f

<latexit sha1_base64="0jOF767eWqNqn3s75jf17Fek4/w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7cLvTFFpHstHM0vQj+hI8pAzaqz0MB24g3LFrbpLkL/Ey0kFcjQH5c/+MGZphNIwQbXueW5i/Iwqw5nAeamfakwom9AR9iyVNELtZ8tT5+TCKkMSxsqWNGSp/pzIaKT1LApsZ0TNWK97C/E/r5easO5nXCapQclWi8JUEBOTxd9kyBUyI2aWUKa4vZWwMVWUGZtOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnGfnzXlftRacfOYUfsH5+AYHsI2e</latexit>v0
<latexit sha1_base64="0jOF767eWqNqn3s75jf17Fek4/w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7cLvTFFpHstHM0vQj+hI8pAzaqz0MB24g3LFrbpLkL/Ey0kFcjQH5c/+MGZphNIwQbXueW5i/Iwqw5nAeamfakwom9AR9iyVNELtZ8tT5+TCKkMSxsqWNGSp/pzIaKT1LApsZ0TNWK97C/E/r5easO5nXCapQclWi8JUEBOTxd9kyBUyI2aWUKa4vZWwMVWUGZtOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnGfnzXlftRacfOYUfsH5+AYHsI2e</latexit>v0

<latexit sha1_base64="5W835mtbhGiWyY90b3W9wkxxL+4=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA7mU2GzM4uM72BEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dtbWNza3tnM7+d29/YPDwtFxw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqEccJ9yPaVyIUjKKVHkZPl91C0S25c5BV4mWkCBlq3cJXpxezNOIKmaTGtD03QX9CNQom+TTfSQ1PKBvSPm9bqmjEjT+Znzol51bpkTDWthSSufp7YkIjY8ZRYDsjigOz7M3E/7x2imHFnwiVpMgVWywKU0kwJrO/SU9ozlCOLaFMC3srYQOqKUObTt6G4C2/vEoaVyWvXCrfXxerlSyOHJzCGVyABzdQhTuoQR0Y9OEZXuHNkc6L8+58LFrXnGzmBP7A+fwB/oiNmA==</latexit>

v+
<latexit sha1_base64="5W835mtbhGiWyY90b3W9wkxxL+4=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA7mU2GzM4uM72BEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dtbWNza3tnM7+d29/YPDwtFxw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqEccJ9yPaVyIUjKKVHkZPl91C0S25c5BV4mWkCBlq3cJXpxezNOIKmaTGtD03QX9CNQom+TTfSQ1PKBvSPm9bqmjEjT+Znzol51bpkTDWthSSufp7YkIjY8ZRYDsjigOz7M3E/7x2imHFnwiVpMgVWywKU0kwJrO/SU9ozlCOLaFMC3srYQOqKUObTt6G4C2/vEoaVyWvXCrfXxerlSyOHJzCGVyABzdQhTuoQR0Y9OEZXuHNkc6L8+58LFrXnGzmBP7A+fwB/oiNmA==</latexit>

v+
<latexit sha1_base64="AfySKxKAnb7ttZJfh2jDB5wyt0Q=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5idzCZDZmeXmd5ACPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O2vrG5tb27md/O7e/sFh4ei4YeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3s785ohrI2L1iOOE+xHtKxEKRtFKD6Ony26h6JbcOcgq8TJShAy1buGr04tZGnGFTFJj2p6boD+hGgWTfJrvpIYnlA1pn7ctVTTixp/MT52Sc6v0SBhrWwrJXP09MaGRMeMosJ0RxYFZ9mbif147xbDiT4RKUuSKLRaFqSQYk9nfpCc0ZyjHllCmhb2VsAHVlKFNJ29D8JZfXiWNq5JXLpXvr4vVShZHDk7hDC7Agxuowh3UoA4M+vAMr/DmSOfFeXc+Fq1rTjZzAn/gfP4AAZ+Nmg==</latexit>

v�
<latexit sha1_base64="AfySKxKAnb7ttZJfh2jDB5wyt0Q=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5idzCZDZmeXmd5ACPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O2vrG5tb27md/O7e/sFh4ei4YeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3s785ohrI2L1iOOE+xHtKxEKRtFKD6Ony26h6JbcOcgq8TJShAy1buGr04tZGnGFTFJj2p6boD+hGgWTfJrvpIYnlA1pn7ctVTTixp/MT52Sc6v0SBhrWwrJXP09MaGRMeMosJ0RxYFZ9mbif147xbDiT4RKUuSKLRaFqSQYk9nfpCc0ZyjHllCmhb2VsAHVlKFNJ29D8JZfXiWNq5JXLpXvr4vVShZHDk7hDC7Agxuowh3UoA4M+vAMr/DmSOfFeXc+Fq1rTjZzAn/gfP4AAZ+Nmg==</latexit>

v�

<latexit sha1_base64="Nisqd/yd9Le0eXV5+VNAEi4SvPw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7NDBhdnYzM0tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4mdwu/PUWleSSfzCxGP6QjyYecUWOlx2m/0i+W3LK7BNkkXkZKkKHRL371BhFLQpSGCap113Nj46dUGc4Ezgu9RGNM2YSOsGuppCFqP12eOidXVhmQYaRsSUOW6u+JlIZaz8LAdobUjPW6txD/87qJGdb8lMs4MSjZatEwEcREZPE3GXCFzIiZJZQpbm8lbEwVZcamU7AheOsvb5JWpexVy9WHm1K9lsWRhwu4hGvw4BbqcA8NaAKDETzDK7w5wnlx3p2PVWvOyWbO4Q+czx8KuI2g</latexit>v2
<latexit sha1_base64="Nisqd/yd9Le0eXV5+VNAEi4SvPw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7NDBhdnYzM0tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4mdwu/PUWleSSfzCxGP6QjyYecUWOlx2m/0i+W3LK7BNkkXkZKkKHRL371BhFLQpSGCap113Nj46dUGc4Ezgu9RGNM2YSOsGuppCFqP12eOidXVhmQYaRsSUOW6u+JlIZaz8LAdobUjPW6txD/87qJGdb8lMs4MSjZatEwEcREZPE3GXCFzIiZJZQpbm8lbEwVZcamU7AheOsvb5JWpexVy9WHm1K9lsWRhwu4hGvw4BbqcA8NaAKDETzDK7w5wnlx3p2PVWvOyWbO4Q+czx8KuI2g</latexit>v2<latexit sha1_base64="vU9gjnZVMlyjlXxoiwU26Q5RyGY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJHCoOt+OYWNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbhd+Z8q1EbF6xFnC/YiOlAgFo2ilh+nAG5QrbtVdgvwlXk4qkKM5KH/2hzFLI66QSWpMz3MT9DOqUTDJ56V+anhC2YSOeM9SRSNu/Gx56pxcWGVIwljbUkiW6s+JjEbGzKLAdkYUx2bdW4j/eb0Uw7qfCZWkyBVbLQpTSTAmi7/JUGjOUM4soUwLeythY6opQ5tOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnWfnzXlftRacfOYUfsH5+AYJNI2f</latexit>v1

<latexit sha1_base64="vU9gjnZVMlyjlXxoiwU26Q5RyGY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJHCoOt+OYWNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbhd+Z8q1EbF6xFnC/YiOlAgFo2ilh+nAG5QrbtVdgvwlXk4qkKM5KH/2hzFLI66QSWpMz3MT9DOqUTDJ56V+anhC2YSOeM9SRSNu/Gx56pxcWGVIwljbUkiW6s+JjEbGzKLAdkYUx2bdW4j/eb0Uw7qfCZWkyBVbLQpTSTAmi7/JUGjOUM4soUwLeythY6opQ5tOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnWfnzXlftRacfOYUfsH5+AYJNI2f</latexit>v1
<latexit sha1_base64="47296we/woWLsY5DzUw5317/acI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46R33SuW3LK7AFknXkZKkKHeK351+xFLQpSGCap1x3Nj46dUGc4EzgrdRGNM2ZgOsWOppCFqP12cOiMXVumTQaRsSUMW6u+JlIZaT8PAdobUjPSqNxf/8zqJGVT9lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5PmVdmrlCsPN6VaNYsjD2dwDpfgwS3U4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8MPI2h</latexit>v3
<latexit sha1_base64="47296we/woWLsY5DzUw5317/acI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46R33SuW3LK7AFknXkZKkKHeK351+xFLQpSGCap1x3Nj46dUGc4EzgrdRGNM2ZgOsWOppCFqP12cOiMXVumTQaRsSUMW6u+JlIZaT8PAdobUjPSqNxf/8zqJGVT9lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5PmVdmrlCsPN6VaNYsjD2dwDpfgwS3U4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8MPI2h</latexit>v3

<latexit sha1_base64="j5vYNpbb7qYFfSUt6M3228pjfHA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA76U2GzM4uM7NiCPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD66nffESleSzvzShBP6J9yUPOqLHS3dPDebdQdEvuDGSZeBkpQoZat/DV6cUsjVAaJqjWbc9NjD+mynAmcJLvpBoTyoa0j21LJY1Q++PZqRNyapUeCWNlSxoyU39PjGmk9SgKbGdEzUAvelPxP6+dmrDij7lMUoOSzReFqSAmJtO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0LkpeuVS+vSxWK1kcOTiGEzgDD66gCjdQgzow6MMzvMKbI5wX5935mLeuONnMEfyB8/kDAaONmg==</latexit>

x+
<latexit sha1_base64="j5vYNpbb7qYFfSUt6M3228pjfHA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA76U2GzM4uM7NiCPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD66nffESleSzvzShBP6J9yUPOqLHS3dPDebdQdEvuDGSZeBkpQoZat/DV6cUsjVAaJqjWbc9NjD+mynAmcJLvpBoTyoa0j21LJY1Q++PZqRNyapUeCWNlSxoyU39PjGmk9SgKbGdEzUAvelPxP6+dmrDij7lMUoOSzReFqSAmJtO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0LkpeuVS+vSxWK1kcOTiGEzgDD66gCjdQgzow6MMzvMKbI5wX5935mLeuONnMEfyB8/kDAaONmg==</latexit>

x+<latexit sha1_base64="2djwjR9yw7IZK5iC/Iah2zzCOyQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5id9CZDZmeXmVkxhHyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh9dRvPqLSPJb3ZpSgH9G+5CFn1Fjp7unhvFsouiV3BrJMvIwUIUOtW/jq9GKWRigNE1Trtucmxh9TZTgTOMl3Uo0JZUPax7alkkao/fHs1Ak5tUqPhLGyJQ2Zqb8nxjTSehQFtjOiZqAXvan4n9dOTVjxx1wmqUHJ5ovCVBATk+nfpMcVMiNGllCmuL2VsAFVlBmbTt6G4C2+vEwaFyWvXCrfXharlSyOHBzDCZyBB1dQhRuoQR0Y9OEZXuHNEc6L8+58zFtXnGzmCP7A+fwBBKuNnA==</latexit>x�<latexit sha1_base64="2djwjR9yw7IZK5iC/Iah2zzCOyQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5id9CZDZmeXmVkxhHyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh9dRvPqLSPJb3ZpSgH9G+5CFn1Fjp7unhvFsouiV3BrJMvIwUIUOtW/jq9GKWRigNE1Trtucmxh9TZTgTOMl3Uo0JZUPax7alkkao/fHs1Ak5tUqPhLGyJQ2Zqb8nxjTSehQFtjOiZqAXvan4n9dOTVjxx1wmqUHJ5ovCVBATk+nfpMcVMiNGllCmuL2VsAFVlBmbTt6G4C2+vEwaFyWvXCrfXharlSyOHBzDCZyBB1dQhRuoQR0Y9OEZXuHNEc6L8+58zFtXnGzmCP7A+fwBBKuNnA==</latexit>x�

<latexit sha1_base64="YFMZdckuPX2qEXPhP8H2+i9BwPQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7DDBhdnYz02skGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikZaJEM95kkYx0J6CGS6F4EwVK3ok1p2EgeTuY3Mz99iPXRkTqAacx90M6UmIoGEUr3T/1K/1iyS27C5B14mWkBBka/eJXbxCxJOQKmaTGdD03Rj+lGgWTfFboJYbHlE3oiHctVTTkxk8Xp87IhVUGZBhpWwrJQv09kdLQmGkY2M6Q4tisenPxP6+b4LDmp0LFCXLFlouGiSQYkfnfZCA0ZyinllCmhb2VsDHVlKFNp2BD8FZfXietStmrlqt3V6V6LYsjD2dwDpfgwTXU4RYa0AQGI3iGV3hzpPPivDsfy9ack82cwh84nz8NxI2i</latexit>x2
<latexit sha1_base64="YFMZdckuPX2qEXPhP8H2+i9BwPQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7DDBhdnYz02skGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikZaJEM95kkYx0J6CGS6F4EwVK3ok1p2EgeTuY3Mz99iPXRkTqAacx90M6UmIoGEUr3T/1K/1iyS27C5B14mWkBBka/eJXbxCxJOQKmaTGdD03Rj+lGgWTfFboJYbHlE3oiHctVTTkxk8Xp87IhVUGZBhpWwrJQv09kdLQmGkY2M6Q4tisenPxP6+b4LDmp0LFCXLFlouGiSQYkfnfZCA0ZyinllCmhb2VsDHVlKFNp2BD8FZfXietStmrlqt3V6V6LYsjD2dwDpfgwTXU4RYa0AQGI3iGV3hzpPPivDsfy9ack82cwh84nz8NxI2i</latexit>x2<latexit sha1_base64="8oZbdHknIFJEVRGk4s24jd+b5L0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T31vX654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcMQI2h</latexit>x1

<latexit sha1_base64="8oZbdHknIFJEVRGk4s24jd+b5L0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T31vX654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcMQI2h</latexit>x1
<latexit sha1_base64="9p/k3T/pBV6ocFp7Nn3qGADQNO8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/ql32SuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi7JXKVfurkq1ahZHHk7gFM7Bg2uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AD0iNow==</latexit>x3
<latexit sha1_base64="9p/k3T/pBV6ocFp7Nn3qGADQNO8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/ql32SuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi7JXKVfurkq1ahZHHk7gFM7Bg2uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AD0iNow==</latexit>x3

<latexit sha1_base64="X5mvXKbnPLYQ/VRrDBQdbFEcjlA=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMquSO2x4MVjRfsB7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKB5PG1I/wSLCQEWysdJ8+XgzKFbfqzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgZVoYRTqelfqJpjMkEj2jPUoEjqv1sfuoUnVlliEKpbAmD5urviQxHWqdRYDsjbMZ62ZuJ/3m9xIR1P2MiTgwVZLEoTDgyEs3+RkOmKDE8tQQTxeytiIyxwsTYdEo2BG/55VXSvqx6tWrt7qrSqOdxFOEETuEcPLiGBtxCE1pAYATP8ApvDndenHfnY9FacPKZY/gD5/MHAymNmw==</latexit>

y+
<latexit sha1_base64="X5mvXKbnPLYQ/VRrDBQdbFEcjlA=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMquSO2x4MVjRfsB7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKB5PG1I/wSLCQEWysdJ8+XgzKFbfqzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgZVoYRTqelfqJpjMkEj2jPUoEjqv1sfuoUnVlliEKpbAmD5urviQxHWqdRYDsjbMZ62ZuJ/3m9xIR1P2MiTgwVZLEoTDgyEs3+RkOmKDE8tQQTxeytiIyxwsTYdEo2BG/55VXSvqx6tWrt7qrSqOdxFOEETuEcPLiGBtxCE1pAYATP8ApvDndenHfnY9FacPKZY/gD5/MHAymNmw==</latexit>

y+
<latexit sha1_base64="LwwfK2yBB+qyPy9aw6yzsQN9/aM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBi2VXpPZY8OKxov2Adi3ZNNuGZpMlyQrL0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjPzO09UaSbFg0lj6kd4JFjICDZWuk8fLwblilt150CrxMtJBXI0B+Wv/lCSJKLCEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcAR1X42P3WKzqwyRKFUtoRBc/X3RIYjrdMosJ0RNmO97M3E/7xeYsK6nzERJ4YKslgUJhwZiWZ/oyFTlBieWoKJYvZWRMZYYWJsOiUbgrf88ippX1a9WrV2d1Vp1PM4inACp3AOHlxDA26hCS0gMIJneIU3hzsvzrvzsWgtOPnMMfyB8/kDBjGNnQ==</latexit>

y�
<latexit sha1_base64="LwwfK2yBB+qyPy9aw6yzsQN9/aM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBi2VXpPZY8OKxov2Adi3ZNNuGZpMlyQrL0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjPzO09UaSbFg0lj6kd4JFjICDZWuk8fLwblilt150CrxMtJBXI0B+Wv/lCSJKLCEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcAR1X42P3WKzqwyRKFUtoRBc/X3RIYjrdMosJ0RNmO97M3E/7xeYsK6nzERJ4YKslgUJhwZiWZ/oyFTlBieWoKJYvZWRMZYYWJsOiUbgrf88ippX1a9WrV2d1Vp1PM4inACp3AOHlxDA26hCS0gMIJneIU3hzsvzrvzsWgtOPnMMfyB8/kDBjGNnQ==</latexit>

y�

<latexit sha1_base64="gDwy5AZrrOpT2G9UgqSNhjaP0gI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR2mPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilh+mgOiiV3Yq7AFknXk7KkKM5KH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx6oxcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tO0Ybgrb68TtrViler1O6vy416HkcBzuECrsCDG2jAHTShBQxG8Ayv8OZI58V5dz6WrRtOPnMGf+B8/gAPSo2j</latexit>y2
<latexit sha1_base64="gDwy5AZrrOpT2G9UgqSNhjaP0gI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR2mPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilh+mgOiiV3Yq7AFknXk7KkKM5KH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx6oxcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tO0Ybgrb68TtrViler1O6vy416HkcBzuECrsCDG2jAHTShBQxG8Ayv8OZI58V5dz6WrRtOPnMGf+B8/gAPSo2j</latexit>y2<latexit sha1_base64="Hlud8yeRg72s+837b7anEcXpr3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gANxo2i</latexit>y1

<latexit sha1_base64="Hlud8yeRg72s+837b7anEcXpr3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gANxo2i</latexit>y1
<latexit sha1_base64="yUpCXrgW09HinMS5hrz423QbTB4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUao8FLx4rWltoQ9lsJ+3SzSbsboRQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfTJagH9Gh5CFn1FjpPutf9ssVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BOqDGcCp6VeqjGhbEyH2LVU0gi1P5mfOiVnVhmQMFa2pCFz9ffEhEZaZ1FgOyNqRnrZm4n/ed3UhHV/wmWSGpRssShMBTExmf1NBlwhMyKzhDLF7a2EjaiizNh0SjYEb/nlVfJ4UfVq1drdVaVRz+Mowgmcwjl4cA0NuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8Qzo2k</latexit>y3
<latexit sha1_base64="yUpCXrgW09HinMS5hrz423QbTB4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUao8FLx4rWltoQ9lsJ+3SzSbsboRQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfTJagH9Gh5CFn1FjpPutf9ssVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BOqDGcCp6VeqjGhbEyH2LVU0gi1P5mfOiVnVhmQMFa2pCFz9ffEhEZaZ1FgOyNqRnrZm4n/ed3UhHV/wmWSGpRssShMBTExmf1NBlwhMyKzhDLF7a2EjaiizNh0SjYEb/nlVfJ4UfVq1drdVaVRz+Mowgmcwjl4cA0NuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8Qzo2k</latexit>y3

<latexit sha1_base64="Q0xRg67fgrNxfwFLjqipqZburF0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T313X654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcKvI2g</latexit>x0
<latexit sha1_base64="Q0xRg67fgrNxfwFLjqipqZburF0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T313X654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcKvI2g</latexit>x0

<latexit sha1_base64="BTSdLLPVOcxB0WZqCUjvsG7ACtM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gAMQo2h</latexit>y0
<latexit sha1_base64="BTSdLLPVOcxB0WZqCUjvsG7ACtM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gAMQo2h</latexit>y0

Figure 1 An illustration of the reduction to a vertex v and two if its neighbours. In the right
picture, positively-charged nodes are shown in grey and negatively-charged nodes are shown in white.
Intuitively, selecting vv+ corresponds to using v in the vertex cover because it now permits using
the positive charge nodes v1, v2, v3 to satisfy the demands of some negative charge nodes ue.

We claim G has a vertex cover of size k if and only the Graphical-GP2P instance given
by H and ϕ has a solution of size 2n + 2m + k = 5n + k. So if G has a vertex cover of size at
most βn then there is a GP2P solution of size at most (5 + β) · n and if all vertex covers
in G have more than α · n then all solutions to this GP2P instance have size more than
(5 + α) · n. This shows there is no 5+α

5+β -approximation for GP2P with unit edge costs and
charges ±1 unless P = NP.

To see the claim, first let C ⊆ V be a vertex cover of G with size k. To get a corresponding
Graphical-GP2P solution, buy the following edges:

For each v ∈ C, purchase vv+.
For each v ∈ V , purchase v0v and v+v−.
For each e ∈ E, let v be any endpoint of e in C. Purchase uev and any edge of the form
viv

+ that was not purchased by another edge this way. Since G is cubic, this is always
possible.

In total, this purchases k +2n+2m = k +5n edges. This can be seen to be a feasible solution
by matching each negative-charged vertex with a positively-charged vertex in its component
in a one-to-one fashion. Such a mapping is immediate from the construction: each v0 can be
matched with v, each v− can be matched with v+, and each ue can be matched with the
corresponding vi purchased in the description above.

For the converse, we first claim there is a well-structured optimal solution.

▷ Claim 17. There is an optimal solution F such that: (a) for each v ∈ V both v0v and
v+v− are in F , (b) F has exactly m edges of the form viv

+ where v ∈ V and i = 1, 2, 3,
(c) each e ∈ E has vv+ ∈ F for at least one endpoint v of e, and (d) for each edge e = vw

exactly one of uev ∈ F or uew ∈ F .

Z. Friggstad, M. R. Salavatipour, and H. Sun 28:11

If so, then C = {v : vv+ ∈ F} is a vertex cover of G and |F | = |C| + 2n + 2m = |C| + 5n, as
required to complete the proof.

Proof of Claim 17. Let F be an optimal solution. First observe we must have v0v ∈ F and
v+v− ∈ F for every v ∈ V otherwise some negatively-charged node would be isolated. So in
each component we must have the number of nodes of the form ue for various e ∈ E is at
most the number of nodes of the form vi for various v ∈ V, i = 1, 2, 3. By optimality of F

and the fact each vi is a pendant node, we have that these counts are in fact equal in each
component.

Let τ be any minimum-cost pairing of nodes ue, e ∈ E with nodes of the form vi lying
in the same component as ue. Here, the cost of pairing two nodes is the length of their
shortest path using only edges in F . For each e ∈ E, let Pe denote the corresponding shortest
path from ue to τ(ue). Finally, let v(e) be the first vertex after ue along Pe, notice v(e)
corresponds to an endpoint of e in the original cubic graph G.

Now consider an alternative pairing of the ue vertices with the vi vertices (which do not
necessarily need to lie in the same component as ue, for now). For each ue, pair it with any
vertex of the form v(e)i for some i = 1, 2, 3 that has not been paired before. Such a pairing
is possible since G is cubic. Let F ′ be obtained by modifying F in the following way. From
F , first delete all edges of the form v+vi ∈ F then add all edges of the form v+vi where vi is
paired under the new pairing.

This does not change the size of F . To ensure it is feasible, do the following. For each
e ∈ E such that P was not initially paired with one of v(e)1, v(e)2, v(e)3, it must have been
that v(e)ue′ was the second edge along P for some e ̸= e′ and that v(e′) ̸= v(e) (otherwise
Pe and Pe′ both use v(e)ue′ but in opposite directions, meaning we can uncross the paths
to get a cheaper pairing than τ). So we remove v(e)ue′ and add v(e)v(e)+ (if it was not
already there). Doing so for all e ∈ E will ensure it is now feasible since each ue can now
reach the vertex it is paired with while not increasing the size of F because an edge of the
form v(e)v(e)+ is added only after an edge of the form v(e)ue′ is removed. This also ensures
all properties required by the claim now hold. ◁

◀

4 A Polynomial-Time Logarithmic Approximation

We show that a slight variation of algorithm of [10] yields an O(log n)-approximation in
truly polynomial time. The algorithm in [10] begins by observing, using standard metric
embeddings [7], that it suffices to given an O(1)-approximation if the graph is a tree which,
after rooting at some vertex, has exactly two children per node. Then they present an exact
algorithm using dynamic programming where one index of the DP table considers values
up to Φ. Roughly speaking, for every vertex v and every −Φ ≤ p ≤ Φ they consider the
subtree Tv rooted at v and compute the cheapest subset of edges in the tree such that the
component with v has charge p and every other component in the subtree has nonnegative
charge.

We simply point out that we can flip the roles of charges and costs in the DP table. First,
we use the reduction in Lemma 19 (using, say, ϵ = 1/2) to instances where each edge has its
cost being bounded by a polynomial in n. It is easy to verify this reduction produces a tree
if the input graph was a tree. Let (T, c, ϕ) be the resulting instance of GP2P, i.e. T is a
tree and each edge cost is a positive integer bounded by a polynomial in n.

WADS 2025

28:12 Approximation Algorithms for the Generalized Point-To-Point Problem

Root T at an arbitrary node r and for each node v let Tv be the subtree under v. Our
dynamic programming table is the following: for each node v and each 0 ≤ c ≤

∑
e∈E ce let

f [v, c] be the maximum p such that in the subtree Tv, it is possible to purchase edges with
total cost at most c such that the component with v has charge at least p and every other
component has nonnegative charge. Given these values, the optimum solution cost is then
the minimum c such that f [r, c] ≥ 0.

To compute the f [v, c] values:
If v is a leaf node then f [v, c] = ϕ(v).
Otherwise, say u, w are the two children of v. Intuitively, we try all subsets of {uv, wv}
to delete and try all ways to split the remaining budget between the subproblems and
keep the best solution found overall. That is, we try all ways to purchase a subset
S ⊆ {uv, wv} such that c(S) ≤ c and all 0 ≤ cu, cw such that cu + cw + c(S) = c and
such that f [u, cu] ≥ 0 if uv /∈ S and f [w, cw] ≥ 0 if uw /∈ S (i.e. if we do not purchase
the corresponding parent edge, then the budget in the subproblem better be able to buy
a feasible solution in the subtree).
Then f [v, c] is the maximum of the following expression over such S, cu, cw:

ϕ(v) + I[uv ∈ S] · f [u, cu] + I[uw ∈ S] · f [u, cw]

where I[·] is the {0, 1}-indicator for the logical expression enclosed by the brackets.
The number of distinct subproblems is polynomial in n since the edge costs are integers at
most n and there are at most 4 · (c+1) different ways to select (S, cu, cv) in a subproblem, the
algorithm runs in polynomial time. In particular, if C denotes the total edge cost in the tree
then the number of distinct subproblems is O(C · n) and processing each entry f [v, c] takes
O(c) time (including O(c) recursive calls) so the total running time is O(C2 · n). Finally,
if one only permits recursive calls to subproblems f [v, c] where c is at most the total edge
cost in the subtree Tv and the loops over the split cu + cv = c only iterate over values where
cu and cv are at most the total edge cost of their respective subtrees, the running time is
improved to O(C2).

This polynomial-time approximation for GP2P in trees can be used in a black-box fashion
to improve the running time of the O(log(min{n, ϕ(V)+2})) in [10] to run in true polynomial
time.

References
1 Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theoretical

Computer Science, 237(1):123–134, 2000. doi:10.1016/S0304-3975(98)00158-3.
2 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and

other geometric problems. J. ACM, 45(5):753–782, September 1998. doi:10.1145/290179.
290180.

3 Sanjeev Arora and George Karakostas. A 2 + ϵ approximation algorithm for the k-mst problem.
Math. Program., 107(3):491–504, July 2006.

4 Emmett Breen, Renee Mirka, Zichen Wang, and David P. Williamson. Revisiting garg’s
2-approximation algorithm for the k-mst problem in graphs. In 2023 Symposium on Simplicity
in Algorithms, SOSA 2023, pages 56–68. SIAM, 2023. doi:10.1137/1.9781611977585.CH6.

5 Luca Di Gaspero, Johannes Gärtner, Guy Kortsarz, Nysret Musliu, Andrea Schaerf, and
Wolfgang Slany. The minimum shift design problem. Annals of operations research, 155:79–105,
2007. doi:10.1007/S10479-007-0221-1.

6 Guy Even, Guy Kortsarz, and Wolfgang Slany. On network design problems: fixed cost
flows and the covering steiner problem. ACM Trans. Algorithms, 1(1):74–101, July 2005.
doi:10.1145/1077464.1077470.

https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/10.1137/1.9781611977585.CH6
https://doi.org/10.1007/S10479-007-0221-1
https://doi.org/10.1145/1077464.1077470

Z. Friggstad, M. R. Salavatipour, and H. Sun 28:13

7 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
2004. Special Issue on STOC 2003. doi:10.1016/j.jcss.2004.04.011.

8 Naveen Garg. Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In
Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC
’05, pages 396–402, 2005. doi:10.1145/1060590.1060650.

9 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi:
10.1137/S0097539793242618.

10 Mohammadtaghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. On
fixed cost k-flow problems. Theor. Comp. Sys., 58(1):4–18, January 2016. doi:10.1007/
s00224-014-9572-6.

11 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM
Journal on Computing, 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

12 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In László
Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 281–290. ACM, 2004. doi:10.1145/1007352.1007399.

A Standard Reductions

Proof of Observation 3. Each v ∈ V − R with wv ≥ 1 is replaced with (n + 1) · wv colocated
copies and each v ∈ V − R with wv = 0 is left as well. In the new k-MST-R instance, use
k′ := (n + 1) · k. Consider any tree T (say, one obtained using a k-MST-R approximation)
in the new instance that spans R and at least k′ other nodes. By adding 0-cost edges if
necessary, we may assume that T contains all colocated copies of any node it spans.

Since at most n nodes have wv = 0, then T spans at least (n + 1) · k − n > (n + 1) · (k − 1)
nodes from groups of colocated copies of original nodes. Since each group has a size that is
a multiple of n + 1, then T spans at least (n + 1) · k such nodes, i.e. viewing T as a tree
in the original graph after contracting colocated copies of nodes it spans yields a feasible
solution. ◀

▶ Lemma 18. Let (G = (V, E), c, ϕ) be an instance of GP2P and let G′ = (V, E′) be the
complete graph over V with metric edge costs c′(uv) given by the minimum-cost u − v path.
Any feasible solution to the GP2P instance (G, c, ϕ) can be mapped to a feasible solution to
the Metric-GP2P instance (G′, c′, ϕ) with no greater cost and vice-versa.

Proof. For each e ∈ E we have c′(e) ≤ c(e) since e is one possible path between its endpoints.
So for any feasible solution F to (G, c, ϕ) we have c′(F) ≤ c(F), as required. Conversely, for
any feasible solution F ′ ⊆ E′ to (G′, c′, ϕ) if we let F be the union of all shortest u − v paths
in G for each uv ∈ F ′ then F then c(F) ≤ c′(F). Also, two nodes that were in the same
connected component in (V, F ′) still lie in the same connected component of (V, F). That is,
each connected component C of (V, F) is the union of one or more connected components
{C ′

1, . . . , C ′
a} in (V, F ′) so ϕ(C) =

∑a
i=1 ϕ(C ′) ≥ 0. ◀

▶ Lemma 19. For any constant ϵ > 0, if there is an α-approximation for instances of GP2P
where every edge cost c(e) is an integer at most n2/ϵ+1, then there is a (1+ϵ)·α-approximation
for general instances of GP2P.

Proof. Let (G = (V, E), c, ϕ) be a general instance of GP2P with optimum solution F ∗ ⊆ E

with cost OPT . By contracting 0-cost edges (which does not change the optimal solution
value), we assume c(e) > 0 for each e ∈ E.

WADS 2025

https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1145/1060590.1060650
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1007/s00224-014-9572-6
https://doi.org/10.1007/s00224-014-9572-6
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1145/1007352.1007399

28:14 Approximation Algorithms for the Generalized Point-To-Point Problem

First, compute smallest value ν such that every connected component C in the graph Gν

with edges {e ∈ E : c(e) ≤ ν} has ϕ(C) ≥ 0. We claim ν ≤ OPT ≤ n · ν: the first bound is
because any feasible solution must use at least one edge of cost ≥ ν by our choice of ν and
the other is because a spanning forest of Gν is a feasible solution using fewer than n edges
each of cost at most ν.

Let E′ = {e ∈ E : c(e) ≤ n · ν}; we have F ∗ ⊆ E′ since OPT ≤ n · ν. Define new edge
costs c′(e) := ⌈n ·c(e)/(ϵ ·ν)⌉ for each e ∈ E′. Notice c′(e) is a positive integer (since c(e) > 0)
and c′(e) ≤ n · c(e)/(ϵ · ν) + 1 ≤ n2/ϵ + 1 by construction of E′.

Let OPT ′ denote the optimum solution cost for the GP2P instance ((V, E′), c′, ϕ). We
have OPT ′ ≤ c′(F ∗) ≤

∑
e∈F ∗(n · c(e)/(ϵ · ν) + 1) = n · OPT/(ϵ · ν) + n. Therefore,

running an α-approximation on this new instance finds a set of edges F ′ ⊆ E′ with c′(F ′) ≤
α · (n · OPT/(ϵ · ν) + n). Since c(e) ≤ ϵ · ν · c′(e)/n for every e ∈ E′,

c(F ′) ≤ ϵ · ν · c′(F ′)/n ≤ α · (OPT + ϵ · ν) ≤ (1 + ϵ) · α · OPT. ◀

B Restricted Instances of GP2P

Proof of Observation 6. Let (G = (V, E), c, ϕ) be an instance of GP2P. As noted in the
introduction, we may assume this is an instance of Metric-GP2P. Finally, let V ′ = V − V0
(i.e. the nodes with non-zero ϕ(v)) and G′ be the subgraph of G induced by V ′. Notice the
restriction of (G′, c, ϕ) to H is an instance of Metric-GP2P.

Let F ∗ ⊆ E be an optimal solution for the original Metric-GP2P instance. For
each tree T in the forest F ∗, let CT be the tour obtained by doubling the edges of T and
shortcutting the resulting Eulerian tour past nodes in V0. In this way, CT spans all nodes in
V − V0 that are spanned by T and c(CT) ≤ 2 · c(T). Thus, the optimal solution cost in the
restriction to H is at most twice the optimal solution cost for (G, c, ϕ).

To complete the reduction, for each vertex v of H if ϕ(v) ≥ 1 then replace v with ϕ(v)
collocated copies each having charge 1 and if ϕ(v) ≤ −1 then replace v with −ϕ(v) collocated
copies each having charge −1. Note this steps takes pseudopolynomial time. ◀

Proof of Observation 7. Consider any constant 0 < ϵ′ ≤ 1. Let (G = (V, E), c, ϕ) be an
instance of GP2P. First we consider some preprocessing. If the 0-cost edges form a feasible
solution, then it must be optimal so there is nothing more to do. Otherwise, apply Lemma 19
with ϵ := ϵ′/3 and let (G′ = (V, E′), c′, ϕ) be the resulting graph with positive integer edges
costs being bounded by a polynomial in n.

Let K be a positive integer to be specified later. Form (G′′ = (V ′′, E′′), c′′, ϕ′′) by
performing the following operations to G′.

Subdivide each e ∈ E′ into a path of length K · c(e) of unit cost edges. Each new vertex
v′ in the subdivision has ϕ′′(v′) = 0.
For each v ∈ V ′ with ϕ(v) ≥ 1, append a path Pv to v using ϕ(v) − 1 new vertices and
edges: each edge has cost 1 and each vertex on Pv, including v itself, has ϕ′′(v) = 1. Note,
the other endpoint of Pv is a pendant.
Similarly each v ∈ V ′ with ϕ(v) ≤ −1, append a path Pv to v using −ϕ(v) − 1 new
vertices and edges: each edge has cost -1 and each vertex on Pv, including v itself, has
ϕ′′(v) = −1.
Each v ∈ V ′ with ϕ(v) = 0 also has ϕ′′(v) = 0.
Finally, each edge e of this new graph G′′ has c′′(e) = 1.

Observe (G′′, c′′, ϕ′′) is an instance of Graphical-GP2P with ϕ(v) ∈ {−1, 0, +1} for each
v ∈ V ′′.

Z. Friggstad, M. R. Salavatipour, and H. Sun 28:15

Note a solution F ′ ⊆ E′ naturally maps to a solution in the final instance with cost at
most Φ +K · c′(F ′) by including all pendant paths Pv and all subdivided paths corresponding
to edges in F ′. Conversely, consider any solution F ′′ ⊆ E′′. Let F ′ ⊆ E be the set of edges
of G′ such that their entire subdivision is included in F ′′. It is easy to verify that F ′ is a
feasible solution with cost at most c′′(F ′′)/K.

Let OPT ′ be the optimal solution value for instance (G′, c′, ϕ) and let F ′′ be the result
of using α-approximation on (G′′, c′′, ϕ′′). By the preceding discussion, this yields a feasible
solution F ′ to (G′, c′, ϕ) with

c′(F ′) ≤ c′′(F ′′)/K ≤ α · (Φ + K · OPT ′)/K = α · OPT ′ + α · Φ/K.

By setting K = ⌈3 · Φ/ϵ′⌉ and noting that 1 ≤ OPT as edge costs are positive integers in
(G′, c′, ϕ), this is at most (1 + ϵ′/3) · α · OPT ′.

Finally, by accounting for the application of Lemma 19 at the start of this proof we
see that we would have an approximation for the original instance (G, c, ϕ) with guarantee
(1 + ϵ′/3)2 · α ≤ (1 + ϵ′) · α. ◀

C Adapting k-MST Approximations

We only sketch how the algorithms can be adapted. We refer the reader to the respective
papers for their details.

▶ Lemma 20 (Slight adaptation of Arora and Karakostas [3]). There is a polynomial-time
(2 + ϵ)-Approximation for W-k-MST-R.

Proof. The algorithm in [3] explicitly guesses a subset of vertices that appear in the optimum
solution and builds that into the LP relaxation they write. So it can already handle the
situation where we have a larger set of required nodes R. The only thing to mention is how
it can be extended to handle node weights wv ≥ 0 for v /∈ R. We can assume each node with
weight wv is implicitly a collection of wv many nodes connected using 0-cost edges in a star
fashion. The algorithm of [3] first guesses an additional set of size O(1/ϵ) of vertices of OPT

to be required. The next step of the algorithm is to run a “primal dual” like algorithm to
find a tree T . This step works without modification in our setting. ◀

The final step in [3] is to modify T appropriately. That is, the manner in which T was
constructed actually provides us with two options: include some subset of nodes or not. One
choice would result in fewer than k non-required nodes being spanned and the other would
result in at least k non-required nodes being spanned. In [3], it is mentioned how to pick the
correct number of nodes contiguously from this “optional” portion so that grafting them in
to the remaining portion of T yields a feasible solution with the required number of nodes.
The grafting only costs O(ϵ · OPT) due to the guess of the net at the start of the algorithm.
This can also be done in polynomial time if one implicitly maintains a 0-cost tree spanning
each group of colocated points.

▶ Lemma 21 (Slight adaptation of Arora [2]). There is a PTAS for k-MST-R

We first comment that a similar adaptation could be made to Mitchell’s PTAS [11]. We chose
this one because it was slightly easier to describe. We also emphasize that this adaptation is
only for unweighted k-MST-R. Combining this with Observation 3 yields a pseudo-polynomial
time approximation scheme for W-k-MST-R.

WADS 2025

28:16 Approximation Algorithms for the Generalized Point-To-Point Problem

Proof. The PTAS for k-MST in constant-dimensional Euclidean plane uses a dynamic
programming routine through a quadtree dissection of the plane (an in higher dimensions a
2D-tree dissection in D-dimensional spaces). The DP table entries for each square, roughly
speaking, describe the interface of the optimal solution across the boundary of that square
through “portals” and also include the guess for how many nodes should be covered within
the square. If there are required nodes R, we can use the same DP table and simply insist
that the subproblem’s solution also span any nodes of R in the square. The base cases are
trivially extended to this setting and the combination of subproblems (i.e. the recurrence)
for a non-base case is identical to before. ◀

	1 Introduction
	1.1 Our Results
	1.2 Notation
	1.3 Organization

	2 Approximations for Constant n_d
	2.1 Theorem 4: General metrics
	2.2 Theorem 4: Euclidean metrics

	3 Approximation Algorithms and Hardness for Graphical-GP2P with +/- 1 Charges
	3.1 Graphical Instances with Unit Charges

	4 A Polynomial-Time Logarithmic Approximation
	A Standard Reductions
	B Restricted Instances of GP2P
	C Adapting k-MST Approximations

