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Abstract
In the Knapsack problem, one is given the task of packing a knapsack of a given size with items
in order to gain a packing with a high profit value. As one of the most classical problems in
computer science, research for this problem has gone a long way. One important connection to the
(max, +)-convolution problem has been established, where knapsack solutions can be combined by
building the convolution of two sequences. This observation has been used in recent years to give
conditional lower bounds but also parameterized algorithms.

In this paper we carry these results into higher dimensions. We consider Knapsack where items
are characterized by multiple properties – given through a vector – and a knapsack that has a
capacity vector. The packing must not exceed any of the given capacity constraints. In order to show
a similar sub-quadratic lower bound we consider a multidimensional version of (max, +)-convolution.
We then consider variants of this problem introduced by Cygan et al. and prove that they are all
equivalent in terms of algorithms that allow for a running time sub-quadratic in the number of
entries of the array.

We further develop a parameterized algorithm to solve higher dimensional Knapsack. The
techniques we apply are inspired by an algorithm introduced by Axiotis and Tzamos. We will
show that even for higher dimensional Knapsack, we can reduce the problem to convolution on
one-dimensional, concave sequences, leading to an O(dn+dD ·max{Πd

i=1ti, tmax log tmax}) algorithm,
where D is the number of different weight vectors, t the capacity vector and d is the dimension of
the problem. Then, we use the techniques to improve the approach of Eisenbrand and Weismantel
to obtain an algorithm for Integer Linear Programming with upper bounds with running time
O(dn) + D · O(d∆)d(d+1) + TLP.

Finally, we give an divide-and-conquer algorithm for ILP with running time nd+1 · O(∆)d ·
log(∥u − ℓ∥∞).
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1 Introduction

The Knapsack problem is one of the core problems in computer science. The task of finding
a collection of items that fits into a knapsack but also maximizes some profit is NP-hard
and as such the aim is to find approximation algorithms, parameterized algorithms, and
determine lower bounds for the running time of exact algorithms.
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30:2 Convolution and Knapsack in Higher Dimensions

Cygan et al. [9] and Künnemann et al. [16] among others have used the following
relationship between Knapsack and the (max, +)-convolution problem. Assume we are given
two disjoint item sets A and B and a knapsack of size t. If we additionally know the optimal
profits for all knapsack sizes t′ ≤ t we then can calculate the maximum profits for all sizes
t′ for A ∪ B by using convolution. This connection was used in order to show that the
existence of a sub-quadratic (in terms of capacity) algorithm for Knapsack is equivalent to
the existence of a sub-quadratic algorithm for (max, +)-convolution.

In this work, we consider these problems in higher dimensions. The Knapsack problem is
simply generalized by replacing the single value weight and capacity by vectors. We then
look for a collection of items whose summed up vectors do not exceed the capacity vector
in any position. The natural question arises whether a similar quadratic time lower bound
exists for this problem. We answer this question positively by giving a generalization of
convolution in higher dimensions as well. Using this generalization and techniques introduced
by Bringmann [4] such as color-coding we are able to achieve similar subquadratic lower
bounds as in the one-dimensional case.

1.1 Problem Definitions and Notations
We define [k] := {i ∈ N : 1 ≤ i ≤ k}, [k]0 := [k] ∪ {0}, and [a, b] := {i ∈ Z : a ≤ i ≤ b} for
k, a, b ∈ Z. In the following, we write for two vectors v, u ∈ Rd that v ≤ u (resp. v < u) if for
all i ∈ [d] we have that vi ≤ ui (resp. vi < ui). Further we denote with vmax = maxi∈[d] vi

for any vector v ∈ Rd. With #»k ∈ Rd we denote the vector that has k ∈ R in every position.

▶ Definition 1. Let L ∈ Nd be a d-dimensional vector and A = (Ai1i2···id
) be a L1 × L2 ×

· · · × Ld array. We call the vector L the size of A and denote the number of entries in A

with Π(L) :=
∏d

i=1 Li.
We call a vector v ∈ Z with #»0 ≤ v ≤ L − #»1 position of array A. For ease of notation,

we will denote for any array position v of A the respective array entry Av1v2···vd
with Av.

We note that in this definition, array positions lie in between #»0 and L − #»1 . This makes
it easier to work with positions for convolution and also for formulating time complexity
bounds, as Π(L) will be the main parameter we consider.

▶ Definition 2 (Maximum Convolution). Given two d-dimensional arrays A, B with equal
size L, the (max, +)-convolution of A and B denoted as A ⊕ B is defined as an array C of
size L with Cv := maxu≤v Au + Bv−u for any v < L.

d-MaxConv
Input: Two d-dimensional arrays A, B with equal size L.

Problem: Compute the array C := A ⊕ B of size L.

Note that in the following we will refer to this problem as “Convolution”. We specifically
limit ourselves to the special truncated case where both input arrays and the output array
have the same size. In a more general setting, we could allow arrays of sizes L(1), L(2) as
input and compute an array of size L(1) + L(2) − #»1 .

To measure the running time of our algorithms, we mainly consider the size or rather the
number of entries from the resulting array because we need to calculate a value for every
position. Therefore, in terms of theoretical performance, working with different sizes or
calculating an array of combined size will not make a difference. By only considering arrays
of the same size, we avoid many unnecessary cases and the dummy values of −∞.
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There is a quadratic time algorithm for d-MaxConv like in the one-dimensional case.
This algorithm simply iterates through all pairs of positions in time O(Π(L)2) ⊆ O(L2d

max).
Further we define an upper bound test for the convolution problem. In this problem, we

are given a third input array and need to decide whether its entries are upper bounds for the
entries of the convolution.

d-MaxConv UpperBound
Input: Three d-dimensional arrays A, B, C with equal size L.

Problem: Decide whether (A ⊕ B)v ≤ Cv for all v < L.

We further generalize the notion of superadditivity to multidimensional arrays.

d-SuperAdditivity Testing
Input: One d-dimensional array A of size L.

Problem: Decide whether A is superadditive, i.e., Av ≥ (A ⊕ A)v for all v < L.

The next problem class we consider is the d-Knapsack problem. In the one-dimensional
case, one is given a set of items with weights and profits and one knapsack with a certain
weight capacity. The goal is now to pack the knapsack such that the profit is maximized and
the total weight of packed items does not exceed the weight capacity.

The natural higher dimensional generalization arises when we have more constraints to
fulfill. When going on a journey by plane, one for example has several further requirements
such as a maximum amount of allowed liquid or number of suitcases. By imposing more
similar requirements, we can simply identify each item by a vector and also define the
knapsack by a capacity vector. This leads to the following generalization of Knapsack into
higher dimensions. We further differentiate between two problems 0/1 d-Knapsack and
Unbounded d-Knapsack, depending on whether we allow items to be only used one time
or an arbitrary number of times.

0/1 d-Knapsack
Input: Set I of n items each defined by a profit pi ∈ R≥0 and weight vector w(i) ∈ Nd,

along with a knapsack of capacity t ∈ Nd.

Problem: Find subset S ⊆ I such that
∑

i∈S
w(i) ≤ t and

∑
i∈S

pi is maximal.

Unbounded d-Knapsack
Input: Set I of n items each defined by a profit pi ∈ R≥0 and weight vector w(i) ∈ Nd,

along with a knapsack of capacity t ∈ Nd.

Problem: Find a multi-set S ⊆ I such that
∑

i∈S
w(i) ≤ t and

∑
i∈S

pi is maximal.

The running time for these problems is mainly dependent on the dimension d, the number
of items n of an instance and the number of feasible capacities Π(t + #»1 ) and we will further
study the connection of these in regards to the convolution problems.

1.2 Related Work
Cygan et al. [9] as well as Künnemann et al. [16] initiated the research and were the first to
introduce this class of problems and convolution hardness. In particular, Cygan et al. showed
for d = 1 that all these problems are equivalent in terms of whether they allow for a
subquadratic algorithm. This allows to formulate a conditional lower bound for all these
problems under the hypothesis that no subquadratic algorithm for d-MaxConv exists.

WADS 2025
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▶ Conjecture 3 (MaxConv-hypothesis). There exists no O(Π(L)2−ε) time algorithm for any
ε > 0 for d-MaxConv with d = 1.

(max, +)-Convolution. The best known algorithm to solve convolution on sequences
without any further assumption takes time n2/2Ω(

√
log n). This result was achieved by

Williams [21], who gave an algorithm for APSP in conjunction with a reduction by Bremner
et al. [3]. However, the existence of a truly subquadratic algorithm remains open.

Research therefore has taken a focus on special cases of convolution where one or both
input sequences is required to have certain structural properties such as monotony, concavity
or linearity. Chan and Lewenstein [6] gave a subquadratic O(n1.864) algorithm for instances
where both sequences are monotone increasing and the values are bound by O(n). Chi et
al. [8] improved this further with a randomized Õ(n1.5) algorithm.

Axiotis and Tzamos [1] showed that Convolution with only one concave sequence can
be solved in linear time. Gribanov et al. [13] studied multiple cases and gave subquadratic
algorithms when one sequence is convex, piece-wise linear or polynomial.

Knapsack. Convolution has proven to be a useful tool to solve other problems as well,
in particular the Knapsack problem. In fact one of the reductions of Cygan et al. [9] was
an adapted version of Bringmann’s algorithm for subset sum [4]. Bringmann’s algorithm
works by constructing sub-instances, solving these and then combining the solutions via Fast
Fourier Transformation (FFT). The algorithm by Cygan et al. to solve Knapsack works the
same way, but uses Convolution instead of FFT.

Axiotis and Tzamos follow a similar approach but choose their sub-instances more carefully,
by grouping items with the same weight. That way, the solutions make up concave profit
sequences which can be combined in linear time [1]. This yields in total an O(n + Dt)
algorithm, where D is the number of different item weights.

Polak et al. [19] gave an O(n + min{wmax, pmax}3) algorithm, where wmax, pmax denote
the maximum weight and profit respectively. They achieved this by combining the techniques
from Axiotis and Tzamos with proximity results from Eisenbrand and Weismantel [11].
Further, Chen et al. [7] improved this to a time of Õ(n + w2.4

max). Recently, Ce Jin [14]
gave an improved Õ(n + w2

max) algorithm. Independently to these results for 0/1 Knapsack,
Bringmann gave an Õ(n + w2

max) algorithm for Bounded Knapsack.
Doron-Arad et al. [10] showed that there are constants ζ, d0 > 0, such that for every

integer d > d0 there is no algorithm that solves 0/1 d-Knapsack in time O((n + tmax)ζ d
log d ).

Integer Linear Program. d-dimensional Knapsack problems are a special case of integer
linear programs.

Integer Linear Program (ILP)
Input: A matrix A ∈ Zd×n, a target vector b ∈ Zd, a profit vector c ∈ Zn and an upper

bound vector u ∈ Nd.

Problem: Find x ∈ Zn with Ax = b, 0 ≤ x ≤ u and such that cTx is maximal.

Lower bounds ℓ ∈ Nd may be present but can easily be removed by changing the right side
to b − Aℓ and the upper bound to u − ℓ. If we limit A to be a matrix with only non-negative
entries and u := #»1 then solving the above defined ILP is equivalent to 0/1 d-Knapsack. If
we omit the x ≤ u constraint, the resulting problem is Unbounded d-Knapsack.
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A very important part in research of ILPs has been on proximity. The proximity of an
ILP is the distance between an optimal solution and an optimal solution of its relaxation.
The relaxation of an ILP is given by allowing the solution vector x to be fractional.

Eisenbrand and Weismantel [11] have proven that for an optimal solution of the LP-
relaxation x∗ ∈ Rn there is an optimal integral solution z∗ ∈ Zn with ||x∗−z∗||1 ≤ d(2d∆+1)d

with ∆ being the largest absolute entry in A. They used this result to give an algorithm
that solves ILPs without upper bounds in time (d∆)O(m) · ∥b∥2

∞ and ILPs as defined above
in time O(n · O(d)(d+1)2 · O(∆)d(d+1) · log2 (d∆)). They additionally extended their result to
Bounded Knapsack and obtained the running time O(n2 · ∆2).

There have been further results on proximity such as Lee et al. [17], who gave a proximity
bound of 3d2 log (2

√
d · ∆1/m

m ) ·∆m where ∆m is the largest absolute value of a minor of order
m of matrix A. Celaya et al. [5] also gave proximity bounds for certain modular matrices.

Rohwedder and Węgrzycki [20] conjecture that there is no 2O(m2−ε) poly(n) time algorithm
for ILP with ∆ = O(1). They also show that there are several problems that are equivalent
with respect to this conjecture.

1.3 Our Results
We begin by expanding the results of Cygan et al. [9] into higher dimensions. The natural
question is whether similar relations shown in their work also exist in higher dimensions and
in fact they do. In the first part of this paper we show that the same equivalence – regarding
existing subquadratic time algorithms – holds among the higher dimensional problems.

▶ Theorem 4. For any fixed d and any ε > 0, the following statements are equivalent:
1. There exists an O(Π(L)2−ε)-time algorithm for d-MaxConv.
2. There exists an O(Π(L)2−ε)-time algorithm for d-MaxConv UpperBound.
3. There exists an O(Π(L)2−ε)-time algorithm for d-SuperAdditivity Testing.
4. There exists an O(n + Π(t)2−ε)-time algorithm for Unbounded d-Knapsack.
5. There exists an O(n + Π(t)2−ε)-time algorithm for 0/1 d-Knapsack.

Some of these reduction incur a multiplicative factor of O(2d). This is a natural consequence
due to the exponentially larger amount of entries that our arrays hold and that we need
to process. As an example, where it was sufficient in the one-dimensional case to split a
problem in two sub-problems, we may now need to consider 2d sub-problems. For this reason
we require d to be fixed, so we can omit these factors. We will prove this statement through
a ring of reductions. We note that one of the reductions uses an algorithm or a generalization
of it from Bringmann [4, 9] that is randomized. Part of this algorithm, involving so-called
color-coding can be derandomized, but a full derandomization is still an open problem.

We note that under the MaxConv-hypothesis, there does not exist an O(Π(L)2−ε)-time
algorithm for 1-MaxConv. If there exists any d such that d-MaxConv admits a sub-
quadratic algorithm, then it would also solve the problem in sub-quadratic time for any
d′ ≤ d and especially d′ = 1, hence contradicting the MaxConv-hypothesis, because we can
extend any d′-dimensional array to a d-dimensional one by adding dimensions with size one.

We also discuss how to use lower order improvements for 1-dimensional convolution for
the d-dimensional convolution via a standard argument using linearization of the vector and
adding appropriate padding. As this is a standard trick we omit the proof in the main body
but we state it in Section A for completeness.

▶ Lemma 5. Given an algorithm for 1-dimensional convolution with running time T (n) and
two d-dimensional arrays A, B with size L, we can calculate A ⊕ B in time T (2d

∏
(L)).

WADS 2025
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Together with the discussion above, Lemma 5 shows that 1-dimensional and d-dimensional
convolution are equivalent for fixed d or up to a factor 2O(d).

In the second part of our paper, we complement our conditional lower bound with
a parameterized algorithm. To achieve this, we generalize an algorithm by Axiotis and
Tzamos [1]. Our algorithm will also have a running time dependent on the number of different
item weights, that we denote with D and the largest item weight ∆ := maxi∈I∥w(i)∥∞. This
algorithm will also group items by weight vector and solve the respective sub-instances. The
resulting partial solutions are then combined via d-MaxConv. However, solving general
d-MaxConv needs quadratic time in the number of entries. We can overcome this barrier
by reducing our problem to convolution on one-dimensional, concave sequences.

▶ Theorem 6. There is an algorithm for Bounded d-EqualityKnapsack with running
time O(dn + d · D · max{

∏
(t + #»1 ), tmax log tmax}) ⊆ O(dn + d · min{n, (∆ + 1)d} · max{

∏
(t +

#»1 ), tmax log tmax})).

In the general case our algorithm will achieve a running time of O(dn + D · Π(t)) as the
tmax log tmax part only becomes relevant when we have a slim knapsack, that is very large in
one component, but comparatively small in the other. We note that our algorithm achieves
the lower bound proposed in Theorem 4 since D is also upper bounded by Π(t).

We use the techniques for Theorem 6 to improve the approach of Eisenbrand and
Weismantel [11] to obtain the following running time for ILP.

▶ Theorem 7. There is an algorithm for ILP with running time O(dn)+D·O(d∆)d(d+1)+TLP.

Our approach reduces the dependency on the number of dimensions (O(d)d(d+1) instead of
O(d)(d+1)2) and removes the logarithmic factor log2(d∆). Further, our algorithm is mostly
independent on n but relies on the number of different columns of the given ILP.

In addition to their conjecture Rohwedder and Węgrzycki [20] showed that the quadratic
dependence on the number of constraints in the exponent can be avoided if the term nd is
allowed in the runtime. We improve their algorithm by removing d from the base.

▶ Theorem 8. There is an algorithm that can solve ILP in time nd+1 ·O(∆)d · log(∥u− ℓ∥∞).

The algorithm is a divide and conquer algorithm which repeatedly halves the upper bounds.

1.4 Organization of the Paper
In Section 2 we present an overview of the reductions to proof Theorem 4. However, the
concrete proofs are in the full version [12] as the proofs are similar to the ones by Cygan et
al. [9]. Next we give the parameterized algorithm as well as the generalization to ILPs in
Section 3. The proof of the divide-and-conquer algorithm for Theorem 8 is given in Section 4.

2 Reductions

For the Convolution problems, we will formulate the running time via T (Π(L), d), where d is
the dimension and L is the size of the result array - meaning the first parameter resembles
the number of entries in the array. For the Knapsack problems, we will add the number of
items n as parameter and denote the running time of an algorithm via T (n, Π(t + #»1 ), d),
again using Π(t + #»1 ) to denote the number of possible knapsack capacities.

Similar to Cygan et al. [9], we mainly look at functions satisfying T (Π(L), d) = cO(d)·Π(L)α

for some constants c, α > 0. Therefore, we remark that for all constant c′ > 1 we can write
T (Π(c′ · L), d) ∈ O(T (Π(L), d)) since d is fixed and we then have Π(c′L)α = c′d·α · Π(L)α.
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For all the mentioned problems we assume that all inputs, that is also any value in any
vector, consist of integers in the range of [−W, W ] for some W ∈ Z. This W is generally
omitted as a running time parameter and polylog(W ) are omitted or hidden in T functions.
We remark that – unavoidably – during the reductions we may have to deal with larger
values than W . We generally will multiply a factor of polylog(λ) in cases where the values
we have to handle increase up to λW . Note that if λ is a constant, we again omit it.

We follow the same order as Cygan et al. [9], because that makes the reduction increasingly
more complex. For the first reduction from Unbounded d-Knapsack to 0/1 d-Knapsack,
we use the same reduction as in the one-dimensional case. The idea is to simply encode
taking a multitude of items via binary encoding.

▶ Theorem 9 (Unbounded d-Knapsack → 0/1 d-Knapsack). A T (n, Π(t), d) algorithm
for 0/1 d-Knapsack implies an O(T (n log(tmax), Π(t), d)) algorithm for Unbounded d-
Knapsack, where t ∈ Nd is the capacity of the knapsack.

For the next reduction we reduce d-SuperAdditivity Testing to a special case where
each array entry is non-negative and values fulfill a monotony property.

▶ Theorem 10 (d-SuperAdditivity Testing → Unbounded d-Knapsack). A T (n, Π(t),
d) algorithm for Unbounded d-Knapsack implies the existence an algorithm that solves
d-SuperAdditivity Testing in time O(T (2Π(L), Π(2L), d) polylog (dLmax)) for an array
A with size L.

The next reduction differs from Cygan et al. [9]. We also combine our input arrays together,
but in the context of arrays we need to handle a number of different combinations more than
in the one-dimensional case. We therefore add a block of negative values in an initial dummy
block. This way, any combination that is not relevant to the actual upper bound test, will
result positively when tested in the upper bound test.

▶ Theorem 11 (d-MaxConv UpperBound → d-SuperAdditivity Testing). A T (Π(L),
d) algorithm for d-SuperAdditivity Testing implies an O(T (4Π(L), d)) algorithm for
d-MaxConv UpperBound.

For the next reduction from d-MaxConv to d-MaxConv UpperBound, we will prove
that we can use an algorithm for d-MaxConv UpperBound to also identify a position that
violates the upper bound property.

▶ Theorem 12 (d-MaxConv → d-MaxConv UpperBound). A T (Π(L), d) algorithm for
d-MaxConv UpperBound implies an O(2dΠ(L) · T (2d

√
Π(L), d) · d · log(Lmax)) algorithm

for d-MaxConv.

The last reduction is based on Cygan et al. [9] and Bringmann [4]. To make their approach
work even in higher dimensional cases, we require a new more refined distribution of items
into layers. With this new partition of items many used techniques such as color-coding
naturally translate into higher dimensions.

▶ Theorem 13 (0/1 d-Knapsack → d-MaxConv). If d-MaxConv can be solved in time
T (Π(L), d) then 0/1 d-Knapsack can be solved with a probability of at least 1 − δ in time
O(T (Π(12t), d) log(d · tmax) log3 (log n/δ) · d · log n) for any δ ∈ (0, 1).

We remark that this also yields a respective algorithm for 0/1 d-Knapsack with the Π(L)2

algorithm for d-MaxConv. Lower order improvements like the results of Bremner [3] or
Chan and Lewenstein [6] can be applied by calculating the convolution using Lemma 5.

WADS 2025
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3 Parameterized Algorithm for Multi-Dimensional Knapsack

In this part, we will consider solving Knapsack such that the capacity is completely utilized.
This enables a concise presentation and is not a restriction as discussed after the concrete
problem definition.

Bounded d-EqualityKnapsack
Input: Set I of n items each defined by a profit pi ∈ R≥0, weight vector w(i) ∈ Nd, and

upper bound ui ∈ N along with a knapsack of capacity t ∈ Nd.

Problem: Find a vector x ∈ Nn such that x ≤ u,
∑n

i=1 xiw
(i) = t, and

∑n

i=1 xipi is maximal.

We will not only solve this problem for the given capacity t but for all smaller capacities.
In detail, we will construct a solution array A with size t + #»1 such that for any v ≤ t

we have that Av is the maximum profit of an item set whose total weight is exactly v.
Note that we can construct a solution for Bounded d-Knapsack after solving Bounded
d-EqualityKnapsack by remembering the highest profit achieved in any position.

The algorithm we will show is based on the algorithm of Axiotis and Tzamos [1]. They
solved one-dimensional Knapsack by splitting all items into subsets with equal weight. They
proceed then to solve these resulting sub-instances. These sub-instances can be easily solved
by gathering the highest profit items that fit into the knapsack. Finally, they combine these
resulting partial solutions via convolution. The profits of one such partial solution forms a
concave sequence, which allows each convolution to be calculated in linear time.

▶ Definition 14 (Concave Sequences). Let a = (ai)i≤n be a sequence of numbers of length n.
We call the sequence a concave if for all i ≤ n − 2 we have ai+1 − ai ≥ ai+2 − ai+1.

▶ Lemma 15 ([1, Lemma 9]). Given an arbitrary sequence of length m and a concave sequence
of length n we can compute the (max, +) convolution of a and b in time O(m + n).

We achieve a similar result and calculate higher dimensional convolutions in linear time.
In fact, we will reduce our problem to calculating convolution of one-dimensional concave
sequences. This way we can calculate the convolution of our sub-solutions in linear time in
the number of entries in our array.

▶ Theorem 6. There is an algorithm for Bounded d-EqualityKnapsack with running
time O(dn + d · D · max{

∏
(t + #»1 ), tmax log tmax}) ⊆ O(dn + d · min{n, (∆ + 1)d} · max{

∏
(t +

#»1 ), tmax log tmax})).

We remark, that in most cases V :=
∏

(t + #»1 ) > tmax log tmax so generally this algorithm
will have a running time of O(n + DV ). However, in the special case of a slim array that
has size t with one large value tj and other values being very small ti ≪ tj for i ̸= j our
algorithm might have a slightly worse running time of O(n + Dtmax log tmax). Note that is
algorithm also works for d-Knapsack by setting every upper bound to tmax.

Proof of Theorem 6. Since we have D different weights, let w(1), . . . , w(D) be the different
weights. We partition the items I into D sets of the same weight, Iw(i) := {j ∈ I : w(i) = w(j)}
for all i ∈ [D]. We start with an empty solution array R0 of size t + #»1 such that R0

#»0 = 0
and R0

v = −∞ for v ̸= #»0 . We will calculate solution arrays Ri for i ∈ [D] where Ri is the
solution array for instance restricted to the items

⋃i
j=1 Iw(j). Next we describe how we can

calculate Ri from Ri−1.
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Consider an optimal solution for some position v in Ri, i.e., containing only items from⋃i
j=1 Iw(j). The solution contains a certain number of items of weight w(i). Let this number

be k. We have v′ := v −kw(i) ≥ #»0 . Thus, the other items in the solution are from
⋃i−1

j=1 Iw(j)

and have combined profit Ri−1
v′ otherwise our initial solution is not optimal or Ri−1 is not

correct. Also, the k items with weight w(i) in the optimal solution have the highest profit
possible, otherwise the solution is not optimal. Therefore, we have

Ri
v = max

k≥0
v−k·w(i)≥ #»0

Ri−1
v−k·w + fw(k) (1)

where fw(i)(k) is the largest profit for taking k items of weight w(i). Hence, only position
pairs v, u such that their difference is an integer multiple of w(i) (v − u ∈ w(i)Z) are relevant
for the calculation of Ri

v or Ri
u. This condition forms an equivalence relation and thus

we can calculate the values of Ri per equivalence class. Every equivalence class has the
structure {v, v + w(i), v + 2 · w(i), v + kv · w(i)} with v − w(i) ̸≥ #»0 . Define the sequences
(rj)j≤kv with rj := Ri−1

v+j·w(i) and (aj)j≤kv with aj := fw(i)(j). Thus, we can calculate Ri by
Ri

v+j·w(i) := (r ⊕ a)j for every j ∈ [kv]. This is sufficient by Equation (1). Note that, we
only have to calculate the convolution once as we can use the result for every element of the
equivalence class. We always have kv ≤ tmax and (aj)j≤kv

is a concave sequence.
The items can be partitioned in the sets Iw(i) in time O(dn + ∆). In every set the tmax

most profitable items can be calculated in total time O(n) by using [2]. Calculating all values
for fw(i)(j) with i ∈ [D] and j ∈ tmax takes time O(Dtmax log(tmax)). Every convolution
can be calculated in linear time by Lemma 15. Since the equivalence classes partition the
set of positions, we can calculate Ri from Ri−1 in time d · O(max{V, tmax log(tmax)}) where
the d factor is due to multidimensional indices. We may assume ∆ ≤ tmax which shows the
claimed running time. ◀

3.1 Generalisation to ILPs
As we mentioned before, Knapsack is a special case of ILP. We now want to discuss how to
extend our results to ILPs. In the case that all matrix entries are non-negative ILP is equivalent
to Bounded d-EqualityKnapsack. We discuss later how to handle negative entries in the
constraint matrix. Negative item profits are sensible in Bounded d-EqualityKnapsack
as those may be required to reach the capacity. The algorithm presented in Theorem 6 also
works with negative profits. The running time of Theorem 6 depends on the capacity of
the knapsack. To bound this value for ILPs we use the proximity bound by Eisenbrand
and Weismantel [11] and improve their algorithmic approach. We start by giving a short
summary of their approach.

For an ILP Instance with constraint matrix A ∈ Zd×n, right side b ∈ Zd, and upper bounds
u ∈ Nn, let ∆ := ∥A∥max be the biggest absolute value of an entry in the constraint matrix.
Eisenbrand and Weismantel [11] calculate an optimal solution x∗ for the LP-relaxation, which
is possible in polynomial time. They proved that there exists an integral optimal solution z∗,
such that the distance in ℓ1-norm is small, more precisely ∥z∗ − x∗∥1 ≤ d · (2d∆ + 1)d. They
then proceed to take ⌊x∗⌋ as an integral solution (∥z∗ − ⌊x∗⌋∥1 ≤ d · (2d∆ + 1)d + d =: L)
and construct the following ILP to find an optimal solution.

max cTx subject to
Ax = b − A⌊x∗⌋

∥x∥1 ≤ L

ℓ′ ≤ x ≤ u′

x ∈ Zn
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Note that we may have ℓ′
i < 0 for some i ∈ [n]. Combining an optimal solution to this ILP

with ⌊x∗⌋ yields an optimal solution to the original ILP. For any x ∈ Zn with ∥x∥1 ≤ L

we have ∥Ax∥∞ ≤ ∆L ≤ O(d∆)d+1 due to the bound on the ℓ1-norm. Eisenbrand and
Weismantel construct an acyclic directed graph and find the longest path in that graph
which is equivalent to an optimal solution to the ILP above. They bound the size of the
graph using the bound on the ℓ∞-norm above. We avoid such a graph construction for our
algorithm which allows us to improve the running time. For two i, j ∈ [n] with Ai = Aj and
(ci, i) > (cj , j) we may assume that x∗

j > 0 implies x∗
i = ui. Otherwise, we can modify x∗ to

obtain a solution that adheres to this property with at least the same value. This structure
allows us to reformulate the ILP by grouping variables together with the same column in A

as follows

max
∑

i∈[D]
fi(xi) subject to

A′x = b − A⌊x∗⌋
∥x∥1 ≤ L

ℓ′′ ≤ x ≤ u′′

x ∈ ZD

where fi is a concave function for all i ∈ [D]. We calculate an optimal solution to this ILP
using the convolution approach from Theorem 6.

▶ Theorem 7. There is an algorithm for ILP with running time O(dn)+D·O(d∆)d(d+1)+TLP.

Proof. For i ∈ [D]0 let U i be the best possible values using the variables xj for j ≤ i. The
size of U i in every dimension is 2∆L+ 1. To calculate U i

v from U i−1 for some position v ∈ Zd

such that ∥v∥∞ ≤ ∆L we need to calculate

U i
v = max

ℓ′′
i ≤j≤u′′

i

∥v−jA′
i∥∞≤∆L

U i−1
v−jA′

i
+ fi(j).

As in the proof of Theorem 6 we can consider the equivalence classes. Let S be the equivalence
class of v, it has the structure {v′, v′ + A′

i, v′ + 2A′
i, . . . , v′ + (|S| − 1)A′

i}. Define the sequence
(aj)j≤2|S|−2 with aj := U i−1

v′+jA′
i

for j < |S| and aj := ∞ for j ≥ |S|. Further we define the
sequence (bj)j≤2|S|−2 with bj := fi(j −|S|+1). We calculate the convolution of the sequences
c := a ⊕ b in time O(|S|) using Lemma 15. Then we get

U i
v′+jA′

i
= max

ℓ′′
i ≤k≤u′′

i

∥v′+jA′
i−kA′

i∥∞≤∆L

U i−1
v′+jA′

i
−kA′

i
+ fi(k)

= max
j−|S|+1≤k≤j

U i−1
v′+(j−k)A′

i
+ fi(k)

= max
j≤k≤j+|S|−1

U i−1
v′+(j−k+|S|−1)A′

i
+ fi(k − |S| + 1)

= max
0≤k≤|S|−1

U i−1
v′+(j−k−j+|S|−1)A′

i
+ fi(k + j − |S| + 1)

= max
0≤k≤|S|−1

U i−1
v′+(|S|−1−k)A′

i
+ fi(j + k − |S| + 1)

= max
0≤k≤|S|−1

U i−1
v′+kA′

i
+ fi(j − k)

= max
0≤k≤|S|−1

U i−1
v′+kA′

i
+ fi(j − k + |S| − 1 − |S| + 1)
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= max
0≤k≤|S|−1

ak + bj−k+|S|−1

= max
0≤k≤j+|S|−1

ak + bj−k+|S|−1 (ak = −∞ for k ≥ |S|)

= cj+|S|−1

for j ∈ [|S| − 1]0. Next discuss how to obtain the running time of O(d∆)d(d+1) instead of
the expected dO(d∆)d(d+1) as in the proof of Theorem 6. To do this we add buffer zones
of size ∆ at the start and the end of every dimension. Then the size for every dimension
is still bounded by O(d∆)d+1. Next we save the d-dimensional array as a 1-dimensional
array by concatenating the dimensions. We mark the entries in the buffer zones. For a fixed
column we can calculate a step size in the 1-dimensional array that corresponds to a step
with the column in the d-dimensional array. Using the marked buffer zones we can check if
we stepped outside the valid area which allows us to find the equivalence class of a position
in linear time of the size of the class. Therefore, we can find all equivalence classes in time
O(d∆)d(d+1), and we can calculate the convolution in the same time.

First we need to solve the linear relaxation of the ILP. Denote the necessary time by TLP.
Next we partition the columns by weight in time O(dn)+∆. We can find the L most profitable
picked and unpicked items for every column type in total time O(n) using [2]. With this we
can calculate all relevant values for every fi in time D · L log L. As explained above every
convolution can be calculated in time O(d∆)d(d+1) which yields the claimed running time. An
optimal solution vector can be calculated by backtracking in time D ·L ≤ D ·d ·O(d∆)d+1 ◀

4 Divide and Conquer Algorithm

In this section we show Theorem 8. We start by showing the central structural property.

▶ Lemma 16. Let A ∈ Zd×n, b ∈ Zd, and x, u ∈ Nd. If Ax = b and x ≤ u, there exists
x′ ∈ Nd such that

∥2Ax′ − b∥∞ ≤ 2n∆, x′ ≤ u′ :=
⌊u − 1

2

⌋
and 0 ≤ xi − 2x′

i ≤ ui − 2u′
i ≤ 2 for i ∈ [n].

Proof. Let 0 ≤ x ≤ u with Ax = b. We define the new solution x′ component wise as follows.

x′
i :=


0 if xi = 0,

⌊ xi

2 ⌋ if ui is odd,

⌊ xi−1
2 ⌋ otherwise

for i ∈ [n]. We start by showing x′ ≤ u′. Let i ∈ [n]. If ui is odd, we have

x′
i =

⌊xi

2

⌋
≤ xi

2 ≤ ui

2 = 2u′
i + 1
2 = u′

i + 1
2 =⇒ x′

i ≤ u′
i

and

0 ≤ xi − 2x′
i = xi − 2

⌊xi

2

⌋
≤ xi − 2xi − 1

2 = 1 = ui − 2u′
i ≤ 2.

Otherwise, if ui is even, we have

x′
i =

⌊xi − 1
2

⌋
≤ xi − 1

2 ≤ ui − 1
2 = 2u′

i + 1
2 = u′

i + 1
2 =⇒ x′

i ≤ u′
i
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0 1 · · · n

k − 1

0 1 · · · n

k − 2

· · ·
double

0 1 · · · n

0

double

u
(k−1)
1 − 2u

(k)
1

double

u
(k−2)
1 − 2u

(k−1)
1

u
(0)
1 − 2u

(1)
1

Figure 1 Structure of the graph in the proof of Theorem 8.

and

0 ≤ xi − 2x′
i = xi − 2

⌊xi − 1
2

⌋
≤ xi − 2xi − 2

2 = 2 = ui − 2u′
i ≤ 2.

Next, let b′ := Ax′. We have

|2b′
j − bj | =

∣∣∣ n∑
i=1

Aj,i(2x′
i − xi)

∣∣∣ ≤
n∑

i=1
|Aj,i(2x′

i − xi)| =
n∑

i=1
|Aj,i||2x′

i − xi| ≤ 2n∆

for every j ∈ [d] and thus ∥2b′ − b∥∞ ≤ 2n∆. ◀

This lemma implies that every solution x ∈ Nn to Ax = b with x ≤ u can be decomposed
into x′, x′′ ∈ Nn such that x = 2x′ + x′′, x′ is a solution to Ax = b′ and x′′ ≤ u − 2u′. Note
that u′ does not depend on the concrete solution but is the same for all.

We can iterate Lemma 16 to obtain a series of solutions and upper bounds until we reach
a point where all upper bounds are zero. Define x(j) ∈ Nn and u(j) ∈ Nn after applying
Lemma 16 j times, i.e., x(0) = x and u(0) = u. Let k ∈ N be smallest value such that
u(k) = 0.

▶ Corollary 17. We have
∥∥Ax(j) − b

2j

∥∥
∞ ≤ n∆

∑j
i=1

1
2i−1 ≤ 2n∆ for j ≤ k.

Proof. By induction. j = 1 is Lemma 16. Let j > 1. Then, we have∥∥∥Ax(j) − b

2j

∥∥∥
∞

=
∥∥∥Ax(j) − Ax(j−1)

2 + Ax(j−1)

2 − b

2j

∥∥∥
∞

≤
∥∥∥Ax(j) − Ax(j−1)

2

∥∥∥
∞

+ 1
2

∥∥∥Ax(j−1) − b

2j−1

∥∥∥
∞

≤ n∆ + n∆
2

j−1∑
i=1

1
2i−1 = n∆ + n∆

j∑
i=2

1
2i−1 = n∆

j∑
i=1

1
2i−1 . ◀

With this we can give the algorithm and proof Theorem 8.

▶ Theorem 8. There is an algorithm that can solve ILP in time nd+1 ·O(∆)d · log(∥u− ℓ∥∞).

Proof. We find an optimal solution to the bounded ILP by finding the longest path in a
graph that is constructed based on Lemma 16. We define the graph as follows.

V :=
{

(b′, j, i) : j ∈ [k]0,
∥∥∥b′ − b

2j

∥∥∥
∞

≤ 2(2n − i)∆, i ∈ [n]0
}
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The intuition here is that we have a layer for every application of Lemma 16. We can jump
from one layer to the next by doubling the corresponding right side (the first component)
and length of the path to the current vertex. Then, to reconstruct the solution prior to an
application of Lemma 16 we may need to increase variables by up to two. For this we have
the third component. While going to a vertex with i ∈ [n] in the last component we may use
the ith column up to the number of times it was removed to get the new upper bound. This
is also an upper bound for the number of times it was removed from a solution as stated in
Lemma 16. More precisely, we associate the ILP

max cTx

Ax = b′

xℓ ≤ u
(j)
ℓ (for ℓ ∈ [i])

xℓ ≤ 2u
(j+1)
ℓ (for ℓ > i)

x ∈ Nn

with a vertex (b′, j, i) ∈ V and refer to it by ILP(b′,j,i). A path from (0, k − 1, 0) to (b′, j, i)
describes a solution to ILP(b′,j,i) where the value is equal to the length of the path.

Next we give the precise definitions for the edges in the graph. For a vertex with j < k

and i < n we define the following edges

(b′, j, i) xci+1−−−→ (b′ + xAi+1, j, i + 1)

with x ∈ [u(j)
i+1 − 2u

(j+1)
i+1 ]0 ⊆ [2]0 and for vertices with j > 0 and i = n we define the edge

(b′, j, n) double the length−−−−−−−−−−−→ (2b′, j − 1, 0).

Because of the changes in the second and third component the graph is acyclic, and thus
the longest path can be calculated in linear time by utilizing a topological order of the
graph. Note that the second type of edge does not have a classic length, but this doubling
of the current length works with the aforementioned algorithm. The out degree of every
vertex is bounded by 3 and thus the size of graph is linear in the number vertices which is
nd+1 · O(∆)d · log(∥u∥∞). Now we find the longest path from (0, k − 1, 0) to (b, 0, n). The
only solution to ILP(0,k−1,0) is #»0 . The structure of the graph is depicted in Figure 1.

Let x ∈ Nn be a solution to the ILP. Further, let x(j) ∈ Nn be the solutions obtained by
iterating Lemma 16. Define

x(j,i) :=
{

2x(j+1) if i = 0,

x(j,i−1) +
(
x

(j)
i − 2x

(j+1)
i

)
ei otherwise

for j ∈ [k − 1]0 and i ∈ [n]0 where ei is the ith unit vector. We have
∥∥Ax(j,i) − b

2j

∥∥
∞ ≤

2(2n − i)∆ by Lemma 16 and Corollary 17. Thus,

(0 = Ax(k−1,0), k − 1, 0), (Ax(k−1,1), k − 1, 1), . . . ,

(Ax(k−1,n), k − 1, n), (Ax(k−2,0), k − 2, 0), . . . , (b = Ax(0,n), 0, n)

is a path in the graph with length cTx. Therefore, ILP has a solution if and only if there is a
path in the graph from (0, k − 1, 0) to (b, 0, n). Also the value of the optimal solution to the
ILP is equal to the length of the longest path in the graph. ◀
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5 Conclusion

First, we have proven that the relationship between Knapsack and Convolution in the one-
dimensional case also prevails in higher dimensional variants. A natural follow-up question is
how many more problems can be shown to be equivalent to d-dimensional convolution.

We developed a parameterized algorithm for multidimensional knapsack that generalized
techniques for one-dimensional knapsack. Further, we used these techniques to obtain a
faster algorithm for Integer Linear Programming with upper bounds.

Finally, we gave an improved algorithm for Integer Linear Programming with upper
bounds that avoids the quadratic dependency on the dimension by increasing the dependency
on the number of variables.
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A Calculate d-dimensional Convolution with 1-dimensional
Convolution

We can interpret (max, +)-convolution as multiplication of polynomials over the (max, +)-
semiring, also called the Arctic semiring. d-dimensional convolution is multiplication of
polynomials with d variables x1, . . . , xd. More precisely, let A, B be two d-dimensional arrays
of size L. Then, the corresponding polynomial to A is given by
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0≤v<L

A[v]
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i=1
xvi
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The Kronecker map [15] as described in [18] maps xk+1 to xD(1)···D(k) for every k ∈ [d − 1]0
where D(i) = 2Li − 1 for every i ∈ [d]. This map is generalized to polynomials accordingly
and allows us to obtain an one-dimensional array this way by adding dummy values. An
example for this construction is depicted in Figure 2. Let p̃(A) and p̃(B) be the results of
this transformation.

M N O

P Q R

S T U

V W X

A B C

D E F

G H I

J K L

A B C − − D E F − − G H I − − J K L − − − − − − − − −

− − − − − − − − M N O − − P Q R − − S T U − − V W X

Figure 2 Example for the transformation in 3 dimensions with L = (3, 4, 2)T.

Now, we can calculate p̃(A)·p̃(B) with an one-dimensional (max, +)-convolution algorithm
and transform the result back according to the transformations above to obtain an d-
dimensional array. The result is correct since the polynomial multiplication is correct due to
the added padding in the definition of D(i) [18].

To show Lemma 5 is remains to show that deg(p̃(A)) + 1 ≤ 2d
∏

(L) since deg(p̃(A)) is
the length of the resulting arrays for the one-dimensional convolution. We have

2 deg(p̃(A)) = 2 deg
(

A[L − #»1 ]
d∏

i=1
(xD(1)···D(i−1))Li−1

)
(L − #»1 is the maximum index.)

= 2
d∑

ℓ=1
(Lℓ − 1)

ℓ−1∏
m=1

D(m)

≤
d∑

ℓ=1

( ℓ−1∏
m=1

2Lm

)
2Lℓ

= 2L1 + 2L1

d∑
ℓ=2

( ℓ−1∏
m=1

2Lm

)
2Lℓ

=
d∑

ℓ=1
2ℓ

ℓ∏
m=1

Lm (With induction)

=
( d∑

ℓ=1
2ℓ

) ∏
(L)

≤ 2d+1
∏

(L)

=⇒ deg(p̃(A)) ≤ 2d
∏

(L)

In conclusion we have show the following lemma.

▶ Lemma 5. Given an algorithm for 1-dimensional convolution with running time T (n) and
two d-dimensional arrays A, B with size L, we can calculate A ⊕ B in time T (2d

∏
(L)).
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