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Abstract
We consider the problem of repairing production schedules in a job-shop setting by reducing pre-
planned waiting times. Herein, a schedule of all jobs is given. To compensate unforeseen disturbances,
this schedule contains waiting times between the execution of two consecutive tasks of a job. Further,
we assume that the schedule temporarily overloads some machines, e.g. due to reduced machine
capacities because of worker sickness or (partially) broken machines. We study the problem of
removing as few waiting times as possible in order to eliminate the machine overloads. After
formalizing this problem, we perform an extensive analysis of its parameterized complexity with
respect to several natural parameters, resulting in a detailed picture of the problem’s complexity.
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1 Introduction

Scheduling is a crucial task in the industrial production of goods, helping to achieve key goals
such as low production costs or on-time deliveries. Therefore, scheduling is an established and
very important area in the intersection of theoretical computer science, operations research,
and combinatorial optimization. In classical scheduling problems, one is usually given a set
of jobs (and their characteristics) to be processed in the future, and the task is to compute
an “optimal” (with respect to some specified criterium) schedule of the jobs. However,
many real-world scenarios are not adequatly covered by this approach, for instance when
a large number of unexpected obstacles (e.g., machines breaking down, workers calling in
sick, arrival of urgent customer orders, etc.) may compromise the initial plan. Recomputing
a new schedule from scratch after each such obstacle is hardly an option in practice, as
reassignments of jobs and operations to different resources require cancellations of expensive
set-ups and lead to shop floor nervousness [21].

Instead of rescheduling, there are also other ways to handle unexpected obstacles in
production planning. One such approach is scheduling under uncertainties, containing several
different models of uncertainties in scheduling. One of the most common such models is
stochastic scheduling, where the values of job parameters (most commonly of the processing
time) are independent random variables instead of numbers, see e.g. [8,19]. Another model is
multi-scenario scheduling, where a finite number of different scenarios needs to be considered
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31:2 Repairing Schedules by Removing Waiting Times

t 1 2 3 4 5 6 7 8
A 3 2 2 2 2 2 0 1
B 1 1 2 0 2 2 1 1
1 A x x B
2 A B
3 A x A B
4 A x x A B
5 A A x A B

→

t 1 2 3 4 5 6 7 8
A 3 2 2 2 2 2 0 1
B 1 1 2 0 2 2 1 1
1 A x x B
2 A B
3 A A B
4 A A B
5 A A x A B

Figure 1 An example of an instance of WTR (left) together with a repaired schedule (right).
There are time steps t = 1, . . . , 8 and jobs 1, . . . , 5 that are processed on two machines A and B.
The upper part shows the machine capacities at the time steps, the lower part shows the jobs aligned
at their starting time steps. At time step t = 5, the capacity constraints are violated, since three
jobs are processed on machine A. Removing the grey marked symbols x in Job 3 and Job 4 converts
the schedule into a schedule satisfying all capacity constraints.

(see [18] for a survey). Another approach is online scheduling, where the machine breakdowns
appear one after another and one has to update the schedule immediately, see e.g. [2, 10].
Another approach is to repair a schedule. In this approach, one starts with a given schedule
and applies small changes to it, adapting the schedule to the new situation. This is done by
heuristically applying generic operations on the given schedule [20,21] or by applying data-
driven techniques from the field of machine learning [14,16,22]. Relatively new approaches
combine scheduling under uncertainties with repairing policies [13]. For a very recent survey
of scheduling problems in general, we refer to Agnetis et al. [1].

While the vast majority of research on repairing schedules focusses on heuristic approaches
and their experimental evaluation, this work aims to lay a foundation for the theoretical study
of these problems. In order to do so, we first formalize our scheduling problem as a precise
mathematical problem which we call Waiting Time Removal (WTR) using notations
from stringology. The idea of WTR is that in a case where unexpected resource breakdowns
occur, updated information about resource availability and job durations is perfectly known
and one has to adapt the old solution to the new situation. WTR is motivated by real-world
production planning scenarios in German mid-sized companies. In this work, we study the
computational complexity of WTR, focussing on the parameterized complexity.

An example of an instance of WTR together with a repaired schedule is illustrated in
Figure 1. Intuitively, our scheduling problem WTR models the following scenario: there
are multiple types of different machines (e.g. machine types A and B). Similar to a job
shop, each job has to be processed on machines of different types in a job-specific order
for a specific amount of time. However, in contrast to the standard job shop model, there
may be waiting times planned between the steps, serving as a “buffer” to cover unexpected
delays. To model this, each job is represented by a string enlisting the required machines
(repeating a machine if it needs to be processed for multiple time units) and the planned
waiting times. As an example, the string AAxB corresponds to a job that first needs to be
processed on machine A for two time units, then has one time unit waiting time (encoded
by the letter “x”), and finally needs to be processed on machine B for one time unit. At
each time step, a different number of machines of each type is available (e.g. at time t = 1,
three machines of type A might be available, meaning that up to three different jobs can be
processed on machines of type A); this number will be called the capacity of the machine at
that time step. The capacities model e.g. the breakdown of machines or workers required to
operate the machine calling in sick. Additionally, each job is assigned with a starting time.
The goal is to remove a small number of waiting times from the jobs such that the resulting



N. Grüttemeier and K. Heeger 31:3

Table 1 Our results. Each cell corresponds to parameterization by the sum of the two corres-
ponding values. The diagonal cells correspond to parameterization by n, k, |Σ|, or T alone.

n

XP
(Thm. 4)

W[1]-h
(Thm. 3)

k

FPT
(Cor. 5)

No Poly Ker.
(Cor. 10)

XP
(Obs. 2)
W[2]-h

(Cor. 9)

|Σ|
XP

(Thm. 4)
W[1]-h

(Thm. 3)

XP
(Obs. 2)
W[2]-h

(Cor. 9)

Para NP-h
(Thm. 3)

T

FPT
(Obs. 1)

Poly Kernel
(Obs. 1)

XP
(Obs. 2)
W[1]-h

(Thm. 11)

FPT
(Thm. 7)

No Poly Ker.
(Thm. 8)

Para NP-h
(Thm. 6)

n k |Σ| T

schedule satisfies the capacity constraints posed on the machine types in the all steps. The
idea behind keeping the number of waiting time removals small is that maintaining many
waiting times increases the robustness against future disruptions.

Related Work. To the best of our knowledge, our introduced problem WTR has not yet
been studied.

One framework that is conceptually related to the idea of repairing given schedules is the
approach of parameterized local search: The idea is to apply a limited number of changes on
a given schedule to improve a target function value. Balzereit et al. [3] study parameterized
local search for a single machine scheduling problem. While their approach mostly serves as
a subroutine in a hill-climbing setting, it can also be used to repair schedules.

Another framework related to repairing schedules is reoptimization [4, 17]: The idea of
reoptimization is to compute approximate solutions of perturbed instances from given optimal
solutions of an original instance. There are constant factor approximations for reoptimization
settings of multi-machine makespan minimization under the constraint that some jobs are
not allowed to be scheduled parallel [17]. Boria and Della Croce [4] provide constant factor
approximizations for multiple min-sum scheduling problems with release dates.

Our Results. We initiate the theoretical study of WTR. As WTR is NP-hard even if
the number of allowed waiting time removals is unbounded (Theorem 3), the problem is
inapproximable, motivating our parameterized complexity analysis. Considering the most
natural parameterizations (by the number n of jobs, the number k of deletions, the time
horizont T , and the alphabet size |Σ| and combinations thereof), we derive a complete picture
of the parameterized complexity of WTR. An overview of the results is shown in Table 1.

Notably, while most of our hardness results hold already for alphabets of constant size,
the paraNP-hardness of WTR parameterized by T (Theorem 6) is contrasted with the
fixed-parameter tractability with respect to T + |Σ| (Theorem 7). A further notable result is
that parameterizing with the number n of jobs is not sufficient to ensure fixed-parameter
tractability (Theorem 3), but only results in an XP-algorithm (Theorem 4).

WADS 2025



31:4 Repairing Schedules by Removing Waiting Times

2 Preliminaries

We use standard notations from parameterized complexity [5].
For integers a ≤ b, we let [a, b] := {i ∈ N | a ≤ i ≤ b}. We let ◦ denote the concatenation

of strings, and we let |w| denote the length of a string w. Furthermore, for i ∈ N, we let w[i]
be the ith symbol of w or the empty word if i ̸∈ [1, |w|].

Let Σ be a finite alphabet, let x ̸∈ Σ, and let w ∈ (Σ ∪ {x})∗ be a string with m ∈ N
occurrences of the symbol x. For R ⊆ [1, m], we let w − R denote the string after removing
the ith occurrences of x for each i ∈ R from w. As an example, consider axbbxcx − {1, 3} =
abbxc, where we remove the first and the third occurrence of x while keeping the second
occurrence of x. Throughout this work, we call such set R an x-removal set.

Problem Definition. Recall that we aim to study a problem where the goal is to adjust a
given plan by removing waiting times. In the following, we formalize this idea.

Let Σ be a finite alphabet, let x ̸∈ Σ, and let T ∈ N be a number of time steps. A T -step
capacity bound for Σ is a mapping c : Σ × [1, T ] → N0. Intuitively, c(σ, t) corresponds to the
capacity of symbol σ at time step t. A job (w, s) is a tuple consisting of a string w ∈ (Σ∪{x})∗

and a starting time s ∈ N that satisfies s + |w| − 1 ≤ T . Intuitively, the inequality guarantees
that every job is completed by time step T . Given a set of jobs J := {(wi, si) | i ∈ [1, n]}, a
symbol σ ∈ Σ and a time step t ∈ [1, T ], we define the load of symbol σ at time step t as

λt
σ := |{(w, s) ∈ J | w[t − s + 1] = σ}|.

A set J of jobs satisfies the capacity constraints c if λt
σ ≤ c(σ, t) for every combination

of σ ∈ Σ and t ∈ [1, T ]. For a job J and some t ∈ [s, s + |J | − 1], we say that the (t − s + 1)th
letter of J is processed at time t.

Given a set of jobs J := {(wi, si) | i ∈ [1, n]}, we let #xi denote the number of occurrences
of the symbol x in the string wi for i ∈ [1, n]. The problem WTR is defined as follows.

Waiting Time Removal (WTR)
Input: A number of time steps T , a set J := {(wi, si) | i ∈ [1, n]} of jobs, a T -step

capacity bound c, and an integer k.
Question: Does there exist a family of sets R1, . . . , Rn with Ri ⊆ [1, #xi] for each i ∈

[1, n] and
∑n

i=1 |Ri| ≤ k such that the job set J ′ := {(wi − Ri, si) | i ∈ [1, n]}
satisfies the capacity constraints c?

For notational convenience, we define for a job J = (w, s) its length |J | := |w|, its starting
time s(J) := s, and J − R := (w − R, s) for R ⊆ [1, #xi].

Note that T ·n essentially bounds the size of an instance (T, J , c, t) of WTR: Each wi has
length at most T and thus, |J | can be encoded by encoding at most T · n symbols. Moreover,
the load of a symbol can never exceed n and thus, c can be encoded using O(T 2 · n log(n))
bits. Therefore, we can observe the following.

▶ Observation 1. WTR admits a polynomial kernel for T + n.

Furthermore, note that WTR can be solved by the following simple brut-force algorithm:
Enumerate all size-k subsets of occurrences of the symbol x in the input instance, and check
whether removing precisely these occurrences provides a modified set J ′ that satisfies the
capacity constraints c. This simple brute-force strategy implies the following.

▶ Observation 2. WTR can be solved in |I|k+O(1) time, where |I| denotes the input size.
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Graph Theory. We use standard notation from graph theory, see e.g. [12]. More precisely,
all appearing graphs are undirected unless stated otherwise. A graph G = (V, E) is k-partite
if its vertex set can be partitioned into k independent sets, i.e., V = V1 ∪ . . . ∪ Vk with
Vi ∩ Vj = ∅ for each i ̸= j and for each set Vi, there is no edge whose endpoints are both
contained in Vi. For a graph G = (V, E) and V1, V2 ⊆ V , we denote by E[V1, V2] the edges
with one endpoint in V1 and the other endpoint in V2. For a vertex v ∈ V , we denote by δ(v)
the set of edges incident to v.

3 Parameterization by the Number of Jobs

We first study the parameterization by the number n of jobs. While the total number of jobs
naturally appears to be a large parameter in real-world applications, we start by showing
that – somewhat surprisingly – WTR is unlikely to be fixed-parameter tractable for the
parameter n.

▶ Theorem 3. For an instance of WTR, deciding the existence of a deletion family (of
arbitrary size) is NP-hard and W[1]-hard parameterized by the number of jobs, even if |Σ| = 2.

Proof. We reduce from Multicolored Independent Set which is NP-hard [11] and
W[1]-hard parameterized by solution size ℓ [15]. In Multicolored Independent Set,
one is given an ℓ-partite graph G = (V1 ∪ . . . ∪ Vℓ, E) with |V1| = |V2| = . . . = |Vℓ|, and the
task is to find a multicolored independent set, i.e., a set of ℓ pairwise non-adjacent vertices
containing exactly one vertex from each Vi. Let G = (V1 ∪ . . . ∪ Vℓ, E) be an instance of
Multicolored Independent Set. We fix an arbitrary ordering e1, . . . , em of the edges
of G as well as of the vertices of each color class Vi = {v1

i , . . . , v
|V1|
i }. For each color class Vi

and each edge ep ∈ E, we define the |V1|-letter substring wp
i to be

wp
i :=

{
0j−110|V1|−j if ep ∈ δ(vj

i ) for some j ∈ [1, |V1|]
0|V1| otherwise.

Using these substrings, we create, for each i ∈ [1, ℓ], one job Ji = (wi, 1) where

wi := x|V1|−1 ◦ ⃝m
p=1wp

i .

We define the (m · |V1| + |V1| − 1)-capacity bound c: For every p ∈ [1, m], letter 1 has capcity
one at time p · |V1|. All other capacities are infinite. See Figure 2 for an example. The
reduction clearly runs in polynomial time and the number of jobs equals ℓ.

We continue by showing correctness. First note that for any set Ri ⊆ [1, |V1| − 1],
job Ji − Ri contributes to the load of letter 1 at time p · |V1| if and only if v

|Ri|+1
i is adjacent

to ep. Given a multicolored independent set I = {vj1
1 , . . . , vjℓ

ℓ }, we construct a deletion
set R = {R1, . . . , Rn} as follows: For each job Ji, we let Ri = [1, ji − 1]. To see that this
{(wi − Ri, 1) | i ∈ [1, n]} satisfies the capacity constraints, note that only letter 1 has a finite
capacity (at times t = p · |V1| for p ∈ [1, m]), so it suffices to show that the load of letter 1
does not exceed its capacity. Assume towards a contradiction that there is some time t where
the load of letter 1 exceeds its capacitiy, i.e., t = p · |V1| for some p ∈ [1, m] and there are
two jobs Ji − Ri and Ji′ − Ri′ both contributing to the load of 1 at time t. This implies that
ep is incident to both vji

i and v
ji′
i′ , a contradiction to I being an independent set.

We conclude with the reverse direction, so let R = {R1, . . . , Rn} be a deletion family
satisfying the capacity constraints. Let ji := |Ri| ∈ [1, |V1| − 1]. We claim that I =
{vj1

1 , . . . , vjℓ

ℓ } is an independent set. Assume towards a contradiction that ep = {vji

i , v
ji′
i′ }

for some p ∈ [m] and i, i′ ∈ [1, ℓ]. Then at time p · |V1|, both Ji − Ri and Ji′ − Ri′ contribute
to the load of letter 1, a contradiction to the feasibility of the schedule. ◀

WADS 2025
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{v1
1 , v1

2} {v3
1 , v2

2} {v2
2 , v1

3} {v3
2 , v2

3} {v2
1 , v3

3} {v3
1 , v1

3}
x x 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
x x 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0
x x 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0y I = {v1

1 , v2
2 , v3

3}

x x 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
x 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0

Figure 2 The upper part shows an example for the reduction for ℓ = 3 and the graph containing
edges {v1

1 , v1
2}, {v3

1 , v2
2}, {v2

2 , v1
3}, {v3

2 , v2
3}, {v2

1 , v3
3}, and {v3

1 , v1
3}. Red columns correspond to time

steps where the capacity of letter 1 equals one while all other time steps have unboundend capacity.
The vertical lines separate the different “blocks” of |V1| letters corresponding to an edge. The lower
part depicts a solution corresponding to the independent set {v1

1 , v2
2 , v3

3}.

While WTR is presumably not fixed-parameter tractable for n, we show that – on the
positive side – WTR can be solved in polynomial time for constant values of n by providing
the following XP algorithm.

▶ Theorem 4. WTR can be solved in O(n · T 2n+1) time.

Proof. We give a dynamic program solving the problem. The dynamic programming table τ

has entries of the form τ [(t, p1, . . . , pn)] for every suitable tuple (t, p1, . . . , pn), where we call
(t, p1, . . . , pn) with t ∈ [0, T + 1] and pi ∈ [0, |Ji| + 1] for each i ∈ [1, n] suitable if, for every
i ∈ [n], it holds that pi = 0 if and only if t < s(Ji). Each entry stores the minimum size
of a deletion set such that the load of any symbol for any time t′ ≤ t does not exceed its
capacity and at time t (where each letter has capacity 0 for t′ ∈ {0, T + 1}), the pith letter
of Ji is processed. Herein, pi = 0 encodes that no letter of Ji is processed until time t and
pi = |Ji| + 1 encodes that all letters from Ji have already been processed until time t. The
table is computed as follows: We initialize the table by setting

τ [(0, p1, . . . , pn)] =
{

0 if p1 = . . . = pn = 0
∞ otherwise.

For the update step, we introduce some additional notation. We say that a suitable tuple
(t − 1, p′

1, . . . , p′
n) is compatible with a suitable tuple (t, p1, . . . , pn) if, for every i ∈ [n],

p′
i ≤ pi,

if pi /∈ {0, |Ji| + 1}, then p′
i < pi and wi[p′

i + 1] = wi[p′
i + 2] = . . . = wi[pi − 1] = x, and

for each σ ∈ Σ, we have |{i | si[pi] = σ}| ≤ λt
σ.

Intuitively, this means that if the p′
ith letter of job Ji is processed at time t − 1, then the pith

letter can be processed at time t (after deleting all x in between; the second item ensures
that only x are in between the p′

ith and pith letter). We update the table as follows:

τ [(t,p1, . . . , pn)] =

min
(t−1,p′

1,...,p′
n) compatible with (t,p1,...,pn)

τ [(t − 1, p′
1, . . . , p′

n)] +
∑

i:pi ̸=p′
i

(pi − p′
i − 1) .
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An optimal solution can be read from τ [(T + 1, |J1| + 1, . . . , |Jn| + 1)] using traceback. More
formally, we have a yes-instance of WTR if and only if τ [(T + 1, |J1| + 1, . . . , |Jn| + 1)] ≤ k.

The dynamic programming table has O(T ·Πn
i=1(|Ji|+2)) = O(T n+1) entries, each of which

can be computed in O(n · T n) time. Thus, the dynamic program runs in O(n · T 2n+1) time.
It remains to show correctness. First, we show by induction on t that if τ [(t, p1, . . . , pn)] =

q < ∞, then there is a deletion family of size q such that no load exceeds its capacity at
any time t′ ≤ t and at time t, the pith letter of Ji is scheduled. This clearly holds for t = 0.
For t ≥ 1, let a := (t − 1, p′

1, . . . , p′
n) such that τ [(t, p1, . . . , pn)] = τ [a] +

∑
i:pi ̸=p′

i
(pi − p′

i − 1).
This entry τ [a] corresponds to a deletion family R′. By induction, for jobs {Ji − R′

i}, no
load is exceeded for any time t′ < t. By the second condition, the p′

i + 1, . . . , pi − 1th letters
of Ji are all x, say the rith to r′

ith occurrences of x. Setting R = {R′
i ∪ [ri, r′

i] | i ∈ [n]}
for each i ∈ [n] results in a deletion family of size τ [a] +

∑
i:pi ̸=p′

i
(pi − p′

i − 1) = q. By the
third condition, no load is exceeded at time t. By induction, no load is exceeded at any
time t′ ≤ t − 1 for R′; consequently, also for R no load is exceeded at any time t′ ≤ t − 1
for R. Thus, R is a deletion family of size q with the desired properties.

Next, we show that if there is a deletion family R of size q such that at time t, for each
i ∈ [1, n] the pith letter of Ji is scheduled, and no load is exceeded for any t′ ≤ t, then
τ [(t, p1, . . . , pn)] ≤ q. We again do so by induction on t. For t = 0, the statement is obvious,
so consider t > 0. The deletion family R is also a deletion family where at time t−1, the p′

ith
letter of Ji is scheduled for some p′

1, . . . , p′
n. By the second condition, the p′

i + 1, . . . , pi − 1th
letters of Ji are all x, say the rith to r′

ith occurrences of x. Setting R′
i := Ri \ [ri, r′

i] for
i ∈ [1, n] therefore results in a deletion set R′ = {R′

1, . . . , R′
n} of size q −

∑
i:pi ̸=p′

i
(pi −p′

i −1).
By induction, we have

∑n
i=1 |R′

i| ≥ τ [(t − 1, p′
1, . . . , p′

n)]. Thus, we have

q =
n∑

i=1
|R′

i| +
∑

i:pi ̸=p′
i

(pi − p′
i − 1) ≥ τ [(t − 1, p′

1, . . . , p′
n)] +

∑
i:pi ̸=p′

i

(pi − p′
i − 1)

≥ τ [(t, p1, . . . , pn)] .

The correctness follows. ◀

Adding a simple pruning rule to the dynamic program from Theorem 4 yields fixed-
parameter tractability by the combined parameter n + k:

▶ Corollary 5. WTR parameterized by n + k can be solved in O(T · n2k+1) time.

Proof. For every job Ji = (wi, si), the deletion set Ri has size at most k. Thus, at each
time t, at most k different letters from wi can be scheduled, implying that at most k different
values for pi need to be considered. Consequently, the number of DP entries to consider is
O(T · nk), and each of these entries can be computed in O(n · nk) time. Therefore, WTR
can be solved in O(T · n2k+1) time. ◀

4 Parameterization by the Number of Time Steps

We next study parameterization by the number T of time steps. We start by showing
that WTR cannot be solved in polynomial time for constant values of T unless P = NP.
Motivated by this strong hardness result, we then study parameterizations by the combined
parameters of T + |Σ| and T + k.

▶ Theorem 6. WTR is NP-hard even if T is constant.

WADS 2025
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Proof. We provide a reduction from Independent Set. In Independent Set, one is
given a graph G = (V, E) together with an integer ℓ. The question is whether there exists a
set I ⊆ V of pairwise non-adjacend vertices with |I| ≥ ℓ. Independent Set is well-known
to be NP-hard even if G has maximum degree 3 [7].

Let (G = (V, E), ℓ) be an instance of Independent Set, where G has maximum degree 3.
We describe how to construnct an equivalent instance of WTR in polynomial time. To
this end, we assume that G has a proper edge coloring with four colors: Due to Vizing’s
Theorem [23], we can partition the edge set E into four sets E1, E2, E3, and E4 such that
for each i ∈ [1, 4], no two edges in Ei share one endpoint. Since the proof of Vizing’s
Theorem provides an algorithm computing the partition in polynomial time, we may use the
sets E1, . . . , E4 for our construction.

To construct an instance (T, J , c, k) of WTR, we first set k := ℓ and we set T := 10.
Furthermore, we define the alphabet Σ := {0}∪E. Next, given some v ∈ V and some i ∈ [1, 4],
we let wi

v := 00 if v has no incident edge in Ei, and we let wi
v := 0e otherwise, where e

is the unique incident edge in Ei. We then define wv := x ◦ w1
v ◦ w2

v ◦ w3
v ◦ w4

v ◦ 0 and
set J := {(wv, 1) | v ∈ V }. Note that for every v ∈ V , we have |wv| = 10.

We complete the construction by defining the capacity c. We set c(0, 10) := |V | − ℓ.
Furthermore, for every i ∈ {2, 4, 6, 8} and e ∈ E we define c(e, i) := 1. All remaining
capacities are set to ∞.

Before we prove the correctness, we provide some intuition. Since c(0, 10) = |V | − ℓ and
every wv ends with the symbol 0 at time step 10, we need to remove the unique occurrence of x

in ℓ strings, which then corresponds to the choice of vertices in a solution of Independent
Set. The capacities c(e, i) := 1 for i ∈ {2, 4, 6, 8} then guarantee that no pair of chosen
vertices are incident with the same edge.

We conclude the proof by showing that (G, ℓ) is a yes-instance of Independent Set if
and only if (T, J , c, k) is a yes-instance of WTR.

Let (G, ℓ) be a yes-instance of Independent Set. Then, there is a set I ⊆ V containing ℓ

vertices that are pairwise non-adjacent. We construct a solution of the WTR instance as
follows: for each v ∈ I, we remove the unique occurrence of x in wv and let w̃v denote the
resulting string. Note that w̃v[t] = wv[t + 1] for t ∈ [1, 9]. Note that we removed |I| = ℓ = k

occurrences of x. We show that the modified job set satisfies the capacity constraints c:
First, observe that λ10

0 = |V | − |I| = V − ℓ = c(0, 10). Second, let i ∈ {2, 4, 6, 8} and assume
towards a contradiction that c(e, i) ≥ 2 for some symbol e ∈ Σ. Then, there exist w̃v and w̃u

with w̃v[i] = w̃u[i] = e. Then, we have wv[i + 1] = wu[i + 1] = e and thus, by the construction
of J , the vertices v and u are both incident with the same edge e in G. This contradicts
the fact that I consists of pairwise non-adjacent vertices. Consequently, we have c(e, i) ≤ 1
for every i ∈ {2, 4, 6, 8} and e ∈ E. Since all other capacities are ∞, we conclude that the
modified job set satisfies the capacity constraints c and thus, (T, J , c, k) is a yes-instance
of WTR.

Conversely, let (T, J , c, k) be a yes-instance of WTR. Then, there is a subset of jobs J ′ ⊆
J with |J ′| ≤ k = ℓ such that removing the unique occurrence of x in the corresponding
strings results in a plan that satisfies the capacity constraints c. Observe that |J ′| = ℓ since
otherwise λ10

0 = |V | − |J ′| > |V | − ℓ = c(0, 10). Let wv1 , . . . , wvℓ
be the strings of the jobs

in J ′. Then, I := {v1, . . . , vℓ} is a set of vertices of G with |I| = ℓ. It reamins to show that the
vertices in I are pairwise non-adjacent. Assume towards a contradiction that two vertices v1
and v2 of I are connected by an edge e. Recall that the edge set E is partitioned into the
sets E1, . . . , E4. Without loss of generality we assume e ∈ E1. Then, by the construction of
the jobs we have wv1 [3] = wv2 [3] = e. Removing the single occurrence of x in wv1 and wv2
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provides strings w̃v1 and w̃v2 with w̃v1 [2] = w̃v2 [2] = e. Since c(e, 2) = 1, this contradicts the
fact that the modified job set satisfies the capacity constraints c. Consequently, all vertices
in I are pairwise non-adjacent and thus, (G, ℓ) is a yes-instance of Independent Set. ◀

Note that the alphabet size of the instance constructed in the proof of Theorem 6 is
roughly the size of the input graph of the Independent Set instance. Recall that in
our application the symbols in Σ correspond to distinct machine types on which the jobs
need to be processed. In a real-world production setting it is reasonable that there are
only few distinct machines types. Motivated by this observation, we study the combined
parameter T + |Σ| and show that WTR is FPT for this parameterization.

▶ Theorem 7. WTR parameterized by T + |Σ| is FPT.

Proof. Let (T, J , c, k) be an instance of WTR. We show fixed-parameter tractability by
reformulating WTR as an integer linear program (ILP) where the number of variables is
bounded by a function only depending on T and |Σ|. It is well-known that ILP parameterized
by the number of variables is in FPT [9]. To this end, we introduce the notion of job types.
Recall that a job (w, s) ∈ J consists of a string w ∈ (Σ ∪ {x})∗ and a starting time s ∈ [1, T ].
We say that two jobs have the same type τ = (wτ , sτ ) if they have the same string wτ and
the same starting time sτ . We denote the number of jobs of type τ by nτ . For each job
type τ , we consider possible x-removal sets R ⊆ [1, #wτ ]. We provide the ILP formulation
by specifying the variables, the constraints, and the target function.

Variables. For each combination of a job type τ and a possible removal set R ⊆ [1, #wτ ],
we introduce an integer variable Y(τ,R). The intuitive idea is that the value of Y(τ,R) equals
the number of jobs with type τ whose internal x-deletions correspond to the (possibly
empty) removal set R. More precisely, a solution set J ′ contains exactly Y(τ,R) jobs of the
form (wτ − R, sτ ).

Constraints. For each type τ , we add the following constraint, ensuring that all jobs of
type τ are scheduled:∑

R⊆[1,#wτ ]

Y(τ,R) = nτ .

For each combination of σ ∈ Σ and t ∈ [1, T ], we introduce the following constraint:∑
Type τ=(wτ ,sτ )

∑
R⊆[1,#wτ ]

(wτ −R)[t−sτ +1]=σ

Y(τ,R) ≤ c(σ, t) .

The left-hand side corresponds to the load of symbol σ at time step t. Thus, these constraints
guarantee that the solution satisfies the capacity constraints c: Intuitively, each string wτ

has been modified by a (possibly empty) x-removal set R. For a given type τ , the inner sum
counts all modified strings of type τ that have symbol σ at time step t. Since we sum up
these values over all possible types, the left-hand side corresponds to the load of symbol σ at
time step t.

Target Function. The target function has the form∑
Type τ

∑
R⊆[1,#wτ ]

|R| · Y(τ,R).

WADS 2025
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Recall that intuitively each value of Y(τ,R) equals the number of jobs with type τ whose
internal x-deletions correspond to the (possibly empty) removal set R. Thus, for each
combination of a type τ and a removal set R, we delete exactly Y(τ,R) · |R| symbols. Since
we sum up over all τ and R, the target function models the total number of x-deletions.

Number of Variables. Note that the number of strings in (Σ ∪ {x})∗ in an instance with
maximum time step T is bounded by (|Σ|+1)T , and that we have at most T starting positions.
Consequently, there are at most T · (|Σ| + 1)T possible job types τ = (wτ , sτ ). Furthermore,
since |wτ | ≤ T for all τ , there are at most 2T possible x-removal sets R ⊆ [1, #wτ ]. Thus,
the number of variables Y(τ,R) is bounded by T · (|Σ| + 1)T · 2T . By a classical result by
Lenstra [9], an ILP can be solved FPT-time with respect to the number of variables. This
implies that the above ILP can be solved in FPT-time with respect to T + |Σ|. ◀

We complement the FPT result for T + |Σ| by showing that WTR is unlikely to admit a
problem kernel of polynomial size for this parameterization.

▶ Theorem 8. WTR parameterized by T +|Σ| does not admit a polynomial kernel unless NP ⊆
coNP/poly.

Proof. We prove the statement by providing a polynomial parameter transformation from Set
Cover. In Set Cover, one is given a universe of elements U , a familiy F ⊆ 2U of subsets
of U , and an integer ℓ. The question is whether there exists a subfamily F ′ ⊆ F such
that |F ′| ≤ ℓ and

⋃
F ∈F ′ F = U . Set Cover parameterized by |U | does not admit a

polynomial kernel unless NP ⊆ coNP/poly [6].
Let (U, F , ℓ) be an instance of Set Cover and fix an arbitrary ordering U :=

{u1, . . . , u|U |} of the elements in the universe. We describe how to construct an equi-
valent instance (T, J , c, k) of WTR for the alphabet Σ = {0, 1}. We set k := ℓ and we
set T := 2 · |U | + 1. Note that T is polynomial in |U |. Next, we define the job set J . Given
some F ∈ F and some u ∈ U , we let wF

u := 01 if u ∈ F and wF
u := 00 if u ̸∈ F . We define

the job set J := {(wF , 1) | F ∈ F}, where

wF := x ◦ ⃝|U |
i=1wF

ui
.

Note that wF [2i + 1] = 1 if and only if ui ∈ F and we have wF [2i] = 0 for every i ∈ [1, |U |].
We finish the construction by defining the (2 · |U | + 1)-capacity bound c: For every i ∈

[1, |U |], we set c(1, 2i + 1) := |{F ∈ F | u ∈ F}| − 1. All remaining c(σ, t) are set to ∞.
We next show that (U, F , ℓ) is a yes-instance of Set Cover if and only if (T, J , c, ℓ) is a

yes instance of WTR.
Let (U, F , ℓ) be a yes-instance of Set Cover. Then, there exists a subfamily F ′ ⊆ F

with |F ′| ≤ ℓ such that for each i ∈ [1, |U |], there is one F ∈ F ′ with ui ∈ F . We construct a
solution of the WTR instance as follows: for each F ∈ F ′, we remove the unique occurrence
of x in wF , and let w̃F denote the resulting string. Note that w̃F [t] = wF [t + 1] for
every t ∈ [1, T − 1]. We show that the modified job set satisfies the capacity constraints c.
Since all other capacities are ∞, it suffices to show that for each i ∈ [1, |U |] the load of
symbol 1 at time step 2i + 1 is not larger than c(1, 2i + 1). Since w̃F [2i + 1] = wF [2i + 2] = 0
for all F ∈ F ′, we have λ2i+1

1 = |{F ∈ F \ F ′ | ui ∈ F}|. Since each ui is contained in at
least one F ∈ F ′, we conclude that λ2i+1

1 ≤ |{F ∈ F | ui ∈ F}| − 1 = c(1, 2i + 1). Therefore,
(T, J , c, ℓ) is a yes instance of WTR.

Conversely, let (T, J , c, k) be a yes-instance of WTR. Then, there is a subset J ′ ⊆ J
of jobs with |J ′| ≤ ℓ such that removing the unique occurrence of x in the corresponding
strings results in a plan that satisfies the capacity constraints c. Let wF1 , . . . , wF|J ′| be the
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strings of the jobs in J ′. Then, F ′ := {F1, . . . , F|J ′|} is a subfamily of F of size at most ℓ.
Assume towards a contradiction that there is some ui ∈ U with ui ̸∈

⋃
F ∈F ′ F . Then, for

each F ∈ F with ui ∈ F , the occurrence of x in wF has not been removed. Consequently,
the load of symbol 1 at time step 2i + 1 is |{F ∈ F | ui ∈ F}| > c(1, 2i + 1). This contradicts
the fact that removing the x in the strings of J ′ results in a job set that satisfies the capacity
constraints c. Therefore, (U, F , ℓ) is a yes-instance of Set Cover. ◀

The following two observations can be made by a taking closer look at the instance
constructed in the proof of Theorem 8: First, the parameter k equals the solution size of
the Set Cover instance. Since Set Cover is known to be W[2]-hard when parameterized
by solution size [5], this implies the following.

▶ Corollary 9. WTR parameterized by k is W[2]-hard even if |Σ| = 2.

Second, the parameter n + k is upper-bounded by 2 · |F|, where F is the set familiy in
the Set Cover instance. Since Set Cover does not admit a polynomial kernel for |F| [6],
this implies the following.

▶ Corollary 10. WTR does not admit a polynomial kernel for n + k unless NP ⊆ coNP/poly
even if |Σ| = 2.

Next, consider the parameterization by T + k. Recall that WTR is XP for k by
Observation 2 and thus, WTR is XP for T + k. We complement this result by showing
W[1]-hardness.

▶ Theorem 11. WTR parameterized by T + k is W[1]-hard.

Proof. We reduce from Multicolored Clique parameterized by solution size ℓ. In
Multicolored Clique, one is given an ℓ-partite graph G = (V1 ∪ . . . ∪ Vℓ, E) with
|V1| = |V2| = . . . = |Vℓ|, and the task is to find a multicolored clique, i.e., a set of ℓ

pairwise adjacent vertices containing exactly one vertex from each Vi. Multicolored
Clique is W[1]-hard parameterized by ℓ, even if there is some r ∈ N so that each vertex
has exactly r neighbors in every other color class [5]. Let G = (V1 ∪ . . . ∪ Vℓ, E) be an
instance of Multicolored Clique where each vertex v has exactly r neighbors in every
other color class. We let f : [1,

(
ℓ
2
)
] →

([1,ℓ]
2

)
be an arbitrary bijection to fix an ordering of

the set
([1,ℓ]

2
)

:= {X ⊆ [1, ℓ] | |X| = 2} containing all two-element subsets of [1, ℓ]. We use
the alphabet Σ = V ∪ {0, 1} ∪ {zi | i ∈ [ℓ]}. We add the following jobs:

for each v ∈ Vi, we add one job Jv = (wv, 1) where wv starts with xzi. Afterwards, for
each q ∈ [1,

(
ℓ
2
)
], we append the following four letters:

if i /∈ f(q), then we append 0000,
if f(q) = {i, i′} for some i′ > i, then we append 0v00, and
if f(q) = {i′, i} for some i′ < i, then we append 000v.

for each edge e = {u, v} ∈ E with u ∈ Vi and v ∈ Vi′ for some i < i′, we add one
job Je = (xu0v, 4 · (f({i, i′}) − 1) + 2).

The capacities are as follows:
for each i ∈ [1, ℓ], letter zi has capacity 1 at time 1 and capacity |V1| − 1 at time 2,
for each v ∈ V , letter v has capacity r at every time step, and
all other capacities are set to be ∞.
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Finally, we set k := ℓ +
(

ℓ
2
)
. Note that T = 4 ·

(
ℓ
2
)

+ 2. As the reduction can clearly be
computed in polynomial time, it remains to show correctness.

Before we show the correctness, we provide some intuition. The capacities of zi at time 1
ensures that at most one deletion occurs in jobs {Jv | v ∈ Vi}, while the capacities of zi

at time 2 ensure that at least one deletion occurs in {Jv | v ∈ Vi}. Therefore, exactly one
deletion occurs in {Jv | v ∈ Vi} for every i ∈ [1, ℓ]. These ℓ vertices with a deletion correspond
to a multicolored clique: Since there exists some unique vi ∈ Vi such that the x in Jvi

is
deleted, this implies that all occurrences of vi in Jvi

move one time step earlier. Thereby, for
each q ∈ [1,

(
ℓ
2
)
] with i ∈ f(q), letter vi from Jvi “collides” with letter vi in Je the r edges e

incident to vi in E[Vi, Vi′ ] where i′ = f(q) \ {i}. Because the capacity of vi is r at each time
step, this implies that a deletion has to occur in Je for some edge e ∈ E[Vi, Vi′ ] incident to vi.
As the budget allows for k − ℓ =

(
ℓ
2
)
further deletions, this implies that there is exactly one

edge in E[Vi, Vi′ ] with a deletion for {i, i′} ∈
([1,ℓ]

2
)
. Since this edge needs to be incident to

both vi and vi′ , it follows that {vi | i ∈ [1, ℓ]} is a multicolored clique.

We first show that if G is a yes-instance to Multicolored Clique, then (T, J , c, k) is
yes-instance of WTR. Given a clique {v1, . . . , vℓ} with vi ∈ Vi, we construct a solution to the
WTR instance as follows: We remove the unique occurrence of x in job Jvi

for each i ∈ [1, ℓ]
and in job J{vi1 ,vi2 } for i1 < i2 ∈ [1, ℓ]. We call the resulting strings w̃v for v ∈ V and w̃e

for e ∈ E. As we removed k occcurences of x in total, it remains to show that the capacity
constraints are satisfied. For letter zi, we have a load of 1 at time 1 (from job Jvi

) and a load
of |V1| − 1 at time to (from jobs Jv for V ∈ Vi \ {vi}). Thus, the capacities of zi are satisfied.
For v ∈ V \ {v1, . . . , vℓ}, the maximum load at any time is deg(v) = r, so its capacity is
satisfied. We continue with letter vi for i ∈ [1, ℓ]. At time 4 · (q − 1) + 3, the load of vi is
either 0 (if i /∈ f(q) or f(q) = {i, i′} for some i′ < i) or r (if f(q) = {i, i′} for some i′ > i; in
this case, job Jvi

and r − 1 edge jobs (all edges from E[Vi, Vi′ ] ∩ δ(vi) except for {vi, vi′}). In
both cases, the capacity constraint is satisfied. Symetrically, at time 4 · (q − 1) + 5, the load
is either 0 (if i /∈ f(q) or f(q) = {i, i′} for some i′ > i) or r (if f(q) = {i, i′} for some i′ < i;
in this case, job Jvi and r − 1 edge jobs (all edges from E[Vi, Vi′ ] ∩ δ(vi) except for {vi, vi′}).
In both cases, the capacity constraint is satisfied.

Lastly, we show that if (T, J , c, k) is a yes-instance to WTR, then G is a yes-instance
to Multicolored Clique. Since (T, J , c, k) is a yes-instance, there is a subset J ′ ⊆ J
of jobs with |J ′| ≤ ℓ such that removing the unique occurrence of x in the corresponding
strings results in a plan that satisfies the capacity constraints c. As the capacity of zi for
i ∈ [ℓ] at time step 2 is |V1| − 1, it follows that for each i ∈ [1, ℓ], there exists some vi ∈ Vi

with Jvi
∈ J ′. As c(zi, 1) = 1, this vi is unique.

We next show that {v1, . . . , vℓ} forms a multicolored clique. Consider any q ∈ [1,
(

ℓ
2
)
] and

let f(q) = {i1, i2} for some i1 < i2. At time 4 · (q −1)+3, job Jvi1
contributes one to the load

of vi1 . For each edge e ∈ E[Vi1 , Vi2 ] ∩ δ(vi1), job Je contributes 1 to the load of vi1 at time
4 · (q − 1) + 3 if and only if Je /∈ J ′. As |E[Vi1 , Vi2 ] ∩ δ(vi1)| = r = c(vi, 4 · (q − 1) + 3), this
implies that there is at least one edge e ∈ E[Vi1 , Vi2 ] ∩ δ(vi1) with Je ∈ J ′. Considering the
letter vi2 and time 4 · (q − 1) + 5, symmetric arguments show that there is at least one edge
e ∈ E[Vi1 , Vi2 ]∩δ(vi2) with Je ∈ J ′. As there are ℓ deletions in jobs Jv for v ∈ V and k − ℓ =(

ℓ
2
)
, this implies that for each i1 < i2 ∈ [ℓ], there is a unique e ∈ E[Vi, Vi′ ] ∩ δ(vi1) ∩ δ(vi2)

with Je ∈ J ′, and this edge is incident to both vi1 and vi2 , i.e., e = {vi1 , vi2}. This implies
that {v1, . . . , vℓ} is a multicolored clique. ◀
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5 Conclusion

In this work, we initiated theoretical studies of repairing production schedules by the deletion
of waiting times in a job shop setting by introducing a mathematical formulation of the
problem. While our results mostly highlight the hardness of this problem, there are also
few tractability results, for example when there are only few different machine types and a
short time horizon is considered. We conclude with several proposals for further research
questions:

Instead of removing waiting times, there are also other natural operations to modify a
schedule, for example swapping jobs. What is the complexity of the resulting problem?
Our scheduling model is quite general, being based on job shop scheduling. Does basing
the problem on simpler scheduling models, e.g. flow shops, result in a more tractable
problem?
Given that eliminating all capacity violations turned out to be quite hard, one might try
to not directly search for a “perfect” schedule, but instead only a “better” one (i.e., one
with fewer capacity violations). Can such a schedule be found using the framework of
parameterized local search?
While we study how to remove pre-planned waiting times, it might be interesting to study
how these waiting times can be established in the first place. How can we create schedules
that are robust in the sense that they can be repaired by removing waiting times?
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