
Fantastic Flips and Where to Find Them:
A General Framework for Parameterized Local
Search on Partitioning Problems
Niels Grüttemeier #

Fraunhofer IOSB-INA, Lemgo, Germany

Nils Morawietz #

Institute of Computer Science, Friedrich Schiller University Jena, Germany
LaBRI, Université de Bordeaux, Talence, France

Frank Sommer # Ñ

Institute of Logic and Computation, TU Wien, Austria

Abstract
Parameterized local search combines classic local search heuristics with the paradigm of parameterized
algorithmics. While most local search algorithms aim to improve given solutions by performing one
single operation on a given solution, the parameterized approach aims to improve a solution by
performing k simultaneous operations. Herein, k is a parameter called search radius for which the
value can be chosen by a user. One major goal in the field of parameterized local search is to outline
the trade-off between the size of k and the running time of the local search step.

In this work, we introduce an abstract framework that generalizes natural parameterized local
search approaches for a large class of partitioning problems: Given n items that are partitioned into b

bins and a target function that evaluates the quality of the current partition, one asks whether it is
possible to improve the solution by removing up to k items from their current bins and reassigning
them to other bins. Among others, our framework applies for the local search versions of problems
like Cluster Editing, Vector Bin Packing, and Nash Social Welfare. Motivated by a
real-world application of the problem Vector Bin Packing, we introduce a parameter called
number of types τ ≤ n and show that all problems fitting in our framework can be solved in
τk · 2O(k) · |I|O(1) time, where |I| denotes the total input size. In case of Cluster Editing, the
parameter τ generalizes the well-known parameter neighborhood diversity of the input graph.

We complement these algorithms by showing that for all considered problems, an algorithm
significantly improving over our algorithm with running time τk · 2O(k) · |I|O(1) would contradict
the Exponential Time Hypothesis. Additionally, we show that even on very restricted instances, all
considered problems are W[1]-hard when parameterized by the search radius k alone. In case of the
local search version of Vector Bin Packing, we provide an even stronger W[1]-hardness result.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Computing methodologies → Discrete space search

Keywords and phrases Flip-Neighborhood, Cluster Editing, Vector Bin Packing, Vertex Cover,
NP-hard problem, Max c-Cut

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.32

Related Version Continuously Updated Version: https://arxiv.org/abs/2506.24001

Funding Niels Grüttemeier : Supported by the project Datenfabrik.NRW, a project by KI.NRW,
funded by the Ministry for Economics, Innovation, Digitalization and Energy of the State of North
Rhine-Westphalia (MWIDE).
Nils Morawietz: Partially supported by the French ANR, project ANR-22-CE48-0001 (TEM-
POGRAL).
Frank Sommer : Supported by the Alexander von Humboldt Foundation.

Acknowledgements We would like to thank Lea Hoeing, Kai Lebbing, Christiane Markuse-Schneider,
and Lukas Ptock (Schmitz Cargobull AG) for showing us the interesting application of Vector
Bin Packing.

© Niels Grüttemeier, Nils Morawietz, and Frank Sommer;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niels.gruettemeier@iosb-ina.fraunhofer.de
https://orcid.org/0000-0002-6789-2918
mailto:nils.morawietz@uni-jena.de
https://orcid.org/0000-0002-7283-4982
mailto:fsommer@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/fsommer/
https://orcid.org/0000-0003-4034-525X
https://doi.org/10.4230/LIPIcs.WADS.2025.32
https://arxiv.org/abs/2506.24001
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

32:2 A General Framework for Parameterized Local Search on Partitioning Problems

1 Introduction

The principle of local search is among the most important heuristic approaches in combina-
torial optimization and it is highly relevant to find good solutions to NP-hard problems in
practice [19]. The idea is to apply small modifications on a given starting solution to obtain
a new solution with a better target value than the starting solution. Local search has been
studied extensively and it has been proven to be highly efficient [2, 19, 26, 1]. Furthermore,
it is easy to understand and it is also a good plugin to improve already competitive solutions
provided by other metaheuristics [31, 10].

Consider a classic partitioning problem as Multi Knapsack, where the goal is to assign
items (each with a weight) to multiple knapsacks (each with a weight capacity and specific
values for the items) in a way that all capacity constraints are satisfied and the total value is
maximal. One of the most natural ways to apply small modifications in a local search scenario
is an item flip, where one removes a single item from its current knapsack and inserts it into
another knapsack. This natural idea of flipping the assignment of single items to improve a
solution is studied for knapsack problems [4] and for other partitioning problems [8, 27]. A
general drawback in performing these single item flips – and also in local search in general –
is the chance of getting stuck in poor local optimal solutions. Thus, to obtain a robust local
search application, a strategy to prevent getting stuck in these poor local optima is required.

In this work, we consider the approach of parameterized local search [29, 7] to decrease
the chance of getting stuck in poor local optima reached by item flips. Instead of searching
for an improving solution by one single operation (here: a single item flip), the user may set
a search radius k to extend the search space for possible improvements that can be reached
with up to k simultaneous operations. Thus, the idea is to make the search space larger
so that getting stuck in poor local optima becomes less likely. Parameterized local search
combines local search with the paradigm of parameterized algorithmics [3] and aims to outline
the trade-off between the size of the search radius k and the running time of the search step.
Parameterized local search has been studied extensively in the algorithmic community: for
vertex deletion and partitioning problem in graphs [7, 13, 16, 18, 5, 21, 11, 10], for problems
on strings and phylogenetic networks [17, 23], and many other problems [29, 32, 9, 15]. One
major goal in parameterized local search is to show that finding an improvement within
search radius k is fixed parameter tractable (FPT) for k. That is, finding an improving
solution can be done in time g(k) · |I|O(1), where |I| is the total encoding length of the input
instance and g is some computational function only depending on k. Note that an algorithm
with such a running time nicely outlines the trade-off between radius size and running time,
as the superpolynomial part only depends on k while |I| only contributes as a polynomial
factor to the running time. Unfortunately, most parameterized local search problems are
W[1]-hard for k [29, 7, 17, 30] and therefore, an algorithm with running time g(k) · |I|O(1)

presumably does not exist.
Motivated by the negative results for the parameter k, one often studies the combination

of k and some structural parameter τ to obtain algorithms with running g(k, τ) · |I|O(1).
This approach has been successful both from a theoretical and experimental perspective [18,
21, 12, 10]. In this work, we follow this direction by studying parameterization by k and
an additional parameter τ that we call the number of types. We consider the local search
versions of a large class of well-known combinatorial problems including Max c-Cut, Multi
Knapsack, Cluster Editing and Vector Bin Packing, where the search space is defined
by performing k flips. Recall that one flip intuitively removes one item from its assigned set
and inserts in into some other set. The interpretation of flips and of our parameter τ always
depends on the concrete problem and will be explained for each problem individually.

N. Grüttemeier, N. Morawietz, and F. Sommer 32:3

Our approach of exploiting the parameter τ is motivated by a real-world production
planning application at the company Schmitz Cargobull AG. Planning the production
at Schmitz Cargobull AG corresponds to solving an instance of Vector Bin Packing [28].
In Vector Bin Packing, one is given a large collection of vectors S ⊆ Nd together with
a vector w ∈ Nd and an integer b. The question is, whether there exists a partition of S
into b parts S1, . . . , Sb, such that

∑
v∈Si

v ≤ w for all i ∈ [1, b]. In the application at Schmitz
Cargobull AG, we have S ⊆ {0, 1}d and the vectors v ∈ S correspond to customer orders
where the entries of v specify whether a specific option is chosen (=̂ the entry has value 1)
or not (=̂ the entry has value 0). The entries of w correspond to the production capacities
available for the corresponding product option at one day of production. Instead of asking
for a partition where each resulting vector set satisfies

∑
v∈Si

v ≤ w, one asks for a partition
minimizing the total overload. More precisely, the overload of a single set Si is defined
as
∑d

j=1 max (0, (
∑

v∈Si
vj) − wj), and the total overload is the sum of all overloads of all

sets S1, . . . , Sb. Note that the total overload is 0 if and only if the given instance is a
yes-instance of the decision version of Vector Bin Packing. While Schmitz Cargobull AG
usually receives a large number of customer orders, relatively many of these orders request
the exact same product option combinations. Consequently, the number of distinct vectors
in S is much smaller than |S|. Therefore, our research is motivated by setting τ to be the
number of distinct vectors in an instance of Vector Bin Packing and study parameterized
local search for the combination of k and τ where the target is to minimize the total overload.

From a more abstract point of view, Vector Bin Packing is a problem where one
assigns a collection of items (vectors) to a collection of bins (sets of the resulting partition)
in a way that a target function (total overload) is minimized. Furthermore, if two elements
from S have the same vector, these elements have the same effect on the target function. In
other words, there are only τ distinct ways in which a specific item might have an influence
on the target function when assigned to a specific bin. This more abstract view leads to a
framework providing running times τk ·2O(k) · |I|O(1) and kO(τ) · |I|O(1) for the parameterized
local search versions for a wide range of well-known combinatorial problems that behave in
the same way as Vector Bin Packing. The τk · 2O(k) · |I|O(1) running-time is particularly
motivated since the value of k is a small constant chosen by the user [24].

Recall that the concrete interpretation of the parameter τ , of the items, and of the bins
always depends on the concrete problem and will be explained for each problem individually.
Besides the number of distinct vectors, τ can be interpreted as the neighborhood diversity of
an input graph in case of Max c-Cut or Cluster Editing, or as the number of distinct
value-weight combinations in case of Multi Knapsack.

Our Contributions. In the first part (see Section 3), we introduce the LS Generalized
Bin Problem, which is a general framework capturing many parameterized local search
problems where the search radius is defined by a number of item flips. Moreover, we introduce
the parameter number of types τ as an abstract concept for LS Generalized Bin Problem
capturing well-known parameters such as the neighborhood diversity of a graph. We describe
general algorithms for the abstract LS Generalized Bin Problem leading to running
times of τk · 2O(k) · |I|O(1) and kO(τ) · |I|O(1) for the local search versions of many problems
that fit into our framework (see Theorem 3.5).

In the second part (see Section 4) we provide simple example applications of the introduced
framework leading to new results for the parameterized local search versions of classic
combinatorial optimization problems, graph problems, and one problem from computational
social choice (Nash Social Welfare). The formal problem definitions can be found in

WADS 2025

32:4 A General Framework for Parameterized Local Search on Partitioning Problems

Table 1 The corresponding local search problems for the flip distance of these problems can be
solved in τk · 2O(k) · |I|O(1) time and in kO(τ) · |I|O(1) time for the respective parameter τ as we show
in Section 4. In case of Vertex Cover, we have exactly two bins: the resulting vertex cover (vc)
and the remaining independent set (is). In this case, the flip distance corresponds to the cardinality
of the symmetric difference between the current vertex cover and the improving vertex cover.

Problem Items Bins Parameter τ Section
Max c-Cut vertices color classes neighborhood diversity 4.1
Cluster Editing vertices clusters neighborhood diversity 4.2
Vector Bin Packing vectors bins number of distinct vectors 4.3
Vertex Cover vertices (vc, is) neighborhood diversity 4.4
Nash Social Welfare items agents number of distinct items 4.5
Multi Knapsack items knapsacks number of distinct items 4.5

Section 4. All results in this part mainly rely on simply reformulating the concrete problem
as LS Generalized Bin Problem. An overview of the studied problems is given in Table 1.
To the best of our knowledge, this is the first work studying parameterized local search for
Nash Social Welfare, Vector Bin Packing, and Multi Knapsack.

In Section 5, we complement our results by studying parameterization by the search
radius k alone. We show that the parameterized local search versions of Nash Social
Welfare and Multi Knapsack are W[1]-hard when parameterized by k. Furthermore,
we provide a strong hardness result for Vector Bin Packing showing W[1]-hardness
for k + q, where q denotes the maximum number of non-zero-entries over all vectors from
the input. The parameter q is particularly motivated by the real-world application from the
company Schmitz Cargobull AG, where q is even smaller than τ . We finally show that all of
our algorithms with running time τk · 2O(k) · |I|O(1) are tight in the sense of the Exponential
Time Hypothesis (ETH) [20].

2 Preliminaries

For details on parameterized complexity, we refer to the standard monographs [3, 6].
For integers a and b with a ≤ b, we define [a, b] := {i ∈ N | a ≤ i ≤ b}. Given a set X

and some integer b, we call a mapping f : X → [1, b] a b-partition of X or a b-coloring of X.
For every i ∈ [1, b], we let f−1(i) := {x ∈ X | f(x) = i}. The flip between two b-partitions f
and f ′ is defined as Dflip(f, f ′) := {x ∈ X | f(x) ̸= f ′(x)}. The flip distance between f

and f ′ is then defined as dflip(f, f ′) := |Dflip(f, f ′)|. For a set X, we let 2X denote the power
set of X.

For a graph G = (V,E), by n := |V | we denote the number of vertices and by m := |E|
we denote the number of edges. By N(u) := {w ∈ V | {u,w} ∈ E} and by N(S) :=
(
⋃

u∈S N(u)) \ S we denote the open neighborhood of u and S, respectively. Two vertices u
and w have the same neighborhood class if N(u) \ {w} = N(w) \ {u}. By nd(G) we denote
the number of neighborhood classes of G. A vertex set S is a vertex cover for G if each edge
of E has at least one endpoint in S. A vertex set S is an independent set of G, if no edge
has of E has both endpoints in S.

Proofs of statements marked with (⋆) are deferred to the full version.

N. Grüttemeier, N. Morawietz, and F. Sommer 32:5

3 Generalized Parameterized Local Search for Partitioning Problems

We present a framework that captures many computational problems such as Vector Bin
Packing, Cluster Editing, and Nash Social Welfare. On a high level, all these
problems have in common, that one aims to partition some set X (e.g. a set of vectors, a
set of vertices, or a set of items) into multiple “bins”. A target function assigns a value to
the resulting partition. The goal is to find a partition that minimizes (or maximizes) the
target function. This section is structured as follows. We first introduce a “Generalized Bin
Problem” that generalizes the computational problems studied in this work. Afterwards, we
introduce a parameter called “types”. Finally, we provide the algorithmic results for this
parameter.

3.1 The Generalized Bin Problem
Intuitively, we aim to partition a given set X into a given number of “bins” b ∈ N, and a
target value specifies how good this b-partition of X is. This target value is determined by
an “individual bin evaluation”, which is a collection of local target values of each single bin.
These values are then combined to obtain the target value for the whole b-partition of X.

▶ Definition 3.1. Let X be a set, let b ∈ N, and let inf ∈ {∞,−∞}. An individual bin
evaluation (IBE) is a b-tuple (φi)i∈[1,b] of functions φi : 2X → Z ∪ {inf}. An IBE defines a
target value val(f) for every b-partition f by

val(f) :=
(

b⊕
i=1

φi(f−1(i))
)
,

where ⊕ is a commutative and associative binary operation ⊕ : Z∪{inf}×Z∪{inf} → Z∪{inf}
satisfying a⊕ inf = inf ⊕ a = inf for all a ∈ Z ∪ {inf}.

While our general framework works for arbitrary commutative and associative opera-
tions ⊕, this work only considers concrete problems where ⊕ is either the summation or
the multiplication of integer numbers. The value inf ∈ {∞,−∞} corresponds to infeasible
assignments of bins, for example, violating capacity constraints of a knapsack. In case of a
minimization problem we consider IBE with inf = ∞ and in case of a maximization problem
we have inf = −∞. In the remainder of this section, all problem statements and algorithms
are given for the case where one aims to minimize the target function. Maximization prob-
lems are defined analogously. With Definition 3.1 at hand, we define the following general
computational problem for every fixed commutative and associative operation ⊕.

Generalized Bin Problem
Input: An integer b, a set X, and an IBE (φi)i∈[1,b].
Goal: Find a b-partition f that minimizes val(f).

Note that we did not yet specify how the IBE from the input is given. As this depends on
the concrete problems, this will be discussed for each problem individually. Throughout this
section, we analyze the algorithms running times with respect to the parameter Φ denoting
the running time needed for one evaluation of a value φi(X ′) with X ′ ⊆ X.

Recall that our aim is to study parameterized local search for the flip neighborhood.
More precisely, we aim to find a b-partition f ′ that has a better target value than some
given b-partition f , while dflip(f, f ′) ≤ k for a given k. The corresponding computational
problem is defined as follows.

WADS 2025

32:6 A General Framework for Parameterized Local Search on Partitioning Problems

LS Generalized Bin Problem
Input: An integer b, a set X, and an IBE (φi)i∈[1,b], a b-partition f : X → [1, b], and an

integer k.
Question: Is there a b-partition f ′ with dflip(f, f ′) ≤ k such that val(f ′) < val(f)?

3.2 Types in Generalized Bins
We next define a parameter called “number of types” τ . The idea is, that in a polynomial-time
preprocessing step, the set X is partitioned into classes of elements (X1, . . . , Xτ) in a way
that all elements in each Xi have the exact same impact on the target value for every possible
bin assignment. The intuitive idea of “same impact” is formalized as follows.

▶ Definition 3.2. Let X be a set, let b ∈ N, and let (φi)i∈[1,b] be an IBE for X and b. Two
(not necessarily distinct) elements x ∈ X and y ∈ X are target equivalent (x ∼ y), if for
every i ∈ [1, b] and for every A ⊆ X with {x, y}∩A = {x} we have φi((A\{x})∪{y}) = φi(A).

▶ Proposition 3.3 (⋆). The relation ∼ is an equivalence relation on X.

The main idea of our algorithm is that target equivalent elements can be treated equally
as they have the same influence on the target value. When considering concrete problems,
we always use a simple pairwise relation between the elements leading to a partition of X
into classes of pairwise target equivalent elements. These classes do not necessarily need to
be maximal under this constraint. Thus, it suffices to consider the following relaxation of
the equivalence classes.

▶ Definition 3.4. Let X be a set, let b ∈ N, and let (φi)i∈[1,b] be an IBE for X and b. A
tuple (X1, . . . , Xτ) of disjoint sets with

⋃τ
j=1 Xj = X is called a type partition of X if the

elements of each Xj are pairwise target equivalent. For every j ∈ [1, τ], we say that the
elements of Xj have type j.

Obviously, the equivalence classes for ∼ always form a type partition with the minimum
number of sets. Throughout this work, we assume that each instance I := (b,X, (φi)i, f, k)
of LS Generalized Bin Problem is associated with a specified type partition, and the
parameter number of types τ := τ(I) is defined as the number of sets of the type partition
associated with I.

3.3 Algorithmic Results for LS Generalized Bin Problem
Our goal is to study LS Generalized Bin Problem parameterized by k+ τ . Applying this
on concrete problems then leads to FPT algorithms for a great range of parameterized local
search versions of well-known computational problems. The interpretation of the parameter τ
always depends on the concrete problem. We provide the following algorithmic results. Recall
that Φ denotes the running time needed for one evaluation of a value φi(X ′) with X ′ ⊆ X.

▶ Theorem 3.5. LS Generalized Bin Problem can be solved
a) in τk · 2O(k) · b · Φ · |X|O(1) time, and
b) in kO(τ) · b · Φ · |X|O(1) time
if a type partition (X1, . . . , Xτ) is additionally given as part of the input.

To present the algorithms behind Theorem 3.5, we introduce the notion of type specification
and type specification operations. Recall that elements of the same type behave in the same
way when assigned to a bin. Thus, when evaluating the target function, one may consider

N. Grüttemeier, N. Morawietz, and F. Sommer 32:7

the types of the assigned elements instead of the concrete elements. A type specification is a
vector p⃗ that intuitively corresponds to a collection of elements in X containing exactly pj

elements from the class Xj .

▶ Definition 3.6. Let b be an integer, let X be a set, and let (φi)i∈[1,b] be an IBE. Moreover,
let (X1, . . . , Xτ) be a type partition. A type specification is a vector p⃗ = (p1, . . . , pτ) ∈ N0

τ

with pj ∈ [0, |Xj |] for each j ∈ [1, τ].

Since elements of the same type have the same impact on the target function, we can
address the change of target values φi(X ′) by just specifying the types of elements added to
and removed from X ′ with X ′ ⊆ X. To ensure that after adding and removing elements of
specific types from a set X ′ corresponds to an actual subset of X, we introduce the notion of
subtractive and additive compatibility.

▶ Definition 3.7. Let b be an integer, let X be a set, and let (φi)i∈[1,b] be an IBE. Moreover,
let (X1, . . . , Xτ) be a type partition. We say that a type specification p⃗ is
a) subtractive compatible with a set X ′ ⊆ X if for every j ∈ [1, τ], we have |Xj ∩X ′| ≥ pj.
b) additive compatible with a set X ′ ⊆ X if for every j ∈ [1, τ], we have |Xj ∩ (X \X ′)| ≥ pj .
We use (p⃗, q⃗) ∝ X ′ to denote that p⃗ is subtractive compatible with X ′ and q⃗ is additive
compatible with X ′. Given p⃗ and q⃗ with (p⃗, q⃗) ∝ X ′, the type vector operation for each i ∈ [1, b]
is defined as

φi((X ′ \ p⃗) ∪ q⃗) := φi((X ′ \Xp⃗) ∪Xq⃗),

where Xp⃗ ⊆ X is some set containing exactly pj arbitrary elements from Xj ∩X ′ for every j ∈
[1, τ], and Xq⃗ ⊆ X is some set containing exactly qj arbitrary elements from Xj ∩ (X \X ′)
for every j ∈ [1, τ].

The notion of target equivalence (Definition 3.2) together with the notion of subtractive
and additive compatibility guarantees the following.

▶ Proposition 3.8. The type vector operation is well-defined.

Proof. Since p⃗ is subtractive compatible with X ′, there are at least pj elements in Xj ∩X ′ and
thus, the set Xp⃗ ⊆ X exists. Analogously, the set Xq⃗ exists due to the additive compatibility
of q⃗ with X ′. Consequently, (X ′ \Xp⃗) ∪Xq⃗ ⊆ X and therefore, φi((X ′ \Xp⃗) ∪Xq⃗) is defined.

It remains to show that the value φi((X ′ \Xp⃗) ∪Xq⃗) does not depend on the choice of
elements in Xp⃗ and Xq⃗. First, let x ∈ Xp⃗ and let y ̸∈ Xp⃗ with y ∼ x. Then,

φi(X ′ \ (Xp⃗ \ {x} ∪ {y}) ∪Xq⃗) = φi((X ′ \Xp⃗ ∪Xq⃗) \ {y} ∪ {x}) = φi(X ′ \Xp⃗ ∪Xq⃗),

by Definition 3.2. Analogously, let x ∈ Xq⃗ and let y ̸∈ Xq⃗ with x ∼ y we have

φi(X ′ \Xp⃗ ∪ (Xq⃗ \ {x} ∪ {y})) = φi((X ′ \Xp⃗ ∪Xq⃗) \ {x} ∪ {y}) = φi(X ′ \Xp⃗ ∪Xq⃗).

Therefore, the type vector operation is well-defined. ◀

With the notion of type specifications at hand, we next present the algorithmic results.
Intuitively, the algorithms behind Theorem 3.5 work as follows: One considers every possibility
of how many elements of which type belong to the (at most) k elements in Dflip(f, f ′). For
each such choice, one computes the best improving flip corresponding to the choice. Note
that the information how many elements of which type are flipped, can be encoded as a type
specification δ⃗ in the way that all δj correspond to the number of flipped elements of type j.

WADS 2025

32:8 A General Framework for Parameterized Local Search on Partitioning Problems

We first describe the subroutine computing the improving b-partition f ′ corresponding to a
given type specification δ⃗. Afterwards, we describe how to efficiently iterate over all possible δ⃗
to obtain the running times stated in Theorem 3.5.

We use the notation p⃗ ≤ q⃗ to indicate that pi ≤ qi for all vector entries, and we let p⃗− q⃗

denote the component-wise difference between p⃗ and q⃗.

▶ Lemma 3.9. Let b be an integer, let X be a set, let (φi)i∈[1,b] be an IBE, and let f : X →
[1, b] be a b-partition. Moreover, let (X1, . . . , Xτ) be a type partition and let δ⃗ be a type
specification and we let k :=

∑τ
j=1 δj. A b-partition f ′ : X → [1, b] with

(|X1 ∩Dflip(f, f ′)|, . . . , |Xτ ∩Dflip(f, f ′)|) ≤ δ⃗

that minimizes val(f ′) among all such b-partitions can be computed in
a) 2O(k) · b · Φ · |X|O(1) time, or in
b) (⌈ k

τ ⌉ + 1)4τ · b · Φ · |X|O(1) time.

Proof. We first provide an algorithm based on dynamic programming and afterwards we
discuss the running times a) and b).
Intuition. Before we formally describe the dynamic programming algorithm, we provide
some intuition: Every x ∈ Dflip(f, f ′) gets removed from its bin and is inserted into a new
bin. We fix an arbitrary ordering of the bins and compute solutions for prefixes of this
ordering in a bottom-up manner. For every bin, there is a set of removed elements R and a
set of inserted elements I. Since the target value depends on the types of the elements rather
than the concrete sets R and I, we may only consider how many elements of which type are
removed from a bin and inserted into a bin. Therefore, we compute the partial solutions
for given p⃗ ≤ δ⃗ and q⃗ ≤ δ⃗, where p⃗ corresponds to the removed types, and q⃗ corresponds to
the inserted types. After the computation, we consider the solution, where p⃗ = q⃗ = δ⃗, that
is, the solution where the exact same types were removed and inserted. Going back from
abstract types to concrete elements then yields the resulting b-partition f ′.
Dynamic programming algorithm. The dynamic programming table has entries of the
form T [p⃗, q⃗, ℓ] where ℓ ∈ [1, b], q⃗ ≤ δ⃗, and p⃗ ≤ δ⃗. One such table entry corresponds to the
minimal value of

ℓ⊕
i=1

φi((f−1(i) \Ri) ∪ Ii)

under every choice of sets Ri ⊆ f−1(i) and Ii ⊆ X \ f−1(i) for i ∈ [1, ℓ] that satisfy

(
ℓ∑

i=1
|Ri ∩X1|, . . . ,

ℓ∑
i=1

|Ri ∩Xτ |) = p⃗ and (
ℓ∑

i=1
|Ii ∩X1|, . . . ,

ℓ∑
i=1

|Ii ∩Xτ |) = q⃗.

The table is filled for increasing values of ℓ. As base case, we set T [p⃗, q⃗, 1] := φ1((f−1(1)\p⃗)∪q⃗)
if (p⃗, q⃗) ∝ f−1(1). Recall that (p⃗′, q⃗′) ∝ f−1(1) is true if and only if p⃗′ is subtractive
compatible with f−1(1) and q⃗′ is additive compatible with f−1(1). If p⃗ or q⃗ is incompatible,
we set T [p⃗, q⃗, 1] := ∞. The recurrence to compute an entry with ℓ > 1 is

T [p⃗, q⃗, ℓ] := min
p⃗′≤p⃗, q⃗′≤q⃗

(p⃗′,q⃗′)∝f−1(ℓ)

T [p⃗− p⃗′, q⃗ − q⃗′, ℓ− 1] ⊕ φℓ((f−1(ℓ) \ p⃗′) ∪ q⃗′),

Note that (⃗0, 0⃗) ∝ f−1(ℓ) is always true, and therefore, such a minimum always exists.
Herein, 0⃗ denotes the τ -dimensional vector where each entry is 0.

N. Grüttemeier, N. Morawietz, and F. Sommer 32:9

▷ Claim 3.10. The recurrence is correct.

Proof. Throughout the proof of this claim, we call the properties posed on the sets (R1, . . . , Rℓ)
and (I1, . . . , Iℓ) in the definition of the table entries the desired properties for p⃗, q⃗, and ℓ.

We show that the recurrence is correct via induction over ℓ. If ℓ = 1, we have T [p⃗, q⃗, 1] :=
φ1((f−1(1) \ p⃗) ∪ q⃗). Thus, by Definition 3.7, there are sets R ⊆ f−1(1) and I ⊆ X \ f−1(1)
where R is a set containing exactly pj elements from Xj ∩ f−1(1) for every j ∈ [1, τ], and I

is a set containing exactly qj elements from Xj ∩ (X \ f−1(1)) for every j ∈ [1, τ] and we
have T [p⃗, q⃗, 1] = φ1((f−1(1) \R) ∪ I). Since the value is invariant under the concrete choices
of elements in R and I due to Proposition 3.8, the value φ1((f−1(1) \ R) ∪ I) is minimal
among all such R and I. Thus, the Recurrence holds for the base case ℓ = 1.

Next, let ℓ > 1 and assume that the recurrence holds for ℓ − 1. Let (R1, . . . , Rℓ)
and (I1, . . . , Iℓ) be sets with the desired properties for p⃗, q⃗, and ℓ. We show

ℓ⊕
i=1

φi((f−1(i) \Ri) ∪ Ii) = T [p⃗, q⃗, ℓ].

(≥) Since ⊕ is associative and commutative, we have

ℓ⊕
i=1

φi((f−1(i) \Ri) ∪ Ii) =
(

ℓ−1⊕
i=1

φi((f−1(i) \Ri) ∪ Ii)
)

︸ ︷︷ ︸
=:Z

⊕φℓ((f−1(ℓ) \Rℓ) ∪ Iℓ).

Note that the vectors a⃗ := (|Rℓ ∩ X1|, . . . , |Rℓ ∩ Xτ |) and b⃗ := (|Iℓ ∩ X1|, . . . , |Iℓ ∩ Xτ |)
satisfy a⃗ ≤ p⃗ and b⃗ ≤ q⃗. Moreover, since Rℓ ⊆ f−1(ℓ) and Iℓ ⊆ X \ f−1(ℓ), it holds
that (⃗a, b⃗) ∝ f−1(ℓ) is true. Thus, the minimum of the right-hand-side of the recurrence
includes a⃗ and b⃗, and by the definition of type specification operations and Proposition 3.8,
we have φ(ℓ)((f−1(ℓ) \ a⃗) ∪ q⃗) = φ(ℓ)((f−1(ℓ) \Rℓ) ∪ Iℓ). Since by the inductive hypothesis
we have T [p⃗− a⃗, q⃗ − b⃗, ℓ− 1] ≤ Z, we conclude

⊕ℓ
i=1 φi((f−1(i) \Ri) ∪ Ii) ≥ T [p⃗, q⃗, ℓ].

(≤) Let a⃗ and b⃗ be the vectors minimizing the right-hand-side of the recurrence. By the
definition of type specification operations, there are sets R̃ℓ ⊆ f−1(ℓ) and Ĩℓ ⊆ X \ f−1(ℓ)
with (|R̃ℓ ∩X1|, . . . , |R̃ℓ ∩Xτ |) = a⃗ and (|Ĩℓ ∩X1|, . . . , |Ĩℓ ∩Xτ |) = b⃗. By inductive hypothesis,
the value T [p⃗− a⃗, q⃗ − b⃗, ℓ− 1] corresponds to the minimal value of

⊕ℓ−1
i=1 φi((f−1(i) \ R̃i) ∪

Ĩi) for sets (R̃1, . . . , R̃ℓ−1) and (Ĩ1, . . . , Ĩℓ−1) that satisfy the desired properties for p⃗ − a⃗,
q⃗ − b⃗, and ℓ − 1. Then, T [p⃗, q⃗, ℓ] corresponds to the value

⊕ℓ
i=1 φi((f−1(i) \ R̃i) ∪ Ĩi) for

sets (R̃1, . . . , R̃ℓ) and (Ĩ1, . . . , Ĩℓ) that satisfy the desired properties for p⃗, q⃗, and ℓ. Thus, it
follows that

⊕ℓ
i=1 φi((f−1(i) \Ri ∪ Ii)) ≤ T [p⃗, q⃗, ℓ]. ◁

Computation of a solution f ′. We next describe how to compute the desired b-partition f ′

after filling the dynamic programming table T . The sets (R1, . . . , Rb) and (I1, . . . , Ib)
corresponding to the table entry T [δ⃗, δ⃗, b] can be found via trace back. We let R :=

⋃b
i=1 Ri.

Due to the property Ri ⊆ f−1(i) for all i ∈ [1, b], all Ri are disjoint. Together with the
properties on the vectors p⃗ and q⃗, this implies |R∩Xj | =

∑b
i=1 |Ri∩Xj | =

∑b
i=1 |Ii∩Xj | = δj

for every j ∈ [1, τ]. Consequently, for every j ∈ [1, τ], there is a mapping γj : R ∩Xj → [1, b],
that maps exactly |Ii ∩ Xj | elements of R ∩ Xj to i for every i ∈ [1, b]. Intuitively, the
mapping γj assigns a new bin to each item of type j that was removed from some bin.

The b-partition f ′ is defined via the mappings γj as follows: For every x ∈ X \ R,
we set f ′(x) := f(x). For every x ∈ R, we set f ′(x) := γj(x) for the corresponding j

with x ∈ R ∩Xj .

WADS 2025

32:10 A General Framework for Parameterized Local Search on Partitioning Problems

By the definition of f ′, the b-partitions f and f ′ may only differ on R and therefore, |R ∩
Xj | = δj implies (|X1∩Dflip(f, f ′)|, . . . , |Xτ ∩Dflip(f, f ′)|) ≤ δ⃗. It remains to show that val(f ′)
is minimal. By the construction of f ′ we have f ′−1(i) = f−1(i)\Ri∪I ′

i, where I ′
i :=

⋃τ
j=1{x ∈

R ∩Xj | γj(x) = i}. Then, by the construction of the γj we have

(|I ′
i ∩X1|, . . . , |I ′

i ∩Xτ |) = (|{x ∈ R ∩X1 | γ1(x) = i}|, . . . , |{x ∈ R ∩Xτ | γτ (x) = i}|)
= (|Ii ∩X1|, . . . , |Ii ∩Xτ |).

Thus, the sets (f−1(i) \ Ri) ∪ I ′
i and (f−1(i) \ Ri) ∪ Ii contain the exact same number of

elements from each Xj . Consequently, we have φi((f−1(i) \Ri) ∪ I ′
i) = φ((f−1(i) \Ri) ∪ Ii)

for every i ∈ [1, b] and thus, by the definition of types, the minimality of T [δ⃗, δ⃗, b] implies the
minimality of val(f ′).
Running time. We finally provide two different ways to analyze the running time.
a) The vector δ⃗ can be regarded as a set M containing

∑τ
j=1 δj = k individual identifiers

from which exactly δj are labeled with type j for each j ∈ [1, τ]. With this view on δ⃗,
the vectors p⃗ ≤ δ⃗ and q⃗ ≤ δ⃗ correspond to subsets of M , so we have 2k possible choices
for p⃗ and 2k possible choices for q⃗. Consequently, the size of the table T is 22k · b. To
compute one entry, one needs to consider up to 22k choices of p⃗′ and q⃗′. For each such
choice, (p⃗′, q⃗′) ∝ f−1(ℓ) can be checked in |X|O(1) time. With the evaluation of the IBE,
this leads to a total running time of 24k · b · Φ · |X|O(1).

b) The number of possible vectors that are component-wise smaller than δ⃗ is
∏τ

j=1(δj + 1),
since each entry is an element of [0, δj]. Since

∑τ
j=1 δj = k, the product of all (δj + 1) is

maximal if all δj have roughly the same size k
τ . Thus, we have

∏τ
j=1(δj + 1) ≤ (k

τ + 1)τ .
Consequently, the size of T is upper-bounded by (⌈ k

τ ⌉ + 1)2τ · b. To compute one
entry, one needs to consider up to (⌈ k

τ ⌉ + 1)2τ choices of p⃗′ and q⃗′. For each such
choice, (p⃗′, q⃗′) ∝ f−1(ℓ) can be checked in |X|O(1) time. With the evaluation of the IBE,
this leads to a total running time of (⌈ k

τ ⌉ + 1)4τ · b · Φ · |X|O(1). ◀

We next use Lemma 3.9 to prove Theorem 3.5.

Proof of Theorem 3.5. Recall that the idea is to consider every possible vector δ⃗ specifying
how many elements of which type belong to the elements of the flip. For each possible δ⃗ we
then use the algorithm behind Lemma 3.9. It remains to describe how to efficiently iterate
over the possible choices of δ⃗ to obtain the running times a) and b).
a) Let e⃗1, . . . , e⃗τ be the τ -dimensional unit vectors. That is, only the jth entry of e⃗j equals 1

and all other entries equal 0. We enumerate all δ⃗ with
∑τ

i=1 δi ≤ k by considering
all τk possibilities to repetitively draw up to k-times from the set {e⃗1, . . . , e⃗τ }. For each
such choice δ⃗, we check whether δi ≤ |Xi| for each i ∈ [1, τ] to ensure that δ⃗ is a type
specification. If this is the case, we apply the algorithm behind Lemma 3.9. With the
running time from Lemma 3.9 a), this leads to a total running time of τk ·2O(k) ·b·Φ·|X|O(1).

b) Note that for a vector δ⃗ with
∑τ

i=1 δi = k, we have δi ∈ [0, k] for every i ∈ [1, τ]. Thus,
in time (k + 1)τ · kO(1) we can enumerate all possible δ⃗. Analogously to a), we check
whether δi ≤ |Xi| for each i ∈ [1, τ]. With the running time from Lemma 3.9 b), this
leads to a total running time of kO(τ) · b · Φ · |X|O(1). ◀

4 Applications of the Framework

We next study parameterized local search versions of a wide range of well-known problems.
For each of these problems, we consider parameterization by the search radius in combination
with some structural parameter. All results rely on the algorithm behind Theorem 3.5.

N. Grüttemeier, N. Morawietz, and F. Sommer 32:11

Therefore, it suffices to express an instance I of a local search problem as a corresponding
instance J = (b,X, (φi)i∈[1,b], f, k) of LS Generalized Bin Problem. The proofs in this
section are given in the following structure:
1. GBP Construction: Given the instance I of the local search problem, we specify the

universe X, the number of bins b and the IBE (φi)i∈[1,b] of the instance J . This also
includes a description of how to efficiently evaluate the IBE from the input instance I.

2. Type Partition: We express how a type partition for J is computed from I and describe
how the targeted structural parameter corresponds to the number of types as defined in
Section 3.

3. Solution Correspondence: Recall that an instance of a local search problem always contains
a solution of the underlying problem. Let s be the solution given in the instance I. To
show the solution correspondence, we describe how solutions of I can be transformed into
solutions of J and vice versa, such that the following holds: A solution s′ of I is better
than the given solution s of I if and only if the corresponding b-partition fs′ has strictly
smaller (larger) target value than fs with respect to the IBE (φi)i∈[1,b].

4.1 Max c-Cut
Let c ∈ N and let G = (V,E) be an undirected graph. We say that an edge e ∈ E is properly
colored by a c-partition χ of V , if χ assigns distinct colors to the endpoints of e.

Max c-Cut
Input: An undirected graph G = (V,E).
Goal: Find a c-partition χ of V that maximizes the number of properly colored edges

under χ.

Note that the goal of Max c-Cut can also be equivalently redefined as: Find a c-
partition χ of V that minimizes the number of edges that are not properly colored under χ,
that is, a c-partition χ that minimizes faults(χ) :=

∑
i∈[1,c] |EG(χ−1(i))|.

The input of the corresponding local search problem LS Max c-Cut additionally consists
of a c-partition χ and some k ∈ N, and one aims to find a c-partition χ′ with faults(χ′) <
faults(χ) and dflip(χ, χ′) ≤ k.

LS Max c-Cut is W[1]-hard parameterized by k [10] and cannot be solved in f(k) ·
no(k) time unless the ETH is false [30]. Form a positive side, it was shown that the problem
can be solved in 2O(k) · |I|O(1) time on apex-minor-free graphs [7]. Moreover, on general
graphs, the problem can be solved in ∆O(k) · |I|O(1) time [10], where ∆ denotes the maximum
degree of the input graph. This algorithms found successful application as a post-processing
algorithm for a state-of-the-art heuristic for Max c-Cut [10].

We show the following.

▶ Theorem 4.1. LS Max c-Cut can be solved in ndk · 2O(k) · nO(1) and kO(nd) · nO(1) time.

Proof. The proof relies on the algorithm behind Theorem 3.5. We describe how to use this
algorithm to solve an instance I := (G = (V,E), χ, k) of LS Max c-Cut.

1. GBP Construction. We describe how to obtain an instance J := (b,X, (φi)i∈[1,b], f, k) of
LS Generalized Bin Problem. Our universe X is exactly the vertex set V of G, and the
number b of bins is exactly the number c of colors. We next define the IBE. For each i ∈ [1, c]
and each vertex set S ⊆ V , we define φi(S) := |EG(S)|. Note that for each value φ(S) can
obviously be computed in nO(1) time, and thus, the IBE can be evaluated in polynomial
time from the input instance I. Our operation ⊕ is the sum of integer numbers.

WADS 2025

32:12 A General Framework for Parameterized Local Search on Partitioning Problems

2. Type Partition. Our type partition is the collection of neighborhood classes of G. Recall
that this collection can be computed in O(n+m) time.

To show that this collection is in fact a type partition, we show that two vertices from
the same neighborhood class are target equivalent according to Definition 3.2. To this end,
let C be a neighborhood class of G, let u and v be vertices of C. We show that u and v

are target equivalent. Let S ⊆ V be a vertex set with S ∩ {u, v} = {u}. We show that for
each i ∈ [1, b], φi(S) = φi((S \{u})∪{v}). Let S′ := (S \{u})∪{v}. Since all IBEs (φi)i∈[1,b]
are identically defined, it suffices to only consider i = 1. By the fact that C is a neighborhood
class of G, u and v have the same neighbors in S \ {u} = S′ \ {v}. Hence, φ1(S) = φ1(S′).
This implies that u and v are target equivalent.

3. Solution Correspondence. Note that the set of solutions χ′ of LS Max c-Cut is exactly
the set of all c-partitions of V . Since X = V and b = c, the solutions of I have a one-to-one
correspondence to the solutions of J . Moreover, note that the definition of the IBE is based
on the reformulation of the objective function of Max c-Cut. Since ⊕ is the sum of integer
numbers, we have val(χ′) = faults(χ′) for every c-partition χ′. Therefore, χ′ is a better
solution than χ for LS Max c-Cut if and only if χ′ is a smaller target value than χ with
respect to the IBE. ◀

4.2 Cluster Editing

A cluster graph is an undirected graph in which each connected component forms a clique.
Let G = (V,E) be an undirected graph. In Cluster Editing, one aims to apply a minimum
number of edge modification (edge insertions and edge deletions) on G, such that the
resulting graph is a cluster graph. We let

(
V
2
)

denote the set of two-element subsets of vertices
corresponding to edge modifications. Given a set E′ ⊆

(
V
2
)
, we let E△E′ := (E\E′)∪(E′ \E)

denote the symmetric difference corresponding to the application of the graph modifications.

Cluster Editing
Input: An undirected graph G = (V,E).
Goal: Find a set E′ ⊆

(
V
2
)

such that (V,E△E′) is a cluster graph and |E′| is minimal
under this property.

Note that the maximum number of clusters corresponds to the number of vertices n. We
consider an equivalent definition of Cluster Editing where one asks for an n-labeling χ
with partitioning V into n (possibly empty) classes χ−1(1), . . . , χ−1(n), such that

score(χ) :=
n∑

i=1
|E(χ−1(i))| − (

(
|χ−1(i)|

2

)
− |E(χ−1(i))|)

is maximal [30]. Intuitively, maximizing this score corresponds to maximizing the number
of present edges in the connected components minus the required edge insertions such that
these components form a cliques.

We study a parameterized local search version of Cluster Editing where one flip in the
flip neighborhood corresponds to moving single vertices from their current cluster into another
cluster. The input of the corresponding local search problem LS Cluster Editing consists
of the input of Cluster Editing, together with an additional integer k and an n-labeling χ
of V for some. The task is to compute a n-labeling χ′ such that score(χ′) > score(χ)
and dflip(χ, χ′) ≤ k.

N. Grüttemeier, N. Morawietz, and F. Sommer 32:13

With respect to this neighborhood, LS Cluster Editing is known to be W[1]-hard
parameterized by k and cannot be solved in f(k) · no(k) time unless the ETH is false [11].
Form a positive side, it was shown that the problem can be solved in ∆O(k) · |I|O(1) time [11],
where ∆ denotes the maximum degree of the input graph.

We now show the following.
▶ Theorem 4.2. LS Cluster Editing can be solved in ndk · 2O(k) · nO(1) time and
in kO(nd) · nO(1) time.
Proof. The proof relies on the algorithm behind Theorem 3.5. We describe how to use this
algorithm to solve an instance I := (G = (V,E), k, χ).
1. GBP Construction. We describe how I corresponds to an LS Generalized Bin
Problem-instance J := (b,X, (φi)i∈[1,b], f, k). Our universe X is exactly the vertex set V
of G, and the number b of bins is exactly n. We next define the IBE. For each i ∈ [1, n] and
each vertex set S ⊆ V , we define φi(S) := |E(S)|−(

(|S|
2
)
−|E(S)|). Note that each value φ(S)

can obviously be computed in nO(1) time from the input graph G. Our operation ⊕ is the
sum of integer numbers.
2. Type Partition. Our type partition is the collection of neighborhood classes of G. Recall
that this collection can be computed in O(n+m) time.

To show that this collection is in fact a type partition, we show that two vertices from
the same neighborhood class of G are target equivalent according to Definition 3.2. To this
end, let C be a neighborhood class of G and let u and v be vertices of c. Let S ⊆ V be
a vertex set with S ∩ {u, v} = {u}. We obviously have |S| = |(S \ {u}) ∪ {v}|. Moreover,
since u and v have the exact same neighbors in G, we have |E(S)| = |E((S \ {u}) ∪ {v})|.
Then, by the definition of the IBE we have φi(S) = φi((S \ {u}) ∪ {v}) for all i ∈ [1, n].
3. Solution Correspondence. Note that the set of solutions χ′ of LS Cluster Editing is
exactly the set of all n-partitions of V . Since X = V and b = n, the solutions of J have a
one-to-one correspondence to the solutions of J . Moreover, note that the definition of the IBE
is based on the reformulation of the objective function of Cluster Editing and ⊕ is the
sum of integer numbers, we have val(χ′) = score(χ′) for every n-partition χ′. Therefore, χ′

is a better solution than χ for Cluster Editing if and only if χ′ has a larger target value
than χ with respect to the IBE. ◀

4.3 Vector Bin Packing
Let b, d be integers. In this section for i ∈ [1, b], Bi is a bin. Each bin Bi is associated with a
weight vector ωi ∈ Nd. Let S be a set of vectors from Nd

0. A b-partition χ of S is called a
bin assignment.

Given a subset S ⊆ S, we say that the overload of bin Bi with respect to S is ol(Bi, S) :=∑d
j=1 max (0, (

∑
v∈S vj) − wj). Our target is to find an assignment χ minimizing the total

overload, which is defined as
∑

i∈[1,b] ol(Bi, χ
−1(i)).

Vector Bin Packing
Input: Integers b, d, a set S of vectors from Nd

0, a vector ωi ∈ Nd
0 for each i ∈ [1, b].

Goal: Find a bin assignment χ of S such that the total overload is minimized, that is,∑
i∈[1,b] ol(Bi, χ

−1(i)) is minimized.

The input of the corresponding local search problem LS Vector Bin Packing addition-
ally consists of a bin assignment χ and some k ∈ N, and one aims to find a bin assignment χ′

with
∑

i∈b ol(Bi, χ
′−1(i)) <

∑
i∈b ol(Bi, χ

−1(i))) and dflip(χ, χ′) ≤ k.

WADS 2025

32:14 A General Framework for Parameterized Local Search on Partitioning Problems

We say that two vectors vec1 and vec2 are identical if they agree in all dimensions, that
is, if vec1(j) = vec2(j) for each dimensions j ∈ [1, d] and two vectors are distinct otherwise.

To the best of our knowledge, parameterized local search for Vector Bin Packing has
not yet been studied. We now show the following.

▶ Theorem 4.3. Let τ denote the maximum number of pairwise distinct items in an instance
of LS Vector Bin Packing. LS Vector Bin Packing can be solved in τk · 2O(k) · (b+
d+ |S|)O(1) time and in kO(τ) · (b+ d+ |S|)O(1) time.

Proof. The proof relies on the algorithm behind Theorem 3.5. We describe how to use this
algorithm to solve an instance

I := (b, d,S, (ωi)i∈[1,b], χ, k)

of LS Vector Bin Packing

1. GBP construction. Initially, we describe how I corresponds to an instance J :=
(b,X, (φi)i∈[1,b], f, k) of LS Generalized Bin Problem. Our universe X is exactly the
set S and the number b is the number of bins in I. It remains to define the IBE. For i ∈ [1, b],
we define φi(X ′) := ol(Bi, X

′). That is, the ith IBE corresponds to the overload of Bi with
respect to the vectors X ′. Our operation ⊕ is the sum of integer numbers.

2. Type Partition. Let (X1, . . . , Xτ) be a partition of S where each Xj is an inclusion-wise
maximal set of pairwise identical elements. Note tat this partition can clearly be computed
in |S|O(1) time.

To show that this collection is in fact a type partition, we show that two elements
from one set Xj are target equivalent according to Definition 3.2. Let vec1 and vec2 be
two vectors of the same set Xj . Let S ⊆ S be a set with S ∩ {vec1, vec2} = {vec1}.
Let S′ := (S \{vec1})∪{vec2}. We show that for each i ∈ [1, b], φi(S) = φi(S′). Without loss
of generality, we consider the IBE φi. Since C is a type class containing vec1 and vec2, we
have S \ {vec1} = S′ \ {vec2}. Consequently, φi(S ∪ {vec2}) = φi(S′ ∪ {vec1}) and thus vec1
and vec2 are target equivalent.

3. Solution Correspondence. Since ⊕ is the sum of integer numbers and φi(X ′) = ol(Bi, X
′)

for all i ∈ [1, b], we have val(χ) =
∑

i∈b ol(Bi, χ
−1(i)) for every bin assignment χ. ◀

In Theorem 5.3 we complement the above algorithm by showing that LS Vector Bin
Packing is W[1]-hard parameterized by k and cannot be solved in f(k) · no(k) time unless
the ETH fails.

4.4 Vertex Deletion Distance to Specific Graph Properties
We next consider a general class of graph problems. Given a graph, one aims to delete a
minimum number of vertices such that the remaining graph satisfies a specific property (for
example: being bipartite). For any fixed graph-property Π that can be verified in polynomial
time, we define the following problem.

Π Vertex Deletion
Input: A graph G = (V,E).
Goal: Find a subset S ⊆ V such that G− S fulfills property Π and |S| is minimal.

N. Grüttemeier, N. Morawietz, and F. Sommer 32:15

Parameterized local search was considered for Π Vertex Deletion for general graph
properties Π [7] and in particular for the special case of Π being the family of all edgeless
graphs, that is, for Vertex Cover [7, 13, 21, 24]. For the corresponding local search prob-
lems LS Π Vertex Deletion and LS Vertex Cover, the considered local neighborhood
is the k-swap neighborhood, that is, the set of all solutions that have a symmetric difference
with the current solution of size at most k. This neighborhood coincides with the k-flip
neighborhood if a solution for Π Vertex Deletion and Vertex Cover is represented
as a 2-coloring χ of the vertex set V , where G[χ−1(1)] fulfills property Π and the goal is to
minimize the number of vertices that receive color 2 under χ.

It was shown that LS Π Vertex Deletion is W[1]-hard when parameterized by k for
all hereditary graph properties Π that contain all edgeless graphs but not all cliques or vice
versa [7]. This holds in particular for the special case of LS Vertex Cover [7, 13, 24].
Furthermore, a closer inspection shows that LS Vertex Cover cannot be solved in
f(k) · no(k) time unless the ETH fails [24, Theorem 3.7]. Since LS Vertex Cover is a
special case of LS Π Vertex Deletion, we also obtain the same hardness results for
the more general LS Π Vertex Deletion. From the positive side, LS Vertex Cover
admits an FPT-algorithm for k, if the input graph has a bounded local treewidth. Moreover,
algorithms for LS Vertex Cover are known that run in f(k) · ℓO(k) · nO(1) time, where ℓ
is any of (i) the maximum degree ∆ [21], (ii) the h-index of the input graph [24], or (iii) the
treewidth of the input graph [24]. In particular, the performance of the algorithm combining k
and ∆ was shown to be very successful [21].

We show that our framework is applicable for an even more general problem LS Multi
Component Π Deletion in which we aim to find a vertex set of minimal size to remove, so
that the remaining vertices can be partitioned into c sets, that each fulfill property Π. Note
that LS Π Vertex Deletion is the special case of c = 1.

▶ Theorem 4.4 (⋆). LS Multi Component Π Deletion can be solved in ndk · 2O(k) ·
nO(1) time and in kO(nd) · nO(1) time.

4.5 Further Applications of the Framework
With similar applications the algorithm behind Theorem 3.5, we can obtain results for the local
search versions of the well-known problems Nash Social Welfare and Multi Knapsack.
Here, we only present the problem definitions and the respective results. References to the
related literature and the proofs of our theorems for both problems are deferred to the full
version.

Nash Social Welfare. Let n,m be integers. In this section, A is a set of n agents and S
is a set of m items. Furthermore, we have n utility functions (ui : S → N)i∈[1,n]. An
n-partition χ of S is called an allocation. For an allocation χ, the function Nash(χ) :=∏

i∈[1,n]

(∑
s∈χ−1(i) ui(s)

)
is called the Nash score of χ.

Nash Social Welfare
Input: A set A of agents, a set S of items, and a set (ui)i∈[1,n] of utilities.
Goal: Find an allocation χ that maximizes Nash(χ).

The input of the corresponding local search problem LS Nash Social Welfare
additionally consists of an allocation χ and some k ∈ N and one asks for an allocation χ′

with Nash(χ′) > Nash(χ) and dflip(χ, χ′) ≤ k.

WADS 2025

32:16 A General Framework for Parameterized Local Search on Partitioning Problems

We say that two items j1 and j2 are identical if each agents values j1 and j2 similarly,
that is, if ui(j1) = ui(j2) for each i ∈ [n]. Two items are distinct if they are not identical.

▶ Theorem 4.5 (⋆). Let τ denote the maximum number of pairwise distinct items in an
instance of LS Nash Social Welfare. LS Nash Social Welfare can be solved in
τk · 2O(k) · (n+m)O(1) time and in kO(τ) · (n+m)O(1) time.

Multi Knapsack. Let m ∈ N be a number of knapsacks, with their capacities W1, . . . ,Wm ∈
N and let [1, n] be a set of items with values v(ℓ,i) ∈ N and weights w(ℓ,i) ∈ N for all ℓ ∈
[1, n] and i ∈ [1,m]. We say that an (m + 1)-partition χ of [1, n] fits into the knapsacks,
if
∑

i∈χ−1(ℓ) w(ℓ,i) ≤ Wi for every i ∈ [1,m]. We define the score of χ as score(χ) :=∑m
i=1
∑

ℓ∈χ−1(i) v(ℓ,i). Intuitively, for i ∈ [1,m], the set χ−1(i) corresponds to the chosen
items for the ith knapsack and χ−1(m+ 1) corresponds to the set of non-chosen items.

Multi Knapsack
Input: Knapsacks with capacities W1, . . . ,Wm ∈ N, items [1, n] with values v(ℓ,i) ∈ N

and weights w(ℓ,i) ∈ N for all ℓ ∈ [1, n] and i ∈ [1,m].
Goal: Find an (m+1)-partition χ of [1, n] that fits into the knapsacks, such that score(χ)

is maximal.

The input of the corresponding local search problem LS Multi Knapsack additionally
consists of an m-partition χ that fits into the knapsacks and some k ∈ N and one asks for an
improving (m+ 1)-partition χ′ with dflip(χ, χ′) ≤ k that fits into the knapsacks.

We say that two items ℓ ∈ [1, n] and ℓ′ ∈ [1, n] are identical if v(ℓ,i) = v(ℓ′,i) and w(ℓ,i) =
w(ℓ′,i) for all i ∈ [1,m]. Two elements are distinct if they are not identical.

To the best of our knowledge, parameterized local search for Multi Knapsack has not
yet been studied. We now show the following.

▶ Theorem 4.6 (⋆). Let τ denote the maximum number of pairwise distinct items in an
instance of LS Multi Knapsack. LS Multi Knapsack can be solved in τk · 2O(k) · (n+
m)O(1) time and in kO(τ) · (n+m)O(1) time.

5 Intractability Results for the Considered Local Search Problems

In this section, we present (parameterized) intractability results for the considered local
search problems in this work and tight running-time lower bounds with respect to the
τk · 2O(k) · |I|O(1)-time algorithms derived in Section 4. As already discussed in the previous
sections, some of the considered problems in this work are known to be W[1]-hard when
parameterized by k and cannot be solved in f(k)·|I|o(k) time, unless the ETH fails. This is the
case for LS Max c-Cut [30], LS Cluster Editing [11], LS Π Vertex Deletion [7, 13, 24].
In this section we thus only show that these intractability results also hold for the remaining
local search problems considered in this work, that is, for LS Multi Knapsack, LS Nash
Social Welfare, and LS Vector Bin Packing.

We start by presenting our (parameterized) intractability results and running-time lower
bounds for the local search problems LS Multi Knapsack and LS Nash Social Welfare.

▶ Theorem 5.1 (⋆). LS Multi Knapsack is W[1]-hard with respect to k and cannot be
solved in no(k) time, unless the ETH fails, where n denotes the number of items in the input
instance. This holds even if there is only a single knapsack.

N. Grüttemeier, N. Morawietz, and F. Sommer 32:17

▶ Theorem 5.2 (⋆). LS Nash Social Welfare is W[1]-hard with respect to k and cannot
be solved in no(k) time, unless the ETH fails. This holds even if there are only two agents
and both have the same evaluation for each item.

Now, we provide matching hardness results for LS Vector Bin Packing. More precisely,
we provide two hardness results even if each entry in each vector is only 0 or 1. First, we
show that LS Vector Bin Packing is W[1]-hard with respect to k and that an algorithm
with running time f(k) · |I|o(k) violates the ETH. Consequently, our τk · 2O(k) · |I|O(1) time
algorithm presented in Theorem 4.3 is tight if the ETH is true. Second, we show W[1]-
hardness for LS Vector Bin Packing parameterized by k + q. Here, q := maxv∈S∥v∥1 is
the maximal sum of entries over all vectors. Recall that q is usually smaller than τ in our
real-world application.

▶ Theorem 5.3. LS Vector Bin Packing is W[1]-hard with respect to k and cannot be
solved in f(k) · |I|o(k) time, unless the ETH fails. This holds even if b = 2, each entry in
each vector is only 0 or 1, and each entry of the vector ω for each bin is 1.

Proof. We present a simple reduction from LS Max c-Cut which provides the desired
intractability results. Let c ≥ 2 and let I := (G = (V,E), χ : V → [1, c], k) be an instance
of LS Max c-Cut where χ is locally optimal if and only if χ is globally optimal. Even under
these restrictions, LS Max c-Cut is W[1]-hard with respect to k and cannot be solved in
f(k) · no(k) time, unless the ETH fails [10]. Let m := |E| and let E := {e1, . . . , em}. We
obtain an equivalent instance I ′ := (c,m,S, (ωi)i∈[1,c], ψ, k

′) of LS Vector Bin Packing
as follows: For each bin j ∈ [1, c], we define the vector ωj as the vector of length m that
has a 1 in each dimension. For each vertex v ∈ V , we create a vector xv that has a 1 at
dimension i ∈ [1,m] if and only if vertex v is incident with edge ei. Let S be the set of
these vectors and let ψ be the coloring obtained from χ by assigning for each vertex v ∈ V ,
color χ(v) to vector xv, that is, χ(v) = ψ(xv). Finally, we set k′ := k.

For the sake of simplicity, we may identify each vector xv by its corresponding vertex v.
Similarly, we may consider c-partitions of V instead of c-partitions of S as solutions for I ′

based on the obvious bijection between vertices and vectors. Next, we show that I is a
yes-instance of LS Max c-Cut if and only if I ′ is a yes-instance of LS Vector Bin
Packing. To this end, we first analyze the objective functions of both instances with respect
to corresponding solutions.

Let χ′ be a c-coloring of V and let ψ′ be the corresponding c-coloring of S. Let ei := {u, v}
be an edge of G having endpoints of distinct color under χ′. Then, no bin produces an
overload in dimension i because only the vectors xu and xv have a 1 at dimension i and both
vectors receive distinct colors under ψ′. Similarly, let ei := {u, v} be an edge of G having
endpoints of the same color α ∈ [1, c] under χ′. Then, no bin except α produces an overload
at dimension i and bin α produces an overhead of exactly 1 in dimension i, because only
the vectors xu and xv have a 1 at dimension i and both vectors receive color α under ψ′.
Consequently, the total overload of ψ′ over all dimensions and all bins equals |E| minus the
number of properly colored edges of G under χ′. In other words, χ′ is a better solution for I
than χ if and only if ψ′ is a better solution for I ′ than ψ. Since dflip(χ, χ′) = dflip(ψ,ψ′), this
implies that I is a yes-instance of LS Max c-Cut if and only if I ′ is a yes-instance of LS
Vector Bin Packing. Furthermore, since χ is a locally optimal solution if and only if χ
is a globally optimal solution, ψ is a locally optimal solution if and only if ψ is a globally
optimal solution.

WADS 2025

32:18 A General Framework for Parameterized Local Search on Partitioning Problems

Recall that LS Max c-Cut is W[1]-hard with respect to k and cannot be solved in
f(k) ·no(k) time, unless the ETH fails [10]. Since |S| = n, each vector has m ≤ n2 dimensions,
and k′ = k, this implies that LS Vector Bin Packing is W[1]-hard with respect to k′ and
cannot be solved in f(k′) · |I ′|o(k′) time, unless the ETH fails. ◀

Now, we present our second hardness result for the parameter k plus q, the maximal sum
of entries over all vectors.

▶ Theorem 5.4 (⋆). LS Vector Bin Packing is W[1]-hard with respect to k + q, even if
each entry in each vector is only 0 or 1, and each entry of the vector ω for each bin is 1.

6 Discussion

There are several ways of extending our work: In all of our applications of the framework
we extensively used the expressive power of the IBEs and the flexibility of the bins. So far,
we have not exploited the power of the types. For future work it is thus interesting to find
examples where the number τ of types is smaller than the neighborhood diversity or the
number of distinct vectors. Also, it is interesting to study the parameterized complexity
of the non-local search versions of the considered problems parameterized by τ alone. For
example, Bin Packing admits an FPT-algorithm when parameterized by τ alone [22]. It
appears to be reasonable that the algorithm can be modified to obtain fixed-parameter
tractability for Vector Bin Packing parameterized by τ as well. Furthermore, Vertex
Cover admits an FPT-algorithm when parameterized by nd [25] and Max c-Cut admits
an FPT-algorithm when parameterized by nd + c [14]. However, it is not known whether
such algorithms are possible for all (classic) variants of our study; for example for Nash
Social Welfare such an algorithm is not known.

References
1 Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas

Spinner, Christopher Weyand, and Marcus Wilhelm. PACE Solver Description: KaPoCE: A
Heuristic Cluster Editing Algorithm. In Proceedings of the 16th International Symposium on
Parameterized and Exact Computation (IPEC ’21), volume 214 of LIPIcs, pages 31:1–31:4.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.IPEC.2021.
31.

2 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An Efficient Local Search
Algorithm for Minimum Vertex Cover. Journal of Artificial Intelligence Research, 46:687–716,
2013. doi:10.1613/JAIR.3907.

3 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

4 Juan A. Díaz and Elena Fernández. A tabu search heuristic for the generalized assignment
problem. European Journal of Operational Research, 132(1):22–38, 2001. doi:10.1016/
S0377-2217(00)00108-9.

5 Martin Dörnfelder, Jiong Guo, Christian Komusiewicz, and Mathias Weller. On the parame-
terized complexity of consensus clustering. Theoretical Computer Science, 542:71–82, 2014.
doi:10.1016/J.TCS.2014.05.002.

6 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

7 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
and Yngve Villanger. Local search: Is brute-force avoidable? Journal of Computer and System
Sciences, 78(3):707–719, 2012. doi:10.1016/J.JCSS.2011.10.003.

https://doi.org/10.4230/LIPICS.IPEC.2021.31
https://doi.org/10.4230/LIPICS.IPEC.2021.31
https://doi.org/10.1613/JAIR.3907
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/S0377-2217(00)00108-9
https://doi.org/10.1016/S0377-2217(00)00108-9
https://doi.org/10.1016/J.TCS.2014.05.002
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/J.JCSS.2011.10.003

N. Grüttemeier, N. Morawietz, and F. Sommer 32:19

8 Paola Festa, Panos M Pardalos, Mauricio GC Resende, and Celso C Ribeiro. Randomized
heuristics for the max-cut problem. Optimization methods and software, 17(6):1033–1058,
2002. doi:10.1080/1055678021000090033.

9 Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations
of the bounded-degree vertex deletion problem. Algorithmica, 83(1):297–336, 2021. doi:
10.1007/S00453-020-00758-8.

10 Jaroslav Garvardt, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Param-
eterized Local Search for Max c-Cut. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence (IJCAI ’23), pages 5586–5594. ijcai.org, 2023.
doi:10.24963/IJCAI.2023/620.

11 Jaroslav Garvardt, Nils Morawietz, André Nichterlein, and Mathias Weller. Graph clustering
problems under the lens of parameterized local search. In Proceedings of the 18th International
Symposium on Parameterized and Exact Computation (IPEC ’23), volume 285 of LIPIcs,
pages 20:1–20:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPICS.IPEC.2023.20.

12 Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julián Mestre, and Stefan Rüm-
mele. Turbocharging treewidth heuristics. Algorithmica, 81(2):439–475, 2019. doi:
10.1007/S00453-018-0499-1.

13 Serge Gaspers, Eun Jung Kim, Sebastian Ordyniak, Saket Saurabh, and Stefan Szeider. Don’t
be strict in local search! In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI ’12). AAAI Press, 2012. doi:10.1609/AAAI.V26I1.8128.

14 Tomas Gavenciak, Martin Koutecký, and Dusan Knop. Integer programming in parameterized
complexity: Five miniatures. Discrete Optimization, 44(Part):100596, 2022. doi:10.1016/J.
DISOPT.2020.100596.

15 Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz. Efficient Bayesian network
structure learning via parameterized local search on topological orderings. In Proceedings
of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI ’21), pages 12328–
12335. AAAI Press, 2021. Full version available at https://doi.org/10.48550/arXiv.2204.02902.
doi:10.1609/AAAI.V35I14.17463.

16 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity
of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013. doi:10.1007/
S00453-012-9685-8.

17 Jiong Guo, Danny Hermelin, and Christian Komusiewicz. Local search for string problems:
Brute-force is essentially optimal. Theoretical Computer Science, 525:30–41, 2014. doi:
10.1016/J.TCS.2013.05.006.

18 Sepp Hartung and Rolf Niedermeier. Incremental list coloring of graphs, parameterized by
conservation. Theoretical Computer Science, 494:86–98, 2013. doi:10.1016/J.TCS.2012.12.
049.

19 Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004.

20 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/JCSS.2001.1774.

21 Maximilian Katzmann and Christian Komusiewicz. Systematic exploration of larger local
search neighborhoods for the minimum vertex cover problem. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI ’17), pages 846–852. AAAI Press, 2017.
doi:10.1609/AAAI.V31I1.10659.

22 Dusan Knop, Martin Koutecký, Asaf Levin, Matthias Mnich, and Shmuel Onn. Parameterized
complexity of configuration integer programs. Operations Research Letters, 49(6):908–913,
2021. doi:10.1016/J.ORL.2021.11.005.

WADS 2025

https://doi.org/10.1080/1055678021000090033
https://doi.org/10.1007/S00453-020-00758-8
https://doi.org/10.1007/S00453-020-00758-8
https://doi.org/10.24963/IJCAI.2023/620
https://doi.org/10.4230/LIPICS.IPEC.2023.20
https://doi.org/10.4230/LIPICS.IPEC.2023.20
https://doi.org/10.1007/S00453-018-0499-1
https://doi.org/10.1007/S00453-018-0499-1
https://doi.org/10.1609/AAAI.V26I1.8128
https://doi.org/10.1016/J.DISOPT.2020.100596
https://doi.org/10.1016/J.DISOPT.2020.100596
https://doi.org/10.1609/AAAI.V35I14.17463
https://doi.org/10.1007/S00453-012-9685-8
https://doi.org/10.1007/S00453-012-9685-8
https://doi.org/10.1016/J.TCS.2013.05.006
https://doi.org/10.1016/J.TCS.2013.05.006
https://doi.org/10.1016/J.TCS.2012.12.049
https://doi.org/10.1016/J.TCS.2012.12.049
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1609/AAAI.V31I1.10659
https://doi.org/10.1016/J.ORL.2021.11.005

32:20 A General Framework for Parameterized Local Search on Partitioning Problems

23 Christian Komusiewicz, Simone Linz, Nils Morawietz, and Jannik Schestag. On the complexity
of parameterized local search for the maximum parsimony problem. In Proceedings of the
34th Annual Symposium on Combinatorial Pattern Matching (CPM ’23), volume 259 of
LIPIcs, pages 18:1–18:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPICS.CPM.2023.18.

24 Christian Komusiewicz and Nils Morawietz. Parameterized Local Search for Vertex Cover:
When Only the Search Radius Is Crucial. In Proceedings of the 17th International Symposium
on Parameterized and Exact Computation (IPEC ’22), volume 249 of LIPIcs, pages 20:1–20:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.IPEC.2022.
20.

25 Martin Kouteckỳ. Solving hard problems on neighborhood diversity. Master’s thesis, Charles
University in Prague, 2013. URL: https://koutecky.name/mgr/mgr.pdf.

26 Ruizhi Li, Shuli Hu, Shaowei Cai, Jian Gao, Yiyuan Wang, and Minghao Yin. NuMWVC: A
novel local search for minimum weighted vertex cover problem. Journal of the Operational
Research Society, 71(9):1498–1509, 2020. doi:10.1080/01605682.2019.1621218.

27 Andrea Lodi, Silvano Martello, and Daniele Vigo. Approximation algorithms for the oriented
two-dimensional bin packing problem. European Journal of Operational Research, 112(1):158–
166, 1999. doi:10.1016/S0377-2217(97)00388-3.

28 Christiane Markuse-Schneider. Personal communication. Schmitz Cargobull production site
in Vreden, Germany, 2023.

29 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett.,
36(1):31–36, 2008. doi:10.1016/J.ORL.2007.02.008.

30 Nils Morawietz. On the complexity of local search problems with scalable neighborhoods.
PhD thesis, Friedrich-Schiller-Universität Jena, 2024. Dissertation. URL: https://www.
db-thueringen.de/receive/dbt_mods_00064137.

31 Quan Ouyang and Hong Yun Xu. Genetic algorithm for single machine scheduling problem
with setup times. Applied Mechanics and Materials, 457:1678–1681, 2014.

32 Stefan Szeider. The parameterized complexity of k-flip local search for SAT and MAX SAT.
Discrete Optimization, 8(1):139–145, 2011. doi:10.1016/J.DISOPT.2010.07.003.

https://doi.org/10.4230/LIPICS.CPM.2023.18
https://doi.org/10.4230/LIPICS.CPM.2023.18
https://doi.org/10.4230/LIPICS.IPEC.2022.20
https://doi.org/10.4230/LIPICS.IPEC.2022.20
https://koutecky.name/mgr/mgr.pdf
https://doi.org/10.1080/01605682.2019.1621218
https://doi.org/10.1016/S0377-2217(97)00388-3
https://doi.org/10.1016/J.ORL.2007.02.008
https://www.db-thueringen.de/receive/dbt_mods_00064137
https://www.db-thueringen.de/receive/dbt_mods_00064137
https://doi.org/10.1016/J.DISOPT.2010.07.003

	1 Introduction
	2 Preliminaries
	3 Generalized Parameterized Local Search for Partitioning Problems
	3.1 The Generalized Bin Problem
	3.2 Types in Generalized Bins
	3.3 Algorithmic Results for LS Generalized Bin Problem

	4 Applications of the Framework
	4.1 Max c-Cut
	4.2 Cluster Editing
	4.3 Vector Bin Packing
	4.4 Vertex Deletion Distance to Specific Graph Properties
	4.5 Further Applications of the Framework

	5 Intractability Results for the Considered Local Search Problems
	6 Discussion

