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—— Abstract

We consider the problem of computing an approximate weighted shortest path in a weighted planar
subdivision, with weights assigned from the set {0,1,00}. The subdivision includes zero-cost regions
(0-regions) with weight 0 and obstacles with weight oo, all embedded in a plane with weight 1. In a
polygonal domain, where the O-regions and obstacles are non-overlapping polygons (not necessarily
convex) with in total N vertices, we present an algorithm that computes a (1 + £)-approximate
spanner of the input vertices in expected 6(N /e%) time', for 0 < ¢ < 1. Using our spanner, we
can compute a (1 + ¢)-approximate weighted shortest path between any two points (not necessarily
vertices) in 5(N /€®) time. Furthermore, we prove that our results more generally apply to non-
polygonal convex regions. Using this generalisation, one can approximate the weak partial Fréchet
similarity [7] between two polygonal curves in expected O(n?/c2) time, where n is the total number
of vertices of the input curves.
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1 Introduction

The Weighted Region Problem (WRP) is a generalization of the shortest path problem,
considering a planar subdivision ¥ where each face has a non-negative weight associated
with it. A path o in E can be partitioned into a set of subpaths {o1,...,04} based on its
intersection with faces in FE, where a subpath o; starts at the point s; and ends at the point ¢;.
Both s; and t; must lie on the boundary of the same face F;. The weight of the subpath o;
is the Euclidean length of o; times the weight assigned to F;. The total weight of a path is
the sum of the weights of its subpaths. The goal of the WRP is to find the weighted shortest
path from a source point s to a target point . When the weights are in the set {0,1, 00},
this problem is referred to as the 0/1/00 Weighted Region Problem [15].

! 5() notation ignores poly-logarithmic dependencies on N and 1/e.
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Researchers have conjectured that the WRP is difficult to solve [15], and recent studies
confirm this conjecture — the Weighted Region Problem is unsolvable in the algebraic
computation model over the rational numbers. De Carufel et al. [14] demonstrated that the
WRP cannot be solved exactly even with only three different weights. De Berg et al. [12]
confirmed its unsolvability with just two different weights. Mitchell and Papadimitriou [17]
illustrated that in two dimensions, a weighted shortest path can intersect at least Q(n?)
boundaries even when the regions are convex.

Due to the difficulty of solving the WRP exactly, approximation algorithms have been
considered. A common approach is to discretize the problem space, either by assuming the
space is a tessellation of convex polygons with exactly one associated weight [5], or by placing
Steiner (sample) points on the boundaries of the regions [1, 2, 9, 16, 18]. In these approaches,
the number of sample points depends not only on the complexity of the regions but also on
geometric parameters such as the maximum integer coordinate of any vertex and the ratio
7 Of the maximum weight over the minimum weight. As r,, increases, so does the number
of required sample points. As a result, the weights are required to be strictly positive.

1.1 Related work

Our work is closely related to the data structure and algorithm by Gewali et al. [15] to solve
the 0/1/0c0 weighted region problem. Their algorithm takes a polygonal domain with N
vertices as input and constructs a critical graph G* = (V*,E*) (a type of visibility graph) with
O(N?) edges. Dijkstra’s shortest path algorithm can be used on G* to compute a weighted
shortest path between any pair of vertices in O(N?) time.

In 0/1/00 weighted regions, a weighted shortest path P* avoids obstacles and traverses
the O-regions freely, while minimizing its length in the plane (1-region). Consider two (closed)
regions A and B, each either a 0-region or an obstacle. The key observation in [15] is that
an edge in P* connecting A and B must be locally optimal (see Fact 16). For example, an
edge (a,b) connecting two convex 0-regions A and B must be perpendicular to the tangent
touching a € A and the tangent touching b € B. Gewali et al. [15] showed that G* contains
all such locally optimal edges in G*, which implies that G* must contain the optimal path
between any pair of vertices in G*.

1.2 Qur Contribution

In this paper, we build on the work by Gewali et al. [15] with a focus on the 0-regions as they
are not handled well by existing approximation schemes (using sample points or tessellation).
In Section 2, we consider the 0/1 weighted region problem where the 0-regions are convex
but not necessarily polygonal.

» Problem 1. In the planar subdivision induced by the plane with weight 1 and a set Z of
non-overlapping convex zero-cost regions (0-regions) with weight 0, given an approximation
error 0 < e < 1, find a (1 + ¢)-approzimate weighted shortest path from an arbitrary point s
to an arbitrary point t.

The high-level idea is that, in order to obtain (1 + €)-approximate shortest paths, we
place O(1/¢) sample points on the boundary of each 0-region; the number of sample points
is independent of other parameters. Using these sample points, we construct a ©-graph and
O(1/¢e) trapezoidal maps, which are part of our data structure B. The trapezoidal maps
ensure the existence of good paths between 0-regions that are close? to each other, while

2 A precise definition is provided in Lemma 8 and 10, Section 2.
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the ©-graph ensures the same for 0-regions that are far from each other. To the best of
our knowledge, our algorithm is the first near-linear time (1 + ¢)-approximation algorithm
that finds an approximated weighted shortest path in a 0/1 weighted region. Note that both
Theorem 1 and 3 apply to polygonal domains with non-convex regions, since they can be
triangulated into a linear number of triangles.

» Theorem 1. Consider a planar subdivision induced by a plane with weight 1, containing a
set Z of non-overlapping convex 0-regions with weight 0. Let |Z| = n and N denote the total
number of vertices in Z. For any approzimation factor 0 < e < 1, a data structure B can be
constructed over Z in O(N + (n/e?)(log(n/e) + log N)) expected time, with a total size of
O(N +n/e?). When queried with points s and t, B can return a weighted path P from s to t
in O(N +n/e? + (n/e)log(n/e) + (log N)/e) time, satisfying w(P) < (1 +¢) - w(P*), where
P* is the optimal weighted shortest path from s to t.

To use our algorithm on an application, we prove the above theorem in a more general
setting, where the O-regions are non-polygonal. In Section 3, we use our algorithm to
approximate the partial weak Fréchet similarity of two polygonal curves. This problem was
first studied by Buchin et al. [7], and they presented a cubic time algorithm. De Carufel
et al. [13] later transformed the problem into a weighted shortest path problem amidst
0/1-regions. Using Theorem 1, our algorithm is the first near-quadratic time (v/2 + ¢)-
approximation algorithm for computing the partial weak Fréchet similarity between a pair of
polygonal curves.

Buchin et al. [8] showed that there is no strongly subquadratic time algorithm for
approximating the weak Fréchet distance within a factor less than 3 unless the strong
exponential-time hypothesis fails. Approximating the partial weak Fréchet similarity is at
least as hard as approximating the weak Fréchet distance. As a result, it is unlikely that a
subquadratic time algorithm exists.

» Theorem 2. One can approximate the partial weak Fréchet similarity of two curves within
a factor of (v/2+¢) in O((n?/e?)log(n/e)) expected time.

In Section 4, we generalise our data structure to also allow convex obstacles that cannot
be traversed, i.e., obstacles of weight co. Let d(a,b) denote the weight of the weighted
shortest path from a to b amidst 0/1/co-weighted region. By introducing additional sample
points, we show that if we need to take a detour from a sample point a to a sample point b,
there exists a set D (a detour) of edges in B such that the total length of D approximates
the distance d(a, b) within a factor of 1 + €.

In the special case that the O-regions and obstacles are polygonal, B is a (1 + &)-spanner
of the input vertices. To the best of our knowledge, our algorithm is the first near-linear time
(1 + ¢)-approximation algorithm for the weighted shortest path in a 0/1/0c0 weighted region.

» Theorem 3. Consider a planar subdivision induced by a plane with a weight of 1, consisting
of two sets of convexr and non-overlapping regions: 0-regions Z with a weight of 0, and
obstacles O with a weight of co. Let n = |Z| 4+ |O| and let N denote be the total number
of vertices in Z U Q. For any approximation factor 0 < € < 1, a data structure B can be
constructed over ZU O in O(N + (n/e3)(log(n/e) + log N)) expected time, with a total size
of O(N +n/e%). When queried with arbitrary points s and t, B returns a path P from s to t
in O(N +n/e3 + (n/e?)log(n/e) + (log N)/e) time, ensuring that w(P) < (1+¢) - w(P*),
where P* is the optimal weighted shortest path from s to t.
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2  Shortest path amidst 0-regions

The exact version of Problem 1 has a brute-force (n?) algorithm, by computing the distance
between every pair of 0-regions. To compute an approximate solution, the goal is to construct
an undirected weighted graph G = (V, &), with a near-linear number of edges, such that
there exists a path P between two O-regions in G with w(P) < (1 +¢) - w(P*), for a fixed
parameter ¢ > 0, where P* is the weighted shortest path.

To this end, we will use two data structures: trapezoidal maps and ©-graphs. Both data
structures are used to determine which pairs of 0-regions are connected. The trapezoidal
maps will ensure that there exist good paths between 0O-regions that are close to each other,
while the ©-graph ensures the same for O-regions that are far from each other.

2.1 Construction of the data structure

In order to define our data structure, we first define a set of directions. Let 6 < 7/6 be
a fixed positive real number. Let r(kf) be the direction with a counter-clockwise angle of
k6 with the positive z-axis. Let r(p, kf) be the ray originating from the point p with a
counter-clockwise angle of k6 with the positive z-axis. To simplify the discussion, we will
assume that (w/2)/6 € Z to guarantee that if r(k6) exists, then so does (k6 + 7/2).

For a O-region A, we define a set SP(A) of sample points on the boundary of A. Let
sp(A, k) be a sample point on the boundary 9A of A such that sp(A4, k) is extreme in the
direction r(k6) (see Figure 1). When the geometric region A is clear from context, we write
sp(k0) instead of sp(A, k).

r(k)

(k0 +7/2) (k6 — 7/2)

r(k6O + )

Figure 1 The sample points that are extreme in the directions of r(kf) and r(kf + ) are marked
with black dots. The sample points that are extreme in the directions of r(kf + 7/2) are marked
with circles. Using these sample points, we generate a simplified polygon and construct M(k); the
blue and green regions are examples of faces in M(k).

Let 0A(a,a’) define the subset of A traversed from point a to point @’ in counter-
clockwise order, where a,a’ € 0A. We say a line | overlaps A if [ and A intersect at more
than one point. We say two regions, A and B, are non-overlapping if their interiors do not
intersect.

A point p € QA can be an extreme point for more than one direction, in which case we
call p a vertex of A. There may be more than one extreme point on A for a single direction.
If p is the extreme point on A for consecutive directions {r(k6),r((k + 1)8),...,7((k +m)0)},
we say p = sp(kf), p = sp((k + 1)0), ..., and p = sp((k + m)6) simultaneously. If there is
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more than one extreme point for a single direction r(kf), these extreme points must lie on
some segment ab C JA, and we say both a and b are sp(kf). The sample points on the
boundary of a convex region can be computed by traversing the boundary.

» Observation 4. Given n convex regions with N vertices in total, there are O(n/0) sample
points, and it takes O(N +n/0) time to compute them.

Using the sample points on a 0-region A, we can generate a simplified 0-region (a convex
polygon) simpl(A) by connecting adjacent sample points of every O-region (see Figure 1).
Using the set simpl(Z) of simplified 0-regions, we will generate a set of trapezoidal maps,
and we say simpl(A) and simpl(B) are adjacent if they are both adjacent to the same face
in a trapezoidal map. We construct the query data structure B using Algorithm 1. We
analyse B in the full version. Let ||AB|| denote the Euclidean distance between two geometric
objects A and B.

Algorithm 1 Construct B with 0-regions.

This algorithm takes as input a set Z of non-overlapping and convex 0-regions, and constructs
a data structure B. The undirected graph G = (V, £) is initially empty.

1. Compute the sample points SP(Z), and add SP(Z) to V.
2. Pick an arbitrary sample point as the anchor ak(A) for every A € Z. For each p € SP(A),
add e = (p,ak(A)) to &, and set w(e) = 0.
3. For each direction r(k6), generate a trapezoidal map M (k) using simpl(Z), and do the
following for each M (k) (see [11, Theorem 6.3 and 6.8] for trapezoidal map construction).
For each face F € M(k) adjacent to A and B, A # B, add e = (ak(A), ak(B)) to &,
and set w(e) = ||AB]|.
4. With V as the input, generate a ©-graph Go = (V, o).
For each edge (p,q) € o, if p and ¢ do not belong to the same 0-region, add e = (p, q)
to &, and set w(e) = ||pq|.
5. Return B = {M(k) | Vk € [0,27/0),k € Z} U{G,Go} as the data structure.

» Lemma 5. Given an approxzimation factor 0 < ¢ < 1, and n non-overlapping convez 0-
regions with total complexity N, one can build the data structure B in O(N +(n/e?)(log(n/e)+
log N)) time, and the total size of B is O(N + n/?).

2.2 Trapezoidal map

Before arguing that there exists a good path using the edges constructed, we start with an
observation about the pair of points realising the shortest distance between two 0O-regions.
For a convex region A and a point p € 9 A, there exists at least one supporting line | = (A, p)
going through p such that A lies entirely in one of the two halfplanes determined by [ [19]. Let
p € A, and g € OB. We can observe that if pq realises | AB||, then pqg must be perpendicular
to a pair of supporting lines I;(A4, p) and I(B, q).

» Observation 6. Let A and B be two convex regions. Let pq be the line segment realising
||[AB||, where p € A and q € B. The segment pq must be perpendicular to a pair of supporting
lines l;(A,p) and l;(B,q).

We will show that if pg realises the distance between two O-regions, we can transform
pq into another segment pg’ such that pqg’ is parallel to some direction r(kf), and ||pq’||
approximates ||pg||. To do this, we first need a fact (see the full version for a proof).

33:5
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» Lemma 7. Given a segment pq, let o (resp. ) be the acute angle between pq and
r(p, (k + 1)0) (resp. r(p,k0)), where o« + 5 = 6 < w/6. Let ¢’ be the intersection of
r(p, (k+1)0) and r(q,k0 + 7/2). We have that ||pq’|| = (cos(B)/ cos(8)) - ||pqll, and ||qd’|| =
(sin(a)/ cos(0)) - [Ipql-

Let pq realise ||AB||. We consider the scenario when ||pq|| is relatively small compared
to the horizontal span of (say) B. Using the above lemma, we will show that we have
constructed a set of edges in £ connecting two sample points a € A and b € B, such that the
total weight of these edges approximates ||pg/|.

» Lemma 8. Let pq realise d(A, B), where p € A and q € B. Let p € 0A(a,d’), and
q € OB(V,b), where points a and o' (resp. b and V') are adjacent sample points on 0-
region A (resp. B). If max{|lpa’|,llgbll} > (sin(@)/ cos(8)) - Ipgl or max{ |pall, a¥'[l} >
(sin(B)/ cos(8)) - |lpgll, then there exists a path P C & from A to B such that w(P) <

(cos(B)/ cos(8)) - [lpqll-

Proof. Without loss of generality, assume that ||¢b|| > (sin(a)/cos(f)) - ||pg||. Lemma 7
implies that there exists a point ¢’ € dB(b, ¢) such that pq’ is in some direction r(k6), and

Ipg[| < (cos(B)/ cos(0)) - llpql|. Because

d\ .
C X\
r(k)
P p

Figure 2 In the left figure, if pg’ does not overlap a 0O-region, we slide pg’ until it touches a sample
point. In the right figure, we slide each inter-region segment (cd as an example) the same way.

Observe that pg cannot overlap any 0-region; otherwise, pg does not realise d(A, B). If
pq’ does not overlap any O-region (see Figure 2, left), we fix the orientation of pq’, and move
p along 0A(p,a) and g along dB(b, q), until pg’ touches a sample point.

If pq’ touches a (resp. b), then r(a, k) (resp. r(b, k6 + 7)) hits B (resp. A). If pg’ touches
a sample point v ¢ AU B, v must be extreme in the direction r(kf — 7 /2). As a result, r(v, k)
hits B, and r(v, k0 + 7) hits A. In either case, A and B are adjacent in some face of M(k),
and the edge e = (ak(A),ak(B)) is in £ by construction. As a result, w(e) = || AB|| = ||pq]|.
This is also trivially true when p or ¢’ is already a sample point.

Otherwise, the segment pq’ overlaps a set E’ of O-regions, and there exists a path P from
A to B through E’ (see Figure 2, right). Since the 0-regions do not overlap, the boundaries
of the 0-regions in E’ partition pq’ into a set of intra-region and inter-region segments. Let
cd be one among the set .S of inter-region segments, where ¢ is on a 0-region C, and d is on
a O-region D. Using the same argument as above, one can slide cd until it touches a sample
point, and edge (ak(C),ak(D)) € £ exists by construction.
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In total, traveling from A to B via the O-regions E’ must be less costly than ||pq’||, since
w(ak(C),ak(D)) = ||CD|| < |lcd]|, and the intra-region segments have weight 0. Summing
up the cost of P, we have that

w(P) = Y wiak(C),ah(D) < 3 [l < | = 20 - | <
cdeS cdeS
2.3 O©O-Graph

In Step 4 of Algorithm 1, we constructed a ©-graph Go = (Vo, o) using the defined sample
points. The vertices Vg are simply all sample points. The edges in Eg are constructed using
the standard ©-graph construction [11]. Recall that in Algorithm 1, for every edge (p, q) € o,
with p € A, ¢ € B, and A # B, we add an edge (p,q) to &, and set w(p,q) = ||pq|-

The ©-graph constructs a set of “good” edges in £ when the distances between p (resp. q)
and its adjacent sample points are small compared to ||pg||. In this case, we argue that there
exists a pair of sample points a € A and b € B, such that ||ab|| < (1/cos(f)) - ||pg||. Similar
to Lemma 7, we prove the following geometric property in the full version.

» Lemma 9. Given a segment pq, let a (resp. ) be the acute angle between pq and
r(p, (k+1)0) (resp. v(p,k0)), where a+B =0 < w/6. Let ¢ be the intersection of r(p, (k+1)6)
and r(q, k0+7/2), and let p' be the intersection of r(q, k@+m) and r(p, (k+1)0+m/2). Let c be
the intersection of pg' and qp’. We have that ||cp’|| + ||cq'|| = (sin(a) +sin(5))/(cos(8) sin(h)),
and [[9'g'|| = (1/ cos(®)) - Ipall.

In the case that both p and g are close to their adjacent sample points, we prove that

there exists a pair (a,b) of sample points such that ||ab|| approximates ||pqg|| in the full version.

» Lemma 10. Let pq realise d(A, B), where p € A and ¢ € B. Let p € 0A(d,a), and
q € OB(b,V'), where points a and a’ (resp. b and b') are adjacent sample points on A (resp. B).

If max{[[pa’|], |gb]|} < (sin(e)/ cos(0)) - [Ipg|| and max{||pal, [lgb'[|} < (sin(53)/ cos(0)) - [Ipall,
then d(a,b) < (1/cos(9)) - ||pqll-

2.4 The quality of the path

For now, assume that s and ¢ lie in some O-region. An optimal s-t path P* consists of a set
of segments, where the endpoints of each segment lie on the boundaries of the O-regions. A
segment pq either lies within a 0-region or connects two different 0-region. Since it costs
nothing to follow an edge inside a 0O-region, the weight of P is the total weight of those edges
connecting different 0-regions.

Let pq realise the distance between O-regions A and B, where p lies on A between
sample points a and a’, and ¢ lies on 9B between sample points b and b'. In Lemma 8,
we have shown that if max{||pa’,[lgbl[} = (sin(a)/cos(6)) - [lpg|| or max{]|pal,[lgb'||} >
(sin(B)/ cos(0)) - ||pq||, there exists a path P C £ from a sample point on A to a sample point
on B of length at most (cos(8)/ cos(8)) - ||pql|-

In Lemma 10, we have shown that if max{||pa’||, ||¢b||} < (sin(a)/cos()) - ||pq|l and
max{||pall, [|¢gV'||} < (sin(B)/cos(#)) - ||pg||, there exist sample points @ € A and b € B, such
that d(a,b) < (1/cos(#))-||pq||. To obtain a path between a and b in this case, we rely on the
©-graph. The tightest bounds on the length of this path are due to Bose et al. [4], who showed
that the spanning ratio of a ©-graph is at most 19 = 1+2sin(6/2)/(cos(6/2) —sin(6/2)). Our
final approximation ratio is (1/ cos(6))-rg. Given an input approximation factor 1+ ¢, we can
compute a desired angle § € O(e). The undirected graph G € B is therefore a (1 + €)-spanner
of the sample points. See the full version for details.
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» Lemma 11. The graph G € B contains a path P C & from sample point a to sample point
b such that w(P) < (1+¢) - w(P*), where P* is the optimal path from a to b.

Given a pair of query points s and ¢, we add s and t to B. We treat both s and ¢ as
0-regions with no interior to enable previous lemmas, yielding the theorem below. See the
full version for details.

» Theorem 1. Consider a planar subdivision induced by a plane with weight 1, containing a
set Z of non-overlapping convex 0-regions with weight 0. Let |Z] = n and N denote the total
number of vertices in Z. For any approzimation factor 0 < e < 1, a data structure B can be
constructed over Z in O(N + (n/e?)(log(n/e) + log N)) expected time, with a total size of
O(N +n/e?). When queried with points s and t, B can return a weighted path P from s to t
in O(N +n/e? + (n/e)log(n/e) + (log N)/e) time, satisfying w(P) < (1 +¢) - w(P*), where
P* is the optimal weighted shortest path from s to t.

3 Partial weak Fréchet similarity

This section highlights one application of our data structure: approximating the partial weak
Fréchet similarity. The Fréchet distance is a popular measure of the similarity between two
polygonal curves. An orientation-preserving reparameterisation is a continuous and bijective
function f : [0,1] — [0,1] such that f(0) = 0, and f(1) = 1. The widthy 4(7,0) between
two curves 7 and o with respect to the reparameterisations f and g, is defined as follows.
widthy ¢(7, 0) = max [[w(f(t)) — o(g(t))]l
te[0,1]

Consider the scenario where a person is walking his dog with a leash connecting them:
the person needs to stay on 7m while walking according to f, and the dog needs to stay on
o while walking according to g. The maximum leash length is the width between 7 and o
with respect to the reparameterisations f and g. The standard Fréchet distance dp(m, o) is
the minimum leash length required over all possible walks (defined by reparameterisations f
and g).

Op(m, o) = f,ge[ol,rll]fe[o,l] widthy (7, o)

Problems relating to the Fréchet distance are commonly solved in a configuration space
called the freespace diagram. The free space F4(m,0) with respect to the Fréchet distance d
is the union of all pairs of points x € 7 and y € o such that the distance between x and
y is at most d. As opposed to the free space, we will call [0, ||7]|] x [0, ||o]]] \ Fa(m, o) the
forbidden space.

Fa(m, o) = {(z,y) € [0, [xll] x [0, [|oll] [ |7 () — o(y)]| < d}

The freespace diagram Dy(r,0) is a data structure that stores the free space Fy(m, o) in
n? cells. Alt and Godau [3] showed that the intersection of the free space with each cell is
the intersection of an ellipse and a rectangle. Therefore the free space in each cell is convex,
and its boundary is of constant complexity. For two polygonal curves with complexity n, Alt
and Godau [3] proved the following fact.

» Fact 12. The freespace diagram contains at most n? cells, and it can be constructed
in O(n?logn) time. The free space inside each cell is the intersection of an ellipse and a
rectangle.
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It is well-known that if one can find an xy-monotone path in Dy(w, o) from the bottom-left
corner s to the top-right corner ¢ via the free space, then dp(m,0) < d.

The notion of weak Fréchet distance relaxes the requirement of the reparameterisation f:
it still needs to be continuous but not bijective. This means that the person and the dog
can walk backward. To determine if the weak Fréchet distance d,,p (7, 0) is at most d, we
need to find only a (potentially not zy-monotone) path through the free space from s to ¢
in Dy(m, o). Buchin et al. [8] showed that there is no strongly subquadratic time algorithm
for approximating the weak Fréchet distance within a factor less than 3 unless the strong
exponential-time hypothesis fails.

Buchin et al. [7] proposed the partial Fréchet similarity (partial similarity in short) to
deal with the Fréchet distance’s sensitivity to outliers. Instead of determining whether a
leash of length d is enough to complete the walk, partial similarity determines how much
can be completed given a leash of length d. The partial similarity is the total length of the
portion of two curves that are matched under the Fréchet distance d.

Let ||zy||, be the distance between point  and point y under the L, norm. Let ||v|| be
the Ly norm of the vector v. Under the L, metric, given the desired Fréchet distance d, the
partial similarity Sy 4(m, o) of curves m and o with respect to the reparameterisations f and
g is formally defined as follows [7].

Syama) = [ (I=(£®) 1+ loto(t) e
I (F()o(g(®)llp<d

Naturally, we want to compute a pair of reparameterisations f and ¢g that maximise the
partial similarity. To do this, Buchin et al. [7] proposed a cubic time algorithm under L;.
They showed that it is sufficient to find an zy-monotone and rectilinear path P from s to ¢
such that P intersects as much free space as possible, where s (resp. t) is the bottom-left
(resp. top-right) corner of the freespace diagram.

Under the weak Fréchet distance, the monotonicity requirement is removed. But since
a path P can traverse back and forth in the freespace diagram, it is no longer meaningful
for P to intersect as much free space as possible. We instead are interested in computing a
path that intersects as little forbidden space as possible to minimise the portions of the two
curves that are not matched within distance d. Therefore, solving the partial weak Fréchet
distance problem under the Lo metric is equivalent to finding a weighted rectilinear shortest
path amidst a set of O(n?) non-overlapping and convex 0-regions embedded in the plane
(the forbidden space) with weight 1. By Fact 12, a 0-region is the free space within a cell,
which has constant complexity.

Amidst the 0-regions and measured in L, metric, let OPT, denote the weight of the
weighted shortest path from s to ¢, and let ALG L, denote the weight of the weighted path
computed by Theorem 1. Since OPTy, < V2 - OPTr,, we have

OPT., < OPTy, <V2-OPTy, <V2-ALGr, <V2-(1+¢)OPTy,,
which leads to the following theorem.

» Theorem 2. One can approximate the partial weak Fréchet similarity of two curves within
a factor of (v/2 +¢) in O((n?/e?)log(n/e)) expected time.
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4  Shortest path amidst 0-regions and obstacles

In this section, we generalise our data structure from Section 2 to allow convex obstacles that
cannot be traversed, i.e., obstacles with weight co. Our problem is finding an approximate
shortest path amidst 0-regions and obstacles. More concretely, we consider the following
problem.

» Problem 2. In the planar-subdivision induced by the plane with weight 1, and a set of
non-overlapping conver regions consisting of obstacles with weight oo, and 0-regions with
weight 0, given an approzimation error 0 < € < 1, find a (1 + &)-approzimate weighted
shortest path from point s to point t.

In this section, let d(A, B) denote the minimum distance between two geometric regions
A and B in a 0/1/00 weighted setting. The ©-graph can be constructed in an environment
with obstacles. Clarkson [10] described such construction over points and polygonal obstacles,
and proved that a path that (1 + €)-approximates d(a, b) exists in the ©-graph, where a and
b are vertices. We will use this ©-graph in the rest of the paper.

Like in the previous section, we will first describe the construction of the data structure B
and analyse the time and space complexity. We then show that G € B contains a good
path between every pair of sample points. We use this to argue the approximation ratio for
arbitrary s and t.

4.1 Construction of the data structure

In order to deal with obstacles, we need to define two new types of sample points. For clarity,
we refer to the sample points defined previously as the original sample points. In Section 2, a
trapezoidal map M(k) was only used to determine if two O-regions should be connected, and
we did not explicitly compute the intersection of a vertical segment and the boundary of a
region. With the introduction of obstacles, we do need such intersections. Consider a sample
point a. When constructing M(k), we shoot two vertical rays from a € A, one upwards and
one downwards. Let p be the first intersection of r(a, k) with the boundary of some region
that is not A. We call p a propagated sample point.

The other type of sample points we need is the tangent sample points. Given two disjoint
obstacles A and B, and a common tangent [, if [ touches A at point ¢ and B at b, we add «a
and b as tangent sample points. When we say a point a is a sample point, a can be any type
of sample point.

Recall that simpl(A) is the simplified region by connecting every pair of adjacent sample
points of A. simpl(Z) is the set of simplified O-regions, and simpl(QO) is the set of simplified
obstacles. We formally define the construction of our data structure. Given a set O of convex
obstacles and a set Z of convex 0-regions, we build our data structure using Algorithm 2.
See the full version for the analysis.

» Lemma 13. Given an approzimation error 0 < € < 1, and n non-overlapping convex
regions including 0-regions and obstacles with total complexity N, one can build the data
structure B in O(N + (n/e®)(log(n/e) + log N)) expected time, and the total size of B is
O(N +n/e%).

The structure of the rest of the section is as follows. By Lemma 14, the distance between
two adjacent sample points on the boundary of an obstacle approximates the straight line
segment. Therefore, we show that we can “snap” the vertices of an optimal path to our
sample points. For every segment pg C P*, we then argue that either the trapezoidal map or
the ©-graph contains a path approximating ||pq|| to within a factor of 1 + €.
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Algorithm 2 Construct B with O-regions and obstacles.

This algorithm takes as input a set of non-overlapping and convex regions, including 0-regions
Z and obstacles O, and constructs a data structure B. The undirected graph G = (V,€) is
initially empty.

1) Compute the original sample points SP(Z) U SP(O), and add them to V.

2) For each direction r(k6), generate a trapezoidal map M (k) using simpl(Z) U simpl(O).

3) For every M(k), do the following for every face F' adjacent to A and B, A # B.
a. Compute the propagated sample points, and add them to V.
b. If A and B are both 0O-regions, add e = (ak(A),ak(B)) to £, and set w(e) = ||AB]|.
c. If at least one of A and B is an obstacle, let ab and a’b’ be the vertical segments

defining F, where a,a’ € A, and b, b’ € B. Add edges e; = (a,b) and ez = (a/, ) to £.

Set w(e1) = ||ab|| and w(ez) = ||a’||.
d. If A and B are both obstacles, we compute their common tangents. For each common
tangent that touches A at a and B at b, add a and b to V.

4) Redefine simpl(A) as the polygon generated by connecting adjacent sample points of A,
original, propagated, and tangent sample points included. With V and simpl(O) as the
input, generate a ©-graph Go = (V, £g).

For each edge (p, q) € o, if p and ¢ belongs to different regions A and B, add e = (p, q)
to £ and set w(e) = ||pq||.

5) For every pair of adjacent sample points a,a’ on an obstacle, add e = (a,a’) to edges, and
set w(e) = |lad/|.

6) Pick an arbitrary sample point as the anchor ak(A) for every A € Z. For each sample
point a of a 0-region A, add e = (a,ak(A4)) to &, and set w(e) = 0.

7) Return B = {M(k) | Vk € [0,27/0),k € Z} U{G,Go} as the data structure.

4.2 Walking on the boundary is not expensive

We first argue that if ¢ and o’ are adjacent sample points of A, then ||aa’|| approximates
|[0A(a,a’)| within a factor of sec(6/2). Therefore, if we find a path P amidst the simplified
obstacles, we only need to pay a small factor to transform P into a path amidst the original
obstacles. Then, we prove that if pq is part of the optimal path, we can replace pq with a
path P C &, such that w(P) approximates ||pq||. See the full version for a formal proof.

» Lemma 14. Let a and b be adjacent sample points on A, where a appear after b in a
counter-clockwise walk. We have that ||0A(a,b)|| < sec(6/2) - ||ab]|.

The above lemma implies the following. Let dg(a,b) be the distance between point a and
point b amidst simplified obstacles and simplified O-regions, and let P be the path achieving
this distance. If we partition P using the sample points, in the worst case, each segment
connects adjacent sample points on obstacles. This implies the following corollary.

» Corollary 15. Let a and b be two adjacent sample points. We have that d(a,b) <
sec(8/2) - ds(a,b).

4.3 Snapping a segment of the optimal path to the sample points

Gewali et al. [15] defined three types of locally optimal edges joining two simple polygonal
regions, and they proved that the shortest path from s to ¢ must be comprised of these
locally optimal edges [15, Lemma 2.5] (ignoring edges in 0-regions). For convex obstacles
and O-regions, we need to consider only four types of segments.
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» Fact 16. If segment pq is in the optimal weighted path P* amidst convex and non-

overlapping 0-regions and obstacles, there must exists two supporting lines l;(p) and l:(q)

such that pq belong to one of the following cases (ignoring segments in 0-regions).

1) pq connects two O-regions such that pq L l;(q) and pq L l;(p).

2) pq connects the point p on a O-region A and the point g on an obstacle B such that
pq C li(q), and pg L l;(p).

3) pq lies on one of the common tangent of two different obstacles.

4) p and q are two points on the same obstacle, and pg = OA(p,q) or pg = 0A(q,p).

In Section 4.3.1, 4.3.2, and 4.3.3, we handle each type of edge in Case 1, 2, and 3,
respectively. For an edge pq in each of these cases, we argue that there exists a good path
in G € B that approximates pq. Section 4.4 summarises the approximation ratio using the
Case 4 edges. In the following lemmas, we assume without loss of generality that pq lies
between the direction r(k6) and r((k+1)8), and « (resp. ) is the measure of the acute angle
between r(p, k6) (resp. r(p, (k + 1)8)) and pg. By Corollary 15, we consider only simplified
obstacles. We delegate the full proofs to the appendix.

4.3.1 Case 1: pq connects two 0-regions

We observe that, unfortunately, Lemma 8 does not trivially apply. When we rotate pq to pq’,
if pg’ overlaps obstacles, a path generated using the skewed set of obstacles can be much
longer than ||pq’||, since the path would have to take a detour around the obstacles. The
following lemmas resolve this issue. See the full version for full proofs of the lemmas below.

» Lemma 17. Let A and B be two 0-regions. Let pq C P*, where p € 0A, and q € 0B. If
llgbl| > (sin(c)/ cos(8)) - |lpql|, where b is a sample point adjacent to q, then there exists a
sample point a € OA such that dg(a,b) < (cos(B)/ cos(9)) - ||lpq]|-

» Lemma 18. Let A and B be two 0-regions. Let pq C P*, where p € 0A, and q € 0B.

If llgbll < (sin(e)/ cos(8)) - llpgll and |[pa]| < (sin(B)/ cos(8)) - |lpgll, where a (resp. b) is a
sample point adjacent to p (resp. q), then ds(a,b) < (sin(a) + sin(3))/(cos(0) sin(f)) - [|pq||-

We combine Lemma 17 and Lemma 18 to obtain a bound on the path length where p
and ¢ both lie on 0O-regions. Note that when two points p and a lie on the boundary of the
same O-region, dg(a,p) = 0.

» Lemma 19. Let A and B be two convex 0-regions. Let pqg C P*, where p € 0A and q € 0B.
There exists a pair of sample points a € A and b € B, such that dg(p, a)+ds(a,b)+ds(b,q) <

max{(cos(B)/ cos(0)), (sin(a) + sin(B))/(cos(6) sin(6))} - [[pql|-

4.3.2 Case 2: pq connects two obstacles

Using Fact 16, we know that if pg connects two obstacles, then pg must lie on a common
tangent of A and B. When two obstacles are close, p (and ¢) may be very far from its adjacent
original sample points. Hence, we need the tangent sample points when two obstacles are
close (connected via a trapezoidal map). We now show that if p and ¢ lie on obstacles, an
approximate path in B exists. See the full version for a full proof of the lemma below.

» Lemma 20. Let A and B be two convex obstacles. Let pg C P*, where p € A and q € 0B.
There exists a pair of sample points a € A and b € B, such that dg(p, a)+ds(a,b)+ds (b, q) <
(1/cos(8)) - [lpql|-
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4.3.3 Case 3: pq connects a 0-region and an obstacle

In this section, we prove that if pg connects an obstacle A and a O-region B, there is a path
P that approximate pg. See the full version for a full proof of the lemma below.

» Lemma 21. Let A be a convex obstacle and let B be a convexr 0-region. Let pq C P*,
where p € 0A and q € OB. There exists a pair of sample points a € A and b € B, such that

ds(p,a) +ds(a,b) +ds(b,q) < (cos(3)/ cos(0)) - [Ipg]-

4.4 The quality of the path

In Lemma 19, 20, and 21, we have shown that for every segment pq in Case 1-3 in Fact 16,
either there exists a path P C & such that w(P) approximates ||pq||, or there exist two
sample points a and b such that ds(p, a) + ds(a,b) + ds(b, ) approximates ||pg||. Taking
the maximum ratio in the three lemmas, we have the following.

2sin(%)

cos(f) sin(6) gl

ds(p,a) +ds(a,b) +ds(b,q) <

For a Case 4 segment 0A(p, ¢), where both p and ¢ lies on the obstacle A, assume without
loss of generality that p occurs before ¢ in P*, and let pg = 0A(p, q).

If 0A(p, q) contains no sample point, then assume that the optimal path uses segment
p'p to reach A, and qq’ to leave A. We argue that there exists an approximate path P that
approximates ||p'p|| + [|0A(p, ¢)|| + |l¢¢’||. Let a (resp. b) be the closest sample point to p
(resp. q), such that 0A(p,q) C 0A(a,b). In Lemma 19, 20, and 21, we have payed for a path
P, C & from p’ to p though a and a path P, C &£ from ¢ to ¢’ through b. Since there is
no sample point on JA(p, q), instead of going from a to p and ¢ to b, we take the path ab
directly. The unused cost of dg(a,p) and dg(q,b) pays for ||abl|.

Let p) (resp. ¢ ) be the orthogonal projection of p (resp. ¢) on ab. Clearly, ||0A(a,p)| >
llapy | and ||0A(q,b)|| > ||bgL||. By Lemma 14, ||0A(p, q)| < sec(8/2) - |[pLqr]||. Therefore,
we connect P, and P, using ab to generate a path P, and we have that

2sin(%)

cos@ysa@ 1771+ 104 ) + lag'l)

1Pl <

If DA(p, q) contains at least one sample point {a,...,b}, then by Lemma 14, we have that

0
ds(p.) + ds0,8) + ds(0.0) < see () - I,

Bose and van Renssen [6] showed that in an environment with polygonal obstacles, the ©-
graph described by Clarkson [10] has a spanning ratio of at most 9 = 1+2sin(6/2)/(cos(6/2)—
sin(f/2)). We also need to apply the factor to traverse the boundaries of convex obstacles to
account for the difference compared to the boundaries of simplified obstacles, as in Lemma 14.
For a desired approximation factor 1+ €, we can compute a 8 € O(e), and thus B contains a
(1 + &)-spanner of the sample points.

» Lemma 22. In B, there exists a path P C & between any pair of sample points (a,b) such
that w(P) < (1+¢) - d(a,b).

Given a pair of query points s and ¢, we add s and ¢ to B. We treat both s and ¢ as
obstacles with no interior to enable previous lemmas, yielding the theorem below. See the
full version for details.
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» Theorem 3. Consider a planar subdivision induced by a plane with a weight of 1, consisting
of two sets of convexr and non-overlapping regions: 0-regions Z with a weight of 0, and
obstacles O with a weight of co. Let n = |Z| 4+ |O| and let N denote be the total number
of vertices in ZU Q. For any approximation factor 0 < e < 1, a data structure B can be
constructed over ZU O in O(N + (n/e3)(log(n/e) + log N)) expected time, with a total size
of O(N +n/e®). When queried with arbitrary points s and t, B returns a path P from s to t
in O(N +n/e3 + (n/e?)log(n/e) + (log N)/e) time, ensuring that w(P) < (1+¢) - w(P*),
where P* is the optimal weighted shortest path from s to t.
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