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Abstract
We show how to preprocess a polygonal domain with holes so that the link distance (the number of
links in a minimum-link path) between two query points in the domain can be reported efficiently.
Using our data structures, the link diameter of the domain (i.e., the maximum number of links that
may be required in a minimum-link path between two points in the domain) as well as the link center
and radius of the domain (i.e., the point minimizing the maximum link distance to the furthest
point in the domain and this maximum link distance) can be found in polynomial time. We also
give a simpler algorithm for finding the link diameter, not using the link distance query structures.
Answering 2-point link distance queries and computing the link diameter/radius/center in polygonal
domains have been open questions since these problems were studied for simple polygons in the 90’s.
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1 Introduction

In computational geometry, the complexity of paths within polygonal domains is often
measured not only by their length but also by their structural simplicity. This is particularly
relevant in areas such as motion planning, robotics, and geographic information systems,
where simplifying complexity can reduce computational overhead. A minimum-link (minlink)
path between points s, t in a polygonal domain P is a polygonal s-t path with the minimum
number of edges (links). The number of links in a minlink path is the link distance between s

and t, providing such a measure of path complexity. The link diameter of P is the maximum
possible link distance between any two points in the domain. The link center of the domain
is the point minimizing the maximum link distance to points of P ; this maximum distance is
the link radius. The above notions are analogous to the same concepts (diameter, center,
radius) for arbitrary metric spaces.

1.1 On the complexity of computing optimal geometric paths
Both geodesic (shortest) and minlink paths may be more intricate than it feels from a glance:

It is folklore that geodesic paths may be found by searching the visibility graph of the
domain; however, even if the vertices have integer coordinates, it is not known whether
one can compare, in polynomial time, the length of a path to an integer – the length is
the sum of square roots and no polynomial-time algorithm is known for comparing the
sum to a number.
As explained in Section 2.1, vertices of a minlink path cannot always be snapped to
a discrete set of points, leading to high bit complexity of the paths even in simple
polygons [19,21]. In a polygonal domain with holes, it is not immediately clear how to
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Figure 1 Figure 1 from [19]: the coordinates of the vertex t1 of the path are obtained as a solution
to a system of 2 linear equations with 2 unknowns and integer coefficients – they are thus represented
by a ratio of integers; subsequent bend points are solutions to systems of linear equations whose
coefficients have higher and higher bit complexity (they are ratios of larger and larger integers).

find a minlink path in polynomial time. One may compute the k-link reachable regions,
from the starting point, for increasing k, but bounding the complexity of the regions (and
hence the algorithm’s runtime) requires an insight [25].

The problems considered in this paper (2-point shortest path queries, diameter and radius)
take the complexity to the next level. Quoting [5]: “no algorithm for computing the diameter
and radius under the link distance is known, not even one that runs in exponential time.”
In particular, nothing directly prevents the problems from being NP-hard or ∃R-hard. We
show that the problems admit polynomial-time solutions. The running times are high: we
leave the speed up as future work. (Note that there are plenty of algorithms with high
running times that “just” show polynomiality of long-standing open problems; computational
geometry examples range from a 20yr-old O(n29 log n)-time approximation algorithm [13] for
covering an n-gon with fewest convex subpolygons to a recent O(n107)-time algorithm for
star-partitioning a simple polygon [1].)

2 Preliminaries and related work

Let n denote the number of vertices of P . The visibility polygon (VP) of a point p ∈ P is the
set of points in P seen by p. The weak visibility polygon of a subset S ⊆ P is the union of the
VPs of the points of S; equivalently, the weak visibility polygon is the set of points seen by
at least one point of S. The visibility graph (VG) of P is the graph on vertices of P , whose
edges connect pairs of mutually visible vertices. We assume that edges of P are also edges of
the VG (i.e., that neighboring vertices of P see each other along the boundary edge).

2.1 Link distance and bit complexity

Computing the link diameter and radius/center of a polygonal domain with holes has been
open since analogous problems were considered for simple polygons some 30 years ago [4, 28].
The reason why even an exponential-time solution is not obvious is because vertices of a
minlink path do not necessarily lie on VG or some other discrete structure determined from
the polygon (Fig. 1): it was shown [19,21] that Θ(n log n) bits may be required to represent
coordinates of vertices of the minlink path, even if the vertices of P have integer coordinates
specified with O(log n) bits.
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Figure 2 Staged illumination in a simple polygon (left) and in a polygonal domain with holes
(right). Left: Figure 3 from [24]: The windows are yellow. Right: Figure 5 from [25]: The cross-
hatched area is what is swept by the lower envelope of a set of windows when this lower envelope is
a “rubber band” pinned at its endpoints: when released, the rubber band snaps onto edges of VG.

2.2 Staged illumination
Algorithms for computing the link distance from a source point s [15, 17, 25, 26] employ
the “staged illumination” paradigm (see, e.g., the handbooks [23, Chapter 12] and [30,
Chapter 31.3]): At the first stage, place the light source at s and illuminate VP of s – this is
the set of points with link distance 1 from s. At the beginning of any subsequent stage, the
boundary between the lit and the dark portions of P is defined by a set of line segments we
call windows (any window starts at a vertex and ends on the boundary of P ) which bound
the weak visibility polygon of the area lit at the previous stage.

Figure 2 (left)t illustrates the staged illumination in a simple polygon. To efficiently run
the staged illumination in a polygonal domain with holes [25], some chains of windows are
replaced by their relative convex hulls within P – essentially snapping windows to edges of
VG. See Figure 2 (right) and [25], in particular, Figures 2–5 therein for the details.

The greedy path [4, 22] from s to a window w is the minlink path whose links are all
aligned with windows and whose last link is aligned with w. E.g., the path in Fig. 1 is greedy.

2.3 Distance map
The link distance map, denoted LDM(s), from the source point s is a decomposition of P into
cells such that the link distance from s to any point within one cell is the same. Note that it
is not required that the cells of LDM are maximal (i.e., that the link distance necessarily
changes as you step from a cell to a neighboring cell): the only requirement is that the
distance never changes within a cell.

For simple polygons, an LDM is really a by-product of the staged illumination (the edges
of the map are the windows). Both a single minlink path and the LDM can be computed in
O(n) time (because in a simple polygon the windows are pairwise disjoint, the LDM in it is
also called a “window partition” [4, 28]).

In polygons with holes the LDMs can have Ω(n4) complexity [29], and extra care must be
taken in order to produce the LDM. In [25, Theorem 12] it was shown how to build the LDM
in Õ(n5) time, where Õ notation suppresses polylogarithmic factors. The map is defined by
an arrangement of windows (called “illumination edges” in [25]) within the domain.

Similarly to constructing an LDM from a point, one can build LDM from a source chord c

of P (Fig. 3): the weak VP of c is the set of points reachable with 1 link from c, and the
subsequent steps of the illumination are defined in the same way as for a point source. LDMs
from segments were built already in early work [28] on link distance; in particular, LDMs
from chords were used for finding the link center of a simple polygon [11].

WADS 2025
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Figure 3 LDM(c) is obtained by starting the illumination from c (yellow); the edges of the map
are solid red, and the cells are marked with the link distance to c.

2.4 1-point queries
After being preprocessed for point location, an LDM allows one to report the link distance
from the source to a query point q in optimal O(log n) time, by locating the cell of the map
that contains q (enhanced with the backpointers, the map lets one report an actual minlink
path in the additional time proportional to the number of links). An LDM is thus analogous
to the shortest-path map (SPM(s)) in P , which decomposes the domain into cells such that
the length of the geodesic (shortest) path from s to any point in one cell is given by the same
formula. Note that while SPMs have linear complexity and can be built in linear (for simple
polygons) or near-linear (for polygons with holes) time [33, 34], finding even a single minlink
path in polygons with holes is 3SUM-hard [24] (an Õ(n2)-time algorithm is given in [25]).

3 Prior work on 2-point queries and our results

While LDMs and SPMs give complete answers to the 1-point link and geodesic distance
query resp. (for a fixed source, report the distance from a query point to the source), for the
2-point distance query problem (report the distance between two query points s and t), the
solutions achieving optimal O(log n) query time are much more involved [4, 9, 10,16,32]:

An optimal (linear-preprocessing) algorithm is known only for 2-point geodesic distance
queries in simple polygons [16].
A cubic-size data structure for link distance queries in simple polygons was given in [4].
For geodesic distance queries in polygonal domains, two methods were presented in [9]:
2d SPM equivalence decomposition splits P into (a polynomial number of) cells such

that SPM(s) remains combinatorially the same (called “topologically equivalent” in
[7, 9]) while s stays within one cell, and stores a parametric SPM for each cell (the
parameter being the location of s within the cell: the parametric SPM records how the
edges of SPM(s) change depending on where s is). After preprocessing the parametric
SPM for parametric point location [9, Section 4.2], 2-point geodesic distance queries
may be answered by locating s in the decomposition of P and then locating t in the
parametric SPM(s).

4d geodesic distance equivalence decomposition splits P ×P into (a polynomial num-
ber of) cells such that the geodesic distance between any pair of points (s, t) within
one cell is given by the same formula, i.e., by the same function of (s, t). (On a
detailed note, [9] presented two 4d structures: the vanilla O(n22+ε)-space 4d decompo-
sition introduced in [9, Section 3] first, and the improved O(n15+ε)-size data structure
in [9, Theorem 3.1] – we refer here to the former decomposition because the improved
one, being specific to geodesic paths, does not work for us; similarly we did not see
how to extend to link distance the recent data structure for geodesic paths from [10].)
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No data structure for 2-point link distance queries in polygonal domains with holes has
been known previously. One of the contributions of this paper is working out such data
structures (analogous to the 2d and the 4d decomposition for geodesic queries [9]) by
extending the solution of [4] (for 2-point link distance queries in simple polygons) to
polygons with holes. Specifically, we provide the following two data structures:
2d LDM equivalence decomposition is the decomposition of P into (a polynomial

number of) cells such that LDM(s) remains combinatorially the same while s stays in
one cell. The map, i.e., its vertices and edges (windows), is a known function of s (the
functions may be different in different cells, but within one cell the function is same).

4d link distance equivalence decomposition decomposes P ×P into (a polynomial num-
ber of) cells such that the link distance between any pair (s, t) in one cell is the same.

3.1 Diameter and radius/center
Computing the diameter and radius is intimately connected to the 2-point distance query
structures, described above, via the following observation applicable to both geodesic and
link distances – hence the prefix Meta:

▶ MetaTheorem 1. If the 2d map equivalence decomposition of P or the 4d distance
equivalence decomposition of P × P can be built in polynomial time, then the diameter and
the radius/center of P can be computed in polynomial time.

Proof. Go through every cell σ of the 2d map equivalence decomposition.
For the geodesic distance, the maximum distance from s is attained at a vertex of
SPM(s) [7, Lemma 1]. Since in every cell σ, it is known how SPM(s) changes with s,
distances from s to all vertices are also known, and hence the maximum distance from
s ∈ σ to a point in P is also known (from the upper envelope of the distances).
For the link distance, the maximum distance from s ∈ σ is the distance to points in the
cell of LDM(s) farthest from s (any point in a cell of LDM(s) has the same link distance
from s – no need for the envelope).

To identify the diameter, take the maximum distance to the furthest point, and for the radius
take the minmax; for the final answer, choose the best σ accordingly. To find the diameter,
one may also go through every cell of the 4d decomposition and in every cell find the pair (s,
t) that maximizes the s-t distance – the diameter will be given by the overall maximum. ◀

3.2 State of the art and our contribution
Solutions based on MetaTheorem 1 are not very efficient, and faster algorithms exist for
finding both the geodesic diameter [6] and radius [31] of polygonal domains (in simple
polygons, linear-time algorithms exist for both geodesic diameter [18] and radius [3]; link
diameter [27] and radius [11] of simple polygons can be found in near-linear time). Existing
results regarding diameter and radius are summarized in Table 1: essentially, the only case
that has been missing is link distance in polygons with holes. Similarly, for simple polygons
2-point distance query data structures are known both for geodesic [16] and link distance [4],
while for polygonal domains the problem has been solved only for the geodesic distance [9].

In this paper, we fill the gaps by showing how to construct the 2d map equivalence
decomposition of a polygonal domain P and the 4d distance equivalence decomposition of
P × P under the link distance. By MetaTheorem 1, this leads to polynomial-time algorithms
for finding the link diameter and radius/center of the domains P .

WADS 2025
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Table 1 A sub-table of [5, Table 1]: known results for computing the diameter and radius in
simple polygons (left) and polygonal domains (right).

simple polygon polygonal domain
Diameter Radius Diameter Radius

Geodesic O(n) [18] O(n) [3] Poly-time [6] Poly-time [7, 31]
Link O(n log n) [27] O(n log n) [11, 20] Poly-time [this paper]

The rest of the paper is organized as follows. Section 4 gives a simple algorithm to
compute the link diameter (without resorting to MetaTheorem 1), and Section 5 presents
data structures for 2-point link distance queries. Our data structures reuse, extend and
combine the techniques of [4] (link distance queries in simple polygons) and [9] (geodesic
distance queries in polygonal demands with holes): analogously to [9], our data structures are
the 2d LDM equivalence decomposition and the 4d link distance equivalence decomposition.
We conclude in Section 6 with some open problems.

4 A simple algorithm for link diameter

Throughout the paper, “distance” will mean link distance, “length” of an s-t path will mean
the link distance between s and t along the path, etc. Slightly abusing the terminology, we
will use the term diameter to mean both a minlink path between two diametrical endpoints
and the number d of links in such a path.

The idea of the algorithm in this section is that finding the diameter is easy if one of the
following holds: the diameter is 1 or 2, a diameter endpoint is on a vertex, or a diameter
edge is aligned with an edge of VG. The main structural observation is that we are always in
one of the above-listed easy cases. The diameter is 1 if and only if P is a convex polygon.
The diameter is at most 2 if and only if for any s, t ∈ P there are rays from s and t which
intersect each other before exiting the domain: the intersection point p is the bend of a 2-link
s-t path. We may rotate sp about s, sliding p along pt, until the link hits a vertex of P (or
until p is on t, but we assume that we deal with minlink paths only, so in particular it is not
possible to decrease the number of links by rotating a link of the path). Thus, d = 2 iff for
any s, t ∈ P there are vertices v and u of P , visible to s and t resp., such that the rays sv, tu

intersect, at a point p, before exiting P . We look at the question from the “other” side, i.e.,
from the point of view of v and u: we go through every pair of vertices v, u and compute the
set Pvu ⊂ P × P of pairs (s, t) such that v and u may support the links of a 2-link s-t path.
If the union of the sets Pvu, for all pairs v, u, fully covers P × P , then d ≤ 2; otherwise, there
exist points s, t with link distance at least 3. To compute Pvu, we first of all decompose P

by extensions of VG edges: any point p within one cell of the decomposition sees the same
set of vertices; in particular, we consider only the cells from which both v and u are seen. As
p moves within such a cell σ, the rays pv, pu rotate around v, u resp., sweeping the locations
for s, t resp. and thus creating P σ

vu ⊆ Pvu – the subset of Pvu corresponding to having p in σ.
To implement the creation of P σ

vu, triangulate σ: the subset of P σ
vu obtained from p in one

triangle, has constant description complexity, and P σ
vu is the union of such subsets over all

the triangles.
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5 Two-point link distance queries

In this section we show how to compute the 2d LDM equivalence decomposition and the 4d
link distance equivalence decomposition – the data structures for 2-point link distance queries,
analogous to the structures of [9] for geodesic queries (see Section 3). Our data structures
extend the data structure of [4] (for 2-point link distance queries in simple polygons) to
polygonal domains with holes. The extension, allowing us to track combinatorial changes in
LDM(s) for s ∈ P , is two-fold:
Same windows. In addition to decomposing the boundary of the polygon into “atomic

segments” (as was done in [4]), we decompose the entire P into “atomic cells” by overlaying
LDMs from extensions of VG edges – for all s in one cell σ of the decomposition, LDM(s)
has the same set W (σ) of windows. Moreover, the same subset R(σ) ⊆ W (σ) of windows
rotates as s moves within σ, while the other windows, W (σ) \ R(σ), are not influenced
by the location of s in the cell.

Same arrangement of windows. We track possible intersections among windows in LDM(s),
which may change because the rotating windows sweep through the domain as s moves.

5.1 Extended visibility graph
For a line segment ℓ in P let ℓ be the chord of P containing ℓ (i.e., ℓ is ℓ extended maximally
within P ). Define the Extended Visibility Graph EVG = {uv : uv is an edge of VG} as the
set of chords of P obtained by maximally extending every edge of VG (we remind that edges
of P are also edges of VG).

5.2 Re[de]fining LDM
Recall [25, Section 8] (see also Section 2.3) that an LDM is defined by an arrangement of
windows together with edges of P . Recall also that there is no requirement that the cells
of LDM are maximal (i.e., that the link distance necessarily changes as you move between
cells) – the only requirement is that the distance never changes within a cell. Thus LDM(s),
for some point s ∈ P , remains LDM(s) even if one subdivides its cells into smaller pieces.

For the rest of the paper, we redefine LDM to include all chords of EVG. That is, we
refine LDM by chords of EVG (but we continue to call the result LDM). In other words, we
assume that EVG chords are windows of LDM(s) for any s: we thus use the term “windows”
to refer both to “original” windows of LDM (as defined in [25]) and chords of EVG.

5.3 Static and rotating windows
Every window w necessarily goes through a vertex of P (Fig. 4). If the chord w goes through
another vertex (w ∈ EVG), we call w a pinned window – such windows do not change as s

moves locally; in particular, chords of EVG are pinned windows. Otherwise we call w a
bash window, and the endpoints of w – bash points. A bash point lies in the interior of an
edge of P ; we call such an edge a bash wall. (The term “pinned” is borrowed from [4] where
analogous edges were called “(rotationally) pinned”; the term “bash” is borrowed from [22]
where path vertices lying in the interior of polygon edges were called “bash points” and the
edges were called “bash walls”.)

As s moves slightly, pinned windows of LDM(s) do not change. A bash window w may
remain still or may rotate, depending on whether there is a pinned window appearing on
the greedy path from s to w (recall from Section 2.2 that a greedy path is the minlink path
following the windows):

WADS 2025



34:8 Link Diameter, Radius and 2-Point Link Distance Queries in Polygonal Domains

s

Figure 4 Pinned windows (those not aligned with edges of P ) are blue (the aligned VG edges are
dotted blue), static bash windows are green, rotating windows are red. For clarity, some windows
have been omitted from the image.

Static bash windows. Any bash window w appearing after a pinned window w′ does not
move with s because w is a window in LDM(w′) and w′ does not move with s.

Rotating bash windows (bash-bash windows). If all windows preceding w are bash win-
dows, then they all rotate around vertices of P , with the bash points (which are the
bend points of the greedy path from s to w) sliding along the bash walls; we call such
windows bash-bash windows and the greedy path from s to w a bash path. (Refer to
Fig. 4 – as s moves left, all windows rotate, so they are bash-bash windows: in fact, it
is exactly bashing that leads to high bit complexity of minlink path vertices and that
makes studying minlink paths challenging, as the bash points do not lie on any predefined
structure which could be computed from P – differently from, e.g., geodesic paths which
follow a VG.)

Overall, we obtain the classification of LDM windows into static and rotating. The former
may be EVG chords or static bash windows; the latter are bash-bash windows.

5.4 LDMs overlay
We build LDMs from all chords of the EVG; let WEVG denote the set of all windows in these
LDMs. The first step in constructing our data structures is computing the overlay O of the
windows in WEVG. That is, we compute the overlay of LDMs from all chords of EVG – this
is the same as [4] did, but we build the full overlay of the LDMs, while [4] considered only
the interaction of WEVG with the boundary of P .

Consider LDM(s) for a point s in P . As s moves, the bash-bash windows of LDM(s)
rotate and the map may change combinatorially when either
Simple case. A window hits a vertex of P (aligning itself with a VG edge) when s crosses

an edge of O, or
New case. The arrangement of the windows changes because 3 windows pass through a

common point (out of the 3 windows, at least one must be a rotating window).

We called the first event “simple” because this is the only thing that may happen in a
simple polygon (where windows are pairwise disjoint). As we will show in Section 5.10, to
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account for new events one needs to build LDMs from intersection points of windows in
WEVG, as well as to do some additional, less straightforward computations described later.

An important connection between the overlay O and static windows in LDMs is that all
possible static windows in an LDM from any point of P are known in advance:

▶ Observation 2. Any static window in any LDM belongs to WEVG (i.e, ∀s ∈ P , if w is a
static window in LDM(s), then w ∈ WEVG).

Proof. If w is a chord of EVG, the observation is trivially true: w is a window in LDM(w).
If w is a static bash window, then w is a window in LDM(w′) for some pinned window w′,
meaning that w′ is aligned with a VG edge, implying that w′ is a chord of EVG. ◀

Note that we do not claim that any window from WEVG is necessarily a window in any
LDM; we only claim that WEVG is a superset of static windows in any LDM.

5.5 Atomic segments and projection functions
Edges of O (windows of WEVG) split the edges of P into segments called atomic in [4] (note
that vertices of P are endpoints of atomic segments too). Since any atomic segment a fully
belongs to a single cell in O, for all points s ∈ a, LDM(s) has combinatorially the same bash
paths. Moreover, the exact location of the bash points (vertices of the paths) and hence
the directions of the rotating bash-bash windows in LDM(s) depend on the location of s

in a via “projection” functions worked out in [4] which further refers to [2] for details of
computing the functions: any projection function is the ratio of 2 linear functions of s, whose
parameters can be calculated window-by-window in constant time per window.

5.6 Parametric maps (for simple cases)
If the new cases are ignored, then LDMs (with the corresponding projection functions) built
for all cells of O define the 2d LDM equivalence decomposition. The data structure can be
used to answer 2-point link distance queries in the same way as the 2d SPM equivalence
decomposition [9, Section 4.2] answers geodesic distance queries: given query points s and t,
first s is located in a cell σ of O and then t is located in the parametric LDM(s).

In fact, since LDM edges (the windows) are straight line segments (not hyperbolic arcs as
edges of SPM), one possibility for locating t in the parametric LDM(s) is to use the monotone
subdivision method of [12]. Indeed, each comparison needed to answer the point location
query for t using [12], can be done in constant time even when the edges of the monotone
subdivision M are constant-algebraic-complexity functions of s, as long as M remains the
same topologically (i.e., as long as the horizontal ordering of its vertices remains fixed). Since
we know, via the projection functions, how LDM(s) changes, we also know how M changes
with s. In particular, we can compute the locus S ∈ σ of positions for s at which 2 vertices
of M have the same x-coordinates: for any 2 vertices u, v of M, this amounts to solving
for s the constant-degree polynomial equation xv(s) = xu(s) where xu, xv are the abscissae
(i.e. the x-coordinates) of u, v. After refining σ by such sets S for all pairs of vertices of M,
we obtain the required subdivision in which parametric point location query, and hence the
link distance query, can be answered in time logarithmic in the complexity of M. Since the
complexity of LDM and hence the complexities of O and M are polynomial in n, the query
time is O(log n).

WADS 2025
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5.7 4d link distance equivalence decomposition (for simple cases)
We can also build the decomposition O × O of the 4d P × P space. That is, for any point
(s, t) ∈ P 2 within one cell ρ of O2, we have s ∈ σ, t ∈ τ where σ, τ are some cells of O. Via
the projection functions, we know how each window w of LDM(s) depends on s. In 4d, the
union

⋃
s∈σ w(s) of the windows w as s varies over σ defines a surface of constant algebraic

degree, which we call a curtain (the surface is swept by the rotating w: as s moves along
a ray from a vertex v of P , the window stays the same; the window rotates as vs rotates
about v). We build the arrangement of the curtains in ρ, and repeat it for all cells ρ of O2.
In the obtained decomposition (cells of O2, decomposed by the curtains) the link distance
between any pair of points (s, t) from one cell is the same: the link distance between s and
t may change only if t crosses a window of LDM(s), which happens only if t (the last two
coordinates of point (s, t) in 4d) crosses a curtain. To achieve O(log n) query time, preprocess
the decomposition for point location (e.g., in the same way as was done for geodesic queries
in [9, Theorem 3.1]).

5.8 Triple points
What remains is to account for the new cases (windows arrangement changes due to 3
windows passing through a common point). In Section 5.10 we give an algorithm to compute
the locations S ⊂ P for s such that 3 windows in LDM(s) may intersect in a common
point t (S consists of curves of constant algebraic degree ). The set S is overlaid with O. By
construction, for all points s in one cell of the obtained 2d overlay O∗, LDM(s) is the same
combinatorially: it has the same windows and they form the same arrangement (before the
arrangement changes, 3 windows must pass through a common point, at which moment s is
in S). Our final data structure, the (full) 2d LDM equivalence decomposition (“full” in the
sense that it accounts for both simple and new cases) is built from O∗ in the same way as
the data structure for handling simple cases was built from O (Section 5.6).

As a by-product of computing S, we also identify the corresponding locations for the
“triple points” t, thus obtaining the (super)set S ⊂ P × P of pairs (s, t) of potential triple
points. Then, (super)set S is overlaid with O2 subdivided by the curtains (Section 5.7). For
all (s, t) in one cell of the obtained 4d overlay Ô, the s-t distance is the same. Preprocessing Ô
for point location, we obtain our other data structure – the (full) 4d link distance equivalence
decomposition (“full” in the sense that it accounts for both simple and new cases).

5.9 Tracking bash-bash windows
To find the set S of sources potentially having triple points in their LDMs, we build yet
another decomposition and do some preparation work. In [25], the combinatorial type of
a window w was defined as the pair (v, e) where v is the vertex of P at which w begins
and e is the edge on which the window ends. We refine the definition by saying that the
window’s combinatorial type is a pair (v, a) where a is the atomic segment on which w ends.
We decompose P by rays from every atomic segment endpoint through every vertex visible
to the endpoint (recall that vertices of P are also endpoints of atomic segments). For any
point s in a cell of this decomposition D and every vertex v visible to s, the atomic segment
a hit by the ray sv is the same; let s′ = s′(s) ∈ a be the point where the ray hits the segment
(we write s′ = s′(s) to emphasize its dependence on s). Since a fully belongs to a single
cell of the overlay O, the map LDM(s′) from any point s′ ∈ a has combinatorially the same
bash-bash windows; moreover, the dependence of these windows on s′ (and hence on s) is
known via the projection functions. We thus write w = w(s) for a window w in LDM(s′).
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Figure 5 P is bold, static windows from WEVG are dotted, bash paths are solid. Left: LDM(s)
may change combinatorially when s crosses a bash-bash window of LDM(t) where t = w1 ∩ w2 for
some static windows w1, w2 ∈ WEVG of LDM(s); some possible locations for such s are shown with
hollow circles (if s is moved slightly off the windows, w1 stops going through t). Middle: LDM(s)
may change when there are two bash paths between s and t ∈ w3. Right: Each of s, t moves on a
curve so as to remain connected by 3 bash paths and be triple points in LDMs from each other.

5.10 Intersecting 3 windows

We are now ready to compute the (super)set S of points s for which LDM(s) may have a
triple point t; the corresponding locations for t (i.e., the set S ⊂ P × P for the pairs (s, t)
defining the 4d link distance equivalence decomposition) are computed as well. We emphasize
that we do not claim that LDM(s) has a triple point for every s in S (or that ∀(s, t) ∈ S
LDM(s) has a triple point at t); we only claim that S is sufficiently rich to “catch” all possible
(sources of) maps with triple points (and that S includes all pairs of triple points).

Let w1, w2, w3 be windows of LDM(s) that intersect at t, of which at least 1 window
rotates (so that LDM(s) changes combinatorially when the 3 windows intersect at t). Recall
from Observation 2 that the (super)set WEVG of possible static windows in LDM(s) does
not depend on s. We make 3 different guesses on how many of the 3 windows w1, w2, w3 are
rotating (1, 2, or all 3), and do different things for each of the guesses (Fig. 5):

Assuming only w1 is rotating, LDM(s) changes when w1 passes through t = w2 ∩ w3
(the intersection point of two static windows w2, w3). At this point there is a bash path
between s and t, implying that s is on a bash-bash window of LDM(t). We thus build
LDM(t) from every intersection point t of two (potential) static windows w2, w3 ∈ WEVG
and add to S all bash-bash windows of LDMs; the 4d set S is correspondingly appended
with the Cartesian product of t and all bash-bash windows of LDM(t).
Assuming 2 windows (say, w1, w2) are rotating, LDM(s) changes when their intersection
point t passes through w3. At this point there are two bash paths between s and t (in
one path t ∈ w1, in the other t ∈ w2). That is, s is the intersection point of two rotating
windows in LDM(t) (one window belonging to the bash path from t that starts from
following w1; the other – following w2). We thus take every window w3 ∈ WEVG as the
potential static window in LDM(s) and intersect it with every cell τ of O; let wτ

3 denote
part of w3 inside τ . For all points t ∈ wτ

3 , LDM(t) has the same set of windows, and in
particular, the same set of bash-bash windows; each window is a known function of t (via
the projection functions). For every pair of the bash-bash windows (with the same link
distance from t) in LDM(t) we add to S the curve traced by their intersection as t varies
along wτ

3 ; the 4d set S is correspondingly appended with the Cartesian product of wτ
3

and the intersection points for t ∈ wτ
3 .

Assuming all 3 windows are rotating, we go through all pairs of cells σ, τ in D, guessing
that s ∈ σ, t ∈ τ . In addition, we go through all triples v1, v2, v3 of vertices visible
from s and all triples u1, u2, u3 of vertices visible to t, guessing that the vertices support
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the first and the last windows resp. of the 3 bash paths (ending with the windows
w1, w2, w3) between s and t. Since vertices of P are endpoints of atomic segments, the
decomposition D includes chords of EVG, implying that the set of vertices visible to any
point in a cell of D is the same: it is thus valid to speak about a triple of vertices visible
to s ∈ σ or to t ∈ τ without specifying the exact locations of s and t in the cells.
Using the projection functions, we know whether for some number k of links there indeed
exist 3 length-k bash paths from s, with the first links of the paths supported by v1, v2, v3
and last links supported by u1, u2, u3. If yes, let w1(s), w2(s), w3(s) be these last links
(windows of LDM(s)). For t to be a triple point, the system

t ∈ w1(s)
t ∈ w2(s)
t ∈ w3(s)

(1)

of 3 equations (each involving the projection function) with 4 unknowns (the coordinates
of s and t) must be satisfied (for s ∈ σ, t ∈ τ). We solve the system and obtain the
decompositions both for the 2d LDM equivalence decomposition (the set S ⊆ P such that
LDM(s) may change combinatorially only when s is crossing S, see Fig. 5 for an example
of such a combinatorial change) and for the 4d link distance equivalence decomposition
(the surface S ⊆ P 2 such that the link distance between s and t may change only when
(s, t) is crossing S). That is, the 4d set S consists of pairs (s, t) satisfying (1), while
for the 2d set S we take only the first two coordinates of the 4d pairs (s, t) (i.e., the
coordinates for s; the knowledge of corresponding locations for t is ignored).

5.11 Putting things together
We summarize the steps described above, needed to build our data structures:
1. Build VG and EVG (Section 5.1).
2. Designate all chords of EVG as (static) windows in any LDM ever built (Section 5.2).
3. Compute the set WEVG of windows in LDMs from all chords of EVG (any static window

in any LDM is part of WEVG) and compute the overlay O of the LDMs (Section 5.4).
4. Identify atomic segments by intersecting O with the boundary of P (Section 5.5).
5. For each atomic segment a, compute the projection functions specifying the windows in

LDM(s) ∀s ∈ a (Section 5.5). The functions are used to identify the 2d set S ⊂ P of
potential triple points and the 4d set S ⊂ P 2 of potential pairs of triple points of LDMs,
as well as to answer link distance queries with parametric LDMs.

6. Build the decomposition D of P by using rays from atomic segments though vertices
of P (Section 5.9). D is an auxiliary structure: we do not overlay D with any other
decomposition and do not use it in our final data structures; D is used only to compute the
2d set S ⊂ P of potential triple points and the 4d set S ⊂ P 2 of potential pairs of triple
points – these sets will be used in our data structures, refining O and O2 respectively.

7. Compute the sets S and S for triple points: build LDMs from intersection points of
windows from WEVG, track intersections of windows in LDM(t) as t varies along each
window from WEVG, go through all triples of windows in pairs of cells of D (Section 5.10).

8. Build the overlay O∗ of O with S (Section 5.8). To obtain the 2d LDM equivalence
decomposition data structure, preprocess O∗ for parametric point location, e.g., by further
decomposing the cells of O∗ so that for all s in one cell of the refined decomposition, the
ordering of x-coordinates of vertices of LDM(s) is the same (as done in Section 5.6 for O).
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9. Decompose O ×O by curtains (Section 5.7) and overlay the decomposition with S, getting
4d decomposition Ô (Section 5.8). To obtain the 4d distance link equivalence data
structure, preprocess Ô for point location queries.

▶ Theorem 3. 2-point link distance queries in P can be answered in O(log n) time after
polynomial-time preprocessing. Link diameter and radius of P can be found in poly time.

6 Conclusions

We presented data structures for 2-point link distance queries in polygonal domains; we
also showed how to find the link diameter and radius/center of a domain. We were only
after polynomiality and do not claim any practical significance (but neither do the results on
geodesic queries, diameter and radius [6,9,31], having complexities in Ω(n7)); in practice, fast
solutions with small additive errors [4, Section 6] may be used. One obvious open question is
improving efficiency of our algorithms. The only lower bound for the diameter/radius we
can think of is 3SUM-hardness (following from simple constructions like in [24], reducing
from GeomBase [14]). As far as 2-point link distance queries go, in polygonal domains with
holes, even visibility queries (Do s and t see each other, i.e., is the link distance between
them equal to 1?) are quite challenging [8]. It may also be interesting to give a simple(r)
algorithm for finding the link radius/center, which does not resort to MetaTheorem 1.
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