
Succinct Data Structures for Chordal Graph with
Bounded Leafage or Vertex Leafage
Meng He # Ñ

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Kaiyu Wu #

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Abstract
We improve the recent succinct data structure result of Balakrishnan et al. for chordal graphs with
bounded vertex leafage (SWAT 2024). A chordal graph is a widely studied graph class which can be
characterized as the intersection graph of subtrees of a host tree, denoted as a tree representation
of the chordal graph. The vertex leafage and leafage parameters of a chordal graph deal with the
existence of a tree representation with a bounded number of leaves in either the subtrees representing
the vertices or the host tree itself.

We simplify the lower bound proof of Balakrishnan et al. which applied to only chordal graphs
with bounded vertex leafage, and extend it to a lower bound proof for chordal graphs with bounded
leafage as well. For both classes of graphs, the information-theoretic lower bound we (re-)obtain
for k = o(n) is (k − 1)n log n − kn log k − o(kn log n) bits, where the leafage or vertex leafage of the
graph is at most k = o(n). We further extend the range of the parameter k to Θ(n) as well.

Then we give a succinct data structure using (k − 1)n log(n/k) + o(kn log n) bits to answer
adjacent queries, which test the adjacency between pairs of vertices, in O( log k

log log n
+1) time compared

to the O(k log n) time of the data structure of Balakrishnan et al. For the neighborhood query
which lists the neighbours of a given vertex, our query time is O( log n

log log n
) per neighbour compared

to O(k2 log n) per neighbour.
We also extend the data structure ideas to obtain a succinct data structure for chordal graphs

with bounded leafage k, answering an open question of Balakrishnan et al. Our succinct data
structure, which uses (k − 1)n log(n/k) + o(kn log n) bits, has query time O(1) for the adjacent
query and O(1) per neighbour for the neighborhood query. Using slightly more space (an additional
(1 + ε)n log n bits for any ε > 0) allows distance queries, which compute the number of edges in
the shortest path between two given vertices, to be answered in O(1) time as well.

2012 ACM Subject Classification Theory of computation → Data compression; Theory of computa-
tion → Data structures design and analysis

Keywords and phrases Chordal Graph, Leafage, Vertex Leafage, Succinct Data Structure

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.35

Funding This work is supported by NSERC.

1 Introduction

Chordal graphs and related graph classes are one of the most well studied classes of graphs
[13, 10, 20, 18, 23, 11, 29, 6]. One of the first instances where chordal graphs are encountered is
in the study of Gaussian elimination of sparse matrices [29], which leads to a characterization
of chordal graphs based on an elimination ordering. Another characterization is that there
are no induced cycles of length four or more [10]. A third characterization, which is more
suitable towards data structures, is the characterization as an intersection graph. For each
chordal graph G, there exists a host tree T (which is unrooted) and n subtrees T (v) of T

(one for each vertex), such that two vertices u and v are adjacent in G if and only if T (u)
and T (v) intersect at some node of T [18].

© Meng He and Kaiyu Wu;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 35; pp. 35:1–35:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mhe@cs.dal.ca
https://web.cs.dal.ca/~mhe/
https://orcid.org/0000-0003-0358-7102
mailto:kevin.wu@dal.ca
https://orcid.org/0000-0001-7562-1336
https://doi.org/10.4230/LIPIcs.WADS.2025.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


35:2 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

Figure 1 A tree representation with the host tree in black solid lines. The host tree has 6 leaves,
so this chordal graph has leafage at most 6. 3 subtrees are depicted, a red dotted subtree, a blue
dashed and a green dotted-dashed. The red subtree has 3 leaves, the blue subtree also has 3 leaves
and green subtree has 2. So this chordal graph has vertex leafage at most 3.

It is this last characterization of chordal graphs that allows us to (easily) generate many
interesting subclasses of chordal graphs, by imposing conditions1 on either the subtree T (v)
or the host tree T . For example, if we impose the condition that the host tree is a path
(which also imposes the condition that the subtrees themselves are paths), then the subclass
of graphs we generate is the class of interval graphs [7]. If we instead only impose that
the subtrees themselves are paths, then we generate the class of path graphs [17]. If we
further impose conditions on these path subtrees, such as selecting a root in the host tree and
insisting that each path is a subpath of a root-to-leaf path, then we obtain a RDV (rooted,
directed, vertex) graph [24].

If we impose the condition that the host tree has at most k leaves (as the tree is unrooted,
a leaf is a degree 1 node), then this parameter k is known as the leafage of the chordal
graph [23]. We may alternatively impose that only the subtrees T (v) rather than the host
tree have at most k leaves each (i.e at most k degree 1 nodes). Then this parameter is known
as the vertex leafage [11]. A chordal graph with bounded leafage k has a tree representation
where the host tree has at most k leaves, and a chordal graph with bounded vertex leafage k

has a tree representation where all subtrees have at most k leaves. For k = 2, this corresponds
to interval graphs and path graphs, respectively, whereas for k = n, we obtain all chordal
graphs. Thus, the leafage parameter measures how close a chordal graph is to an interval
graph, and the vertex leafage parameter measures how close a chordal graph is to a path
graph. See Figure 1.

We observe that if the host tree has at most k leaves, then all subtrees would as well.
Therefore, chordal graphs with leafage k is a subset of chordal graphs with vertex leafage k.
Consequently, any data structure for vertex leafage applies to leafage, and any lower bound
for leafage applies to vertex leafage.

An enumeration of chordal graphs and path graphs gives lower bounds for any data
structure which is able to compute adjacency, degree and neighbourhood queries. A chordal
graph requires at least n2/4 − o(n2) bits [25, 31] while both interval graphs and path graphs
([9] plus the above observation) requires at least n log n − O(n) bits 2, which gives some
bounds for the extreme values of the leafage parameter.

In this paper, we study (static) data structures for (unweighted) chordal graphs paramet-
rized by leafage and vertex leafage parameters, with an emphasize on space usage. Our aim
is to store a chordal graph parametrized by either the leafage or vertex leafage parameters,

1 This is not the only way to characterize these subclasses of graphs. For instance, interval graphs can
also be characterized by being chordal and having no asteroid triples.

2 We will use log to denote log2



M. He and K. Wu 35:3

using information-theoretic minimal space within an additive lower-order term, while sup-
porting the following queries efficiently: adjacent(u, v), which tests the adjacency of the
vertices u and v, neighborhood(v), which returns a list of the neighbours of the vertex v,
and distance(u, v), which returns the distance (the number of edges on the shortest path)
between u and v. We aim to improve the work of Balakrishnan et al. [3] by eliminating their
linear dependence on the vertex leafage parameter in the adjacent query, and the quadratic
dependence in the neighborhood query for chordal graphs with bounded vertex leafage.
Furthermore, we investigate an open question of theirs which asks for a simple representation
of chordal graphs with bounded leafage that supports faster queries; they only specifically
considered bounded vertex leafage, and provided lower and upper bounds accordingly.

1.1 Related Work
The most pertinent work is the recent data structure of Balakrishnan et al. [3] for chordal
graphs with bounded vertex leafage. They showed an information-theoretic lower bound
of (k − 1)n log n − kn log k − O(log n) bits, for parameter range k = no(1). For the upper
bound, they gave a data structure occupying (k − 1)n log n + o(kn log n) bits which answers
adjacent queries in O(k log n) time. For neighborhood queries, they require an additional
2n log n bits, with query time O(k2 log n · dv + log2 n) where dv is the degree of the query
vertex.

There are many succinct data structures for various classes of graphs related to chordal
graphs. Munro and Wu [25] gave a succinct data structure for general chordal graphs, occupy-
ing 1

4 n2 + o(n2) bits, with query times O(f(n)) for adjacent, O(f2(n)) for neighborhood
and O(nf(n)) for distance, for any f(n) = ω(1). This was improved by He et al. [22] to
remove a factor of f(n) in the time bound for queries, so that adjacent has O(1) time,
neighborhood has O(f(n)) time, and distance has O(n) time.

The two graph classes with leafage and vertex leafage 2, interval graphs and path graphs,
are studied by Acan et al. [1], He et al. [21], Balakrishnan et al. [4] and He et al. [22]. The result
of these works is that interval graphs can be represented succinctly using n log n + o(n log n)
bits which supports adjacent, neighborhood [1] and distance [21] all in optimal time.
For path graphs, a succinct n log n + o(n log n) bit data structure supports adjacent in
O(log n/ log log n) time and neighborhood in the same time per neighbour. To achieve O(1)
time, they use (3 + ε)n log n + o(n log n) bits, for any constant ε > 0 [22].

Lastly, there are results for other related classes of intersection graphs (of various geometric
and combinatorial objects), such as permutation graphs (line segments between two parallel
lines) [30], graphs with small tree-width (subgraphs of chordal graphs with small maximal
clique) [14], d-boxicity graphs (higher dimensional analog of interval graphs) [2].

1.2 Our Results
We give lower bounds and data structures for chordal graphs with bounded vertex leafage or
bounded leafage. Our results for the former class of graphs extends the range of parameter
values applicable in the lower bounds and improves the query times in the data structures,
compared to the work of Balakrishnan et al. [3]. Our results for the later class of graphs
answers an open question posed by them.

Lower Bounds. With respect to lower bounds for chordal graphs with bounded vertex
leafage k, Balakrishnan et al. showed an information-theoretic lower bound of (k −1)n log n−
kn log k − O(n log n) bits, applying to the parameter range k = no(1). We extend the range

WADS 2025



35:4 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

Table 1 Comparison of our data structure results for chordal graphs with bounded vertex leafage
k with the results of Balakrishnan et al. [3]. The 4th column (*) is the extra space needed to support
the neighborhood query. Time for neighborhood query is per neighbour returned.

Source Space for Adjacency (bits) Adjacency * Neighbour
[3] (k − 1)n log n + o(kn log n) O(k log n) 2n log n O(k2 log n)

Thm 11 (k − 1)n log(n/k) + o(kn log n) O( log k
log log n

+ 1) kn log n O( log n
log log n

)
Thm 12 (k − 1)n log n + o(kn log n) O( log n

log log n
) n log n O( log n

log log n
)

to k = o(n) with the same lower bound, by using a simpler host tree, and using a simpler full
colouring scheme rather than a partial colouring scheme. This further allows us to extend
our construction to give a lower bound for k = Θ(n) as well, covering all values of k. In this
range, the lower bound we obtain have the form f(c)n2 + o(n2), where k = cn.

For chordal graphs with bounded leafage, we prove that they have the same lower bound
as chordal graphs with bounded vertex leafage, namely (k − 1)n log n − kn log k − o(kn log n)
bits, when k = o(n). Our construction also allows us to extend the parameter k to k = Θ(n).
Again, the lower bound we obtain have the form f(c)n2 + o(n2), where k = cn (for a different
function f). This is the first information-theoretic lower bound for this class of graphs.

Data Structures for Bounded Vertex Leafage. We give a succinct data structure occupying
(k − 1)n log(n/k) + o(kn log n) bits compared to that of (k − 1)n log n + o(kn log n) bits of
Balakrishnan et al. [3]. Thus our data structure is succinct for k = o(n) rather than
just k = no(1). Furthermore, we achieve O(log k/ log log n) query time for adjacent query
compared to O(k log n) time for their data structure. For the neighborhood query, we use
O(log n/ log log n) time per neighbour rather than O(k2 log n) per neighbour. This is around
a factor of k faster for adjacent and a factor of k2 for neighborhood, which is significant,
especially if k is large. A comparison can be seen in Table 1.

To do this, rather than breaking the subtree T (v) into a set of paths, and storing them
within a path graph data structure, we simply store the preorder numbers of the leaves of the
tree within a dictionary. This allows us to both compress the space and forgo data structures
which is needed to identify paths that come from the same subtree, which saves a factor
of k in the time complexities. Next, by storing the leaves of the subtree together, we are
able to identify a neighbour u of a vertex v using a single leaf of T (u), rather than possibly
returning every leaf of T (u), saving the second factor of k in the neighborhood query.

Data Structures for Bounded Leafage. Using the additional structure that the host tree
has at most k leaves, we construct the first succinct data structure for chordal graphs with
bounded leafage k such that k = o(n), using (k − 1)n log(n/k) + o(kn log n) bits of space.
Our data structure supports adjacent in O(1) time and neighborhood in O(1) time per
neighbour. Using an additional (1 + ε)n log n bits (for any constant ε > 0)), we also support
distance in O(1) time. We do this by breaking the host tree into k − 1 paths, and storing
the leaf of the subtree T (v) on each path (if one exists). This allows us to identify leaves of
T (v) by this path number, leading to more efficient accesses.

All our results are obtained in the word RAM model with Θ(log n) bit words.



M. He and K. Wu 35:5

2 Preliminaries

In this section, we introduce the existing data structures that our solution use as building
blocks. As we will be discussing both graphs and trees at the same time, we will use the
term vertex to refer vertices in the graph and node for trees.

Sets of Integers. We begin by considering various methods of storing sets of non-negative
integers (viewed in sorted order).

A key succinct data structure is the bitvector: a length n array of bits. A bitvector B

supports three operations. 1) access(B, i) or simply B[i]: return the i-th bit in the bitvector.
2) rank1(B, i): return the number of 1 bits in the prefix B[1, i]. Symmetrically for rank0.
3) select1(B, i): return the index of the i-th 1 bit in B. Symmetrically for select0. We
note that a bitvector can be viewed as storing the set of integers corresponding to the index
of the 1 bits. Thus, the select(i) for set of integers will return the i-th smallest integer.
The bitvector we will use is the result of Clark and Munro:

▶ Lemma 1 ([12]). A bit vector of length n can be succinctly represented using n + o(n) bits
to support rank, select and access in O(1) time.

For a sparse set of integers, we will use the dictionary result of Raman et al. [28].

▶ Lemma 2. A subset of n integers from [0, . . . , m − 1] can be represented using ⌈log
(

m
n

)
⌉ +

o(n) + O(log log m) bits, to support select queries in O(1) time.

The predecessor and successor queries on a set S of integers are: 1) pred(k): which returns
the largest element of S no greater than k, i.e. max{s ≤ k | s ∈ S}, and symmetrically,
2) succ(k): which returns the smallest element of S no less than than k. When the size of
the integers are bounded (and allowing duplicates), we may employ the folklore solution,
which stores the termwise differences of the sequence as unary in a bitvector.

▶ Lemma 3. Let A be a multi-set of N non-negative integers bounded by M . Then A can be
stored in N + M + o(N + M) bits answer select, pred, and succ queries in O(1) time.

Ordinal Trees. As we will be studying chordal graphs, using primarily the characterization
that it is the intersection graph of subtrees in a tree, we will need a data structure storing
said tree. Succinct ordinal tree data structures have a long line of study, with new queries
being added as recently as He et al. [21]

▶ Lemma 4 ([21]). An ordinal tree can be represented succinctly in 2n + o(n) bits to support
a wide variety of operations in O(1) time. These operations include: 1) node_rankPRE(x),
which returns the index in the preorder traversal that we encounter the node x, 2) LCA(x, y),
which returns the lowest common ancestor of nodes x and y, 3) parent(x), which returns
the parent of a node x and 4) child(x, i), which returns the i-th child of a node x.

We will refer to node_rankPRE of a node as its preorder number, and use it to identify
nodes. Thus, when we refer to a node x ∈ T , x is treated as an integer, and we may write
x + 1 for the next node encountered in the preorder traversal of T . One application of ordinal
trees is to range minimum/maximum queries, through a Cartesian tree. For an array A[1, n]
of integers, a range minimum query or RMQ takes two indices i, j with i ≤ j and returns
the index of the minimum (or symmetrically, maximum) value in the subarray A[i, j]. We
use the following result:

▶ Lemma 5 ([15]). There is a data structure for the RMQ problem that uses 2n + o(n) bits
of space and answers queries in O(1) query time.

WADS 2025



35:6 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

Orthogonal Range Searching. In the 2-dimensional orthogonal range reporting query, we
are asked to preprocess a set P of n 2-dimensional points, so that given an axis aligned query
rectangle R = [x1, x2] × [y1, y2], return the list of points lying in the rectangle, i.e P ∩ R.
Bose et al. [8] designed a succinct data structure for this problem when the points have
integral coordinates in the n × n grid.

We will need the following two variants of this query, which deals with many points
sharing the same y-coordinate. First is the orthogonal range distinctness query: Given
an axis-aligned rectangle R, return the set of distinct y-coordinates y1, . . . , yp such that
there exists a point (−, yi) that lies in the rectangle R. Second is the orthogonal range
distinct maximum/minimum query: Given an axis-aligned rectangle R, and for each distinct
y-coordinate in the set of points P ∩R, return the point (xi, yi) with the maximum/minimum
x-coordinate among the points in the rectangle with y-coordinate yi.

We may solve these two queries by a slight modification of the data structure of Bose et al.
An inspection of their orthogonal range reporting query algorithm shows the following. Their
algorithm identifies the set of y-coordinates each of which has a point in the given query
rectangle. For each such y-coordinate identified, the set of points with that y-coordinate is
represented in a bitvector, and the query rectangle defines a subrange of that bitvector. The
algorithm traverses the bitvector by using select for each of the 1 bits, and then recovers
the coordinates of the points represented. Thus, we may select for the first or the last 1 in
the subrange of the bitvector defined by the query rectangle, which returns the minimum or
maximum points.

▶ Lemma 6. Let P be a set of n points in an n × n grid. P can be represented using
n log n + o(n log n) bits to support orthogonal range reporting in O(k log n/ log log n) time,
where k is the size of the output. It can further support orthogonal range distinctness, and
orthogonal range distinct minimum/maximum queries in O(k′ log n/ log log n) time, where k′

is the number of distinct y-coordinates among the k points in the rectangle.

3 Lower Bound for Bounded Leafage and Vertex Leafage

In this section, we will re-derive the lower bound result of Balakrishnan et al. [3] for graphs
with bounded vertex leafage k. We will then generalize the result for a larger set of values
for k. We will also derive lower bound results for graphs with bounded leafage k, which was
not considered by Balakrishnan et al.

Since chordal graphs with bounded leafage are also graphs with bounded vertex leafage,
a lower bound for chordal graphs with bounded leafage also applies to chordal graphs with
bounded vertex leafage. We will still give different constructions for these two classes of
graphs, to emphasize how they can be extended when k = Θ(n).

3.1 Bounded Vertex Leafage
As in the lower bounds shown in Munro and Wu [25], Wormald [31] and Bender et al. [5], we
will mainly look at split graphs. A split graph (similar to a bipartite graph) is a graph where
the vertices are separated into two groups V1 and V2. V1 is a complete graph, and V2 is an
independent set. Any edge between a vertex v1 ∈ V1 and v2 ∈ V2 is allowed. It is easy to see
that any split graph is a chordal graph by constructing a tree representation as follows: the
host tree (a star) T will consist of 1 node R as the root and |V2| children of the root as leaves,
one for each vertex of V2. Let x1, . . . , x|V2| denote the leaves corresponding to the vertices
v1, . . . , v|V2| ∈ V2. For each vertex vi of V2, the subtree T (vi) that corresponds to it is the



M. He and K. Wu 35:7

· · ·
T (v1) T (v2) T (v3)

T (u)

T (v|V2|)

Figure 2 Tree representation of a split graph. For each vertex vi ∈ V2 its subtree T (vi) is a single
node at one of the leaves (depicted by the green squares). A vertex u ∈ V1 has its subtree T (u)
consisting of the root plus any nodes representing its neighbours in V2. Here u would be adjacent to
v1, v3 and v|V2|.

singular node xi. For each vertex u of V1, the subtree T (u) that corresponds to it is the root
of the tree r plus the nodes of |V2| adjacent to u (i.e. T (u) = {r}∪{xi : (u, vi) ∈ E, vi ∈ V2}).
See Figure 2. In this fashion, the subtrees corresponding to vertices of V1 always intersect each
other at the root, so the vertices of V1 forms a clique as required. The subtrees corresponding
to vertices of V2 never intersect, so V2 forms an independent set as required, and every edge
that exist between V1 and V2 exists since the subtree of u ∈ V1 extends to the node that
represents vi ∈ V2.

We will now give an information-theoretic lower bound for chordal graphs with bounded
leafage k by counting a subclass of these graphs.

▶ Theorem 7. Any data structure supporting adjacency queries on chordal graphs on n

vertices with bounded vertex leafage k such that k = o(n) requires at least (k − 1)n log n −
kn log k − o(nk log n) bits.

Furthermore, if k = cn for a fixed constant 0 < c ≤ 1/4 then it requires at least
f̂(c)n2 − o(n2) bits where f̂(c) is the maximum of the function

f(l, c) =
{

(1 − l)l if c ≤ l ≤ 2c

(1 − l)(l log(l/(l − c)) − c log(c/(l − c))) if 2c ≤ l ≤ 1

in the range c ≤ l ≤ 1, and this maximum is always achieved in the range 2c ≤ l ≤ 1/2. If
c ≥ 1/4, it requires 1

4 n2 − o(n2) bits.

Proof. First consider the case where k = o(n).
Let |V2| = o(n), |V2| = ω(k) and let |V1| = n − |V2| = n − o(n) be the sizes of the

independents set and clique respectively for our split graph. Furthermore, assume that |V2| is
large enough that we have log |V2| = log n − o(log n) (i.e. |V2| = Ω(n/polylog(n))). We also
have the estimate log

(|V2|
k

)
≈ k log |V2| − k log k. This arises from Stirling’s approximation

and that k = o(|V2|):

log
(

|V2|
k

)
= |V2| log |V2| − k log k − (|V2| − k) log(|V2| − k) + 1

2 (log |V2| − log k − log(|V2| − k)) + O(1)

= k log |V2| − k log k + k

(
|V2| − k

k

)
log
(

1 + k

|V2| − k

)
− 1

2 log k + O(1)

= k log |V2| − k log k + Θ(k)

The last step uses
(

|V2|−k
k

)
log
(

1 + k
|V2|−k

)
= Θ(1) by the limit definition of e: e =

limx→∞(1 + 1/x)x.

WADS 2025



35:8 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

For each vertex u of V1 we can select k vertices from |V2| to be adjacent to. So all
subtrees in the tree representation constructed above has at most k leaves, and thus the
graph obtained has bounded vertex leafage k. The number of graphs we can generate is(|V2|

k

)|V1|
since each vertex of V1’s neighbourhood could be any size k subset of V2. Note that

if we treat this construction as a labelled graph, then all graphs we construct are distinct,
as different sets of vertices of |V2| leads to a different neighbourhood and hence a different
graph. Moving from labelled graphs to unlabelled graphs, we generate each unlabelled graph
at most n! times due to the number of potential isomorphisms of the graph. Thus the lower
bound on the space needed for k vertex leafage graphs is at least

log
((

|V2|
k

)|V1|
)

− n log n

= k|V1| log(|V2|) − k|V1| log k − n log n + O(k|V1|)
= (k − 1)n log n − kn log k − o(kn log n)

Now consider the case in which k = cn for some constant c ≤ 1/4. 3 Let l be variable
such that c ≤ l ≤ 1. Set |V1| = (1 − l)n and |V2| = ln. Applying Stirling’s approximation,
the number of graphs we generate is

log
((

|V2|
k

)|V1|
)

− n log n

= |V1| log
((

ln

cn

))
− n log n

= n(1 − l)(ln log(ln) − cn log(cn) − (l − c)n log((l − c)n) − O(log n)) − n log n

= n2(1 − l)(l log l − c log c − (l − c) log(l − c)) − o(n2)
= n2(1 − l)(l log(l/(l − c)) − c log(c/(l − c))) − o(n2)

assuming that 2c ≤ l. In the case that c ≤ l ≤ 2c, then we do not choose k elements from V2
but rather choose ln/2 elements since that maximizes the binomial coefficient. Doing so gives

log
((

|V2|
|V2|/2

)|V1|
)

− n log n

= n(1 − l)(ln) − o(n2)
= n2(1 − l)l − o(n2)

Thus the lower bound is f̂(c)n2 − o(n2) where f̂(c) given a fixed c ≤ 1/4 is the maximum of
the function f(l, c) on the range c ≤ l ≤ 1 defined by

f(l, c) =
{

(1 − l)l if c ≤ l ≤ 2c

(1 − l)(l log(l/(l − c)) − c log(c/(l − c))) if 2c ≤ l ≤ 1

f(l, c) is clearly increasing on the first interval, positive when l = 2c and zero when l = 1.
Taking the derivative, we see that f̂(l, c) is obtained at some zero of the function:

d/dl(1 − l)(l log(l/(l − c)) − c log(c/(l − c))) = (1 − 2l) log(l/(l − c)) + c log(c/(l − c))

3 We will show that for c = 1/4 the lower bound we obtain is 1
4 n2 − o(n2) bits which matches the lower

bound for all chordal graphs. Thus, this would be the lower bound for all k ≥ n/4 as well.



M. He and K. Wu 35:9

0.00 0.05 0.10 0.15 0.20 0.25
Value of c

0.00

0.05

0.10

0.15

0.20

0.25

Lower bound for 0 <= c <= 0.25
fhat
2c(1-2c)

0.0 0.1 0.2 0.3 0.4 0.5
Value of c

0.00

0.05

0.10

0.15

0.20

0.25

Lower bound for 0 < c <= 0.5

fhat for vertex leafage
fhat for leafage

Figure 3 Left: A graph showing the value of f̂ for range of values of c. Right: Comparing the
lower bound values for subclasses of chordal graphs (bounded vertex leafage vs bounded leafage).

Since l ≥ 2c in the second range, we see that log(l/(l − c)) > 0 and c log(c/(l − c)) < 0.
Thus, in order for this sum to evaluate to 0, 1 − 2l ≥ 0, so that l ≤ 1/2. When c = 1/4,
we see that l = 1/2 is indeed a solution, which evaluates f̂(1/4) = (1 − 1/2)(1/2) = 1/4
matching the original chordal graph lower bound. ◀

For a graph of the value of f̂ (compared to the value of f(c, 2c)), see Figure 3.

3.2 Bounded Leafage
We now consider chordal graphs with bounded leafage k (i.e. the host tree has at most k

leaves), by subdividing the edges of tree representation of the split graph with k leaves.

▶ Theorem 8. Any data structure supporting adjacency queries on chordal graphs on n

vertices with bounded (vertex) leafage k such that k = o(n) requires at least (k − 1)n log n −
kn log k − o(kn log n) bits.

If k = cn for some constant fixed constant 0 < c ≤ 1/2, then it requires at least f̂n2 −o(n2)
bits, where f̂ is the maximum of the function:

f(c, l) = n2c(1 − l)
(

log (⌊l/c⌋ + 1) + [l/c] log
(

1 + 1
1 + ⌊l/c⌋

))
Here [x] denotes the fractional part of x.

Proof. We define the host tree T to be an (extended) star, with central node v0 of degree k

together with k paths of length n/(k log n), between v0 and a leaf. We set the subtrees
representing n/ log n vertices of the chordal graph (which we will call static vertices) to
be distinct singleton node in the paths, excluding v0. For the remainder of n − n/ log n

vertices (which we will call variable vertices), their subtrees will consist of the root v0 plus a
(potentially empty) prefix of each of the paths (i.e. it is the union of k such paths). Thus
each variable vertex that has a different subtree than another variable vertex will have a
different set of static vertices as neighbours. See Figure 4.

The number of different possible variable vertices is (n/(k log n))k since for each of
the k paths, we have n/(k log n) different lengths. Since each of the n − n/ log n vari-
able vertices can be one of these, the total number of ways we can choose our variable
vertices is (n/(k log n))k(n−n/ log n). The total number of graphs we can generate is thus
(n/k log n)k(n−n/ log n)/n! where each graph may be generated at most n! times. Thus our
information theoretic lower bound is:

WADS 2025



35:10 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

· · ·
... ... ... ... ... ...

k paths

n/k log n nodes on path

v0

Figure 4 The host tree is a star, with k paths, each of length n/k log n. Green squares represent
the subtrees for vertices in V1. A possible subtree for a vertex in V \ V1 in red bolded lines.

log
(

(n/k log n)k(n−n/ log n)/n!
)

= kn(1 − 1/ log n)(log n − log k − log log n) − n log n

= (k − 1)n log n − kn log k − o(kn log n)

This applies for k ≤ n/ log n. To extend to k = o(n) we may set f(n) = o(n/k) and
choose the number of static vertices to be n

kf(n) = o(n) and the number of variable vertices
to be n − n/kf = n − o(n) without changing the above bound.

In the case that k = cn, we set the size of T to be |T | = ln with 1 ≥ l ≥ c. We set the
length of each of the paths to be the same. That is, there are [l/c] × cn paths of length
⌊l/c⌋ + 1 and (1 − [l/c]) × cn paths of length ⌊l/c⌋ (recall that we use [x] = x − ⌊x⌋ to denote
the fractional part of x). Enumerating as above, we obtain a lower bound that is:

log
(

(⌊l/c⌋ + 2)[l/c]×cn×(1−l)n (⌊l/c⌋ + 1)(1−[l/c])×cn×(1−l)n
)

= n2c(1 − l)
(

log (⌊l/c⌋ + 1) + [l/c] log
(

1 + 1
⌊l/c⌋ + 1

))
Finally, we choose l (depending on c) as to maximize this term. ◀

For a diagram of the value of this lower bound, compared to that of the lower bound for
bounded vertex leafage chordal graphs in the previous subsection, see Figure 3.

4 Data Structures for Chordal Graphs with bounded Vertex Leafage

In this section we will give data structures for chordal graphs with bounded vertex leafage k.
We will aim for (k−1)n log n−(k−1)n log k+o(kn log n) bits of space but as in Balakrishnan
et al. [3], allow some extra space to support neighbourhood more efficiently. We note that this
differs from the lower bound (outside of lower order terms) only from the (k −1)n log k versus
kn log k terms (i.e. a difference of n log k bits). We note that if k = no(1), log k = o(log n)
so this is a lower order term and can be ignored. Otherwise, if log k = Θ(log n), then the
difference n log k is a lower order term: n log k = o(kn log k). Thus in both instances, we may
ignore this n log k difference as it is a lower order term. Hence such a data structure would
be succinct for all k = o(n). We give two data structures, where the second uses slightly
more space and more time for the adjacent query, but uses less space for the neighborhood
query.

We will begin with a tree representation of G, T , such that each T (v) has at most k

leaves. Root the tree T arbitrarily. For a subtree T (v), denote the unique node av with the
smallest depth as the apex of T (v) (or of v). Furthermore, using the following lemma, we
may assume that every node of T is the apex of some subtree T (v).



M. He and K. Wu 35:11

▶ Lemma 9. Let G be a chordal graph with bounded vertex leafage k. Then there is a tree
representation T such that the subtree T (v) of any vertex v of G has at most k leaves and
that every node of T is the apex of some vertex. Furthermore, if G has bounded leafage k,
then there exists a tree representation T with at most k leaves such that every node of T is
the apex of some vertex.

Proof. We will convert any tree representation of G into one with the property that all nodes
of T is the apex of some vertex.

Suppose we have a tree representation such that some node x ∈ T is not the apex of
any vertex. Then any subtrees T (v) containing x must also contain the parent of x. Merge
x into its parent (i.e. the children of x become the children of the parent of x). Any two
subtrees T (u) and T (v) that intersect at x also intersect in the parent of x, so no new
intersections are created nor destroyed, maintaining a valid tree representation of G. Merging
the node x into its parent does not increase the number of leaves of T , nor the number of
leaves of any subtree T (v), and so is a valid tree representation with bounded leafage or
vertex leafage k.

Repeating this process to eliminate all such nodes x, we obtain a tree representation with
the property that every node is the apex of some subtree T (v). ◀

Since each node of T is the apex of some vertex, there are at most n nodes in T . Next,
we make the following modification to the tree representation to ensure that the apex of
each vertex av has at least two children in T (v). This allows us to compute av via LCA of
the leftmost and rightmost leaves of T (v). We achieve this goal by adding two new children
to each node a of T as the right most children of a. For each vertex v, whose apex av has 1
child in T (v), we expand T (v) to one of the newly added child of av in T . For each vertex v,
whose apex av has 0 children in T (v), we expand T (v) to both newly added children of av in
T (v). This adds 2n new nodes to T so that |T | = O(n) and retains the property that every
internal node is the apex of some subtree T (v) (leaves of T may not any more).

We first give a succinct data structure which allows us to recover the graph. We sort
the vertices v by the preorder number of its leftmost leaf, and label the vertices 1, . . . n. Let
L = 10N1 · · · 10N|T | where Ni is the number of vertices whose leftmost leaf is the tree node i.
Then, rank1(L, select0(L, v)) gives the preorder number of the leftmost leaf of v.

For each vertex v, we will need to compute predecessor and successor queries on the
preorder numbers of the leaves of T (v). For each vertex v, let Leaf(v, i) be the i-th leaf
of T (v) in preorder. We store the set of at most k − 1 integers, {Leaf(v, i) | i ≥ 2} (i.e.
excluding the leftmost leaf) using Lemma 2, in (k − 1) log n − (k − 1) log k + o(k + log n) bits.
Using select, we may retrieve the i-th leaf in O(1) time. Thus for simplicity, we may view
Leaf(v) as an array. Using binary search, we can support pred and succ queries on this
array in O(log k) time.

We may speed this up slightly by storing a subset of the array to obtain an approximate
predecessor. As this subset is sparse, we will use a fusion tree [16, 27].

▶ Lemma 10 ([16, 27]). A set of n elements can be stored in O(n log n) bits to support
select, pred and succ queries in O(logw(n)) = O(log n/ log w) time, where w is the word
size in the word RAM model.

We store f(k, n) evenly spaced elements of the array Leaf(v) in a fusion tree (where
f(k, n) = o(k)), using O(nf(k, n) log n) = o(nk log n) space. To compute a predecessor, we
first compute an approximate predecessor using the fusion tree in O(log(f(k, n))/ log log n+1)
time. This gives a predecessor which may be too small. We linearly scan the segment defined

WADS 2025



35:12 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

by this entry and the next sampled entry to find the true predecessor, using O(k/f(k, n))
time. Setting f(k, n) = k/ log log k, we can find the predecessor using O(log k/ log log n + 1)
time.

This is enough for us to reconstruct the graph, as for each vertex v, the k leaves of T (v)
can be computed: the left-most using L, and the other k − 1 leaves by scanning Leaf(v).
This defines the tree since the apex av is the lowest common ancestor of the first and last
leaves of v (as we ensured that it has degree ≥ 2 in T (v)).

We concatenate the arrays Leaf(v), padding ones that are smaller (i.e. when the subtree
T (v) has fewer than k leaves) so that they are all the same size. Thus we may access
each array in O(1) time, without spending extra overhead for pointers to each individual
array. We will do this for all other similar structures (such as the fusion trees) to avoid
the overhead from pointers. The total space used so far is the bitvector L, the n arrays
Leaf(v), n fusion trees, and the succinct tree storing T . Thus the total space needed so far
is (k − 1)n log(n/k) + o(kn log n) bits.

4.1 Supporting adjacent Query
We first find the leftmost and rightmost leaves of T (v). The leftmost leaf can be computed
using L as above. The rightmost is pred(Leaf(v), |T |). We then compute the apex av

using LCA on the host tree T . We compare the apex of the two subtrees au and av for an
ancestor-descendant relationship (i.e. check if LCA(au, av) ∈ {au, av}). If they are not in
such a relationship, then T (u) and T (v) are disjoint, and u and v are not adjacent. When au

and av is in an ancestor-descendant relationship, we may without loss of generality, assume
that au is an ancestor of av.

We claim that T (u) intersects T (v) if and only if some leaf of T (u) is a descendant of av.
For one direction, if some leaf of T (u) is a descendant of T (v), then the path from u to this
leaf contains av. Since this path is contained in T (u), av ∈ T (u) ∩ T (v). Conversely, suppose
that T (u) intersects T (v) at some node x. Then the path from x to au again contains av, so
x is a descendant of av. Any leaf descendant of x in T (u) is a descendant of av.

To check this condition (some leaf of T (u) is a descendant of av), we first compute the
range of preorder numbers of the subtree rooted at av. The smallest such preorder number
is av, and the largest is the last child of av. Let [l, r] be this range of preorder numbers. We
wish to check if [l, r] contains any leaf nodes of T (u). To do so, we look at the predecessors
of l and r in the sequence of leaf nodes of T (u): Leaf(u, l) and Leaf(u, r). We observe that
either l or r are leaf nodes (so Leaf(u, l) = l or Leaf(u, r) = r) or a leaf in the range (l, r)
would cause Leaf(u, l) ̸= Leaf(u, r). Thus computing whether a leaf of T (u) is a descendant
of v can be done using a constant number of bitvector, succinct tree, and predecessor queries,
which takes O(log k/ log log n + 1) time.

4.2 Supporting neighborhood Queries
We now consider efficiently computing the neighbourhood of a vertex v. We will break the
neighbourhood into two cases, those vertices u such that au is a descendant of (or equal to)
av, and those vertices u such that au is an ancestor of av.

4.2.1 Case 1: vertices u with au a descendant of av

For any case 1 neighbours u, au ∈ T (v). We will traverse T (v), and list the vertices u whose
apex is the node of T that we currently traverse. To traverse T (v), we may simulate a
post-order traversal of T (v), by starting at the leftmost leaf of T (v) and using parent and
LCA. This takes O(|T (v)|) time.



M. He and K. Wu 35:13

To report the vertices whose apex is a given node of T , we define the operation apex_list
which takes a node x of T and returns all vertices u such that au = x.

To support apex_list, we store a bitvector A = 1M10 . . . 1M|T |0 where Mi is this number
of vertices with apex at node with preorder number i. Then, rank1(A, select0(A, x)) −
rank1(A, select0(A, x − 1)) is the number of vertices with apex x (using the convention that
the root of the tree T has preorder number 1). We also store an array AL of the vertices in
order by their apexes. Then apex_list(x) computes the range that stores the appropriate
vertices and returns them from AL, that is,

AL[select1(A, x), select1(A, x + 1) − 1]

As apex_list computes each neighbour with a given apex in O(1) per neighbour, and we
ensured each internal node of T is the apex of some vertex, the time complexity is O(k + dv)
where dv is the degree of vertex v. The k term is for the k leaves, which may not give a
neighbour. We may easily remove this term, by storing a length k bitvector, which for each
leaf of T (v), stores a 1 if the leaf contains the apex of some neighbour u, or it is the leftmost
child of an internal node of T (v) (so we do not skip any internal nodes of T (v) if all its
children contributes no neighbours). During the post-order traversal of T (v) we may skip
the leaves that is a 0 using select, to only visit those leaves which has a neighbour. Thus,
we return all case 1 neighbours in O(1) time per neighbour.

The total space needed is a length n + |T | = O(n) bit vector A, a length k bitvector for
each vertex (total O(kn) bits) and a size n log n bit array AL.

Lastly, we note that this is essentially storing a permutation of the vertices, between the
two orderings obtained by sorting leftmost leaf of T (v), and sorting by apex of T (v).

4.2.2 Case 2: vertices u with au an ancestor of av

As discussed in adjacent, vertices u in this case has the property that some leaf of T (u) is
a descendant of av. To compute these, we will store a 2D orthogonal range reporting data
structure of Lemma 6. The points we will store is the set

{(li, u) | u ∈ V, li is the i-th leaf of T (u), 2 ≤ i ≤ k}

This structure stores the leaves of all vertices u. Thus we will convert the adjacency criteria
into something that can be expressed using axis-aligned rectangles.

We again compute the range of preorder numbers of the subtree rooted at av as [l, r],
where l = av and r is the rightmost child of av. For the x-coordinate, we may use l and r

to ensure that the leaf is within the subtree rooted at av. For the y-coordinate, since we
use the label of the vertex rather than its preorder number, we need to covert l and r into
the appropriate vertex labels. To determine the set of labels of vertices whose leftmost leaf
falls within the subtree rooted at av, we find the 0-bits (which represents vertices) which
belong to the l-th and r-th 1 bit in L (which denote the delimiting nodes in T ). That is
we have l′ = rank0(L, select1(L, l)) + 1, which finds the first 0 after the l-th 1 in L and
r′ = rank0(L, select1(L, r + 1)) which finds the first 0 before the r + 1-th 1 in L.

Consider T (u) which contains av and such that au is an ancestor of av. Since au is an
ancestor of av, at least one leaf is outside of the subtree rooted at av (since au has degree at
least 2) and since T (u) contains the node av, at least one leaf is within the subtree rooted at
av. There are two cases, either the leftmost leaf of T (u) is outside of the subtree rooted at
av or if the leftmost leaf falls within this subtree, at least one other leaf falls outside of the
subtree.

WADS 2025



35:14 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

T (v1)

T (v2)

T (v3)

T (v4)

v1

v2

v3

v4

node numbers of T

1 2 3 4 5 6 7 8 9

T (v5)

v5

Figure 5 Example of our range search data structure. Left: a tree representation of a chordal
graph (leafage 3), with 5 vertices. T (v1) in purple dash-dot-dot lines, T (v2) in blue dotted lines,
T (v3) in red unbroken lines, T (v4) in orange dash-dot lines, and T (v5) in green dashed lines. For
clarity, none of the simplifying operations (such as ensuring every node is the apex of some subtree)
are applied to this tree representation. Right: The range search data structure for these subtrees.
For v1, the (9, 1) is stored (since we do not store a point corresponding to the leftmost leaf) etc.
The two types of rectangles are given for neighborhood(v3). The subtree rooted at av3 = 3 spans
the nodes [3, 8] in T . The vertices whose leftmost leaf falling in this subtree are [3, 5]. Thus the
first rectangle (in dashed lines) is [3, 8] × [−∞, 2] and the second rectangle (in dash-dot lines) is
[9, ∞] × [3, 5]. In this case, the two vertices returned are v2 and v5.

In the first case, consider the rectangle, [l, r] × [−∞, l′). A point (li, u) that falls within
this rectangle has the property that li ∈ [l, r] so that the leaf li is a descendant of av.
Furthermore, since u < l′, the leftmost leaf of T (u) falls outside of the subtree rooted at av.
See Figure 5.

In the second case where the leftmost leaf of the vertex u falls in the subtree rooted at av

but some other leaf does not. This is captured by the rectangle (r, ∞] × [l′, r′].
Using the orthogonal range distinctness query, we retrieve each vertex once, since all the

points corresponding to the same vertex has the same y-coordinate by construction. Thus, by
Lemma 6 the time complexity is O(log n/ log log n) per neighbour. The space cost of the 2D
orthogonal range reporting data structure (on (k − 1)n points) is (k − 1)n log kn + o(kn log n)
bits.

▶ Theorem 11. Let G be a chordal graph with bounded vertex leafage k. Then there exists
a data structure occupying (k − 1)n log n − (k − 1)n log k + o(kn log n) bits which answers
adjacent in O(log k/ log log n + 1) time. With additional kn log(kn) bits, it can answer
neighborhood in O(log n/ log log n) time per neighbour.

4.3 Second data structure

We note that the previous data structure stores the coordinates of the leaves of the subtrees
T (v) twice, once in the array Leaf(v) and once in the orthogonal range searching data
structure to support neighborhood queries. This causes the space to be unnecessarily large to
support neighborhood queries. We observe that the orthogonal range search data structure
can be used to mimic access into the Leaf array. By doing so, the time complexity for
adjacent increases slightly, from O(log k/ log log n) to O(log n/ log log n), but the overall
space cost can be reduced.

Recall that our orthogonal range search data structure stores the points:

{(li, u) | u ∈ V, li is the i-th leaf of T (u), 2 ≤ i ≤ k}



M. He and K. Wu 35:15

To be able to compute all the queries, we need to be able to simulate access to the array
Leaf(v). For our purposes, this means predecessor and successor queries.

First we note that the relevant points corresponds to the rectangle [−∞, ∞] × [v, v]. Thus
in O(k log n/ log log n) time, we may retrieve the preorder numbers of each of the leaves for
a given vertex.

For the predecessor and successor queries, the relevant points our query forms a horizontal
strip, containing a single y-coordinate. Since predecessor queries corresponds to the point in
the rectangle [−∞, i] × [v, v] with the largest x-coordinate this corresponds to a orthogonal
range distinct maximum query, with a single y-coordinate in the output. Thus, we may
support it in O(log n/ log log n) time. Symmetrically for successor queries.

Therefore, as accessing the array Leaf(v) using predecessor and successor queries, using
the orthogonal range search data structure incurs a cost of O(log n/ log log n), we obtain the
following theorem:

▶ Theorem 12. Let G be a chordal graph with bounded vertex leafage k. There exists a data
structure occupying (k − 1)n log n + (k − 1)n log k + o(kn log n) bits which answers adjacent
in O(log n/ log log n) time and, using n log n + o(n log n) additional bits, neighborhood in
O(log n/ log log n) time per neighbour.

4.4 Distances
In this section we investigate the distance query in chordal graphs with bounded vertex
leafage k. In the same vein as Munro and Wu, we show a close relationship to a variation of
the set intersection oracle problem. The set intersection oracle (or set disjointness) problem
is the following:

Preprocess a collection of sets {S1, . . . , Sn} with each set Si ⊆ U from some universe U .
Answer queries of the form: given i, j is Si ∩ Sj = ∅?

There are a few ways to measure the size of this problem. One way is n, the number of
sets. Another is N =

∑
i |Si|, the total number of elements in the sets. As such, there are

conjectures related to both of these measurements.
Patrascu and Roditty [26] gave the following conjecture, based on the number of sets in

the input.

▶ Conjecture 13 (Conj. 3 [26]). Let {S1, . . . , Sn} be a collection of sets, with each set Si ⊆ U

from some universe U . Then any data structure answering set disjointness queries in O(1)
time, must use Ω(n2) bits of space, even if |U | = logc n for a large enough constant c.

Observe that with n2 bits we can write down the result matrix M [i, j] = 1 if |Si ∩ Sj | > 0
which allows the computation of the query in O(1) time, and so this conjecture essentially
states that this is the best we can do, even with small universes.

Using the total sizes of the sets as the input size, Goldstein et al. [19] gave the following
conjecture.

▶ Conjecture 14 (Conj 3. [19]). Let S1, . . . , Sn be a collection of sets, and let N =
∑

i |Si| be
the total number of elements of the sets. Then any data structures answering set disjointness
queries in T time must use Ω(N2/T 2) space.

These conjectures suggest that the set intersection oracle problem is quite difficult to
solve without using trivial solutions such as writing down all the answers, or writing down
the answers for large sets and naively iterating through smaller sets (i.e. we could check for
every x ∈ Si, is x ∈ Sj?, which would be quick if |Si| was small).

WADS 2025



35:16 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

Recall our lower bound construction proof. For k = o(n) we constructed two sets V1
(which is a clique) and V2 (which is an independent set). In this construction, for two
vertices v1, v2 ∈ V2, distance(v1, v2) = 2 exactly when there exists some vertex u ∈ V1
that is adjacent to both. Otherwise, we pick any neighbour of v1 and any neighbour of
v2. They both lie in V1 which is a clique, so are adjacent. Hence the distance would be 3.
Thus distance(v1, v2) is either 2 or 3 depending on the condition: there exists some u ∈ V1
adjacent to both v1 and v2.

Fix vi ∈ V2 and construct the set Si = {u ∈ V1 | (u, vi) ∈ E}. Then the existence of u

adjacent to both vi and vj is exactly the non-emptiness of the intersection Si ∩ Sj .
Munro and Wu further gave the reduction as follows: Given the sets S1, . . . Sn ⊆ [1, . . . , n]

construct the split graph with V1 = [1, . . . n] and |V2| = n. For each vi ∈ V2, the neighbours
of Vi is exactly the set Si. Then the distance query on G answers the set disjointness
problem.

If we do exactly the same thing, we obtain an obstacle. Since each vertex in V1 has at
most k neighbours in V2 in a bounded vertex leafage chordal graph, this corresponds to the
condition that: for every element i ∈ U , it belongs to at most k of the sets S1, . . . , Sn. This
implies that N ≤ kn, and also implies that k2n bits suffice to write down the results of all
queries, since for element i ∈ U , it causes at most k2 pairs of sets to intersect.

Using this sparsity like condition, we give the following conjecture:

▶ Conjecture 15. Let {S1, . . . , Sn} be a collection of sets with universe |U | = n such that
for every i ∈ U , i appears in at most k sets. Any data structure which has query time O(1)
must use Ω(min(k2n, n2)) bits of space.

For chordal graphs with bounded vertex leafage, unless the above conjecture were to be
false, we would be unable to answer distance queries in O(1) time using succinct space (or
even a little bit more space).

5 Data Structure for Chordal Graphs with Bounded Leafage

In this section, we consider data structures for chordal graphs with bounded leafage k. We
note that a chordal graph with bounded leafage k is also a chordal graph with bounded
vertex leafage k, and thus the data structures in the previous section applies. As this is a
more structured class of graphs, our goal is to achieve much better query times, on top of
not requiring additional space for neighbourhood queries. Furthermore, this structure allows
us to bypass the difficulties with supporting the distance query. We will highlight some
of the differences in our data structure that is made possible by this additional structure,
which allows for more efficient computation.

By definition, a chordal graph with bounded leafage k has a tree representation that
consists of a host tree T with at most k leaves. First, root T at one of its leaves. By doing
so, we only need to worry about the k − 1 other leaves of the tree. We may apply Lemma 9,
to ensure that |T | ≤ n and that every node of T is the apex of some subtree T (v).

Since there are at most k − 1 leaves besides the root, we may break the tree down into
k −1 disjoint paths P1, . . . , Pk−1, where each path contains 1 leaf of the tree, except P1 which
contains both a leaf and the root (which was also a leaf of the unrooted tree by construction).
For simplicity, we may choose the paths in a preorder traversal, by descending down the tree
until we reach the first leaf to obtain the first path, then following the preorder traversal to
reach the second leaf to obtain the second path etc. In this way, the preorder traversal of
the tree T gives k − 1 blocks of nodes corresponding to the k − 1 paths. In the following, we



M. He and K. Wu 35:17

P1

P2

P3 P4

P5

P6

Figure 6 Left: An example host tree with 7 leaves (leafage 7), broken down into 6 paths so
that the nodes of the paths are consecutive in preorder. The bitvector P N for this tree would
be 10000011010011. Right: an example subtree T (v) in black dashed with the host tree’s path
decomposition coloured in. The list of depths of the deepest node of T (v) in the paths in order is 4,
0, 0, 1, -1, -1.

will refer to leaves of a subtree T (v) which lie on some path Pi. However it may be the case
that T (v) ∩ Pi is non-empty but no leaf of T (v) exists on Pi. To ensure that each path Pi

which contains nodes from T (v) “has” a leaf of T (v), we will consider the the largest depth
node of T (v) on a path Pi to be a leaf. See Figure 6, the subtree on the right, depicted by
dashed black lines, has a “leaf” at the node of depth 4, on the red path (P1).

Because there are only k − 1 paths, for a subtree T (v) to have k leaves, one of its leaves
must also be the apex. Therefore, rather than sorting by leftmost leaf as in the case of
bounded vertex leafage, we now sort by their apex instead, as obtaining the apex, will also
obtain the leftmost leaf, if that is the case.

Sort the vertices by the preorder number of their apex, breaking ties arbitrarily and label
the vertices as 1, . . . , n by their index in this sorted order. From now on, when we refer to
a vertex v, we refer to its label (i.e. v is an integer between 1 and n). Store a bitvector
L = 10N1−1 · · · 10N|T |−1, where Ni is the number of vertices whose apex is the node with
preorder number i. Then the preorder number of the apex of a vertex v is rank1(L, v). We
note that by Lemma 9, this bitvector is well defined, as Ni > 0.

For each vertex v and for each of the k − 1 paths, we store the depth (in the path) of
the largest depth node (i.e. the leaf of T (v) on that path) of T (v) on that path, and if T (v)
does not intersect that path, we store −1 instead. Let Leaf(v, j) be the depth of this leaf
of T (v) on path Pj . We store the partial sums

∑
1≤≤j(Leaf(v, j) + 2) (to ensure that the

terms are increasing). Applying Lemma 2, and using the fact that the total sum equals
n + k (as the paths are disjoint, so their total lengths equal |T | ≤ n), and that k = o(n), this
uses (k − 1) log(n + k) − (k − 1) log k + o(k + log n) bits. To compute Leaf(v, j), we have
Leaf(v, j) = select(j) − select(j − 1) − 2.

We note that since the i-th leaf always falls on the i path, instead of being arbitrarily
placed in the tree as in the bounded vertex leafage case, we may retrieve it in O(1) time,
rather than requiring predecessor queries which takes longer.

Finally we store a bitvector PN (path number) in the preorder traversal of the tree T ,
with a 1 bit if a node is the first node of some path Pi. Given a node x ∈ T (with preorder
number x), it lies on the path rank1(PN, x).

The total space needed so far is (k − 1)n log n − kn log k + o(kn log n) bits.
Again, using these data structures, we are able to compute the exact subtree T (v) for

any vertex v given as an integer denoting its position in sorted order: the root of T (v)
is the node with preorder number rank1(L, v), and we store the at most k − 1 leaves of

WADS 2025



35:18 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

the tree T (v) by their depths Leaf(v, i). For path i, the first node (by preorder number)
of the path is select1(PN, i), so the leaf of T (v) is the node of T with preorder number
select1(PN, i) + Leaf(v, i) (if Leaf(v, i) ̸= −1). Thus by reconstructing the subtress T (v)
we are able to recover the graph.

Now we will show how to answer the queries efficiently.

5.1 adjacent (u, v)
Find au and av using L. Then by performing LCA in T , determine if one is the ancestor of
the other. If not, return not adjacent. Otherwise, suppose that au is an ancestor of av. Let
j be the path number of av. We check if the j-th leaf of T (u), Leaf(u, j), has depth at least
that of av (relative to Pj). If so, return adjacent, and return not adjacent otherwise. This
uses a constant number of bitvector and succinct tree operations, and so takes O(1) time.

5.2 neighborhood (v)
We consider two cases. Case 1: vertices u adjacent to v such that au is an ancestor of av.
Case 2: vertices u adjacent to v such that au is a descendant of (or equal to) av.

Case 1. Let j be the path number of av, and let dv be the depth of av relative to this
path. As in adjacent, we want vertices u whose j-th leaf has depth at least as much as
dv. Compared to the previous section, knowing that we only need to consider the j-th leaf,
rather than an arbitrary leaf allows us to forgo a orthogonal range search data structure. Let
Dj [u] = Leaf(u, j) be a conceptual array. We are looking for indices u such that u < v (so
that it is an ancestor) and Dj [u] > dv. It is well known that this can be accomplished in
O(1) time per index by equipping Dj with a RMQ data structure (Lemma 5). The space
needed is O(kn) bits as we need one RMQ data structure per path.

Case 2. We consider each path in order. For each vertex, we store a length k bitvector
indicating whether the j-th leaf is −1, and using select we iterate over each path with a
node in T (v). For path j if T (v) ∩ Pj is non-empty, let x1, x2 be the first and last vertices of
T (v) ∩ Pj . x2 is simply the j-th leaf, and x1 is the first node of the path, which we obtain
using select(PN, j), except on the path that av is on, in which case, x1 = av. Since we
sorted the vertices by their apex, the set of vertices with apex in [x1, x2] forms a consecutive
block, which we may find using select on L as [select1(L, x1), select1(L, x2 + 1) − 1].
This takes O(1) time per neighbour.

5.3 Iteration through Neighbourhood
It maybe the case that for a graph algorithm, storing the entire neighbourhood of a vertex,
especially over a large number of recursive calls is too costly. Instead it would be desirable
to iterate over the list of neighbours, so that at any point, only a constant amount of space
is needed to store where in the list of neighbours the computation is currently at.

To do so, we consider the two cases in the neighborhood(v) query. Let av be the apex
of v. First consider the second case, where we output neighbours u of v such that au is a
descendant of av in the host tree T . In this case, we examined each of the (k − 1)-paths
which contained a node of T (v), then for each node on the j-th path Pj ∩ T (v), we returned
all vertices with that node as its apex. The vertices whose apex is on this subpath Pj ∩ T (v)
forms a single interval of vertex labels. Therefore, to store where we are in this computation,



M. He and K. Wu 35:19

we need to store the current path number (from which we may compute the subpath in O(1)
time), and the current node in this single interval that we have returned. This uses O(1)
words of space.

Now consider the first case, where we output neighbours u of v such at au is an ancestor
of av. Let i be the path number of av. In this case, we used a RMQ query on the conceptual
array Di which stored the leaf numbers of each vertex in the i-th path (which may be -1 if a
vertex did not have a vertex on the i-th path). In this case, we wished to output all indices
u in the prefix Di[1, . . . , v′] such that Di[u] ≥ depthPj

(av).
A solution to this was given by Tsakalidis et al. [30] in their work for permutation graphs.

Their extension to the regular RMQ data structure can be stated as:

▶ Lemma 16 (Lemma 3.2 of [30]). Let A[1..n] be a static array of comparable elements. For
any constant ε > 0, there is a data structure using εn bits of space on top of A that supports
the following queries in O( 1

ε ) time (making as many queries to A) and using O(1) words of
working memory:
1. range-maximum queries (or symmetrically range-minimum queries), RMQA(ℓ, r),
2. next-above queries (or symmetrically next-below), next_aboveA(ℓ, r, y; i), enumerating

{i ∈ [ℓ, r] : A[i] ≥ y} in amortized O( 1
ε ) time.

Formally, next_above implicitly defines a sequence (ij)j≥0 via i0 = RMQA(ℓ, r) if
A[i0] ≥ y and i0 = null otherwise, and ij+1 = next_aboveA(ℓ, r, y; ij) if ij ≠ null, and
ij+1 = null otherwise. Then we require {ij : ij ̸= null} = i ∈ [ℓ, r] : A[i] ≥ y.

We note that this data structure requires access to the array A, as opposed to the data
structure of Lemma 5. Here A = Di, and accessing elements of Di[u] = Leaf(u, i) can be
done in O(1) time. Lastly, we note that the next_above operation iterates over all indices
that we need.

Therefore, combining these two cases, we may store a reference to where we are in the
list of neighbours in O(1) words.

5.4 distance(u, v)
In the previous section, for chordal graphs with bounded vertex leafage, we argued that it
is difficult to support the distance query, due to a close connection to the set disjointness
problem. Applying the same reduction, we see that we no longer have such an obstacle.
Indeed, as the host tree contains at most k leaves, the instances of the set disjointness
problem that can be reduced to chordal graphs with bounded leafage are exactly those with
at most k input sets. As we noted, we may store the output matrix in this case using k2

bits, which is much less than (k − 1)n log n bits. Thus, the distance query seems hopeful to
be solved for the bounded leafage case.

To compute the distance between two vertices, we will use the greedy algorithm of Munro
and Wu [25] for general chordal graphs. Informally, to connect two subtrees T (u) and T (v)
(using a sequence of subtrees), at least one subtree must pass through the lowest common
ancestor of au and av. To reach this LCA from au, we greedily pick the subtree T (w)
intersecting T (u) such that aw is as high up in the tree as possible (and repeat).

The successor operation on the tree T is defined by: succ(x) = y (x, y are nodes of T )
where y is the smallest depth node such that there exists a vertex w with y = aw and
x ∈ T (w). A shortest path between u and v can be found by first computing the node
h = LCA(au, av), then repeatedly take the successor operation from au and av. We stop when
the next successor operation would give a node that has smaller depth than h. The result
of the two chains of successor operations are two nodes hu (an ancestor of au) and hv (an

WADS 2025



35:20 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

ancestor of av). Lastly, we compute whether there exists a subtree T (w) such that hu ∈ T (w)
and hv ∈ T (w). The shortest path between any vertex with apex hu and any vertex with
apex hv is hu → w → hv if such a subtree T (w) exists and hu → succ(hu) → succ(hv) → hv

if no such T (w) exists.
We assume that h ̸= au, av (i.e. hu and hv are not in an ancestor-descendant relationship),

since if one is the ancestor of the other, then there is a single chain of successor operations
and we do not need to compute if T (w) exists or not.

Suppose that we are given hu and hv, two nodes of T . Let Pu, Pv be the two paths
containing hu and hv. For now, assume that Pu and Pv are such that no node of one path is
an ancestor of another path. For each node of Pu and Pv we wish to store a bit which is 1 if
there exists a vertex w whose subtree T (w) contains the two nodes. This allows us to finish
the distance computation by checking this bit using the nodes hu and hv. Naively, this will
use |Pu||Pv| bits of space if we store a bit for each pair of nodes of the two paths.

Let Bu,v[i][j] be this bit for the node at depth i in Pu and depth j in Pv.

▶ Lemma 17. The bitarray Bu,v[i] consists of a block of 1s followed by a block of 0s.

Proof. Let x be the node of depth i on the path Pu. Let j be an index such that Bu,v[i][j] = 1.
Then there exists some subtree T (w), which contains both x and the depth j node of Pv.
Since we assume that no node of Pu is an ancestor of Pv (and vice versa), T (w) must also
contain the node at depth j − 1 on path Pv. Hence any 1 bit of Bu,v[i] is preceded by another
1 bit, and we conclude that this bitarray consists of a block of 1s followed by a block of 0s. ◀

Using the above lemma, we may describe this bitvector Bu,v[i] using a single number:
the index of the last 1. Thus, consider the array Au,v of length |Pu| which contains these
indices of the last 1.

▶ Lemma 18. The array Au,v is non-increasing.

Proof. We show that Au,v[i] ≥ Au,v[i + 1] for all i. Let T (wi) be the subtree which realizes
Au,v[i]. That is, it is the subtree which contains the node xi of depth i on Pu (among all
such subtrees) which contains the deepest node on Pv (which is of depth Au,v[i]). Similarly,
let T (wi+1) be the subtree which realizes Au,v[i + 1]. Note that since T (wi+1) contains the
node xi+1 it must also contain xi (we assumed that no node of either path is an ancestor of
nodes of the other path). Therefore, by definition of T (wi), its deepest nodes on Pv is at
least as deep as that of T (wi+1). ◀

Now, as Au,v is a non-increasing sequence (i.e. sorted) of length |Pu| with maximum
value |Pv|, we may store it using |Pu| + |Pv| + o(|Pu| + |Pv|) bits by Lemma 3. To obtain
Bu,v[i][j], we compute j ≤ Au,v[i], and if so the bit is 1.

Next we deal with the case that some nodes of Pu and Pv and in an ancestor-descendant
relationship. Since we assume that hu and hv are not in an ancestor-descendant relationship,
if the paths Pu and Pv contain nodes that are in an ancestor-descendant relationship, we
may ignore them, as we will never query those pairs. Suppose that Pu[0, l] are ancestors
of the nodes of Pv (observe that only one path can contain such nodes and they must
be a prefix), then we perform the above calculations using P ′

u = Pu[l + 1, −], and store
A[0] = A[1] = · · · = A[l] = A[l + 1] so that sequence is still non-increasing. Note that for this
pair of paths, A[0, . . . , l] will never be accessed so their values can be anything. See Figure 7.

The total size of these non-increasing sequences, stored using Lemma 3 is then
∑

i<j |Pi|+
|Pj | ≤ k

∑
i |Pi| = kn + o(kn) bits. The time to compute the distance query is O(1). We may

also compute the shortest path by storing the vertex wi giving rise to the value of Au,v[i].
This takes a further kn log n bits.



M. He and K. Wu 35:21

Pu

Pv

P ′
u

Figure 7 The case when some nodes of one path are ancestors of nodes of the other path. We
ignore such nodes and work with the subpath that are not ancestors P ′

u, before padding the final
sequence with the ignored elements.

The total space needed is (1 + ε)n log n bits for the necessary data structures from Munro
and Wu’s data structure. Our data structure for computing the existence of the vertex w

uses O(kn) bits for the distance query. However kn log n bits is needed to store the vertices
w themselves for the spath query which asks for the vertices on a shortest path.

Putting the above together, we obtain the following theorem:

▶ Theorem 19. Let G be a chordal graph with bounded leafage k. There exists a data structure
occupying (k−1)n log n−(k−1)n log k+o(kn log n) bits of space supporting adjacent queries
in O(1) time, and neighborhood in O(1) time per neighbour. Furthermore, we may iterate
through the neighbourhood using O(1) words to denote the current neighbour in the list, in
O(1) amortized time per neighbour.

We may support distance queries using (1 + ε)n log n + O(kn) additional bits in O(1)
time (for any constant ε > 0), and shortest path queries using (k + 1 + ε)n log n additional
bits in O(1) time per vertex on the path.

References
1 Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti. Succinct

encodings for families of interval graphs. Algorithmica, 83(3):776–794, 2021. doi:10.1007/
s00453-020-00710-w.

2 Girish Balakrishnan, Sankardeep Chakraborty, Seungbum Jo, N. S. Narayanaswamy, and
Kunihiko Sadakane. Succinct data structure for graphs with d-dimensional t-representation.
In Ali Bilgin, James E. Fowler, Joan Serra-Sagristà, Yan Ye, and James A. Storer, editors,
Data Compression Conference, DCC 2024, Snowbird, UT, USA, March 19-22, 2024, page 546.
IEEE, 2024. doi:10.1109/DCC58796.2024.00063.

3 Girish Balakrishnan, Sankardeep Chakraborty, N. S. Narayanaswamy, and Kunihiko Sadakane.
Succinct data structure for chordal graphs with bounded vertex leafage. In Hans L. Bodlaender,
editor, 19th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2024,
June 12-14, 2024, Helsinki, Finland, volume 294 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.SWAT.2024.4.

4 Girish Balakrishnan, Sankardeep Chakraborty, N.S. Narayanaswamy, and Kunihiko Sadakane.
Succinct data structure for path graphs. Information and Computation, 296:105124, 2024.
doi:10.1016/j.ic.2023.105124.

5 E. A. Bender, L. B. Richmond, and N. C. Wormald. Almost all chordal graphs split. Journal of
the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 38(2):214–221,
1985. doi:10.1017/S1446788700023077.

WADS 2025

https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1007/s00453-020-00710-w
https://doi.org/10.1109/DCC58796.2024.00063
https://doi.org/10.4230/LIPIcs.SWAT.2024.4
https://doi.org/10.1016/j.ic.2023.105124
https://doi.org/10.1017/S1446788700023077


35:22 Succinct Data Structures for Chordal Graph with Bounded Leafage or Vertex Leafage

6 C. Berge. Some classes of perfect graphs. In Graph Theory and Theoretical Physics, pages
155–165. Academic Press, London-New York, 1967.

7 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

8 Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct orthogonal range
search structures on a grid with applications to text indexing. In Frank K. H. A. Dehne,
Marina L. Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors, Algorithms and Data
Structures, 11th International Symposium, WADS 2009, Banff, Canada, August 21-23, 2009.
Proceedings, volume 5664 of Lecture Notes in Computer Science, pages 98–109. Springer, 2009.
doi:10.1007/978-3-642-03367-4_9.

9 Boris Bukh and R. Amzi Jeffs. Enumeration of interval graphs and d-representable complexes,
2023. doi:10.48550/arXiv.2203.12063.

10 Peter Buneman. A characterisation of rigid circuit graphs. Discret. Math., 9(3):205–212, 1974.
doi:10.1016/0012-365X(74)90002-8.

11 Steven Chaplick and Juraj Stacho. The vertex leafage of chordal graphs. Discret. Appl. Math.,
168:14–25, 2014. Fifth Workshop on Graph Classes, Optimization, and Width Parameters,
Daejeon, Korea, October 2011. doi:10.1016/j.dam.2012.12.006.

12 Clark, David. Compact PAT trees. PhD thesis, University of Waterloo, 1997. URL: http:
//hdl.handle.net/10012/64.

13 G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 25:71–76, 1961. URL: https://api.semanticscholar.org/CorpusID:
120608513.

14 Arash Farzan and Shahin Kamali. Compact navigation and distance oracles for graphs with
small treewidth. Algorithmica, 69(1):92–116, 2014. doi:10.1007/s00453-012-9712-9.

15 Johannes Fischer and Volker Heun. A new succinct representation of rmq-information and
improvements in the enhanced suffix array. In Bo Chen, Mike Paterson, and Guochuan Zhang,
editors, Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, pages 459–
470, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. doi:10.1007/978-3-540-74450-4_
41.

16 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. doi:10.1016/0022-0000(93)90040-4.

17 Fănică Gavril. A recognition algorithm for the intersection graphs of paths in trees. Discrete
Mathematics, 23(3):211–227, 1978. doi:10.1016/0012-365X(78)90003-1.

18 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974. doi:10.1016/0095-8956(74)
90094-X.

19 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. Conditional lower bounds
for space/time tradeoffs. In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger Sack, editors,
Algorithms and Data Structures, pages 421–436, Cham, 2017. Springer International Publishing.
doi:10.1007/978-3-319-62127-2_36.

20 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 1980.
21 Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu. Distance oracles for

interval graphs via breadth-first rank/select in succinct trees. In Yixin Cao, Siu-Wing Cheng,
and Minming Li, editors, 31st International Symposium on Algorithms and Computation,
ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181
of LIPIcs, pages 25:1–25:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.25.

22 Meng He, J. Ian Munro, and Kaiyu Wu. Succinct data structures for path graphs and chordal
graphs revisited. In Ali Bilgin, James E. Fowler, Joan Serra-Sagristà, Yan Ye, and James A.
Storer, editors, Data Compression Conference, DCC 2024, Snowbird, UT, USA, March 19-22,
2024, pages 492–501. IEEE, 2024. doi:10.1109/DCC58796.2024.00057.

https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1007/978-3-642-03367-4_9
https://doi.org/10.48550/arXiv.2203.12063
https://doi.org/10.1016/0012-365X(74)90002-8
https://doi.org/10.1016/j.dam.2012.12.006
http://hdl.handle.net/10012/64
http://hdl.handle.net/10012/64
https://api.semanticscholar.org/CorpusID:120608513
https://api.semanticscholar.org/CorpusID:120608513
https://doi.org/10.1007/s00453-012-9712-9
https://doi.org/10.1007/978-3-540-74450-4_41
https://doi.org/10.1007/978-3-540-74450-4_41
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/0012-365X(78)90003-1
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1007/978-3-319-62127-2_36
https://doi.org/10.4230/LIPIcs.ISAAC.2020.25
https://doi.org/10.4230/LIPIcs.ISAAC.2020.25
https://doi.org/10.1109/DCC58796.2024.00057


M. He and K. Wu 35:23

23 Douglas B. West In-Jen Lin, Terry A. McKee. The leafage of a chordal graph. Discussiones
Mathematicae Graph Theory, 18(1):23–48, 1998. doi:10.7151/dmgt.1061.

24 Clyde L. Monma and Victor K.-W. Wei. Intersection graphs of paths in a tree. Journal of
Combinatorial Theory, Series B, 41(2):141–181, 1986. doi:10.1016/0095-8956(86)90042-0.

25 J. Ian Munro and Kaiyu Wu. Succinct data structures for chordal graphs. In 29th International
Symposium on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi,
Yilan, Taiwan, pages 67:1–67:12, 2018. doi:10.4230/LIPIcs.ISAAC.2018.67.

26 Mihai Patrascu and Liam Roditty. Distance oracles beyond the thorup-zwick bound. SIAM J.
Comput., 43(1):300–311, 2014. doi:10.1137/11084128X.

27 Mihai Patrascu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and
predecessor search. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 166–175, 2014. doi:10.1109/FOCS.2014.26.

28 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4):43, November 2007. doi:10.1145/1290672.1290680.

29 Donald J Rose. Triangulated graphs and the elimination process. Journal of Mathematical
Analysis and Applications, 32(3):597–609, 1970. doi:10.1016/0022-247X(70)90282-9.

30 Konstantinos Tsakalidis, Sebastian Wild, and Viktor Zamaraev. Succinct permutation graphs.
Algorithmica, 85(2):509–543, 2023. doi:10.1007/s00453-022-01039-2.

31 Nicholas C. Wormald. Counting labelled chordal graphs. Graphs and Combinatorics, 1(1):193–
200, 1985. doi:10.1007/BF02582944.

WADS 2025

https://doi.org/10.7151/dmgt.1061
https://doi.org/10.1016/0095-8956(86)90042-0
https://doi.org/10.4230/LIPIcs.ISAAC.2018.67
https://doi.org/10.1137/11084128X
https://doi.org/10.1109/FOCS.2014.26
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1007/s00453-022-01039-2
https://doi.org/10.1007/BF02582944

	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	3 Lower Bound for Bounded Leafage and Vertex Leafage
	3.1 Bounded Vertex Leafage
	3.2 Bounded Leafage

	4 Data Structures for Chordal Graphs with bounded Vertex Leafage
	4.1 Supporting { adjacent} Query
	4.2 Supporting { neighborhood} Queries
	4.2.1 Case 1: vertices u with a_u a descendant of a_v
	4.2.2 Case 2: vertices u with a_u an ancestor of a_v

	4.3 Second data structure
	4.4 Distances

	5 Data Structure for Chordal Graphs with Bounded Leafage
	5.1 adjacent (u,v)
	5.2 neighborhood (v)
	5.3 Iteration through Neighbourhood
	5.4 { distance}(u,v)


