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—— Abstract

We study GEOMETRIC GRAPH EDIT DISTANCE (GGED), a graph-editing model to compute the
minimum edit distance of intersection graphs that uses moving objects as an edit operation. We
first show an O(nlogn)-time algorithm that minimises the total moving distance to disperse unit
intervals. This algorithm is applied to render a given unit interval graph (i) edgeless, (ii) acyclic and
(iii) k-clique-free. We next show that GGED becomes strongly NP-hard when rendering a weighted
interval graph (i) edgeless, (ii) acyclic and (iii) k-clique-free. Lastly, we prove that minimising the
maximum moving distance for rendering a unit disk graph edgeless is strongly NP-hard over the Li
and Lo distances.
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1 Introduction

Graph modification is a fundamental topic to address graph similarity and dissimilarity,
where a given graph is deformed by adding or deleting vertices or edges to satisfy a specific
non-trivial graph property, while minimising the cost of edit operations. The problem of
determining this cost is commonly known as graph modification problem (GMP) and has
applications in various disciplines, such as computer vision [3], network interdiction [15],
and molecular biology [14]. GMPs are often categorised into vertex and edge modification
problems, with edit operations restricted to the vertex and edge sets, respectively.

The cost of a single edit operation in a GMP is often determined by the specific application.
In theoretical studies, a unit-cost model is often assumed, where each addition or deletion of
a vertex or edge has a uniform cost. However, for such models, it is known that determining
whether a graph can be modified to obtain a member of a given class is NP-hard for a
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wide range of graphs and classes [2,12,19,25]. These negative bounds of GMPs motivate
alternative formulations for graph editing that consider domain-specific constraints and cost
measures.

The choice of edit operations and their associated costs is a crucial aspect of GMPs, as
different formulations capture different structural properties and computational challenges.
Analogous to string similarity analysis, where modifications are based on biologically sig-
nificant operations such as DNA mutations and repeats [20], graph modification problems
should reflect the inherent constraints and structural properties of the graphs being studied.
In particular, geometric intersection graphs (hereafter intersection graphs) provide a suitable
framework for studying GMPs for scenarios where graphs represent spatial relationships (see,
e.g., [6,10,23]). Given a collection of geometric objects S, an intersection graph G(S) is a
graph where there is a one-to-one correspondence between the vertex set V(G(S)) and S,
and two vertices are adjacent if and only if their corresponding objects intersect. This model
includes many well-known graph classes, such as interval graphs and disk graphs. These
graphs can be frequently found in real-world applications such as network modelling and
bioinformatics [22].

Motivated by this context, this paper investigates GMPs for intersection graphs. In this
context, two natural questions arise:

1. Are standard graph edit operations suitable for modifying intersection graphs?
2. How can the geometric properties of objects be exploited to overcome the hardness of

GMPs?

To answer these questions, we introduce GEOMETRIC GRAPH EDIT DISTANCE, a model for
modifying intersection graphs from a geometric perspective.

In the intersection graph model, a natural edit operation is to move the objects in S. We
treat this movement as a graph edit operation and focus on minimising the cost required to
modify an intersection graph so that the resulting graph is in a specific graph class. The
cost is quantified by the total moving distance, which is the sum of the distances by which
objects in S are moved. More precisely, we define the problem as follows:

GEOMETRIC GRAPH EDIT DISTANCE

Input: A collection of n geometric objects S.
Output: The minimum total moving distance of the objects in S so that the resulting
intersection graph G(S) is in II.

We assume that II is given by an oracle, i.e. we have an algorithm to determine whether
the intersection graph G(S) is in II.

Related work

Numerous GMPs are known to be computationally hard. In the early 1980s, Lewis and
Yannakakis [19] showed that vertex-deletion problems are NP-complete for any hereditary
graph class. Similarly, many edge modification problems have been shown to be NP-complete,
such as transforming a graph into a perfect, chordal, or interval graph [2]. As a result, the
past decade has seen a growing interest in addressing these problems from the perspective of
parameterised complexity. The recent survey by Crespelle et al. [5] provides a comprehensive
overview of this subject (see also [8]).

Although classical GMPs focus on structural modifications of graphs, recent studies
have explored models that include geometric constraints. Honorato-Droguett et al. [16]
introduced the above geometric approach to graph modification, demonstrating that graphs
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of certain classes, such as graph completeness and the existence of a k-clique, can be efficiently
obtained on interval graphs. Their work highlights how the underlying geometric properties
of intersection graphs can be exploited to design appropriate modification models.

In a similar vein, Fomin et al. [10] studied the disk dispersal problem, where a set S of
n disks, an integer k£ > 0, and a real number d > 0 are given, and the goal is to determine
whether an edgeless disk graph can be realised by moving at most k disks by at most d
distance each. They proved that this problem is NP-hard when d = 2 and k£ = n and also FPT
when parameterised by k+d. Furthermore, they showed that the problem becomes W[1]-hard
when parameterised by k£ when disk movement is restricted to rectilinear directions.

Expanding on this line of research, Fomin et al. [11] conducted a parameterised complexity
study of edge modification problems where scaling objects is considered as the edit operation.
Their results illustrate how alternative edit operations in geometric intersection graphs can
impact computational complexity, enabling further study of geometric modification graph
models. In particular, their work includes several FPT results to achieve independence,
acyclicity and connectivity on disk graphs.

Our work continues these developments by introducing GEOMETRIC GRAPH EDIT Dis-
TANCE, a model that considers object movement as an edit operation to modify intersection
graphs. Unlike prior studies that focus on vertex and edge modifications or object scaling,
our approach explicitly considers movement costs by quantifying the total moving distance
required to obtain a graph in a given class. This approach enables the exploration of new
algorithmic and complexity-theoretic questions in the context of geometric intersection
graphs.

Our contribution

Our results are mainly focused on interval graphs and summarised in Table 1. In this paper,
we deal with the following graph classes: Ilegge1ess (edgeless graphs), I,eye (acyclic graphs)
and ITx_c1ique (k-clique-free graphs).

In [16], the model presented is studied mainly for classes of dense graphs. This inspires
the present paper as a subsequent work, where we instead focus on classes for sparse graphs.
As two fundamental classes of sparse graphs, we consider edgeless graphs (ITegge1ess) and
acyclic graphs (IT.cyc). These classes have also been studied in related work on geometric
intersection graphs [10,11].

Table 1 Summary of our results. In this table, L; and Ls are the Manhattan and Euclidean
distances, respectively. The terms IG, UIG and UDG are abbreviations of interval graphs, unit
interval graphs and unit disk graphs, respectively.

Problem Type Graph Target Graph Class Metric Weighted Complexity

UIG Hedgeless Ly (: Ll) No O(n log 77,)
UIG Macyc La(=Ly) No O(nlogn)
UIG Ik-c1ique Ly(= Ly) No O(nlogn)
minsun 1G Ileggeress Lo(=Ly) Yes strongly NP-hard
IG Macye Ly(= L) Yes strongly NP-hard
strongly NP-hard
IG Hk—clique LZ(: Ll) Yes gy
forany 1 <k<n
minimax UDG Ileggeress Lo, Ly Yes strongly NP-hard
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As we shall detail, Il,cyc is contained in Ilp-c1ique in our context. As a result, one
might argue that the distinction of both classes is irrelevant. However, we still consider
them distinctively, as forests are a well-known class of graphs. Our analysis highlights the
computational complexity of modifying intersection graphs while considering movement-based
edit operations, a perspective distinct from prior work that focuses on exclusively modifying
the graph structure.

Paper Organisation. Section 2 formally describes the definitions needed to address the
above ideas. Section 3 presents the problem INTERVAL DISPERSAL and shows that it can be
solved in O(nlogn) time. Using this algorithm, we establish that GEOMETRIC GRAPH EDIT
DISTANCE can also be solved in O(nlogn) time for classes Ileqgeress; Hacye, and Ix-ciigue
on unit interval graphs. Section 4 demonstrates that GEOMETRIC GRAPH EDIT DISTANCE
becomes strongly NP-hard on weighted interval graphs for classes Ileggeress; Hacyc, and
II;-c1ique- Section 5 shows that the minimax version of GEOMETRIC GRAPH EDIT DISTANCE
is strongly NP-hard on weighted unit disk graphs for Ileggeiess under both the L; and Lo
distance metrics. Section 6 concludes with remarks on our results and potential future
directions.

Due to space restrictions, we omit in-depth explanations and all full proofs of statements
with a x-mark. The reader is referred to the full version of this paper [17] for these details.

2 Preliminaries

This section provides the main definitions used in the paper, referencing geometry, graph,
and convexity terminology from textbooks [1,4,7,24].

Objects. An interval I is a line segment on the real line of length len(7) € R™. Intervals are
assumed to be open, unless explicitly stated otherwise. An interval such that len(I) =1 is
called unit interval. The left endpoint ¢(I) of an interval I is the point that satisfies (1) <y
for any y € I. Similarly, the right endpoint r(I) of I is the point that satisfies y < r(I) for
any y € I. The centre ¢(I) of I is the point ¢(I) = (r(I) — £(I))/2. Throughout the paper,
we assume that the indices of a collection of intervals Z = {I3,..., I, } follow the order given
by centres of intervals. That is, ¢(I;) < ¢(I;41) for all 1 <4 < n — 1. However, it is not
assumed that collections are ordered when given as the input graph. Given a radius r > 0
and a point p € R, a disk D centred at p is the set D = {x € R? | ||z, p|l2 < r}. An open disk
D is a disk without its boundary circle; that is, D = {x € R? | ||z, p||2 < r}. We assume that
the disks are open, unless we mention the contrary. A unit disk is a disk of radius r = 1/2.

Graphs. Throughout the paper, a graph G = (V, E) is assumed to be a simple, finite, and
undirected graph with vertex set V' and edge set E. An edgeless graph is a graph G = (V, E)
such that £ = 0. A k-clique of a graph G = (V, E) is a subset W C V such that [W| =k
and for all u,v € W, u # v, {u,v} € E, for k < n. If such W exists in V, we say that G
contains a k-clique. An interval graph is an intersection graph G(Z) = (V, E) where the
vertex set V = {vy,...,v,} corresponds to a collection of intervals Z = {I1,...,I,} and an
edge {v;,v;} € E exists if and only if I; N I; # 0, for any 1 < i,5 <n, i # j. An interval
graph is called unit interval graph if len(I) = 1 for all T € Z. Similarly, a disk graph is an
intersection graph G(D) = (V, E) where the vertex set V = {vy,...,v,} corresponds to a
disk collection D = {Ds,...,D,}. An edge (v;,v;) € E exists if and only if D; N D; # 0, for
any 1 <i,7 <n, i # j. A unit disk graph is a disk graph in which the collection contains
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exclusively unit disks. Unless stated otherwise, all intersection graphs are assumed to be
unweighted. A weighted intersection graph assigns a multiplicative weight, called the distance
weight, to the moving distance function of each object. The formal definition of distance
weight appears in later sections when required. An (infinite) set of graphs Il is a graph class (or
simply a class), and we say that G is in IT if G € TI. A graph class IT is non-trivial if infinitely
many graphs belong to II and infinitely many graphs do not belong to II. In this paper,
we deal with the following non-trivial classes: (i) Ileggeress = {G : G is an edgeless graph.},
(ii) Hacye = {G : G is an acyclic graph.}, (iii) Hi-c1ique = {G : G contains a k-clique.} and
(IV) Hk—clique = {G :G g Hk-clique}-

3 Rendering Unit Interval Graphs Edgeless in O(nlogn) time

We show that a graph in Ileggeress can be obtained in O(nlogn) time given a collection
of n unit intervals. We start by defining a problem that we call INTERVAL DISPERSAL

and then use the algorithm designed to obtain a graph in Ileggetesss Hacye and Ilg-c1ique-

INTERVAL DISPERSAL receives as input a collection Z of n intervals and a real s > 1, and
asks for the minimum value of the total moving distance to obtain a collection Z’ that
satisfies c(I}) — c¢(I]) > s for each I}, I} € 7', i < j. When s = 1, INTERVAL DISPERSAL is

7]

equivalent to GEOMETRIC GRAPH EDIT DISTANCE on unit interval graphs and Ileggeiess-

For simplicity, the intervals are assumed to be open. This avoids the need to address
infinitesimally small distances required to separate closed intervals. We must first introduce
some basic definitions and notation to describe the algorithm. Given a collection of n intervals
IT={hL,...,I,}, let D=(dy,...,d,) be a vector such that d; is the moving distance applied

to I;. We denote by ZP = {IP ..., IP} the collection of intervals such that c(I”) = c(I;) +d;.

The set D(Z) C R™ is the set of vectors that describe the moving distance applied to
intervals such that the condition of INTERVAL DISPERSAL is satisfied. In other words, for all
D = (dy,...,d,) € D(T), c(IP)+c(IP) > sholds for i < j. We use D°P/(Z) C D(Z) to denote

the subset of vectors in D(Z) that minimises the total moving distance applied to intervals; i.e.

DOPNI) ={D = (di,...,dn) € D(T) | 3 cicy |dil = minpr—a, . a1)eD(@) D1<icn 1di]}-

Intuitively, we aim to find a vector D € D°P*(Z) to move each interval so that the distance
between each pair of intervals is at least s. Given an arbitrary D € D°P!(Z), the order of TP
may be different from the order of Z. However, it was previously shown [16] that there is
always a vector D € D°P*(T) such that the order of ZP preserves the order of Z. This implies
that there always exists an optimal solution of INTERVAL DISPERSAL for which checking the
inequality (c¢(L;4+1) + dit1) — (e(I;) + d;) > s for < i <n —1 is sufficient.

We now define the equispace function, which moves intervals so that the distance between
their centres is exactly s, maintaining the order induced by interval centres.

» Definition 1 (Equispace function). Let (Z,s) be an instance of INTERVAL DISPERSAL where
T is a collection of unit intervals. The equispace function of Z to a point x is a function
E:7Z xR — R defined as:

n

E(Z,x)=)  fi(z), fi(z)= |z —c(li)—(n—isl.

i=1

The vector that describes the moving distances given by E(Z,x) is defined as E,(Z) =
(e1,...,en) = (a1 fi(x),...,anfn(z)) where a; = 1 if x > c(I) + (n—z)s and a; = —1
otherwise, for 1 <i<mn. We also denote by TP+1) = {IE =D E @ } the collection of
intervals where c(1 E*(I)) (L) + aifi(z) for 1 <i<mn. N
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By the above, E,(Z) € D(Z) for all x € R. Moreover, c([izl(z)) - c([l.E”(I)) = s for all
1 <i<n—1. We first prove that for certain collections of intervals, minimising E gives a

vector contained in DP*(Z).
» Lemma 2 (x). The equispace function E(Z,x) is a piecewise-linear convex function.

We define the set of breakpoints of E(Z,x) to be the set Br = {b%,... b2} = {c(L;) + (n—
i)s|I; € Z, 1 <i<n}. Given a collection of intervals Z, we define the equispace function
E(Z,z) as a sequence of linear functions E1(Z,x), ..., Ejzj41(Z, 7). The slope of E;(Z, x) is
less than the slope of E;(Z,z) for 1 < i < j < |Z|. Since the equispace function is convex
and piecewise linear, the points that minimise F are located within a range by < z < b,.,
where by < b, and by, b, € Bz. We prove that b, and b, can be easily found.

» Lemma 3 (x). The minimum value of E(Z,x) is given by the breakpoint b(InJrl)/2 if n is
odd, and by breakpoints bi/z and b(In/Q)Jrl otherwise.

By Lemma 3, the minimum value of F for an arbitrary collection of intervals 7 is given
by the median value(s) of Bz. We now show which collections allow minimising F to obtain
a vector in D°PY(T), characterised as follows:

» Definition 4 (Optimally Equispaceable Collections). Given a collection of intervals T, we
say that T is optimally equispaceable if there exists a D € D°PY (L) such that D = E,«(T)
and r* € argmingegr F(Z,z). Equivalently, T is optimally equispaceable if E,«(Z) € DP'(T)
for all x* € argminger F(Z, x).

» Lemmab. LetZ = {I,...,1I,} be a collection of unit intervals such that c¢(Ij11)—c(l;) <'s
for1<i<n-—1. ThenZT is optzmally equispaceable. Moreover, there exists a D € D°PY(T)
such that c(IF,) — c(IP) = s holds for all 1 <i<n—1.

Proof. We only prove the latter, as the existence of D in D°P*(Z) directly implies the optimal
equispaceability of Z. That is, we show that Z satisfies c(I5.,) —c(IP) = s, for 1 <i <n-—1.
By the definition of INTERVAL DISPERSAL, we have ¢(I7 ) > c¢(IP) and c(IBrl) —c(IP) > s
for 1 <4 < mn — 1. Suppose that there exists a pair of intervals I; and I;;; that satisfies

c(IB ) —c(IP) > s. Let s’ = ¢(IB,) — ¢(IP) and § = s’ — s. We show how to obtain a total
moving distance D’ such that ., |d| < > ,cp |d| and c(IEH) o(IP") =s.

We divide the proof into three cases: (i) d; > 0, (ii) di41 < 0 and (iii) d; < 0 and d;+1 > 0.
For case (i), it follows that dj > dj_y > 0 for i +1 < j < nand (c(IR,) —6) — c(IP) =
c(Iig1)+(dix1—90)—(c(I;)+d;) = sholds. Let D'(dY,...,d},) = (d1,...,di,dix1—9, ..., dn—9).
The dispersal condition is satisfied by ZP . Furthermore since § > 0, the total moving
distance satisfies ),/ |d| = Z] i1+ 3750 dj — 6 < 304 p |dl, which contradicts the
optimality of D.

For case (ii), dj < dj41 for 1 < j < i holds, and the argument for case (i) applies
analogously for D' = (df,...,d)) = (d1+0,...,d; + 0,di11,...,dy).

We only need to prove case (iii). Let § = s’ — s as in the previous cases. If § < d;41, then
we move the intervals as in the first case. If § < —d;, then we move intervals as in the second
case. In both cases, the same argument applies and the total moving distance contradicts
the optimality of D. Thus we assume that § > d;11, —d; holds. Without loss of generality,
we move intervals I; for i +1 < j < n by d;1+1 to the left by ¢’ = d;4+1 and intervals I; for
1 < j <ito theright by 6" = (c(IB,)—d&")—c(IP)—s. Then( (IB)=0")—(c (IiD)—l—(S”) =3
holds since d; 1 — 6" = 0. Let D' = (dy,...,d;,) = (d1—|—5” Jdi+ 6" div1 =0 . dy—0).
The inequality Y-, p/ [d = 220, d; +5” +X i di—d < ZdED |d| holds since 5’ 8" >0,
which contradicts the optimahty of D. Therefore, in an optimal solution, Z must satisfy
C(Ii+1) + di+1 — (C(IZ) + d ) = C(Igrl) (IZD) =S, for 1 S ) S n—1. |
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Let Z={I,...,I,} and J ={J1,...,Jm} be two collections of unit intervals and let
x1,x9 € argminger E(Z,2), 21 < 29, and y1,y2 € argminger E(J,2), y1 < y2, be the
breakpoints that minimise E for Z and J, respectively. We say that Z and J intersect
when equispaced when y; < xo + | J|s. In other words, Z and J intersect when equispaced
whenever there exist points 1 <z < x5 and y; < y < yo such that there exist I € TE=(T)

and I € JB9) for which ¢(J) — ¢(I) < s.

» Lemma 6 (x). Given that ZUJ ={I1,..., I, J1,...,dm}, ZUJT is optimally equispaceable
if and only if y1 < 29 +|JT]s.

Corollary 7 is directly implied by Lemma 6.

» Corollary 7. If y1 > xo + |TJ|s, then T U J is not optimally equispaceable. Moreover,
the minimum total moving distance for dispersing TU J is equal to E(Z,x) + E(J,y) for
arbitrary x1 < x < x9 and y1 <y < ys.

Given a collection Z of n unit intervals, we note that Z can be partitioned into m < n
subcollections Zg, ;.- ,Za,, b, such that for all 1 < i < m, ¢(Ij11) — c¢(I;) < s for

a; < j <b; — 1. By Lemma 5, each Z,, 3, is an optimally equispaceable collection. We use
Lemma 6 and prove the statement of Lemma 8.

» Lemma 8 (). LetZT ={I,...,I,} =Ly, p,U- ULy, b, be a collection of n unit intervals
partitioned as above. If there exist integers o, ..., oy such that Z,, b, and Lo, b, s
intersect when equispaced, then there exists an optimal solution for dispersing I that disperées
the intervals in a way that c(Ij41) + dj41 — (c(I;) + dj) = s holds for 1 < ¢ < k and

Ao, < ,7 < bai-i-l-

Outline of Algorithm 1

Given a collection of unit intervals Z and a dispersal value s > 1, the algorithm starts by
sorting and partitioning Z into m < n disjoint subcollections Z,, 4,,...,Zq,, b, such that
each Z,, p, satisfies Lemma 5. Subsequently, the optimal breakpoints are determined for
each E(Z,,p,,z). Whenever there exist two subcollections Zo, 3., i < j and Zy, p,, k < £
that intersect when equispaced, the algorithm considers both subcollections as a unique
subcollection Z,, 3, = Loy p; UZay b,
E(Zq, b, ) using the breakpoint sets of E(Z,, p;,7) and E(Z,, p,,2). Lemma 8 ensures that
this recursion partitions Z into non-intersecting subcollections when equispaced. Lastly, the
algorithm returns the total moving distance, which is calculated as the sum of the optimal
values of E for each subcollection.

Before showing the complexity of the algorithm, we must characterise the set of breakpoints
further. When a collection of unit intervals Z = {I;,...,I,} is partitioned into m disjoint
subcollections Zg, ¢, ..., Za,, b, of intervals that satisfy Lemma 5, the set of breakpoints
Bz, , is equal to {c(I;) + (|Za,
Consequently, Bz can be reformulated as follows:

m
Br = {C(Ij) + <Iai7b1i -Jj+ Z Iak7bk> S | 1<i<m,a;<j< bz}

k=i+1

and recursively determines the optimal breakpoints of

As a result, if b and b’ are the breakpoints for I in Bz, , and Bz, respectively, then
V' =b— 3" |Za,p,| holds. Moreover, the breakpoints of any union of subcollections
Zaib; = Zaips U+~ UZLg, b, can be calculated in the same way by subtracting 3" i\ ) [Zay b |
from any breakpoint b € Bz calculated using an interval I € Z,, ;,. It follows that the order
of BIai,bj is the same as the order of the corresponding breakpoints in Br.

— s | L €Z,a; <j < b} foreach 1 < i < m.
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Algorithm 1 Dispersing n unit intervals in O(nlogn) time.

=

Procedure DispersingIntervals(Z,s)

2 Sort and partition Z into m < n subcollections Zq, b, , - .., Za,,,
1<i<m,c(lj+1)—c(lj) <sfora; <j<b —1;

3 Compute and sort B7 oo, forall 1 <i<mn.;

b, such that for all

4 | xp ,.,x0 ,, are the breakpoint b(n+1)/2 if |Z,, 5| is odd and bn‘;‘zb’ and b(;/Qb)
othervvlse.,
5 DoPt U1<i<n{(B%,, Y Ty o Lo, b,)};
6 | whilew, , <z , +|Z4,
7 B}ai’bl — merge(BIai’bj B}ak be)'
8 Ty, by o by b(n“;i‘)/Q if Bz, , | is odd and Ty, bn';abe,
o g, b(i}zb)zﬂ otherwise.;
9 Dovt ¢ (D()pt\ {(BIn,i,bj7$ii7bj7x31‘,7b_7)7 (B}%,bl,ximbz,xzmbe)}> U

* 1 2
(BIai,b[ 'Ly by xaiybe)

10 return Z(B} , w1,w2) €Dt E(Za;p, U---UZg,p,,21);
ag,bj

The above implies that the breakpoints of any (union of) subcollection(s) can be obtained
from Bz. We denote the set (J;<;<; {b + 53 i1 [ Zaym] | b € By, } by B7 , and call
SRS a;,bj

ap by

it the cumulative set of breakpoints of Bz,,,,- We prove that B ,...,Br ~  can be
found in O(nlogn) time.

--UZ,

@ ybm

> Lemma9 (x). LetZ={0,...,I,} =Ty, p, U be a collection of n unit intervals
partitioned as above. Then the cumulatwe sets of breakpoints B}al_bl soo, Bz, such that
each B} s sorted can be obtained in O(nlogn) total time.

» Lemma 10 (x). Let T = {L1,...,In} = Lo, p, U--- UL, s, be a collection of n unit
intervals partitioned as above. If cumulative breakpoint sets B}al NERRES B7 . are given so

that each By s sorted, then merging them into one sorted set can be done in O(nlogn)

077

total time.

» Theorem 11. Given a collection of unit intervals I and a value s > 1, INTERVAL
DISPERSAL can be solved in O(nlogn) time.

Proof. We show the complexity of Algorithm 1. Line 2 can be done in O(nlogn) time for
sorting and O(n) time to determine the initial m partitions. Similarly, line 3 can be done in
O(nlogn) time by Lemma 9. Given that each B} b8 sorted, the ((|Zy,p;|+1)/2)th element
(vesp. (|Za,p;1/2)th and ((|Zq, p,|/2) + 1)th element) can be calculated in O(log |Z, p,|) time
using binary search on BI«w.bi' This ensures that line 4 is done for all 1 < ¢ < m in
O(mlogn) total time. We initialise D°P! as a doubly linked list where each node 4 contains
the information of (B* o ,w}h by i b ). We show the complexity of the loop in line 6. We
merge both B7 wits and B* o to obtain a sorted B3, , - Hence, the median value(s) of

B}%b[ can be calculated in O(log n) time by binary eearch At each execution of line 7,
two partitions are merged; thus the number of partitions is reduced by one unit at each
iteration. Initially, there exist m partitions, and hence the loop of line 6 iterates at most
m — 1 times. Moreover, merging m cumulative sets of breakpoints into one sorted set can be

done in O(nlogn) time by Lemma 10, which implies that any partial merge of these sets
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is also bounded by O(nlogn). Consequently, the total running time of line 6 is O(nlogn)
time. Lastly, in line 9 the two merged sets are deleted and the new one is added. Since D°P?
is a doubly linked list, this can be done in O(1) time by connecting the previous and next
,; respectively. Once there is no

a;,b

node of B}ai)bj and B}ak)b[ to a new node containing B7
pair of subcollections left to merge, the total moving distance is calculated in O(n) time in
line 10 following the definition of cumulative set of breakpoints, which concludes that the
total running time of Algorithm 1 is O(nlogn) time. <

Theorem 11 implies the following result for Ilegge1ess 0N unit interval graphs when s = 1.

» Corollary 12 (x). Given a collection of n unit intervals T, GEOMETRIC GRAPH EDIT
DISTANCE can be solved in O(nlogn) time so that G(Z) € Ieugeress-

3.1 Classes Il and II;_c;ique On Unit Interval Graphs

This section shows how to use Algorithm 1 for obtaining graphs in Il,cyc and Ilx-c1ique ON
unit interval graphs. We first show the case for Il;-c1;ique-

It is shown in [16] that given a collection of unit intervals Z, G(Z) does not contain
a k-clique if and only if ¢(I;45—1) —¢(f;) > 1 for all 1 < ¢ < n —k+ 1. This inequality
can be decomposed into k — 1 inequalities of the following form: for each 0 < r < k — 2,
c(Liyp—1)—c(l;) > 1forall 1 <i < n—k+1suchthatimod k—1=r. IfZ is decomposed into
k—1 subcollections such that Z = (J;c;<p_1Zis Zi ={; € Z |1 < j <n,j (mod k—1) = i},
then Algorithm 1 can be applied to each Z; independently for s = 1 to satisfy the above
inequalities. Since unit interval graphs are chordal, G is acyclic if it is triangle-free; i.e. G is
contained in II3-c1ique. Consequently Il,cy. is equivalent to Ilx-c1ique When k = 3. The above
ideas imply Corollary 13.

» Corollary 13. Given a collection of n unit intervals T, GEOMETRIC GRAPH EDIT DISTANCE
can be solved in O(nlogn) time so that (i) G(Z) € Ilaeye and (ii) G(T) € Hi-crique-
4  Minimising the Total Moving Distance for Il 4zc16ss On Weighted
Interval Graphs is Hard

In this section we show that GEOMETRIC GRAPH EDIT DISTANCE is strongly NP-hard

on weighted interval graphs for Ileggeiess. We show a reduction from 3-PARTITION [13].

3-PARTITION receives as input a set A of 3m elements, a bound B € Z" and a size s(a) € Z*1
such that B/4 < s(a) < B/2 and ), , s(a) = mB, and the task is to decide whether A
can be partitioned into m disjoint sets Ay, ..., A,, such that for 1 < i < m, |4;| = 3 and
2 aca, S(a) = B.

Given an instance (4, B, s) of 3-PARTITION, we construct a collection of intervals Z4 and
show that A can be partitioned if and only if Z4 can be modified so that G(Z4) € Ileageress
with at most total moving distance T. Given two intervals I, I’ such that ¢(I) < ¢(I'), we
say that I and I’ intersect if ¢(I') — ¢(I) < (len(I’) + len(I))/2.

We show the construction of Z4 (see Figure 1). We define Z4 as the collection ZUZ* UZ?
where Z = {I,..., I3}, I* = {I§,..., I3, _,}, I = {I,, I} and,

(i) for 1 <4 < 3m, I; is an interval such that len(I;) = s(a;) and ¢(I;) = —s(a;)/2 (that is,
r(l;) =0),
(ii) for 1 <i<m—1, I? is an interval where len(I?) = B and ¢(I?) = (2i — 1)B + B/2 and
(iii) I, and I, are intervals such that len(I;) = len(I,) = 3Bm? + max,eca s(a), c(Iy) =
—3Bm?/2 and ¢(I,) = (2m — 1)B + 3Bm? /2.

36:9
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. 211+ ) ) ) (2m—1)B+
,,L_;m 0 B 4 % 3B 4 % (2m — 3)B + % (3Bm?/2)

Figure 1 Reduction Overview.

For an interval I € Z,, we define the moving distance function d; : R — R as:

dy(z) = le(T) — x|, IeT,
! 12Bm?|c(I) —z|, IeZI*UI’.

Given an instance (A, B, s) of 3-PARTITION, we show the following properties.

» Lemma 14 (x). Given an arbitrary partition of A of m disjoint sets Ay, ..., Ay such that
A; ={dl,a,a} for 1 <i<m, Y 0" 6(i—1)B+ " (3al + 2a} + a}) < 3Bm? holds.

We note that Lemma 14 works for any partition of A as described above, even without the
restrictions of the 3-PARTITION output.

» Lemma 15. Given an instance (A, B,s) of 3-PARTITION, A can be partitioned into
m disjoint sets Ay, ..., Ay such that for 1 < i < m A; = {a},ab,a}}, |A;| = 3 and
ZaeAi s(a) = B if and only if ITa can be modified so that G(Za) € leageress with total
moving distance of at most 3Bm?2.

Lastly, we remark that the polynomial construction of Z4 is straightforward by iterating
over A and following the definitions given at the beginning of the section. We summarise the
main result of this section as follows:

» Theorem 16. GEOMETRIC GRAPH EDIT DISTANCE is strongly NP-hard on weighted
interval graphs for the class ggetess-

We notice that Theorem 16 can be extended to show that obtaining graphs in Il,c,. and
IT;-c1ique is also strongly NP-hard.

In particular, when obtaining a graph in Il;_c1ique, We create k — 1 overlapping copies of
the intervals in 75 UZ® and add k — 1 overlapping intervals of size B into the spaces between
intervals of Z° U Z? with the same moving distance function. Any interval forms a k-clique
with the k copies of overlapping intervals. Consequently, moving the intervals of Z with total
moving distance of at most 3Bm? is equivalent to removing all k-cliques from T4 with at
most the same distance. Moreover, by the chordality of interval graphs, it is sufficient to
obtain a graph in Il;-c1iqee When k = 3 for class IL.cyc. As a result, Corollary 17 is obtained.

» Corollary 17. GEOMETRIC GRAPH EDIT DISTANCE is strongly NP-hard on weighted
interval graphs for classes Uaeye and Ilg-cisque-

5 Minimising the Maximum Moving Distance for Il 41055 On Unit
Disk Graphs is Hard

In this section, we deal with the minimax version of GEOMETRIC GRAPH EDIT DISTANCE,
defined as follows:



N. Honorato-Droguett, K. Kurita, T. Hanaka, and H. Ono

MINIMAX-GEOMETRIC GRAPH EDIT DISTANCE

Input: A collection of n geometric objects S and a real K > 0.
Task: Decide whether S can be modified so that G(S) € II by moving objects such that
for all S € &, the moving distance of S is at most K.

We show that MINIMAX-GEOMETRIC GRAPH EDIT DISTANCE is strongly NP-hard on unit

disk graphs for II = Ilegge1ess OVer the Ly and Lo distances by reducing from PLANAR 3-SAT.
Specifically, we show a proof for Theorem 18.

» Theorem 18. MINIMAX-GEOMETRIC GRAPH EDIT DISTANCE is strongly NP-hard on unit
disk graphs for I gge1ess over the Ly and Lo distances.

Due to space constraints, we only give an overview of the reduction. The complete
reduction and proofs can be found in the full-version of the paper [17].

5.1 Proof Overview of Theorem 18: Reducing Planar 3-SAT to
minimax-Geometric Graph Edit Distance

We show a reduction from the following NP-complete variation of PLANAR 3-SAT [18,21,26].
Given CNF formula ® equipped with a planar rectilinear embedding G4, a set X of n
variables, a set C' of m clauses over X such that each ¢ € C has length |¢| < 3, each variable
r € X appears in at most three clauses, and ® = A . ¢, PLANAR 3-SAT asks whether ®
is satisfiable. We give a simplified overview of the reduction. The idea is to emulate each
component (clauses, variables and connectors) of G¢ using disk gadgets and construct a
collection of disks Dg equivalent to Gg. That is, our objective is to construct a Dg such
that ® is satisfiable if and only if Dg is a yes-instance of MINIMAX-GEOMETRIC GRAPH
EDIT DISTANCE for Ileggeiess- To do this, we emulate the truth assignment using a proper
movement of disks. To force the disk movement, we deliberately insert intersecting disks in
Des. In particular, we insert intersecting disks in clause gadgets and restrict the movement of
such disks to moving a sequence of disks such that a free slot of a variable gadget is used. To
allow the removal of the intersection, the gadgets are connected following the structure of G¢
using consecutive disks separated by distance K. For example, consider the boolean formula
® and its rectilinear embedding G, illustrated in Figure 2. A skeleton of the reduction is
shown in Figure 3(a), where representations of clause and variable gadgets are connected
following Gg. Let ¢ = (1 VT2 Vx4) and suppose that xq is assigned to false. This assignment
implies a movement of disks that (i) removes the intersections in the clause gadget for ¢ and
(ii) blocks the truth value of the variable gadget for x5 (see Figure 3(b)). We must block
the truth value of the variable gadget so that another clause gadget ¢’ does not use the free
slot in the variable gadget for x5 when zo = true. Consequently, their intersections must be
removed using other gadgets. It can be shown that removing all intersections in this way is
equivalent to a valid assignment of variables for which ® = true. The disks are moved by
assigning a new location, and the distance is calculated using a function that we call mowving

= (x; VT3 V) A(TT V23 VT3) A (22 VT3V T7)

7~ 7 7 7~
v Vs Vs V4
Go () \f/ A3/ W,

Figure 2 Reduction Overview: An arbitrary instance ® of PLANAR 3-SAT with its rectilinear
embedding Gs.
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Figure 3 Reduction Overview: (a) The skeleton given by the instance (®,Gs) of Figure 2; (b)
The intersection of the gadget for ¢ = (21 V Z2 V 24) is removed by moving disks in a way that a free
slot of the gadget for z2 is used. Since ¢ = true when x2 = false, the free slots for the other two
gadgets become blocked, being unable to remove their intersection using the variable gadget for zs.

distance function, which is the L, or Ly distance metric multiplied by a distance weight.
We employ two types of disks classified by their distance weight, called transition disk and
heavy disk. The transition disks are the disks that we aim to move, whereas heavy disks are
used to restrict the movement of transition disks. The moving distance function of a heavy
disk is intuitively defined such that any significant movement that alters the construction
exceeds a distance of K. We show that a solution that allows removing all intersections
from Dy with minimum maximum moving distance K exclusively relies on the movement
of transition disks. We remark that, although heavy disks can move, their movement is
negligible. Combining this condition and the above construction, it can be shown that ®
is satisfiable if and only if Dy can be modified so that G(Dg) € eggeress Using minimum
maximum moving distance K.

6 Concluding Remarks

The main contribution of this paper is two-fold. First, we continued the study of GEOMETRIC
GRAPH EDIT DISTANCE originally presented in [16], showing complexity results for obtaining
graphs in several classes for sparse graphs on interval graphs. In particular, we showed that
obtaining a graph in Ileggetess; acyc and Ilg-ciique is solvable in O(nlogn) time on unit
interval graphs. In contrast, we showed that the problem becomes strongly NP-hard on
weighted interval graphs for the same classes. Second, we defined MINIMAX-GEOMETRIC
GRAPH EDIT DISTANCE as a variation of the above problem and showed that it is strongly
NP-hard for Ilegge1ess On weighted unit disk graphs over the L; and L, distances.

There are several directions for further research. Our results provide a comprehensive
picture of the complexity of GEOMETRIC GRAPH EDIT DISTANCE on interval graphs. In
particular, we showed that the problem becomes hard even in lower dimensions when the input
is not restricted by interval size and distance weight. As a result, a potential future work is to
study the complexity when exclusively one of the restrictions is applied. Another interesting
direction is to study the model for ITeggeress in higher dimensions. Related works [9-11]
suggest that our model on more complex intersection graphs becomes intractable for some of
the graph classes presented in this work. In general, we deal with the edit operation that
moves the objects of the given intersection graph. However, the model is not restricted to
this operation. Determining GEOMETRIC GRAPH EDIT DISTANCE using other geometric edit
operations (such as shrinking or rotating objects) is left for future research for all intersection
graphs and graph classes presented in this work.
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