
A Near-Linear Time Exact Algorithm for the
L1-Geodesic Fréchet Distance Between Two
Curves on the Boundary of a Simple Polygon
Thijs van der Horst #

Department of Information and Computing Sciences, Utrecht University, The Netherlands
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Marc van Kreveld #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Tim Ophelders #

Department of Information and Computing Sciences, Utrecht University, The Netherlands
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Bettina Speckmann #

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

Abstract
Let P be a polygon with k vertices. Let R and B be two simple, interior disjoint curves on the
boundary of P , with n and m vertices. We show how to compute the Fréchet distance between R

and B using the geodesic L1-distance in P in O(k lognm+ (n+m)(log2 nm log k + log4 nm)) time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, geodesic, simple polygon

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.37

Related Version Full Version: https://arxiv.org/abs/2401.14815

Funding Tim Ophelders: partially supported by the Dutch Research Council (NWO) under project
no. VI.Veni.212.260.

1 Introduction

In a seminal paper from 1992, Alt and Godau [1] introduced the Fréchet distance to the
algorithms community as a better similarity measure for two curves than, for example, the
Hausdorff distance. For two polygonal curves with n and m vertices, they addressed the
algorithmic problem of computing the Fréchet distance and presented an O(nm lognm) time
algorithm [2], which is near-quadratic in the input size.

Since then, research efforts have developed globally in two directions: examining vari-
ations or generalizations that can still be solved in near-quadratic time, and restrictions or
approximations to beat the quadratic time upper bound. In 2014, Bringmann [3] showed that
the Fréchet distance cannot be computed to within a factor 1.001 in strongly subquadratic
time, unless the strong exponential time hypothesis fails. This result was improved in
2019 by Buchin, Ophelders and Speckmann [5], who showed that this conditional lower
bound applies even for curves in 1-dimensional space and for approximations better than a
factor 3. On the other hand, Driemel, Har-Peled and Wenk [7] showed that a near-linear
time (1 + ε)-approximation exists for curves in the plane that satisfy a sparseness condition.
A full overview of the results is beyond the scope of this paper.

One of the variations that has been examined concerns computing the Fréchet distance
between two curves in a polygonal environment. Intuitively, the Fréchet distance is based on
matching points on the two curves in a continuous and forward manner, and considering

© Thijs van der Horst, Marc van Kreveld, Tim Ophelders, and Bettina Speckmann;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.w.j.vanderhorst@uu.nl
https://orcid.org/0009-0002-6987-4489
mailto:m.j.vankreveld@uu.nl
https://orcid.org/0000-0001-8208-3468
mailto:t.a.e.ophelders@uu.nl
https://orcid.org/0000-0002-9570-024X
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
https://doi.org/10.4230/LIPIcs.WADS.2025.37
https://arxiv.org/abs/2401.14815
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

37:2 L1-Geodesic Fréchet Distance Between Curves on the Boundary of a Simple Polygon

the Euclidean distance between matched points. In a polygonal environment, the Euclidean
distance is replaced by the Euclidean geodesic distance, the length of a shortest path in the
environment. In the setting of two curves inside a simple polygon, Cook and Wenk [9] showed
that the Fréchet distance can still be computed in near-quadratic time. Recently, it was shown
that if the two curves lie on the boundary of a simple polygon, then a (1 + ε)-approximation
exists that uses near-linear time [11]. In this paper we show that in the same setting, but
using the L1-distance to measure lengths of geodesics rather than the Euclidean distance, an
exact algorithm can be given that requires near-linear time.

Preliminaries. Let P be a simple polygon. A curve on the boundary of P is a piecewise-
linear function F : [0, 1]→ ∂P connecting a sequence of vertices. Consecutive vertices are
connected by a straight-line edge. The curve is simple if the preimage of a point on ∂P is at
most an interval. We denote by F [x, x′] the subcurve of F over the domain [x, x′]. We write
|F | to denote the number of vertices of F .

A reparameterization of [0, 1] is a non-decreasing surjection f : [0, 1] → [0, 1]. Two
reparameterizations f and g describe a matching (f, g) between two curves R (red) and B

(blue), where for every t ∈ [0, 1] the point R(f(t)) is matched to B(g(t)). The matching (f, g)
is said to have cost

max
t

d(R(f(t)), B(g(t))),

where in this work, d(p, q) measures the length of a shortest path in P from p to q under
the L1-norm. We call such a path an L1-geodesic. There are potentially uncountably many
L1-geodesics from p to q. On the other hand, under the L2-norm, P contains a unique
shortest path from p to q, which we denote by π(p, q). It turns out that π(p, q) is also an
L1-geodesic, so we use it as a representative.

A matching with cost at most δ is called a δ-matching. The (continuous) L1-geodesic
Fréchet distance dF(R,B) between R and B is the minimum cost over all matchings. The
corresponding matching is a Fréchet matching.

The parameter space of R and B is the axis-aligned rectangle [0, 1]2. Any point (x, y)
in the parameter space corresponds to the pair of points R(x) and B(y) on the two curves.
A point (x, y) in the parameter space is δ-close for some δ ≥ 0 if d(R(x), B(y)) ≤ δ. The
δ-free space Fδ(R,B) of R and B is the subset of [0, 1]2 containing all δ-close points. A
point q = (x′, y′) ∈ Fδ(R,B) is δ-reachable from a point p = (x, y) if x ≤ x′ and y ≤ y′, and
there exists a bimonotone path in Fδ(R,B) from p to q. Alt and Godau [2] observe that
there is a one-to-one correspondence between δ-matchings between R[x, x′] and B[y, y′], and
bimonotone paths from p to q through Fδ(R,B). We abuse terminology slightly and refer to
such paths as δ-matchings.

Problem statement and results. Our input consists of a simple polygon P with k vertices
and curves R,B : [0, 1]→ ∂P with n and m vertices respectively, on the boundary of P . We
restrict ourselves to inputs of the following type:

(i) R and B are oppositely oriented, interior-disjoint, simple curves on the boundary of P .
We present an algorithm for computing the Fréchet distance dF(R,B) between R and B,
when distances between points are measured as the minimum length of a path in P , under the
L1-norm. For our algorithm, we make two assumptions. Firstly, without loss of generality,
assume that R is oriented clockwise with respect to P , and B counter-clockwise. Secondly,
we assume general position: no edge of P has slope ±1, and no two vertices of P have the
same y-coordinate. We compute the Fréchet distance between R and B under the geodesic
L1-distance in P in O(k lognm+ (n+m)(log2 nm log k + log4 nm)) time.

T. van der Horst, M. van Kreveld, T. Ophelders, and B. Speckmann 37:3

(i) (ii) (iii) (iv)

(i)

(ii)

(iii)

(iv)

Figure 1 The four types of subproblems that arise in our divide-and-conquer scheme. The
bottom row shows the parameter spaces corresponding to the top row. Between problem types, the
correspondence between some subcurves and parts of the δ-free space is illustrated.

Algorithmic outline. We first outline the decision algorithm: For an additional parameter
δ ≥ 0, it reports whether dF(R,B) ≤ δ. Recall that a δ-matching between R and B

corresponds to a bimonotone path in Fδ(R,B) from (0, 0) to (1, 1). We use divide-and-
conquer to decide whether such a path exists.

We first explain how to divide the problem of type (i) into simpler subproblems of four
types (i)–(iv), illustrated in Figure 1. In Section 3.3 we find a horizontal chord e∗ of P that
intersects both R and B in at most a constant number of points. We split R and B at these
points, resulting in subcurves Ri of R and Bj of B. Each pair (Ri, Bj) corresponds to a
simpler subproblem. Such a subproblem is either of type (i) where Ri and Bj have at most
a constant fraction of the vertices of R and B, or of a new type with extra structure:
(ii) Ri and Bj are separated by a horizontal chord of P , namely e∗.

We handle subproblems of type (i) recursively.
We handle subproblems of type (ii) in Section 3.2. Suppose that R and B are separated

by a horizontal chord e∗ of P , such as the subproblems of type (ii). For a point p ∈ P , denote
by NN (p) the point on e∗ closest to p under the d metric. We leverage the property that for
all r ∈ R and b ∈ B there exists an L1-geodesic from r to b that goes via NN (r) and NN (b).
Using this property, we transform the problem (R,B) of type (ii) into an equivalent problem
of a new type that is no longer constrained by the polygon:
(iii) a pair of x-monotone1 curves (R̄, B̄) that are separated by a horizontal line.

We handle subproblems of type (iii) in Section 3.1. Suppose that R and B are x-monotone
curves separated by a horizontal line, such as the subproblems of type (iii). We again split the
problem into simpler subproblems. We find a vertical line ℓ that has a constant fraction of the
vertices of R ∪B on either side. We split R and B at points on ℓ, resulting in subcurves R1
and R2 of R, and B1 and B2 of B. Each pair (Ri, Bj) corresponds to a simpler subproblem.
Such a subproblem is either of type (iii) and handled recursively, or of a new type:
(iv) Ri and Bj are x-monotone curves separated by both a horizontal and a vertical line.

1 Throughout this work, we consider monotonicity in the weak sense. That is, a curve is x-monotone if
every vertical line intersects the curve in at most one subcurve.

WADS 2025

37:4 L1-Geodesic Fréchet Distance Between Curves on the Boundary of a Simple Polygon

The above scheme splits our original problem into several subproblems of type (iv), each
of which corresponds to an axis-aligned rectangle in the parameter space of the two input
curves. Together, these rectangles partition the parameter space into interior-disjoint regions.
Recall that we want to decide whether there exists a bimonotone path from (0, 0) to (1, 1) in
the parameter space that lies completely in the δ-free space. To do so, we maintain a set of
points in the δ-free space that can be reached by a bimonotone path that starts at (0, 0).
If for a subproblem of type (iv) we know for its corresponding rectangle a set of reachable
“entry” points on the bottom and left sides, then we can compute a sufficient set of “exit”
points on the top and right sides that are reachable via at least one entry point. See Section 2
for details. By processing the subproblems of type (iv) in the correct order, we compute
whether a bimonotone path from (0, 0) to (1, 1) through the δ-free space exists.

In Section 4.2, we use our decision algorithm to compute dF(R,B) exactly, by binary
searching over a set of Õ((n+m)2) candidate values and querying the decision algorithm at
every step. Computing all candidate values explicitly would take too much time. Instead,
we represent them implicitly as the Cartesian sum of two sorted sets X and Y of only
O((n + m) log2 nm) values. Using algorithms for linear-time selection in such implicitly
represented Cartesian sums [8, 10], the time taken to compute a candidate for δ is dominated
by the time taken to perform the decision algorithm. This allows us to compute dF(R,B)
with only logarithmic overhead compared to the decision algorithm.

We present our decision algorithm bottom-up, starting with the most specific problem (iv)
that arises, and ending with the general problem (i), in the following sections.

2 Doubly-separated x-monotone curves

In this section, we consider subproblems of type (iv), where R and B are two x-monotone
curves in R2 separated by both a horizontal line and a vertical line. Let R have n vertices
and B have m vertices. We present an algorithm for propagating reachability information
through the δ-free space of R and B. We are given a parameter δ ≥ 0, a set of O(n+m)
points S on the bottom and left sides of the parameter space, and a set of O(n+m) points
T on the top and right sides of the parameter space. The goal is to report the points in T

that are δ-reachable from at least one point in S. See Figure 2. In this section, we measure
distances under the L1-norm ∥·∥1, in which shortest paths are not restricted by any polygon.

Lemma 1 shows that the distances between R and B can be captured by two curves in
one dimension that are separated by the origin, which can be constructed in linear time.

▶ Lemma 1. Let R and B be two doubly-separated curves in R2 with n and m vertices. In
O(n+m) time, we can construct two curves R̄ and B̄ in R that are separated by the origin,
such that Fδ(R,B) = Fδ(R̄, B̄) for all δ. The curves R̄ and B̄ have n and m vertices as well.

Bringmann and Künnemann [4] and Van der Horst et al. [11] both give near-linear time
algorithms for propagating reachability information through the free space of two separated
curves in one dimension. Combining this with Lemma 1, we obtain:

▶ Lemma 2. Let R and B be two doubly-separated x-monotone curves in R2 with n and m
vertices. Given a parameter δ ≥ 0 and sets S and T of O(n+m) points on the bottom and
left, respectively top and right, sides of the parameter space of R and B, we can report the
points in T that are δ-reachable from at least one point in S in O((n+m) lognm) time.

T. van der Horst, M. van Kreveld, T. Ophelders, and B. Speckmann 37:5

p

δ

Figure 2 (left) A pair of doubly-separated x-monotone curves. We may consider the curves
as lying on the union of two (degenerate) “histogram” polygons, in which case d is equal to the
L1-norm. Between any pair of red and blue points, there exists an L1-geodesic through the point p.
(right) Their δ-free space diagram. For propagating reachability, given are a set of points S (disks)
on the bottom and left sides of the parameter space, and a set T (circles and crosses) of points on
the top and right sides. The filled circles are δ-reachable, the crosses are not.

3 Partitioning the parameter space

In this section, we consider the main problem, of type (i), where R and B are simple,
interior-disjoint curves on the boundary of a simple polygon P . We divide this problem into
subproblems of type (iv) by partitioning the parameter space of R and B into axis-aligned
rectangles where either the corresponding subcurves are trivial (i.e., line segments), or form
a type (iv) instance, in that the subcurves are equivalent to a pair of doubly-separated
x-monotone curves.

An axis-aligned rectangle [x, x′]× [y, y′] is doubly-separated if, for all δ, the δ-free space
Fδ(R[x, x′], B[y, y′]) inside it is equivalent to the δ-free space of a pair of doubly-separated
x-monotone curves R̄ and B̄, i.e., Fδ(R[x, x′], B[y, y′]) = Fδ(R̄, B̄). A doubly-separated
partition of the parameter space of R and B is a partition into axis-aligned rectangles
[x, x′]× [y, y′], where either [x, x′]× [y, y′] is doubly-separated, or both R[x, x′] and B[y, y′]
are line segments. In the latter case, we refer to such a region as trivial. A doubly-separated
partition always exists, since we can take its regions to be only trivial regions, corresponding
to the pairs of individual edges of the curves. Such a partition has high complexity however,
having nm regions. Our goal is instead to compute a doubly-separated partition with
few trivial regions, and where the doubly-separated regions correspond to subcurves with
relatively few vertices in total, so that the total input complexity when applying the result
of Lemma 2 is kept low.

To measure the “quality” of a doubly-separated partition, we define the following costs. We
define the cost Cost(R) of a trivial region to be O(1), and the cost of a doubly-separated region
R = [x, x′]× [y, y′] as

∣∣R[x, x′]
∣∣ +

∣∣B[y, y′]
∣∣, the total number of vertices in the two subcurves.

We define the cost Cost(P) of a doubly-separated partition P as Cost(P) =
∑

R∈P Cost(R).
In this section we construct a doubly-separated partition of only near-linear cost, namely
O((n+m) log2 nm).

We construct our partition in three phases. In Section 3.1 we construct a partition for
subproblems of type (iii), where the curves R and B are x-monotone and separated by a
horizontal line. Then, in Section 3.2, we handle subproblems of type (ii), where R and B are
simple curves on the boundary of a simple polygon P , separated by a horizontal line segment
in P . Finally, in Section 3.3, we handle subproblems of type (i).

WADS 2025

37:6 L1-Geodesic Fréchet Distance Between Curves on the Boundary of a Simple Polygon

δ

x̂

ŷ

x̂

ŷ

Figure 3 (left) A pair of x-monotone curves separated by a horizontal line, together with a
vertical line with roughly half of all vertices on either side. (right) This line represents a partition of
the parameter space into four regions, of which the top-left and bottom-right regions correspond to
pairs of doubly-separated subcurves. The bottom-left and top-right regions are partitioned further.
Green regions signify subproblems of type (iv).

3.1 Vertically-separated x-monotone curves
In this section, we consider the setting where R and B are x-monotone curves in R2, separated
by a horizontal line. We give a simple partition algorithm for the parameter space of R and
B that yields a doubly-separated partition of cost O((n+m) lognm):

▶ Lemma 3. Let R and B be two vertically-separated x-monotone curves in R2 with n and
m vertices. We can compute a doubly-separated partition of the parameter space of R and B
that has cost O((n+m) lognm) in O((n+m) lognm) time.

3.2 Separated curves on a simple polygon
Next we reduce the following setting to that of two vertically-separated x-monotone curves:
Let P be a simple polygon, and let R and B be two simple curves on the boundary of P ,
separated by a horizontal line segment in P . That is, there exists a horizontal line segment
e∗ in P , such that splitting P at e∗ creates two subpolygons where R and B lie in different
subpolygons.2 Recall that we assume R to be oriented clockwise with respect to P , and
B counter-clockwise. We construct a pair of vertically-separated x-monotone curves whose
δ-free space (under the L1-norm) is identical to that of R and B, for all δ.

Every L1-geodesic between points r ∈ R and b ∈ B intersects e∗ in exactly one line
segment. Moreover, there exists an L1-geodesic that is composed of the following three parts:
an L1-geodesic between r and its closest point u on e∗, an L1-geodesic between b and its
closest point v on e∗, and the line segment uv. For two vertically-separated x-monotone
curves (as in Section 3.1), there exists a similar shortest path between two points, namely
one that is composed of two vertical segments and a horizontal segment on the separator.
We use this connection for our reduction, which we specify next.

We refer to the “projection” of a point p ∈ P onto e∗ (with slope other than ±1) as the
point on e∗ closest to p, and we denote this projection by NN (p). Above we established that
between any two points r ∈ R and b ∈ B, there exists an L1-geodesic that goes through
the projections NN (r) and NN (b). We introduce two real-valued functions, which we use to
define the coordinates of the x-monotone curves we reduce the problem to.

2 We consider e∗ to be part of both subpolygons.

T. van der Horst, M. van Kreveld, T. Ophelders, and B. Speckmann 37:7

e∗
p

q

a

u

v

u′

v′

u

v

e∗

Figure 4 An illustration of the two settings discussed in Lemma 5. On the left is the case where
NN (u) = NN (v). On the right is the case where NN (u) ̸= NN (v). Marked points on uv are points
where the functions φ and ψ change pieces.

We assume e∗ is parameterized over [1, 2]. The first function, φ : P → [1, 2], indexes
the projections on e∗ of the points in P . That is, e∗(φ(p)) = NN (p). The second function,
ψ : P → [1, 2], represents the distance function from points to their projections, so ψ(p) =
d(p,NN (p)).

We consider the curves R̄ : [0, 1] → R2 and B̄ : [0, 1] → R2 given by R̄(x) = (φ(R(x)),
ψ(R(x))) and B̄(y) = (φ(B(y)),−ψ(B(y))). Note that d̄(R(x), B(y)) = ∥R̄(x)− B̄(y)∥1 for
all x, y ∈ [0, 1]2, and so Fδ(R,B) = Fδ(R̄, B̄) for all δ. The curves are separated by the
horizontal line (−∞,∞)× {0}. Next we prove that the curves are x-monotone, making the
algorithm developed in Section 3.1 applicable to them:

▶ Lemma 4. The curves R̄ and B̄ are x-monotone.

We have shown that the algorithm developed in Section 3.1 can be applied to the curves
R̄ and B̄. Next we show that R̄ and B̄ have low complexity. Let R have n vertices and B

have m vertices. We show that R̄ has O(n) vertices and B̄ has O(m) vertices. While doing
so, we develop a data structure that can construct R̄ and B̄ efficiently.

We construct pieces of R̄ and B̄ by computing the functions φ and ψ over individual
edges of R and B. When restricted to a single line segment e, the function ψ is similar to
the “hourglass function” He,e∗ introduced by Cook and Wenk [9]. The hourglass function
uses the L2-norm to measure lengths of shortest paths, and can have O(k) complexity [9].
Perhaps surprisingly however, we show that since we measure lengths with the L1-norm,
the function ψ has only constant complexity when applied to a single edge. Moreover, the
function φ has constant complexity as well.

▶ Lemma 5. Let uv ⊆ P be a line segment interior-disjoint from e∗. The functions φ and ψ,
restricted to uv, are piecewise-linear with O(1) pieces. After preprocessing P in O(k) time,
the functions can be computed over uv in O(log k) time.

By querying the data structure of Lemma 5 with every edge of R and B individually and
combining the results, we obtain the functions φ and ψ over R and B in O((n+m) log k)
time, after O(k)-time preprocessing. From this, we extract R̄ and B̄ in O(n+m) additional
time. The complexities of R̄ and B̄ are O(n) and O(m), respectively. Thus we obtain:

▶ Lemma 6. Let P be a simple polygon with k vertices. Let R and B be two simple curves
with n and m vertices on the boundary of P , separated by a horizontal line segment in P . After
preprocessing P in O(k) time, we can construct a pair of vertically-separated x-monotone
curves R̄ and B̄ with Fδ(R,B) = Fδ(R̄, B̄) in O((n+m) log k) time. The curves R̄ and B̄
have O(n) and O(m) vertices, respectively.

WADS 2025

37:8 L1-Geodesic Fréchet Distance Between Curves on the Boundary of a Simple Polygon

x

y

x y
x y

x′

x x′

y

Figure 5 Two types of bichromatic chords and the partitions of the parameter space that they
induce. All green regions correspond to separated subcurves; the purple regions are split recursively.

▶ Corollary 7. Let P be a simple polygon with k vertices. Let R and B be two simple curves
with n and m vertices on the boundary of P , separated by a horizontal line segment in P .
After preprocessing P in O(k) time, we can compute a doubly-separated partition of the
parameter space of R and B that has cost O((n+m) lognm) in O((n+m) lognm) time.

3.3 The general case

In this section, we start out in the general setting, where R and B are simple, interior-disjoint
curves on the boundary of a simple polygon P , and construct a doubly-separated partition
of the parameter space of R and B.

We follow the approach of Section 3.1, in that we partition the parameter space recursively,
though this time based on horizontal chords of P . A chord is a maximal segment that does
not go outside P . By our assumptions, a chord can have at most three points in common
with the boundary of P . If possible, we will use bichromatic chords, which have a point in
common with both curves. Each such chord e∗ splits each curve into at most three subcurves:
If e∗ intersects R only at an endpoint of R, the chord “trivially” splits R into the curve R
itself. Otherwise, R is split into the maximal prefix R[0, x] whose intersection with e∗ is only
the point R(x), the maximal suffix R[x′, 1] whose intersection with e∗ is only the point R(x′),
and the maximal subcurve R[x, x′] bounded by e∗. See Figure 5. The split of B induced by
e∗ is defined analogously, but if R is split into three subcurves, then B can be split into at
most two subcurves (and vice versa). A chord corresponds to a partition of the parameter
space into the axis-aligned rectangles whose corresponding subcurves are induced by the
splits of R and B. Thus, a chord corresponds to a partition into at most six regions.

If a bichromatic chord does not exist, then R and B can be separated trivially by a
horizontal chord. Our partition algorithm works recursively, like the algorithm of Lemma 3.
To bound the recursive depth, we use a chord that splits R and B into at most two and three
subcurves each, where the first and last subcurves of each have a total of at most (n+m)/c
vertices at either side of the chord, for some constant c > 1.

We prove the existence of a horizontal chord with the desired properties, and give a
construction algorithm. The result follows from a relaxed version of the “polygon-cutting
theorem” of Chazelle [6].

▶ Lemma 8. If R and B are not already separated by a horizontal chord, there exists a
horizontal chord that intersects both R and B. Furthermore, if n + m ≥ 3, such a chord
exists that splits R and B into at most three subcurves each, where for each pair (Ri, Bj) of
subcurves not separated by the chord, |Ri|+ |Bj | ≤ 2(n+m)/3. Such a chord can be found
in O(k) time.

T. van der Horst, M. van Kreveld, T. Ophelders, and B. Speckmann 37:9

With the existence and construction result for good chords at hand, we make an initial
partition of the parameter space. The partition is not yet a doubly-separated partition, but
we refine it afterwards into one that is.

We recursively partition the parameter space as follows. If |R| ≤ 2 and |B| ≤ 2 then
we stop partitioning further. Otherwise, we compute a horizontal chord e∗ of P with the
algorithm of Lemma 8, taking O(k) time.

Assuming P is in general position, the chord intersects one curve in at most two points
and the other in at most one point. Suppose that e∗ intersects R in two points, splitting
it into the subcurves R1 = R[0, x], R2 = R[x, x′] and R3 = R[x′, 1], and that e∗ intersects
B in one point, splitting it into the subcurves B1 = B[0, y] and B2 = B[y, 1]. These five
subcurves together define six axis-parallel rectangles in the parameter space, which is the
partition corresponding to e∗.

Let P be this partition. The subcurve R2 is bounded by e∗, and thus is separated from
all of B by e∗. Further, the subcurve R1 is separated from B2, and the subcurve R3 from B1.
Thus the only regions in the partition whose corresponding subcurves are not separated by a
horizontal chord are the bottom-left region [0, x]× [0, y] and the top-right region [x′, 1]× [y, 1];
we recursively partition P in these regions.

We analyze the partition in the same manner as we do for doubly-separated partitions.
That is, we refer to the cost of an axis-aligned rectangle R = [x, x′]× [y, y′] as Cost(R) =∣∣R[x, x′]

∣∣ +
∣∣B[y, y′]

∣∣, the same as for doubly-separated regions, and refer to the cost of the
partition P as Cost(P) =

∑
R∈P Cost(R).

▶ Lemma 9. P has cost O((n+m) lognm) and can be computed in O(k lognm) time.

We refine P into a doubly-separated partition. Some regions in P already correspond to
line segments on R and B, and so are trivial. The other regions correspond to subcurves of
R and B that are separated by a horizontal chord of P . We partition these regions further
using the result of Corollary 7.

▶ Lemma 10. Let P be a simple polygon with k vertices. Let R and B be two simple,
interior-disjoint curves on with n and m vertices on the boundary of P . We can compute a
doubly-separated partition of the parameter space of R and B that has cost O((n+m) log2 nm)
in O(k lognm+(n+m) log2 nm) time. Additionally, in the same time bound, we can compute,
for each region [x, x′]× [y, y′] in the partition, a pair of doubly-separated x-monotone curves R̄
and B̄ with Fδ(R[x, x′], B[y, y′]) = Fδ(R̄, B̄) for all δ. The curves R̄ and B̄ have O(

∣∣R[x, x′]
∣∣)

and O(
∣∣B[y, y′]

∣∣) vertices, respectively.

4 Computing the Fréchet distance

In this section, we discuss the main problem setting of this work. Let P be a simple polygon
and let R and B be two simple, interior-disjoint curves on the boundary of P . We assume R
is oriented clockwise with respect to P , and B counter-clockwise. We present a near-linear
time algorithm for computing dF(R,B).

Our algorithm makes use of a decision algorithm that, given a parameter δ ≥ 0, reports
whether dF(R,B) ≤ δ or dF(R,B) > δ. Recall from the preliminaries that Alt and Godau [2]
showed that dF(R,B) ≤ δ if and only if there exists a bimonotone path in Fδ(R,B) from
(0, 0) to (1, 1). We develop an algorithm that decides whether such a path exists.

In Section 4.1, we use the doubly-separated partition constructed in Section 3 to efficiently
propagate reachability information through the various regions. Recall that there are two
types of regions in a doubly-separated partition: trivial regions and doubly-separated regions.

WADS 2025

37:10 L1-Geodesic Fréchet Distance Between Curves on the Boundary of a Simple Polygon

For trivial regions, we give a simple algorithm for propagating reachability information
through them, using that these regions correspond to pairs of segments on R and B. For
the other regions, we use the result of Section 2 instead, to also propagate reachability
information through them. This leads to our decision algorithm. In Section 4.2, we turn our
decision algorithm into an optimization algorithm.

4.1 The decision algorithm
We present an algorithm for deciding whether dF(R,B) ≤ δ for a given parameter δ ≥ 0.
Our algorithm decides whether a bimonotone path in Fδ(R,B) exists from (0, 0) to (1, 1).
Let P∗ be a doubly-separated partition of the parameter space of R and B computed with
the algorithm of Lemma 10. We propagate reachability information through each region in
P∗ separately.

Before we do so, we need to address one issue. For the regions R ∈ P∗ where we have a
pair of doubly-separated x-monotone curves R̄ and B̄ whose free space is identical to that
inside R, we wish to apply the result of Lemma 2. However, this algorithm is for propagating
reachability from a given discrete set of points to a given discrete set of points. Hence we
first construct sets SR and TR to which we apply the result of Lemma 2.

We define the sets SR and TR. For this, we say that a point B(x) is locally closest to
R(y) if an infinitesimal perturbation of B(x) while staying on B increases its distance to
R(y). We call points on R locally closest to points on B if a symmetric condition holds. The
set TR is the set of all points (x∗, y∗) on the top and right sides of R for which at least one
of R(x∗) and B(y∗) is a vertex of R or B, or locally closest to the other point.

Let R = [x, x′]× [y, y′] ∈ P∗. The set TR is defined as follows. For each edge e of R, we
add the point (x∗, y′) to TR if x∗ ∈ [x, x′] and R(x∗) is either a vertex of R or the point on
e closest to B(y′). Symmetrically, for each edge e of B, we add the point (x′, y∗) to TR if
y∗ ∈ [y, y′] and B(y∗) is either a vertex of B or the point on e closest to R(x′).

The set SR is defined as all points in S ∩R, as well as all points on the bottom and left
sides of R that are in a set TR′ (for an adjacent region R′) and are δ-reachable from SR′ .
The set SR is defined as all points on the bottom and left sides of R that are in a set TR′

(for an adjacent region R′) and are δ-reachable from SR′ . If R contains the point (0, 0), we
set SR = {(0, 0)} instead.

The usefulness of these sets comes from Lemma 11, from which it follows that matchings
can be assumed to enter and leave a region R through points in SR and TR, respectively.

▶ Lemma 11. There exists a Fréchet matching between R and B where for every matched
pair of points (r, b), at least one of r and b is a vertex or locally closest to the other point.

Naturally, for our decision algorithm, we need to compute these sets efficiently:

▶ Lemma 12. We can compute the set TR for all R ∈ P∗ in O(k + (n+m) log2 nm log k)
time altogether.

We are now ready to give our decision algorithm, which decides whether a bimonotone
path in Fδ(R,B) from (0, 0) to (1, 1) exists, for a given δ ≥ 0. First, we compute the doubly-
separated partition P∗ of Lemma 10, takingO(k lognm+(n+m) log2 nm) time. The partition
has cost O((n+m) log2 nm), and for each region [x, x′]×[y, y′] in this partition, either R[x, x′]
and B[y, y′] are line segments, or we have additionally computed a pair of doubly-separated
x-monotone curves R̄ and B̄ with O(

∣∣R[x, x′]
∣∣) and O(

∣∣B[y, y′]
∣∣) vertices, respectively. We

compute the sets TR for all regions R ∈ P∗, taking O(k + (n+m) log2 nm log k) time. The
goal is then to compute, for each set TR, the subset of points that are δ-reachable from (0, 0).

T. van der Horst, M. van Kreveld, T. Ophelders, and B. Speckmann 37:11

Consider a region R = [x, x′]× [y, y′] ∈ P∗ and suppose that for each region R′ incident
to the bottom or left side of R we have already computed the subset of TR′ of points that are
δ-reachable from (0, 0). The union of these subsets forms the set SR that serves as the set of
“entrances” for R; a point in TR is δ-reachable from (0, 0) if and only if it is δ-reachable from
a point in SR.

If R[x, x′] or B[y, y′] has more than one edge, we have available a pair of doubly-separated
x-monotone curves R̄ and B̄ with Fδ(R[x, x′], B[y, y′]) = Fδ(R̄, B̄). We apply the algorithm
of Lemma 2 to these curves, using the set SR for the “entrances” and the set TR for the
“potential exits.” This algorithm reports all points in TR that are δ-reachable from at least
one point in SR in O((|R̄|+ |B̄|) log |R̄||B̄|) = O(Cost(R) log Cost(R)) time.

If both R[x, x′] and B[y, y′] are line segments, then we can check in constant time whether
a given point in TR is reachable from a given point in SR, so we can report the set of points
in TR that are δ-reachable from at least one point in SR in O(|SR| · |TR|) = O(1) time.

▶ Lemma 13. If both R[x, x′] and B[y, y′] are line segments, then a point t ∈ TR is δ-
reachable from a point s ∈ SR if and only if t ∈ Fδ(R[x, x′], B[y, y′]) and t lies above and to
the right of s.

We now have an algorithm that, given the sets SR and TR, reports the points in TR that
are δ-reachable in O(Cost(R) log Cost(R)) time. Applying this algorithm to all regions in
P∗, in some topological order, we eventually decide whether (1, 1) is δ-reachable from (0, 0),
since it is included in a set TR. This takes∑

R∈P∗

O(Cost(R) log Cost(R)) = O(Cost(P∗) lognm) = O((n+m) log3 nm)

time. The computations of P∗ and the sets TR, which took O(k lognm+(n+m) log2 nm log k)
time in total, dominate the running time. However, these computations are independent of
the decision parameter δ, and so we view these computations as preprocessing. This gives
the following result:

▶ Lemma 14. Let P be a polygon with k vertices. Let R and B be two simple, interior
disjoint curves on the boundary of P , with n and m vertices. After preprocessing P , R
and B in O(k lognm + (n + m) log2 nm log k) time, we can decide, given δ ≥ 0, whether
dF(R,B) ≤ δ in O((n+m) log3 nm) time.

4.2 Obtaining an optimization algorithm
In this section, we turn the decision algorithm of the previous section into an algorithm that
computes dF(R,B), at the cost of a logarithmic factor in the running time when compared to
the decision algorithm. For this, we derive a polynomial number of candidate distances, one
of which is the actual Fréchet distance dF(R,B). Specifically, for two sets of real numbers X
and Y , their Cartesian sum, denoted X⊕Y , is the multiset X⊕Y = {{x+y | x ∈ X, y ∈ Y }}.
We will show that we can compute two sets X and Y of O((n+m) log2 nm) real numbers
each, such that dF(R,B) ∈ X⊕Y . After computing X and Y in near-linear time, we can use
existing techniques [8, 10] for selection in Cartesian sums to binary search over the Cartesian
sum X ⊕ Y without explicitly computing its |X| · |Y | many elements.

We again make use of the doubly-separated partition P∗ computed with the algorithm
of Lemma 10. Additionally, we again use the sets TR for regions R ∈ P∗. Recall that there
exists a Fréchet matching between R and B that corresponds to a bimonotone path in the
parameter space that, for each region R ∈ P∗ that it intersects, goes through a point in TR.

WADS 2025

37:12 L1-Geodesic Fréchet Distance Between Curves on the Boundary of a Simple Polygon

Thus, there exists a pair of points s ∈ TR′ and t ∈ TR, for a region R′ and region R incident
to the top or right side of R′, such that the minimum parameter δ for which there exists a
δ-matching from s to t is the Fréchet distance.

Take regions R′ and R, with R incident to the top or right side of R′. Let s ∈ TR′ and
let t ∈ TR be above and to the right of s. Let δ∗ be the minimum parameter for which there
exists a δ∗-matching from s to t. We construct sets XR and YR such that δ∗ ∈ XR ⊕ YR.

If the subcurves corresponding to R both are line segments, then from Lemma 13 we
obtain that t is δ-reachable from s, for some δ ≥ 0, if and only if both points lie in Fδ(R,B).
We set XR to be the set minimum values δ for which points t ∈ TR lie in Fδ(R,B). The set
YR is simply set to {0}. Taken over all regions in P∗, the sets have a total cardinality of
O(Cost(P∗)) = O((n+m) log2 nm).

If one of the subcurves corresponding to R has more than one edge, then we have access
to a pair of doubly-separated x-monotone curves whose δ-free space is identical to the δ-free
space of R and B inside R. Moreover, by Lemma 1, we can transform these curves into a
pair of curves in R that are separated by the point 0, such that the δ-free space remains the
same. Let R̄ and B̄ be these curves. Alt and Godau [2] observe that δ∗ must be one of the
following values:

the minimum value for which s and t lie in Fδ∗(R̄, B̄), or
the distance between a vertex of R̄ (resp. B̄) and an edge of B̄ (resp. R̄), or
the distance between two vertices of R̄ (resp. B̄) to an edge of B̄ (resp. R̄), if the vertices
lie at equal distance to the edge.

Since R̄ and B̄ are curves in R that are separated by a point, the candidates for δ∗ of
second and third type coincide. Moreover, the distance from a vertex p of one curve to an
edge e of the other curve is also the distance from p to the endpoint of e closest to p, which
must be a vertex. Thus, the latter two types of candidates for δ∗ can be summarized as
all pairwise distances between vertices of R̄ and vertices of B̄. Exploiting the separation
of R̄ and B̄ further, the pairwise distances between vertices of R̄ and vertices of B̄ can be
represented by the Cartesian sum of two sets X̄ and Ȳ , containing the absolute values of
the vertex values of R̄ and B̄, respectively. We set XR ← X̄ and YR ← Ȳ . Taken over all
regions in P∗, the sets have a total cardinality of O(Cost(P∗)) = O((n+m) log2 nm).

Let X =
⋃

R∈P∗ XR and Y =
⋃

R∈P∗ YR. These sets have a total cardinality of
O((n+m) log2 nm), and contain values x∗ ∈ X and y∗ ∈ Y such that dF(R,B) = x∗ + y∗.
Next we search over X ⊕ Y to find the exact value of dF(R,B).

After sorting X and Y , we can compute the ith smallest value in X ⊕ Y , for any given i,
in O(|X|+ |Y |) = O((n+m) log2 nm) time [8, 10]. There are |X| · |Y | values in X ⊕ Y . We
binary search over the integers 1, . . . , |X| · |Y |, and at each considered integer i, we compute
the ith smallest value δ in X ⊕ Y . Then we use our decision algorithm to decide whether
dF(R,B) ≤ δ and to guide the search to the value δ∗ ∈ X ⊕ Y with δ∗ = dF(R,B).

In the above search procedure, each step takes O((n+m) log3 nm) time after preprocessing
P and the curves R and B for decision queries, which takes O(k lognm+(n+m) log2 nm log k)
time (Lemma 14). We perform O(log(|X| · |Y |)) = O(lognm) steps. Thus we obtain our
main result:

▶ Theorem 15. Let P be a polygon with k vertices. Let R and B be two simple, interior
disjoint curves on the boundary of P , with n and m vertices. We can compute dF(R,B) in
O(k lognm+ (n+m)(log2 nm log k + log4 nm)) time.

T. van der Horst, M. van Kreveld, T. Ophelders, and B. Speckmann 37:13

References
1 Helmut Alt and Michael Godau. Measuring the resemblance of polygonal curves. In Proc.

Eighth Annual Symposium on Computational Geometry (SoCG), pages 102–109. ACM, 1992.
doi:10.1145/142675.142699.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5:75–91, 1995.
doi:10.1142/S0218195995000064.

3 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proc. 55th Annual Symposium on Foundations of
Computer Science (FOCS), pages 661–670, 2014. doi:10.1109/FOCS.2014.76.

4 Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on
c-packed curves matching conditional lower bounds. International Journal of Computational
Geometry & Applications, 27(1-2):85–120, 2017. doi:10.1142/S0218195917600056.

5 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proc. 30th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2887–2901, 2019. doi:10.1137/1.
9781611975482.179.

6 Bernard Chazelle. A theorem on polygon cutting with applications. In proc. 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 339–349. IEEE Computer
Society, 1982. doi:10.1109/SFCS.1982.58.

7 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, 2012.
doi:10.1007/s00454-012-9402-z.

8 Greg N. Frederickson and Donald B. Johnson. Generalized selection and ranking: Sorted
matrices. SIAM Journal of Computing, 13(1):14–30, 1984. doi:10.1137/0213002.

9 Atlas F. Cook IV and Carola Wenk. Geodesic Fréchet distance inside a simple polygon. ACM
Transactions on Algorithms, 7(1):9:1–9:19, 2010. doi:10.1145/1868237.1868247.

10 Andranik Mirzaian and Eshrat Arjomandi. Selection in X+Y and matrices with sorted rows
and columns. Information Processing Letters, 20(1):13–17, 1985. doi:10.1016/0020-0190(85)
90123-1.

11 Thijs van der Horst, Marc van Kreveld, Tim Ophelders, and Bettina Speckmann. The geodesic
Fréchet distance between two curves bounding a simple polygon. CoRR, abs/2501.03834, 2025.
doi:10.48550/arXiv.2501.03834.

WADS 2025

https://doi.org/10.1145/142675.142699
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1142/S0218195917600056
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1109/SFCS.1982.58
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1137/0213002
https://doi.org/10.1145/1868237.1868247
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.48550/arXiv.2501.03834

	1 Introduction
	2 Doubly-separated x-monotone curves
	3 Partitioning the parameter space
	3.1 Vertically-separated x-monotone curves
	3.2 Separated curves on a simple polygon
	3.3 The general case

	4 Computing the Fréchet distance
	4.1 The decision algorithm
	4.2 Obtaining an optimization algorithm

