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—— Abstract

In the sets clustering problem one is given a collection of point sets P = {Py,... Py} in R?, where
for any set of k centers in R?, each P; is assigned to its nearest center as determine by some local
cost functions. The goal is then to select a set of k centers to minimize some global cost function
of the corresponding local assignment costs. Specifically, we consider either summing or taking
the maximum cost over all P;, where for each P; the cost of assigning it to a center c is either
maxyer, [l = pll, ¥, cp lle—pll, or ¥,y lle = pl%

Different combinations of the global and local cost functions naturally generalize the k-center,
k-median, and k-means clustering problems. In this paper, we improve the prior results for the
natural generalization of k-center, give the first result for the natural generalization of k-means, and
give results for generalizations of k-median and k-center which differ from those previously studied.
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1 Introduction

Clustering is one of the most well studied problems in computational geometry and computer
science as a whole, with a variety of applications. For center based clustering, given a point
set P C R? and integer parameter k > 0, the goal is to select a set C C R? of k centers, so
as to minimize some cost function of the distances determined by assigning each point in P
to its nearest center in C. Specifically, for any p € P, let ||p — C|| denote the distance from p
to its nearest center in C'. Then the k-center, k-median, and k-means objectives are to find
the set C' minimizing max,ep [[p — C|l, 3 cp Ip = C|l; and 3°  p [[p — C|?, respectively.

k-center, k-median, and k-means clustering are all known to be NP-hard. k-center is
NP-hard to approximate within any factor less than 2 in general metric spaces [13], and
even in the plane is still hard to approximate within a factor of roughly 1.82 [7]. Conversely,
both the standard greedy algorithm by Gonzalez [10] and the alternative scooping method
by Hochbaum and Shmoys [12] achieve a 2-approximation for k-center. The k-median and
k-means problems are both known to be hard to approximate within a 1 4 « factor for some
constant v > 0, even in O(logn) dimensional Euclidean space. Different values of v are
known depending on whether the points are in low or high dimensional Euclidean space,
some other metric norm, or a general metric space. Conversely, there are several constant
factor approximation algorithms for both problems. For a more in depth discussion see [5]
and references therein.

For points in R%, PTAS’s exist for these center based clustering problems when k and
d are bounded. For k-center, Agarwal and Procopiuc [1] gave a (1 + ¢)-approximation in
O(nlogk) + (k/e)°*" ™™ time. For k-median and k-means, Har-Peled and Mazumdar [11]
used coresets to achieve a (1 + ¢)-approximation algorithm whose running time is linear in n.
? Md. Billal Hossain.and Benjamin Baichel;
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Figure 1.1 Example showing sets clustering differs from regular clustering, where P =
{{p1},{p2,p3},{pa},{ps}}, P = {p1,p2,ps,pa,ps}, and k = 3. For k-center/means/median cluster-
ing on P, the optimal centers are ps, the midpoint of (p1,p2) and the midpoint of (ps, psa). However,
the optimal centers for the k-center/means/median sets clustering variants on P that we consider
(that is, coStoo,00/COSt1,2/c0St1,00) are the midpoint of (p1,ps), the midpoint of (p2, ps3), and pa.

Subsequent coreset based papers improve the time dependency on k, d, and € [4, 8]. Using a
sampling based approach, [17] provided a (1 + €)-approximation with probability > 1/2 in
0(2(’“/ 5)0(1)dn) time, where the probability can be improved by boosting. In general, there
are many approximation schemes for k-median and k-means in Euclidean settings, though
we note a linear dependence on d and n is possible (e.g. [17]), and for k-median specifically a
polynomial dependence on k is possible for bounded d (e.g. [11]).

Sets Clustering

While standard clustering focuses on clustering points, naturally one can consider clustering
more general geometric objects. In this paper, we consider the sets clustering problem [20],
where one must cluster a collection of sets, P = {Pi,... Py}, of total size n = ) . |Bl.
Here each P; can for example be viewed as a sample from a given object of study, whether
say a physical object in 3d, or some class in a high dimensional feature space. With the
interpretation that all points in P; arise from the same object, we thus naturally require they
all be covered by the same center.

Given a center ¢ € C, we let f(c, P;) denote the cost of assigning P; to ¢, and let
f(C, P;) = min.ec f(c, P;). Here we consider the cost functions fu (¢, P;) = maxpep, [|c— Dl
file, ) = 3 ep, lle = pll; and fa(e, Pi) = 3 p, [lc — pl|*. Note these cost functions are
the 1-center, 1-median, and 1-means costs, and thus are motivated by the applications of

those respective problems. However, unlike the 1-center/median/means problems, here we
must cluster multiple sets and thus we need an aggregate cost. We consider two possibilities
for the cost of clustering P, namely cost g(C,P) = max; fg(C, P;) and cost; g(C,P) =
> [8(C, P;). Observe that when P is a collection of singleton points that cost o = cOstoo,1,
costy o = costy 1, and costy o respectively capture the k-center, k-median, and k-means
objectives on the point set consisting of these singletons. Conversely, Figure 1.1 shows how
when the sets in P are not singletons, the optimal solutions of the variants of sets clustering
that we consider differ from the k-center, k-median, and k-means solutions on U; P;.
Several prior works considered different variants of the sets clustering problem, most
notably [20]. Our aim is both to improve prior results, as well as to consider new variants of
the sets clustering problem. We break our discussion into whether a particular sets clustering
problem is most naturally viewed as a generalization of k-center, k-means, or k-median.
k-center: Minimizing coste oo (C, P) naturally generalizes the k-center problem. Pre-
viously, for points in constant dimensions, [20] provided an O(n + mlogk) time 3-
approximation as well as an O(nk) time (1 4+ v/3)-approximation. These results require
minimum enclosing ball (MEB) computations, and thus have running times with hidden
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constants depending on d, though they remark that for higher dimensions they can use a
(1 + e)-approximate MEB at the cost of +¢ in the approximation quality.

In Section 3, for points in any dimension d, we show that a natural adaptation of the
standard O(dnk) time greedy 2-approximation algorithm for k-center remains an O(dnk)
time 2-approximation for the sets clustering problem, a fact which surprisingly appears
to have been overlooked in prior work. Moreover, our 2-approximation algorithm works
in any metric space, and thus is optimal for general metric spaces (as it captures k-center,
which is hard to approximate within a factor of 2). Additionally, for any constant d, using
a standard grid based approach we provide an O(nk**!/e*) time (1 + ¢)-approximation,
that is, a linear time algorithm when k, d, and ¢ are constants.

k-means: Minimizing cost; 2(C, P) naturally generalizes the k-means problem, and we
study this objective in Section 4. Surprisingly, it appears this cost function for sets
clustering has not been studied in prior works, despite the ubiquity of k-means clustering.
Consider the point set P obtained by replacing each set P; with | P;| copies of its centroid.
Using previously observed facts about the geometry of the k-means objective, we prove
the strong statement that an a-approximation to the k-means clustering problem on P is
also an a-approximation for the sets clustering problem.

k-median: Minimizing cost; 1(C,P) generalizes the k-median problem. Previously, [20]
provided a polynomial time (3 + ¢) approximation in R¢ for constant d, by replacing
each set P; with |P;| copies of its (1 + ¢)-approximate 1-median, and then applying a
(1 4 e)-approximation to k-median for constant d (such as [11]). In Section 5, we instead
consider the problem of minimizing cost; (C, P), which is also equivalent to k-median
when P consists of singletons.! Minimizing cost; o (C,P) models the case where how
well a center covers a set is determined by the furthest point in the set from the center
(i-e. the minimum radius ball at the center enclosing the whole set). To address this
problem we apply a similar approach as [20], replacing each set with the center of its
minimum enclosing ball. We argue that this provides a (1 + «)-approximation where « is
the approximation quality of the k-median subroutine.

k-center Alternative: In Section 6 we considered the problem of minimizing
costoo 1(C,P). Similar to the costos oo considered in Section 3 and prior work, this
problem also generalizes standard k-center clustering. This problem is also related to
the costi » problem considered in Section 5, but where we inverted the max and sum
operators. This problem is more challenging, though we still can provide a polynomial
time (3 + £)-approximation for point sets in the plane and for any constant 0 < e < 1.

We emphasize that the algorithms in sections 3, 4, and 5 for the costs, o0, costy 2, and
costy o objectives, either modify or directly reduce to the algorithms respectively used for
k-center, k-means, and k-median. Thus our running times are virtually equivalent to the
algorithms used for these standard clustering problems, which is the best one could hope for
as these standard clustering problems are special cases of our sets clustering problems. On
the other hand, our polynomial time approximation for the more challenging cost; o (C, P)
in Section 6 is slower, and we leave it as an open problem for future work to optimize the
time.

We study the combinations of maximums, sums, and sums of squares which we believe to
be the most natural, though other combinations exist that we do not study, such as squaring
sums of squares. Several prior works also considered clustering based on the closest point in a

! There is also a loose connection between cost1,0(C,P) and clustering to minimize the sum of radii [3],
though unlike k-median there is no immediate reduction.
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set to its nearest center. Specifically, let fo(C, P) = min.cc pep ||c — p||, then [15] considered
minimizing > p cp fo(C, P;)?, providing a near linear time (1 + ¢)-approximation for the
case when k, d, and z are constants, where z = max; |P;|. [14] considered the problem of
minimizing maxp,cp fo(C, P;), where the P; sets are continuous convex regions, providing a
number of results such as a (5+ Qﬂ)—approximation for the case of disks. Many other papers
have considered clustering other continuous geometric objects, and in particular unbounded
objects such as lines or hyperplanes [9, 18, 6], though such results are less relevant than the
above mentioned papers on clustering discrete sets.

2 Setup

For two points p,q € R, we use ||p — ¢|| to denote the Euclidean distance between p and gq.
Similarly, for a point ¢ € R? and a finite point set P C R% we have ||¢— P|| = min,ep ||g—p]|-

Given a point set P C R? and a set of k centers C' C R?, the standard cost functions for
k-center, k-median, and k-means clustering are as follows.

kcenter(C, P) = max,ep ||p — C||

kmedian(C, P) =3 cp|lp — C||

kmeans(C, P) = ZpeP lp— C||2

Given a parameter k and point set P C R?, the goal of k-center, k-median, or k-means
clustering is then to find a set C of k centers minimizing the respective cost function.

We now generalize these notions to collections of point sets. So let P = {P;,... P} bea
collection of m sets of points, where P; C R? for all 4, and n = Y, | ;| is the total size. For a
point ¢ € R%, let fz(c, P;) be some non-negative function, representing the cost of assigning
point set P; to a center c. We consider three cost functions denoted by 3 = oo, 1, or 2.2

foles P) = maxper, [l — pl

file, P) =3 ep, lle—pll

f2(c7 PZ) = ZpEPi ¢ _p||2

For a single point p we write fz(c,p) = fs(c, {p}), where in particular we have foo(c,p) =
fi(e,p) = lle = pll and fa(e,p) = [lc = p|®

Given a set C' = {c1,...,cr} C R? of k centers, define f5(C, P;) = min.ec f(c, P;), that
is P; is assigned to its nearest center under the function fz. Now the fz(C, P;) values over
all i define a vector of length m, and we consider either the £, or ¢; norm. Namely, we

define the cost functions, costy g, for & = oo or 1 as follows:
costoo g(C,P) = max; f3(C, F;)
COStl,ﬁ(Cﬂ P) = Z’L fﬁ(C, PZ)

Finally, let optcosta, g(k, P) = mingcpra =k c0sta,3(C, P), and let opt, g(k,P) denote a
set C of k centers achieving optcost, g(k, P). For some v > 1, a set C C R? with |C| =k is
referred to as a y-approzimation to opt, g(k, P) if costa g(C,P) < v-optcost, g(k, P). (That
is, k is a hard constraint and the approximation is on the cost, as is standard for clustering.)

» Observation 1. Given a point set P, let P(P) denote the collection of |P| singleton
sets {p} for each p € P. Then kcenter(C,P) = c0stoo,00(C, P(P)) = costes,1(C, P(P)),
kmedian(C,P) = cost1(C,P(P)) = cost11(C,P(P)), and kmeans(C,P) =
cost12(C,P(P)).

2 The different 3 values are supposed to be vaguely reminiscent of corresponding vector norms.
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3 k-center Sets Clustering

Given a collection of point sets P = {Py,... Py} in R? and a parameter k, [20] considered
the problem of covering P with k equal radius balls of minimum radius such that each P; is
entirely contained in one of the balls. Using the terminology defined above, this is equivalent
to computing opteq oo (k, P). For this problem, [20] gave a (1 + v/3)-approximation. Here we
show that the standard greedy Gonzalez algorithm for k-center clustering can be adapted to
yield a 2-approximation. Not only is this a better approximation ratio, but this algorithm
will in fact work for any metric space. Moreover, for general metrics it is not possible to get
a 2 — ¢ approximation for k-center clustering for any € > 0, unless P=NP [13]. As k-center
is a special case of our problem, our approximation algorithm is thus optimal.

Given a point set P and a parameter k, we recall that the Gonzalez algorithm [10]
greedily outputs a set of k center ¢y, ..., ck, where ¢; is an arbitrary point in P, and for ¢ > 1,
¢, = argmaxpep ||p — {c1,...,ci—1}||. We argue the following natural adaptation of this
algorithm to our sets clustering problem, which greedily picks the furthest set rather than
the furthest point, also yields a 2-approximation. (Figure 1.1 shows that naively running
Gonzalez on P = U; P; does not achieve a 2-approximation. Namely, Gonzalez on P might
pick p1,ps, and ps as the centers, resulting in a cost of 11 for sets clustering on P, however,
choosing p1, the midpoint of (p2,ps), and p4, gives a cost of 4.)

Algorithm 1 greedy(k,P = {Pi,..., Pn}).

Initialize all point sets Py, Ps, ..., P, as unmarked.

Initialize C' = {c1}, where ¢; is an arbitrary point from Py, and mark Py
for i =2 to k do

L P = arg maXunmarked PEP foo(cv P)

[ SNV VN

Set C = C U{c'} where ¢ is an arbitrary point from P’, and mark P’.

return C

=]

» Theorem 2. Given a parameter k and a collection of point sets P = {Py,... Py} in R?,
greedy(k, P) gives an O(dnk) time 2-approzimation for computing optes oo (k,P), where

n=73|hkl

Proof. Let C = {ci,...,c,} be the output of greedy(k,P) and let C* = {c},¢5,...,¢;} =
0Ptoo, ook, P) With cost 1™ = optcost s oo (k, P) = mingcpra,jo|=k COStoo,00 (C, P), where recall
COStoo,00(C, P) = max; foo(C, P;).

There are two possible cases. In the first case, for all ¢* € C*, there exists some ¢ € C
such that ||¢* — ¢|| < r*. Consider any set P; with ¢* as its nearest optimal center under

foo, that is foo(c*, P;) = foo(C*, P;). By definition, foo(c*, P;) = max,ep,

Thus for any point p € P;, by the triangle inequality, ||p — c|| < |lp — ¢*|| + ||¢* — ¢|| < 2r*.

Therefore, foo(c, P;) = maxpep, |[c — p|| < 2r*. This in turn implies fo(C, P;) < 2r*, and as
this holds for all 7 it implies C' is a 2-approximation.

In the second case, there exists some ¢* € C*, such that for any ¢ € C we have
lc* = c|| > r*. For a given ¢ € C, let P(c) denote the set P; € P from which ¢ was selected
in greedy(k,P). Observe that if ||c* — ¢|| > r* then, foo(c*, P(c)) > r*, that is P(c) is not
covered by ¢* in the optimal solution. However, f..(C*, P;) < r* for all ¢, and so by the
pigeon hole principle if such a ¢* € C* occurs then there must exist some other ¢ € C* and
centers co,cs € C with a < 8 such that foo(c}, P(ca)), foo(c}, P(cg)) < r*. This implies
lc; = pll < r* for any p € P(ca) U P(cg). Thus by the triangle inequality, for any p € P(cg)
we have [|co — pl| < [lca — ¢l + [¢j — pll < 2r*, which implies foo(ca, P(cg)) < 277,

c—pl <
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Forany 1 <i < k,let C; = {c1,...,¢;}, i.e. the first i centers chosen by greedy(k, P), and
let 6; = foo(Ci—1, P(c;)) (where §; = 00). Denote the cost of the final solution C' output by
greedy(k,P) as dx+1 = maxpep foo(C, P). Observe that 1 > 6o > ... > d > dg41. Above
we argued that fo(ca, P(cg)) < 2r* where a < §, thus 0p41 < dg = foo(Cp_1,P(cp)) <
foo(Cas Pleg)) < foolca, P(cg)) < 2r*, and thus C is a 2-approximation.

As for the running time, we can achieve O(dnk) time in a similar fashion to the standard
k-center Gonzalez algorithm. Specifically, let C; be the set of centers after some 4 iterations
of the algorithm, and assume for all unmarked P € P we maintain fo(C;, P). Then in
the ¢ + 1 round, ¢;+1 is some arbitrary point from arg maxXunmarked PeP foo (Ci, P), which
can thus be found by a linear scan of the f.(C;, P) values. We also need to update the
foo(Ci, P) values to foo(Ciy1, P). To do so observe that for any P € P, foo(Ciy1, P) =
min{ foo (Cs, P), foo(Cit1, P)}. As foo(Cit1, P) can be computed in O(d|P|) time, we can thus
update all of these values in O(dn) time. As the algorithm performs k iterations, it thus
takes O(dnk) time overall. <

The algorithm used in [20] for achieving the O(1 + +/3)-approximation requires computing
the minimum enclosing ball (MEB) for each point set, and thus has a hidden constant in
the running time depending on d. Thus for high dimensions, [20] use a (1 + &)-approximate
MEB (which can be computed in O(dn/e + 1/¢°) time [2]), resulting in a O(1 + /3 + ¢)-
approximation factor. In comparison, our algorithm avoids computing the MEB altogether,
and as the above proof only relied on the triangle inequality, the same proof verbatim yields
a 2-approximation for any metric space.?

k-center clustering is known to be hard to approximate within a factor of roughly 1.82
even in the plane [7], however, a (1 + ¢)-approximation is possible in constant dimensions,
though at the cost of having a time exponential in k. We now show this standard algorithm
also applies to our problem.

We will make use of the following standard observation (adapted for our settings).

» Observation 3. Let C = {c1,...,c,} C R? be a set of k points, and let C' = {c},...,c}} be
a set of k points such that ||c;—c|| < x. Then for any collection of point sets P = { P, ... Pn},
we have that coste,0(C',P) < 0Stoo,00(C,P) + x. This follows since if for a given set
P; € P its nearest center under foo was c;, then by the triangle inequality we have that
fOO(C;’Pj) < foolei, Pi) + .

» Theorem 4. Given a parameter k and a collection of point sets P = {Py,... Py} in R?,
for constant d, then for any € > 0 there is an O(nk*+1 /e time (1 + €)-approzimation for
computing optes oo (k, P), where n =" . |P;|.

Proof. Let C = {c1,¢2,...,c,} be the centers output by greedy(k,P), and let r =
€05t oo, 00(C, P). Also let C* = {c},c5, ..., ci} = Optoc,0o(k, P) where r* = cost o (C*, P).
By Theorem 2 we know that r* <r < 2r*.

Let B(z) = U; B(c;, ) where B(c;, ) is the ball of radius « centered at ¢;. By definition
of C and r, we know U; P; C B(r). We can assume that every center ¢* € C* is within
distance r* < r of some point in U; P;, as otherwise ¢* can be deleted without affecting the
optimal solution quality. Thus we have that C* C B(2r).

Now consider the axis aligned grid over R? with cell side length § = er/ 2v/d. Any ball of
radius 2r intersects at most O((2r/5)?) = O(1/&?) cells, for constant d. Thus B(2r) intersects
O(k/e?) grid cells, and as C* C B(2r), there are thus O(k/e?) possible cells for each center

3 This is our only result that holds for arbitrary metric spaces, which is why opta,s was defined for points
specifically in RY.
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in C*. Now for any point ¢ = (q1,...,q4) € R%, let grids(q) = (5|q1/d],...,6]qa/5]) be
the lowest corner of the grid cell containing ¢ (specifically the coordinate-wise minimal
corner). Let grids(C*) = {grids(c}), ..., grids(c;)}. As the diameter of each cell is er/2, by
Observation 3 we have that costeo,c0(grids(C*),P) < c0Stoo,c0(C*,P) +er/2 =1* +er/2 <
r*+er* =(1+¢e)r.

The above motivates the following algorithm. First compute C' = {¢1, o, ..., ¢k} using
greedy(k,P). This determines a set of O(k/e?) grid cells around the centers of C' which
must contain C*. We try all possible O((k/e?)*) possibilities for these k cells and for each
possibility we use the lowest corners of the respective cells as our candidate set of centers. We
then return as our solution the set of such centers C” which had the minimum costos oo (C’, P)
value. As grids(C*) will be one of the possible sets of centers considered, where we already
argued that costes co(grids(C*), P) < (1 + ¢)r*, this procedure is guaranteed to output a
(1 + e)-approximation.

As for the running time, the initial call to greedy(k,P) takes O(nk) time. There are
O((k/e?)F) subsets of k cells we consider, and for each one we first compute the set C’ of
lower corners in O(k) time. Then we compute costos o0 (C’, P), which can be done in O(nk)
time. Thus the overall time is O(nk(k/e?)*) = O(nk*+1 /edk) <

» Remark 5. For k-center clustering it is common to consider the discrete version of the
problem where the centers must come from the input point set. One can easily argue that
both Theorem 2 and Theorem 4 extend to this variant. (In the proof of Theorem 4, we would
restrict to non-empty grid cells for potential center locations.)

4 k-means Sets Clustering

Given P = {Py,... P,,} and a parameter k, for any set C C R? of k centers recall that

m

o _ . o . 2
cost1,2(C,P) = ng(C,H-) = ;IC%%I fale, P;) = ;rcrélg Z le — pl|*.

i=1 pPEP;

Note that this is the natural analogue of the k-means problem to clustering point sets.
Specifically, when each set is a single point, that is P; = {p;} for all ¢, then this is equi-
valent to the standard k-means clustering cost on the point set P = {p1,...,pm}, as then

costy 2(C,P) = 31" |lps — C|?

» Definition 6. For a given point set P C R?, the centroid of P is defined as p = p(P) =

Zpepp'

|P] _
Given a collection of sets P = {Py,...,P,} in R, let P; = {py1, ... ,Di|p,|} be the set of
|P;| distinct copies of p; = p(P;), and let P(P) = U;P;. Note, while p;; and pii, are collocated
they are viewed as distinct points, and thus |P;| = |P;| and |[P(P)| =3, | P

It is well known that the optimal solution to the 1-mean problem with respect to a point
set P is the centroid C' = {p(P)}. We require the following standard lemma, whose proof
can be found in [16].

» Lemma 7. For a point set P C R? with centroid p = p(P) and any point x € R%, we have,
fQ(x’P) = f2(l37p) + |P‘ : f2(‘r7ﬁ)

Given a collection of point sets, we now argue that one can solve the sets clustering
problem by solving the k-means problem on the centroids of the sets.

38:7

WADS 2025



38:8

Clustering Point Sets Revisited

» Theorem 8. For a parameter k and a point set P C R%, let kmeansAlg(k, P) denote
any algorithm which achieves an a-approximation for the k-means problem.

Given a parameter k and collection of sets P = { Py, ..., Py} in RY, kmeansAlg(k, P(P))
is an a-approximation for computing opty o(k,P).

Proof. For any two point sets C, P C R?, by lemma 7 we have:

12(C.P) = min fa(e, P) = min(fa(p. P) +|P| - fa(e,5) = folf P) + |P|-min fo(c. ).

Recall from Section 2 that kmeans(C,P) =} cp|lp— C|? = > pep mincec fa(c,p). Thus
summing the above equation for P; over all ¢ gives:

m

£2(C,P) =" fopi, Pi) + Y | P - min fa(e, pi)

i=1 i=1

.

~
Il
—

costy,2(C,P)

m

LB P)+ Y min fa(c, p) = > fo(s, i) + kmeans(C, P(P)).

1 pEP(P) i=1

Il
.MS

7

Thus cost12(C,P) = Y.7* fo(pi, P;) + kmeans(C, P(P)). So let C* denote the op-
timal k-means solution on P(P), that is C* = argmingcga |c|— kmeans(C, P(P)). As
S f2(pi, Pi) does not depend on C, the above equation implies that minimizing
kmeans(C, P(P)) also minimizes costy 5(C, P), i.e. C* = argming e, oj=, costy,2(C, P).

So let C” be the @ > 1 approximation returned by kmeansAlg(k, P(P)), meaning
kmeans(C’, P(P)) < a - kmeans(C*, P(P)). Then we have

costy 2(C’, P) f2(pi, ;) + kmeans(C’, P(P))

Il
.MS

©
I
-

<Y foBi, P) + a - kmeans(C*, P(P))

IN

a(z F2(pi, P;) + kmeans(C*, P(P))) = a - costy o(C*, P) <

i=1

As discussed in the introduction, there are many known (1 + ¢)-approximation algorithms
for k-means, with various trade-offs in the running times depending on the parameters n, d, k,
and . Moreover, as k-means is a special case of our problem, we should not expect our times
to be faster than what is possible for k-means.

Before we can apply such algorithms the above theorem requires we compute P(P).
However, this takes only O(dn) time, where n =), |P;|, as the centroid of a set is simply
the average of the points. Thus the above theorem immediately implies that we have the
following.

» Corollary 9. For a parameter k and set P C R? of n points, let T(n,k,d,c) denote the
running time of any algorithm which achieves a (1 + £)-approzimation for k-means.

Given a parameter k and collection of sets P = {Py,..., Py} in RY, wheren =Y, |P,],
there is a (14 ¢)-approzimation for computing opti 2(k, P) with O(dn+T(n,k,d,¢)) running
time.
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5 k-median Sets Clustering

Given P = {Py,... P,,} and a parameter k, for any set C C R of k centers recall that

m

cost1,00(C,P) = Zfoo(C,H-) = ;Icrél(rjl foole, Py) = ;{%18%’}35 le = pl|-

i=1

As discussed in the introduction, the above cost (as well as cost; 1(C,P) studied in [20])
generalizes the k-median problem to clustering point sets. Specifically, when each set consists
of a single point, i.e., P; = {p;} for all ¢, the problem reduces to the standard k-median
clustering cost on the point set P = {p1,...,pm}, as then costy,oo(C,P) = >.i"; |[pi — C|.

» Lemma 10. Let P = {Py,..., Py} be a collection of sets and B = {by,...,by,} where
b; is the center of the minimum enclosing ball of P;, then > ." maxpep, |[p — bi|| <
optcosty o (k, P).

Proof. Since b; is the center of the minimum enclosing ball of P;, by definition we
have that max,ep, [|[p — b;|| = minyege maxpep, [p — b] = mingega foo(b, P;).  So if
cr = {CT3637 L 762} = Optl,oo(kﬁp)v thenv

= oo < oo oo *7 i) — o\,
ZmaXHP bi|| = Zmlnf (b, P;) Zcréncn*f (c, P;) ;f (C*, P;) = optcost1,eo(k, P)

<

» Lemma 11. Let P = {Py,...,P,} be a collection of point sets from R%, let B =
{b1,...,bm} where b; is the center of the minimum enclosing ball of P;, and let C C R? be
any set of k centers, then kmedian(C, B) < costy (C, P).

Proof. First, we make the standard observation that for any point ¢ € R?, ||g — b;|| <
maxpep, |p — ¢||. (Assume g # b; as otherwise the inequality trivially holds.) This holds by
considering the hyperplane passing through b; whose normal is in the direction from b; to
q. As b; is the center of the minimum enclosing ball of P;, the closed halfspace defined by
this hyperplane and not containing ¢ must contain a point from P;, and thus this point is at
least as far as b; from ¢. Thus we have,

thg

kmedian(C, B) lb; — C| = me 1b; — |l < memax lp — <]l

s
Il
-

Joo(C, P;) = costy o (C, P) <

'tuﬂs

Il
-

K2

» Theorem 12. For a parameter k and a point set P C R, let kmedianAlg(k, P) denote
any algorithm which achieves an a-approximation for the k-median problem.

Given a parameter k and collection of sets P = {Py,..., Py} in RY, let B = {by,..., by}
where b; is the center of the minimum enclosing ball of P;. Then kmedianAlg(k, B) is a
(14 a)-approzimation for computing opti «(k, P).

Proof. Let C = {eci,...,c;} C R? be the set of centers returned by kmedianAlg(k, B),
for which we have kmedian(C, B) < o - ming/cga o=k kmedian(C’, B). Also let C* =
opt1 o0 (k,P). Then using triangle inequality,
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™

N
Il
-

m
cost1 (G, P) = Y _minmax||e - p| < ;rcgiggggf(ﬂp —bill + [le = bil)

Il

=

((maxlp — bil) + (min fle — bill))

K2

m
= 1gggfllp— bil +Z;ggg||c— bil
1=

1=

30

3

= Z max ||p — b;|| + kmedian(C, B)
=1 Peh

optcostt o (k, P) + kmedian(C, B) Lemma 10

< kP
< optcosty oo(k,P)+ - min  kmedian(C’, B)
C'CRY,|C7|=k

< optcosty oo (k, P) + o - kmedian(C*, B)

< opteosty oo (k, P) + cv - costy oo (C*, P) Lemma 11

= optcostyco(k, P) + « - optcosty o (k, P)

= (1 + a)optcosty o (k, P) <

As discussed in the introduction, there are many known (1 + €)-approximation algorithms
for k-median, with various trade-offs in the running times depending on the parameters
n,d, k, and €. Moreover, as k-median is a special case of our problem, we should not expect
our times to be faster than what is possible for k-median.

Before we can apply such algorithms, the above theorem requires computing the minimum
enclosing ball of each set P;, for which we can use (14 ¢)-approximate minimum enclosing ball
center, which can be computed in O(dn/e+1/¢°) time [2]. Doing so would introduce a (1+¢)
factor in Lemma 10, and thus using this together with a (1 + €)-approximation for k-median,
the same analysis from the proof of Theorem 12, would yield a (1 + ¢)? approximation to
computing opt; «(k,P). By observing that (1 +¢/4)*> < (1+¢) for any 0 < & < 1 we
immediately have the following.

» Corollary 13. For a parameter k and set P C R? of n points, let T(n,k,d,c) denote
the running time of any algorithm which achieves a (1 4 €)-approzimation for k-median.
Moreover, let MEB(n,d,c) denote the time to compute a (1 + €)-approzimate minimum
enclosing ball of P.

Given a parameter k and collection of sets P = {P,..., Py} in RY, wheren =3, |P],
then for any 0 < € < 1, there is a (2 + €)-approximation for computing opt o (k,P) with
O(MEB(n,d,e/4) +T(n,k,d,e/4)) running time.

6 Another Variant of k-center Sets Clustering

Above we gave improved approximation algorithms for the costs, o (C,P) objective, pre-
viously considered by [20], and which naturally generalizes the k-center problem to sets.
Here we consider an alternative generalization of k-center to sets clustering. Namely, given
P ={P,..., P,} and a parameter k, find the set C C R? of k centers that minimizes:

costos 1(P,C) = max fi(C,P) = I’I:I)lg%{ﬂélg file, P) = = max mln Z lle = pl|-
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This variant poses additional challenges, so for simplicity we will assume that the sets in P
lie in R?, though a similar approach should extend to any constant dimension. Moreover,
in this section we state our running times simply as being polynomial in n, as the precise
constant in the exponent is large, as opposed to earlier sections which may be linear in n
(depending on the subroutines used).

» Definition 14. In the weighted k-center problem, we are given a parameter k, a set of
points P = {p1,...,pn} C R? and a set of non-negative weights W = {wy, ..., wy,}, where
w; is the weight associated with point p;, and the goal is to find the set C C R? of k centers
which minimizes the cost function: wkcenter(C, P) = max,,cp min.ec w; - ||p; — /.

Observe that the weighted k-center objective can be viewed as a special instance of
our coste,1 Objective, as a point with weight |P;| models the case when all points in P;
are collocated, for each P, € P. Thus intuitively, to approximate cost.,; will require
approximating wkcenter.

[19] considered the weighted k-center problem where the input is instead an edge-weighted
graph G = (V, E), where each vertex v has an associated non-negative weight w,. Specifically,
let d(u, v) denote the shortest path distance between u and v (with respect to edge weights, not
vertex weights), then they seek the set C C V of k centers which minimizes: wkcenter(C,V) =
max,cy Mileeo Wy-d(v, ¢). For this problem [19] give a 2-approximation, and we now describe
how this implies a 2-approximation for the case in plane.

» Lemma 15. There exists a polynomial time 2-approximation algorithm for the weighted k-
center problem in the plane. That is, given a parameter k, a set of points P = {p1,...,pn} C
R?, and a set of non-negative weights W = {wy, ..., w,} where w; is the weight associated
with point p;, there is a polynomial time 2-approzimation to mingcge,|c|=i wkeenter(C, P).

Proof. As we allow centers to be located anywhere in the plane, we first describe how to
find a polynomial sized set I which contains the optimal set of centers as a subset.

For any two points p;,p; € P, define their weighted bisector, 3(p;, p;), as the subset of
points ¢ € R? such that w;||p; — q|| = wj|lp; — ¢||. It is well known that 8(p;,p;) is a line
when w; = wj, and otherwise is a circle (called the Apollonius circle) containing the heavier
weight point. Consider the arrangement of all such weighted bisectors over all pairs of points
in P. The vertices of the arrangement occur at intersections of bisectors, and the edges
are circular arcs between vertices (or entire bisectors, when the bisector does not intersect
any other bisector). Let I' C R? be the set containing all points in P, all vertices in the
arrangement, and for every edge on a bisector 3(p;,p;), a point on that edge achieving the
minimum value of w;||p; — q|| = w;||p; — ¢|| (which may occur at a vertex of the arrangement).
Observe that |I'| = O(n?) as this is the complexity of the arrangement.

So let C* be an optimal set of centers, and consider some ¢* € C*. We now argue that
if ¢* € T, then it can be moved to a point in I' in such a way that the weighted k-center
objective does not increase. First, let P’ be the subset of points from P which call ¢* their
nearest center in C* and let ¢ = arg maxy, ¢ pr w;||p; — c*||. Consider moving c¢* continuously
from its initial location towards ¢ (i.e. along the segment c*q). As we move along this
segment the weighted distance to ¢ strictly decreases, and moreover until we cross a bisector
B(q, p;) for some p;, ¢ remains the point in P’ furthest from ¢* (i.e. the point determining
¢*’s contribution to the overall objective). First suppose that ¢* is moved all the way to ¢
without crossing a bisector involving ¢. In this case ¢ remained the furthest point from c*,
and so the cost of assigning P’ to ¢* did not increase (implying in fact that ¢* = ¢ initially).
In the second case, we run into some bisector 3(q,p;) for some p;, at which point we stop
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moving ¢* towards ¢ (to ensure g remains the furthest). Now if ¢* is at a vertex of the
arrangement of bisectors, then we are done as we included all vertices in I'. Otherwise, ¢* is
on the interior of an edge in the arrangement. Now the point achieving the minimum value
of the weighted distance from ¢ (or equivalently p;) to ¢* along this edge is in included in T’
(and may in fact be a vertex), and so we can move ¢* to this point without increasing the
cost of assigning P’ to ¢*, as we do not cross any other bisector while moving along this edge.

Now we construct a weighted graph instance G = (V| E) of weighted k-center as follows.
First, set V =T (recall P CT'). Now for every pair of points in V set its edge weight equal
to the Euclidean distance between the corresponding set of points. Finally, for the vertex
weights, set the weight of all vertices in I'\ P equal to 0 (i.e. they do not have to be clustered),
and for each p; € P its weight remains w; (i.e. the weight from the weighted k-center instance
in the plane). Note that by construction, the cost of any solution C' C V to this graph based
weighted k-center problem is equivalent to the cost of C' for the corresponding weighted
k-center problem in the plane. Thus, as V =TI is guaranteed to contain an optimal solution
to our instance in the plane, if we simply call the polynomial time 2-approximation algorithm
from [19] on this graph instance, then the returned solution is also a 2-approximation for our
instance in the plane. |

Our goal now is to use the above lemma to get a constant factor approximation to
Opteo,1(k,P). First we need the following lemma, which is the analogue of Lemma 10 from
the prior section.

» Lemma 16. Let P = {Py,..., Py} be a collection of sets. Then, for any point-set P; € P,

min — p|| < optcost k,P).
Mede;. [l = pl| < opteostos,1(k, P)

Proof. Let C* = opto.1(k,P). Then for any point set P; € P,

min p; I = pll < min, p; l” —pll < max min ,,;. [ = pl| = optcostoc,1 (K, P). <
» Theorem 17. For a parameter k, a set of points P = {pi,...,m} C R2, and
weights W = {wi,...,w;} where w; > 0 is the weight associated with point p;, let
weightedKCenter(k, P,WW) denote any algorithm which achieves an «i-approximation
for the weighted k-center problem. Also, for a point set P C R?, let 1medianAlg(P) denote
any algorithm that achieves an as-approximation for the 1-median problem.

Given a parameter k and collection of sets P = {Py, ..., Py} in R?, there is a polynomial
time (o + ag + 1 - ag)-approzimation for computing opteo 1(k, P).

Proof. For any set C C R? of k centers, and any set of points X = {x1,...,2,,}, by the
triangle inequality we have
costog 1(C, P) = max min Z llc — p|| < max min(z lz: — pll + Z lle — z;])

P;eP ceC ~ PEeP ceC
‘ pEP; ‘ pEP; pPEP;

< L in Pl lle — 2
< max Y7 [l — pll + max min | Pi| - e — ]
pEP;
Now, let the optimal set of centers for our problem be C* = opts 1(k, P) and let C” be
the ag-approximation returned by weightedKCenter(k, X, W) where X = {z1,..., 2}

is the set of as-approximate 1-medians from the P; sets, i.e. x; = lmedianAlg(P;), and
W =A{|P1],...,|Pmn|}. Then,
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costoo,1(C,P)

< max |lz; — p|| + max min | P - ||c — z;]|
P;eP P;eP ceC’
PEP;

< max (oo - min — + o - min max min | B - ||le — x4
< max(op min > Jle—pl)+ar-  min  (maxmin|P| - fle— i)

peEP;
< g - i - . in [P - |lc — @
< a2 max miy D Nl =pll+ a1 max min || - fle — o]

reP;
< @z - costoptes,1(k, P) + a1 - max min (lz: = pll + llc = pl) Lemmma 16

P;eP ceC*
PEP;
< g - costoptes 1 (k, : - i -
< 3 - costoptoe,1(k, P) + o - (max Y [l — pll + max min D lle— pl)
PEP; PEP;
< ag - costoptoeo,1 (k, P) + a1 - (g:g%(ag . fg@ Z lle — pll) + costopteo,1(k, P))
peEP;

< g - costopteo,1(k, P) + au - (a2 - costoptes,1(k, P) + costoptes,1(k, P))
= (a1 + a2 + a1 - a2) - costoptes,1(k, P) <

» Corollary 18. Given a parameter k and collection of sets P = {P,..., Py} in R?, there is
a polynomial time (5 + &)-approxzimation for computing opte 1(k, P), for any constant € > 0.

Proof. Using [11], we can get a polynomial time (1 + £/3)-approximation for the 1-median,
for any constant € > 0. Lemma 15 gives us a polynomial time 2-approximation for weighted k-
center. So we have ay = 2, ag = (14¢/3), and (a1 +as+aiaz) = (2+(1+¢/3)+2(14+¢/3)) =
(54 ¢€). Thus, applying Theorem 17 with these algorithms as subroutines gives a polynomial
time (5 + €)-approximation for opte 1(k, P). <

6.1 Approximation Improvement

We now show how to improve the above (5 + ¢)-approximation into a (3 + €)-approximation,
by constructing and searching with a (3 + ¢)-approximate decision procedure.

Algorithm 2 decider(P = {P1,... Py}, k, ).

1 Initialize all point sets Py, Ps, ..., P,, as unmarked.

2 Compute M = {1, ..., tm } where p; = ImedianAlg(P) is an a-approximate median
3 Initialize C' = {}.

4 repeat

5 Let P; = arg maXunmarked PeP |P|

6 Mark point-set P; if ZpEPj lp — wil] <.

7 | Set C=CU{p}.

8 until all sets are marked;

9 if |C| > k then

10 L return “optcoste 1(k,P) > r/(2+ a)”

11 return C
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» Lemma 19. For a point set P C R?, let 1medianAlg(P) denote any algorithm that
achieves an a-approximation for the 1-median problem.

Given a collection of sets P = {Py,..., Py} in R?, a parameter k, and a radius v € R,
then decider(P, k,r) either returns a set C C R? of k centers such that costs 1(C,P) <,
or correctly returns that optcostoo 1(k,P) > r/(2 + ).

Proof. decider(P, k, r) starts by initializing all point sets in P as unmarked, and computing
the approximate medians of each point set using 1medianAlg. Next, the algorithm picks
the approximate median of the unmarked point set which has the most points, adds it to the
set C of centers, and mark all the sets that are < r from this approximate median. This
process is repeated until all sets are marked. At the end of the loop, if |C| < k, then the
algorithm returns C, as clearly we have obtained a valid clustering with cost < r.

Otherwise, |C] > k + 1, in which case the algorithm returns “optcosts(k,P) >
r/(2 + «)”, which we now argue is correct. Let {cy, ..., cx+1} be the first £+ 1 centers selected
by algorithm, where ¢; € M was selected in the ith iteration, and let S = {51, 52, ..., Sk+1},
where S; € P is the set such that ¢; = lmedianAlg(S;). Let C* = optoo 1(k,P). Then by
the pigeonhole principle, there must be some c¢* € C* and sets 5;,5; € S with ¢ < j such
that ¢* = argmincec: ) g, llc — sl| = argmincec- Zsesj llc — s||. Note that as ¢ < j, by
line 5 of the algorithm we know |S;| > |S;|. Then,

Sl sl < 3 (e =l e = sl = 3 lles ="l + 3 lle” =]

SESJ‘ SESJ' SGSJ' SGSJ'
<|8;] - le; — || + opteostoo,1(k, P) < |S;| - ||e; — || + opteostse 1 (k, P)

< Z(ch —s|| +|lc* = s||) + optcosteo,1(k, P)

SES;
- Z llei — s|| + Z lc* — s|| + optcostoo 1 (k, P)
s€S; sSES;
< o - min Z |l — s|| + optcostoas,1(k, P) + optcostoes 1 (k, P)
c’€R?

SES;
< a - optcostso 1 (k, P) + 2 - optcostos 1(k, P)
= (2+ a) - optcostos 1(k, P)

Since i < j, we know that ¢; did not cover S; within radius r, that is r < 37 o [lc; — 5.
Thus by the above, r < Zsesj llei —s|| < (24 @) - optcosteo,1(k, P). Therefore, the algorithm

correctly returns that optcostes1(k,P) > 57 <

» Theorem 20. Given a parameter k and a collection of point sets P = {Py,..., Py} in R?,
for any constant 0 < & < 1, there exists a polynomial time (3 + ¢)-approzimation algorithm
for computing opte 1(k, P).

Proof. Let C' be the (5 + ¢)-approximate set of centers returned by Corollary 18. Let
T = costoo 1(C’,P) and let r* = opts 1(k, P), where by Corollary 18 we know that r* €
[s5z,7]. Consider the candidate radii set R = {ro,r1,...,7:}, where ; = gi=(1 4 ¢/4)’
and z = [logyy./4(5 +¢)] = O(1) for any constant € > 0. Note that for any i we have
riv1/ri = (1 4+¢/4), and z was chosen such that r, > r.

Now we iterate through the candidate radii r; € R, in order from ¢ = 0 to z. In the
ith iteration we call Algorithm 2 with radius (2 + «) - r; where « is the approximation
ratio of the subroutine used to compute the approximate 1-medians. We can use [11]

to get an o = (1 + ¢/8)-approximate 1-median, which runs in polynomial time for any
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constant € > 0. Let j be the first iteration where Algorithm 2 returns a set C' rather
than “optcostes 1(k,P) > (2+ «) - 1;/(24+ a)”. We claim that this set C is the desired
approximation.

First, observe that this procedure is guaranteed to return some set C', that is j is well

defined. Specifically, when j = z, the call to Algorithm 2 with radius (2+ «) - r,, must return
(24a) 7,
> A 7 =

o =r, > r which is a

a set C' since otherwise by Lemma 19 the optimal radius r*
contradiction to the fact that r* € [55—,7].

Lemma 19 guarantees that coste 1(C,P) < (2+«) - ;. If j =0, then we are done as we
know (2+a) -r; = (3+¢/8) 19 =(3+¢/8) 55z < (3+¢/8) - r* < (3+¢) r". Otherwise,
j > 0 in which case we know r;_; returned “optcosts1(k,P) > (2+ ) -rj_1/(2+ )”,
and so again by Lemma 19 we then know that r* > % = rj—1. Summarizing,
rj—1 < 1% < costoo,1(C,P) < (24 a) - rj, and so the approximation quality of the solution C

is bounded by the ratio:

(2+O&)'T‘j _

_— (2+a)(1+e/4)=(3+¢/8)(1+¢/4) =3+ (7/8)e+¢e2/32<3+¢

Overall this is a polynomial time algorithm, as we made O(1) calls to Algorithm 2, which itself
is polynomial time when using a polynomial time subroutine to compute the approximate
1-medians. <
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