Sweeping a Domain with Line-Of-Sight Between
Covisible Agents

Kien C. Huynh =

Communications and Transport Systems, ITN, Linképing University, Sweden

Joseph S. B. Mitchell &
Department of Applied Mathematics and Statistics, Stony Brook University, NY, USA

Valentin Polishchuk &

Communications and Transport Systems, ITN, Linképing University, Sweden

——— Abstract

We consider sweeping a polygonal domain using variable-length segments whose endpoints can be
considered to be mobile agents moving with bounded speeds; a point in the domain is swept when
it belongs to one of the segments. The objective is to sweep the domain as quickly as possible.
We show that the problem is NP-hard even in simple polygons and even for a single segment (two
agents), and give constant-factor approximation algorithms, both for simple polygons and polygons
with holes.

Our approximations are obtained by introducing a new type of “window partition” of the polygon,
which may find other applications. For domains with holes, our results are based on a non-trivial
topological argument proving a surprising fact: a connected subset of the domain, whose points are
swept but not directly touched by the agents, may contain at most one hole.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases Polygon sweeping, collaborating agents, motion coordination, makespan
optimization

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.39

Supplementary Material
Software (Source Code): https://github.com/KienHuynh/polygon_sweeping [20]

Funding This work is partially supported by the Swedish Research Council and the Swedish Transport
Administration.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

We study sweeping a polygonal domain using mobile line segments whose lengths can change.
Consider 2k agents starting at a given point s (the depot or the base, or the door through
which the agents enter) on the boundary of a polygonal domain P. Fach agent moves
within P, with maximum speed 1. (We do not impose an acceleration bound.) The agents
form pairs and each pair a, b defines a sweeping segment whenever the agents see one another;
when this is the case, the points along the segment ab are seen by both agents, and we
say that the points of the segment ab have been swept. The goal is to compute motions
(trajectories) for the agents, such that all of P is swept and the agents return to the depot as
soon as possible, i.e., minimizing the makespan of the sweep, or the time when the agents
return to the base after all points of P are swept. See Figure 1 and videos [1,2].

Search and surveillance are recurring applications of computational geometry: sweeping
geometric domains is both a fundamental (in particular, minimum-length sweeping with a
line is Problem CG-Open26 in the 3R complexity class compendium [34]) and a practical

© Kien C. Huynh, Joseph S. B. Mitchell, and Valentin Polishchuk;
37 licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 39; pp. 39:1-39:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:kchuynh@cs.stonybrook.edu
https://orcid.org/0000-0003-0240-364X
mailto:joseph.mitchell@stonybrook.edu
https://orcid.org/0000-0002-0152-2279
mailto:valentin.polishchuk@liu.se
https://orcid.org/0000-0002-8292-2281
https://doi.org/10.4230/LIPIcs.WADS.2025.39
https://github.com/KienHuynh/polygon_sweeping
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

39:2

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

Figure 1 A few steps in the sweeping: white is unswept, gray is swept. Agents a and b start at a
point s € 9P; during the sweep, the agents are not required to stay on the boundary. The red and
blue arrows show the trajectories of a and b, respectively.

(e.g., shaving is sweeping the skin area with a segment) problem, which has been studied for
decades. Sweeping with a disk or a square is known as milling/lawnmowing [5,8, 18], and
sweeping with a visibility polygon of a mobile observer(s) is the watchman route problem
(WRP) [10,29,30]. Both in WRP and in our problem, the sweep can catch (see) any static
target in P, while a mobile target can escape being seen. This is different from, perhaps, a
more standard notion of sweeping (by agents with no speed bounds), which ensures that swept
points cannot be “recontaminated”: here, the archetypal problem is 2-walkability [9,17,21,37]
(Can 2 guards sweep a simple polygon by walking along its boundary while always seeing
each other?), which was generalized to sweeping with a curve [25,28,33] and a chain of
guards [12], also in terrains [13,14]. (Problems in which the target, usually non-static, needs
to be “touched,” not only seen, in order to be caught, are known as pursuit-evasion games,
cops and robbers, lion and man, etc. [3,11,16,22-24,26,32,36].) Sweeping problems may
be viewed as far-going extensions of computing the Frechét distance [4] — a classical motion
coordination problem. Our solutions apply also to the Laser Tripwire Sensor Deployment
for indoor localization and tracking (tripwire localization methods are common and well
studied [6,27]): suppose you have 2 robots that want to deploy a set of tripwire sensors
(pairs of points that see each other) — the robots stop every so often (at step length §) to
place the pairs of sensors, and the goal is to complete the deployment as soon as possible.

Our Contributions

We formulate and give the first study of the algorithmic complexity and approximation of
the sweeping problem with variable-length line segment(s):
Problem 1. Given a polygonal domain P, an agent depot s € 9P, and k pairs of agents:
find a motion plan to sweep all points in P and minimize the total time (makespan).
Here, each pair of agents have to be covisible at all times (the line segment connecting
the pair must stay within P). We call this the “unbreakable” constraint. This problem
has two versions:

SWEEPWITHRETURN: The agents have to return to s (we call this the default version).
SWEEPWITHNORETURN: The agents can end anywhere in P.
Problem 2. The setting and objective are similar to Problem 1. However, in this problem,
we do not require the agents to always be covisible but they can only sweep something in
P if they become covisible. In addition, the agents themselves also need to stay within P.
We call this the BREAKABLESEGMENTSWEEPING problem.

The results in this paper can be seen as contributing to the broader class of optimal
coordinated motion planning problems involving mobile agents moving within a domain,
with constraints (e.g., covisibility), and an objective to accomplish a covering task.



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

Specifically,

Section 2 provides a proof of NP-hardness (from 3-PARTITION) for all versions, even
in the case of an orthogonal, z-monotone simple polygon P (and even if the sweeping
segment is required to be vertical at all times).

Section 3 presents a constant-factor approximation for sweeping simple polygons for
Problem 1. Our main technical contribution is the solution for the case of k = 1 segment,
based on a “window” partition of P that we work out specifically for our purposes
(we believe the worked-out decomposition may find also other applications, e.g., when
considering similar search problems in terrains); the solution for k£ > 1 (Section 3.2) is
obtained by assigning different parts of P to be swept by different pairs of agents.

In Section 4 the approximation for 1 segment is extended to polygons with holes. The
algorithm is simple: turn the domain into a simple polygon by bridging together the holes
and the outer boundary of the domain; then apply the algorithm for simple polygons.
However, proving that this is an O(1)-approximation (i.e., giving a lower bound) is highly
non-trivial (and crucially uses the fact that the segment is unbreakable). We leave open
sweeping with k > 1 segments in polygons with holes.

Section 5 considers Problem 2. We prove that in a simple polygon relaxing the covisibility
constraint does not improve the makespan by more than a factor of 2, and we show
that this bound is tight; thus, our constant-factor approximation algorithm for the
unbreakable case applies for the breakable case as well. (We note that our NP-hardness
proof (Section 2) for unbreakable sweeping of a simple polygon P applies as well to
breakable sweeping of P.) In the case that P has holes, we give a polylog approximation
algorithm in the special case that P is a polyomino and we sweep with a vertical segment.

In addition to the above results, we also implemented the algorithm described in Section 3
and compared it with a heuristic algorithm on randomly generated data which we show in
Appendix D. The codes of the algorithms can be found at [20].

2 NP-Hardness

We show that even in the very special case of sweeping an orthogonal, monotone simple
polygon with 2 agents a and b, computing an optimal sweeping schedule is strongly NP-hard.
This is in contrast with sweeping a simple polygon with a visibility polygon (WRP), which
has a polynomial-time exact algorithm [10,30], and the sweeping of a simple polygon with
a disk or square (the milling problem), which is conjectured to have a polynomial-time
exact algorithm [8], as the closely related problems of determining Hamiltonicity of a simple
triangular or square grid graph are decidable in polynomial time [7,40].

» Theorem 1. [t is NP-hard to compute an optimal sweeping for SWEEPWITHNORETURN,
even if P is an x-monotone, orthogonal simple polygon.

Proof. We first consider the SWEEPWITHNORETURN version where the agents do not have
to return to the depot s (so we are minimizing the time when the last point of P is swept).
We then show how to modify the reduction to prove hardness of the SWEEPWITHRETURN
version in which the agents must return to s (and the time of the return defines the makespan).
Given an instance of 3-PARTITION (Can given integers 1 ...x3,, be partitioned into m
triples with equal sums?), we construct a polygon P with O(m) vertices, as shown in Figure 2,
consisting of a tall and very narrow rectangular room (whose width is exaggerated in the
figure, to show details) with a staircase on the right and with two corridors (each of which

39:3

WADS 2025



39:4 Sweeping a Domain with Line-Of-Sight Between Covisible Agents

0 (stretched horizontally)
Chimneys(Height : x;/2)

50msS H H
s HHHN_J'HHH ms ;Hﬂmﬂﬁ‘_h a2
S
vy
{ V2
by
Um
50msS

t t

Figure 2 Reducing 3-PARTITION to sweeping. On the left: the trajectories of the two agents (red
and blue arrows) depicting their motions to sweep the first staircase step. After the top agent has
swept 3 chimneys corresponding to an arbitrary triple in the 3-PARTITION solution, they will sweep
the first step (including v1) and end at a1b1 (purple). On the right: the motions of the agents in
order to sweep the next step. First, the agents will move from a1b: to the left to sweep another
triple of chimneys (new areas swept during this motion are painted pink). Then, the agents move to
the right to sweep the second staircase step (and v2) and stop at azbz, the new area swept this time
is colored green. Similarly, step m is swept after the top agent has visited the m-th triple.

has length 50mS) extending from the room as shown. The height of the room is m.S where
S =>"x;/m is the target sum in each of the sought triples of the given numbers; the width,
§, is very small (e.g., § < 1/m19).

The corridors ending with s and ¢ are very thin and long (50m.S). Thus, in any optimal
sweeping schedule each of the corridors is swept exactly once: the sweep starts at s (by
definition) and ends with one of the agents at ¢ (recall that for now we do not restrict where
the agents are at the conclusion of the sweep). The top of the room has a chimney for each
number in the set. The chimneys are very narrow (width < % < Sm%) and chimney ¢ has
height x;/2. Finally, the height of each step in the staircase is S.

If the 3-PARTITION instance is feasible, then P can be swept as follows (with both a
and b moving at the maximum, unit speed, and the segment ab staying vertical throughout
the motion): the top agent a will visit and ascend chimneys corresponding to triples in the
solution. While a is in chimney i (either ascending or descending), the bottom agent b moves
down by x;. After a finishes a triple that sums to S, b has moved down by S. (Note that
apart from the duration during which the segment sweeps the horizontal corridor, horizontal
movements are not particularly relevant for the analysis, since the room is so narrow, and
chimneys are even narrower, implying that the sweep segment must be nearly vertical at all
times.) Finally, in this first pass, ab moves all the way to the right, arriving with length S
so that it is just long enough to sweep the top step of the staircase (including v;1) without
spending further time having agents move vertically. See the left of Figure 2 for an example
of this motion to sweep the first step. Next, ab will move to the left of the polygon and sweep
more chimneys before moving back to the right to sweep ve (Figure 2, right). Such sideways
sweeps are repeated until all m of the stairs are swept. (Again, all horizontal motion of agents
is not relevant to the overall makespan, since m left-to-right motions are still much less than
length 1.) The time to sweep the room, along with the staircases, is at most m.S + 2md. The
total time to sweep everything is 101m.S + 2md.



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

Conversely, suppose the stairs are swept in any other way, then either b has to wait for at
least a duration of 1 before aligning with a stair tread, or a has to waste time by not going
into a chimney with a single up-and-down pass. The first case occurs when the agents pick a
triplet of chimneys (z, ', z") with a sum larger than .S, then agent a still needs to trace the
boundary of the chosen chimneys to sweep them completely. Even if b can already reach the
depth of the next staircase vertex (say, v;), it must still wait for a to finish sweeping the last
chimney in the triplet so that it can finally move to sweep v;, which takes longer than S. In
the second case, the chosen triplet of chimneys has a sum smaller than S. In this case, agent
a will have to wait for agent b to reach the depth of the next staircase vertex. This still costs
the agents a time of S while leaving taller chimneys for other triplets (which leads back to
the previous case). Note that there is no reward for a to partially sweep a chimney, since
a must exit the chimney and align vertically with b when b touches v; so that the both of
them can sweep the vertical edge incident to v;. Agent b can technically move diagonally
downward to save time, but in that case, the most it can save is d, which is chosen to be
much smaller than 1/m!% (so in total it can save at most m - 1/m!® = 1/m® < 1).

We now modify the above gadget to show the hardness of our SWEEPWITHRETURN
version. See Appendix A for the modified gadget. As in the proof for the version without
return to s, the segment will sweep the top chimneys (solving the 3-PARTITION) and sweep
the convex vertices on the right in parallel. Once the segment is done with the right convex
vertices and the top chimneys, the segment sweeps the inverted chimneys (also solving the
same 3-PARTITION instance); each time it sweeps 3 bottom chimneys that make a sum S,
the segment will retract itself (top endpoint moving down) so that it could reach the convex
vertices on the left (vf,v5,...). The overall makespan will then be 3mS + O(d). As in the
reduction for the version without return to s, any deviation from the described schedule
incurs a wait of at least 1 by at least one of the agents. <

3 Approximation Algorithm for Simple Polygons
We begin with a simple observation (see Appendix B for the proof):

» Lemma 2. FEvery convex vertex of P must be visited by at least one agent.

We first consider the case when there are two agents, a and b, starting at the same
point s € P: we present an O(1)-approximation algorithm to sweep any simple polygon
using an unbreakable segment. As with our hardness proof (Section 2), we will first provide
algorithmic results for the SWEEPWITHNORETURN version. We show that in linear time,
one can find a schedule, for a single unbreakable segment, with makespan 16 - OPT where

OPT is the optimal makespan. Let || denote the Euclidean length of any 1D structure.

From Lemma 2,
» Lemma 3. OPT > }|0P|

Proof. By Lemma 2, the union of paths for a¢ and b visits all convex vertices; thus, the union
is at least as long as any path within P visiting all convex vertices, implying that the union
cannot be shorter than %\8P|. This is because in a simple polygon, 0P is the shortest tour
that visits all convex vertices, and any path that does so must be at least half as long. <«

Our algorithm partitions the polygon into subpolygons, each of which has a simple
sweeping strategy. The dual of the partition is a tree, which allows the line segment to sweep
all the subpolygons, traversing the tree recursively.

39:5

WADS 2025



39:6

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

Figure 3 The light blue region is the special visibility polygon P(e), with the base edge e = wiws.
The additional chords, e1, e2, e3, . .. also have visibility polygons (shaded gray) associated with them.

The details of the partition are as follows. Consider any edge e = wyws of the polygon.
We first compute the histogram polygon with base e, HP(e), which is defined to be the
union of all interior chords perpendicular to e and having an endpoint on e (a chord is a line
segment connecting two points of 9P and stays completely within P). Let (w;,w]) be such
a chord anchored at w;. We then compute the visibility polygon of w; restricted to points
that are left of (wq,w]); call the polygon VP(w;). Similarly, we compute another visibility
polygon to the right of (ws,w}), called VP(ws). Then, P(e) = HP(e) U VP(w;)UVP(ws) is
one subpolygon in our partitioning scheme. See Figure 3 for an example of P(e). Notice
that the boundary of P(e) includes some new “shadow chords,” each of which becomes a
histogram base for subsequent subpolygons in the partition. We will order these chords
counterclockwise. The process is complete when every shadow chord that has been generated
has been utilized as a histogram base for a subpolygon adjacent to the subpolygon that
generated the shadow chord. For the first subpolygon, we will simply use the visibility polygon
of s. The overall partitioning of P can be done in linear time, utilizing a triangulation of P
(similar to computing window partition trees [35] for link distances in simple polygons).

We now describe the recursive process to sweep a subpolygon P(e) and its descendants,
for an edge e = wiws of P (refer to Figure 3). The agents start at the endpoint w; of e; once
the process is completed, i.e. when the segment finishes sweeping P(e) and its descendants,
both agents return to wy. First, a sits at w; while b travels clockwise around the boundary
of VP(wy) until reaching wf; this way the rotating segment ab sweeps VP(w;). Next, HP(e)
is swept by the segment perpendicular to e: b travels along the top polygonal path of the
histogram while @ moves along e (a slows itself in order that ab remains perpendicular to
e). Then, the segment rotates clockwise around wy to sweep VP(ws); at this point P(e)
is completely swept and the segment will move to the furthest (w.r.t. wy) endpoint of the
first “shadow chord” (see e; in Figure 3). After the segment completely sweeps P(e1) (and
its descendants), it will move to the next child of P(e). This will be repeated until all
descendants of P(e) are swept. Notice that while sweeping the children, the segment will at
times move counterclockwise along the boundary of P(e). Once the segment is done with all
children of P(e), both of its endpoints will regroup at w;.

» Lemma 4. The sweeping algorithm above produces a schedule with makespan < 16 - OPT.

Proof. We will first perform analysis on any subpolygon P(e) other than the root. Without
loss of generality, we assume that the segment always starts sweeping from the left vertex of
e (i.e., wy in the figure). First, the endpoints sweep P(e) by traveling from wy to ws, this
will incur a cost of |0P(e)| — |e|. This is because a will move along e with a speed at most



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

that of b. Second, the endpoints travel counterclockwise to visit all children of P(e). The
cost of this counterclockwise traversal is at most |0P(e)| — |e|. Overall, the cost of sweeping
P(e) and moving counterclockwise to visit all of its children is

2(0P(€)| — lel) = 2(|0P(e) NOP|+ Y lei]).

e;€C(e)

where P (e) N JP are the portions of JP(e) that belong to the boundary of P, and C/(e) are
the base edges of children of P(e). For the root subpolygon P(s), the cost to sweep it and
visit all of its children is at most

2|ap(s)|:2(|ap(s)map|+ 3 |ei|).
e; €C(s)

Here, C(s) is the set of all chords generated and associated with P(s).
Let E be the set of all additional chords created during the partition process. The total
cost to sweep P will be the sum of the two terms above:

2( 3 (10P(e) N OP| + le]) + [0P(s) N ap|) < 43" |0P(e) N OP| +2(|0P(s) N OP)).

ecE ecE

We have |e| < |0P(e) N 0P| for each e € E because 9HP(e) N OP C 9P(e) N OP is an
orthogonal projection of e onto OP. Thus overall, the sweeping cost of P is at most

4( 3" [0P(e) NOP| + [0P(s) N ap\) < 4|9P| < 16- OPT.
ecE

The first inequality holds because the portions of each P(e) that belong to 0P, i.e. 9P(e)NOP,
are pairwise disjoint for different e € E. Thus, > 5 |0P(e) N 0P|+ |0P(s) N 0P| = |0P|.
The second inequality follows directly from Lemma 3. <

3.1 Sweeping with return (default version)

The algorithm above works also when a and b must return to s. The only modification is
that at the end of the schedule, both agents must return to s. The analysis remains the
same, except that the lower bound of Lemma 3 becomes OPT > £|0P|.

» Theorem 5. A sweeping schedule, for a single unbreakable segment, with makespan 8-OPT
can be found in linear time.

3.2 Sweeping with multiple segments with return

Suppose now that we have 2k > 2 agents who start and return to the depot s (the makespan
is when the last agent returns to the depot; for £ > 1 we do not have a solution for the
version in which the agents are not required to return to s). Here we have two lower bounds:
OPT > |0P|/(2k) where |0OP)| is the perimeter — this follows from Lemma 2 (the 2k
agents have to visit all convex vertices).
Let dmax be the geodesic distance from the depot s to the convex vertex furthest from s;
then OPT > 2d,,x — an agent has to visit this furthest convex vertex and go back to the
depot.

39:7

WADS 2025



39:8

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

Partition P into k parts as follows: Pick & — 1 points on the boundary of P so that these
k — 1 points, together with s, split the boundary of P into k parts of equal perimeter. From
the depot, draw the geodesic shortest path to each of these k — 1 points; the paths decompose
P into subpolygons. (Some subpolygons may have very small areas, since the geodesic paths
might collapse onto themselves and share edges.)

Because each drawn shortest path is no longer than dp,.x, €ach subpolygon has perimeter
at most 2dpax + |OP|/k. We now simply reuse the approximation algorithm for the single
segment case: there, the makespan is at most 4 times the perimeter of the polygon, so for k&
segments, the makespan will be 4(2dyax + |0P|/k) <4-OPT +8-OPT =12 OPT.

4  Approximation Algorithm for Polygonal Domains with Holes

If the domain P has holes, for sweeping with 1 segment ab, we can leverage the result for simple
polygons from the preceding section, provided we can reduce the multiply connected case to
the simply connected case, via an appropriate bridging of holes to each other and to the outer
boundary of P. The main technical challenge is proving lower bounds (Lemma 10) on OPT
that enable this approach to yield the desired result — a constant-factor approximation. The
version that we shall describe in this section is SWEEPWITHRETURN, but the approximation
algorithm will also work for SWEEPWITHNORETURN (with a larger multiplicative factor).

First, we compute an approximation of the minimum Steiner tree, M ST*, within P that
spans all connected components of the boundary 0P of P (both the holes and the outer
boundary). This can be done using the PTAS in [31]. The computed tree and the boundaries
can be viewed as bounding a degenerate simple polygon P’ (these polygons are sometimes
called “weakly” simple; the boundary cycle of such polygons may go through some points
more than once). In the second phase, we apply the algorithm from Section 3 to compute a
sweeping solution for P’ with makespan O(|0P’|), where P’ includes the boundaries of the
holes and the outer boundary of P, as well as the edges of the spanning tree.

To prove a lower bound of Q(|0P’]) on OPT, we will need some definitions. A vertex of
P is convex or reflexr depending on whether its angle interior to P is less than or greater
than 7. Note that all vertices of a convex hole are actually reflex vertices of P. A maximal
reflex chain is a chain on 0P between two consecutive convex vertices; in particular, any
edge with two convex endpoints is a maximal reflex chain. Unless otherwise stated, all reflex
chains we consider will be maximal reflex chains. Note that a convex hole has no reflex chain.

Given a polygonal domain F', a subset R C F' is geodesically (or relatively) convez if for
any points s,t € R the shortest s-¢ path (within F') lies fully within R. The geodesic (or
relative) convex hull R of a set S in F is the smallest geodesically convex set containing S.
We will use GCH as a shorthand for geodesic convex hull. Reflex vertices of the hull are
reflex vertices of F'.

We use obstacle to denote a convex hole or a reflex chain. If we need to indicate that we
are working with holes or reflex chains, we will use the specific term for them. We say that
a set S(C F) contains some obstacles Hy, ... Hy,, if SU(U;~, H;) C S (This containment
definition is relaxed from the usual set inclusion definition: since H; could be a hole and the
interior of it does not belong to F', S is not actually a superset of H;). Similarly, we say
R(C F) is a GCH of some obstacles if R is the smallest geodesically convex set containing
all of these obstacles. Note that if H; is a reflex chain and H; C R then H; C OR.

The interior of a GCH needs not to be connected: the boundary of the hull may visit
a reflex vertex z of F' more than once (so the GCH is a weakly simple polygon) — at some
of the visits z is a convex vertex of the hull, while at others it is a reflex vertex (Figure 4,



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

Figure 4 Left: the geodesic convex hull R (drawn in orange) of two obstacles H and H' in a
polygonal domain F. H is a hole and H’ is a reflex chain. z and x’ are collapsing vertices of R.
Right: the PSLG constructed by walking around R counterclockwise has two non-empty cycles,
which we label as pockets p and p’.

Figure 5 Left: Black is part of 9P (outer boundary or a non-convex hole), blue is 7*, and gray
are convex holes; where blue touches black or gray, they are shown slightly separated for visual
clarity. Right: Degenerate faces are circled with red: some faces, e.g., those consisting of a reflex
chain followed by 7* have area 0; others, like F;, have some degenerate parts where 7* follows OP.
The boundary of F; (also a degenerate face) is delineated with green; the face contains 3 convex
holes, but only one of them (the square) is not touched by blue (for the other two, the blue is slightly
pulled away from the holes, for visual clarity).

left). When this occurs, we say that the hull collapses onto itself at z and z is a collapsing
vertex. Consider the directed, planar straight-line graph (PSLG) formed by walking around
the boundary of a GCH counterclockwise (Figure 4, right). When the GCH collapses, it
will form more than one cycle in the PSLG (since at least one vertex is repeated during the
walk). A cycle in this graph can be degenerate (i.e. a cycle from x to 2’ to 2 which has an
empty area) or non-degenerate. If a region bounded by a cycle contains an obstacle, we will
call it a pocket, denoted by p. Note that a degenerate cycle can actually be a pocket: it can
contain an edge of some obstacle.

Let 7* be the union of the paths for the two segment endpoints, a and b, in an optimal
solution. By Lemma 2, the union 7* of the two agents’ paths touches all convex vertices of P.
In particular, 7 together with the reflex chains, partitions P into faces Fy, Fs, ... (Figure 5,
left) such that every convex vertex of every face has at least one incident edge from 7* Note
that in places where 7* follows (hugs) JP, some faces are degenerate; a degenerate face (a
weakly simple polygon) is created also where 7* touches a convex hole or — more generally —
a point of OP other than a convex vertex (See Figure 5, right).

39:9

WADS 2025



39:10

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

b b b

Figure 6 The (interior points of the) segment either enter the geodesic convex hull by aligning
with its edge e (in which case the segment starts intersecting a hole when moving into the hull
because e is supported by hole vertices), or by moving over a convex vertex = of R;. In the second
case, if z is not a collapsing point of the hull, then it must be supported by a hole that ab will
intersect after passing over z (middle figure).

The boundary OF; of any face F; consists of 7% the reflex chains of 0P, and convex
holes of P; the first two are the outer boundary of F;. Note that only convex holes of P, if
any, remain holes inside the faces; any non-convex hole is split into reflex chains that form
boundaries of the faces (if a hole has only one convex vertex we treat it as two convex vertices
connected by a degenerate, O-length edge — so the hole contributes two reflex chains to the
partition). For any maximal contiguous portion of P in OF;, it must be a reflex chain: if it
contains a convex vertex of P then 7m* would need to touch that vertex in order to sweep it.

Starting from here, when we say obstacles in F;, we refer to convex holes or reflex chains
of P in F;. Let R; be the GCH of all obstacles in a face F;, we want to prove the following
property of this GCH:

» Lemma 6. If R; contains at least 2 obstacles and does not collapse onto itself anywhere,
the segment ab cannot sweep the interior of R;.

Proof. By definition of F;, both endpoints of ab never enter the interior of F; and R;; which
means the interior of R; must be swept by interior points of ab. Since the beginning of
the schedule, a and b are both at s so they are outside of R; (the intersection between the
segment ab and the interior of R; is empty). Consider the moment when some interior points
of ab enter R; (Figure 6): the segment is either aligned with an edge of the hull or touches a
convex vertex x1 of the hull. If ab is supported by a (necessarily reflex) vertex of P, then
the segment will start intersecting the exterior of P as it moves. In order to not intersect
with the exterior, the vertex x; must be supported by a reflex vertex of F;, which may only
happen if there is another (reflex) vertex xo of the hull collocated with x;. This is due to the
fact that any convex vertex of a GCH is either a vertex of P, or is supported by F; padded
by another (reflex) vertex. Therefore, R; must collapse at some vertex. |

Now we have the following result based on the fact that R; has to collapse:

» Lemma 7. If R; has at least two obstacles and collapses onto itself at some vertices, then
it will create at least two pockets.

Proof. Note that by definition, a pocket must contain at least one obstacle. Let H be the
set of obstacles in R;, and let p be the only pocket that R; has, then p contains all obstacles
in H. Consider the PSLG created by walking along OR; counterclockwise: since R; collapses
onto itself at some vertices, it will create more than one cycle in this graph. However, only
one cycle (the one bounding p) has any obstacle in it, therefore the rest of the cycles in the
PSLG are degenerate and empty. But if the PSLG contains all of these degenerate cycles, it
means that R; was not an actual GCH of the obstacles, since we can get rid of all of these
degenerate cycles and only keep p to get a smaller set that contains all obstacles, which is a
contradiction. Therefore, p cannot be the only pocket. <



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

Note that the above lemmas only state that R; will collapse and create at least two
pockets, each having at least one obstacle. Now, for each pocket p in R;, we can reapply the
same arguments: let R, be the GCH containing all obstacles in p then R, must also collapse
onto itself somewhere, and create at least two pockets each containing some obstacles. We
can keep repeating the same process and each time a GCH collapses it splits the set of
obstacles into at least two subsets, each subset belonging to a unique pocket. Since there are
a finite amount of obstacles, after a finite amount of these collapsing and splitting steps, each
obstacle will be contained in its own pocket (not necessarily a pocket of the first GCH R;):

» Corollary 8. FEach obstacle in the face F; is contained in its own pocket of some GCH.
Next, we obtain the following upper bound on the total perimeter of the pockets:

» Lemma 9. Let ®; be the set of all pockets in F; such that each pocket contains one obstacle:

S 10p] < |Ri.

pED;

Proof. To prove this, we define a tree structure where each node is either a GCH or a pocket.
We call R; the root GCH, and the pockets resulted from the collapsing of R; its child pockets.

For each pocket, we call the GCH containing all of its obstacles its child GCH. Similarly, each
child GCH also has its child pockets. Note that a GCH node could have multiple children
(pockets) but a pocket can only have one child. In this tree, only pocket nodes can be leaf
nodes. A leaf pocket node is one in which there is exactly one obstacle in it. We use child(-)
to denote the set of children of a node. For any GCH node R, we have the inequality

> 100 <|0R|.

pEchild(R)

This is because each pocket is a different part of R (two pockets share at most one vertex
in R), therefore their total perimeter must be less than |OR|. Next, for any pocket node:

|Ochild(p)| < |0p|-

This is because child(p) is a GCH in p therefore its perimeter cannot be larger than |dp|.

The tree we have now is one such that the perimeter of each node is greater than or equal to
the total perimeter of its children, therefore we can conclude that the perimeter of any GCH

node is greater than or equal to the total perimeter of all of its descendant leaf pocket nodes.

This applies to the root GCH R; as well, which proves the lemma. <
We finally prove the lower bound for the approximation algorithm:
» Lemma 10. We have |0P| < 2|7*| <4-OPT and |[MST*| < 2|n*| <4-OPT.

(Recall that M.ST* is the minimum spanning tree with Steiner points that spans all holes
and the outer boundary of P.)

Proof. Let ®; be the set of pockets where each pocket contains exactly one obstacle in Fj.

If an obstacle H is a convex hole and p is its pocket, then |0H| < |0p|. However, if H is a
reflex chain, then 2|0H| < |0pl: this is because the perimeter of the GCH R of H in p is

twice longer than OH (a GCH of a reflex chain is simply the chain traversed back and forth).
We will denote Hy, (resp. H,.) as the set of convex hole (resp. reflex chain) obstacles in F;.

We acquire the following using Lemma 9:

ST loH|+2 > [0H| < ) |0p| < |0R;| < |OF;. (1)

HeHp HeH, pED;

39:11

WADS 2025



39:12

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

Let m; = 7 N OF; (the portion of 7* in OF;), then by definition 0F; = m; U (g ey, OH)
so |0F;| = |mi| + - pep, |[0H|. Using the above inequality we obtain:

> [0H|+ Y |0H| < |mil.

HeHy, HeH,

Summing over all F;, we achieve the first lower bound of the lemma:
|OP| < 2|7*| < 4-OPT.

Note that |0P] < 2|7*| because any portion of 7* is counted twice during the sum: any edge
of m* is shared by at most two different faces.

To prove the second bound in the lemma, we introduce a way to connect all of the convex
holes to their respective OF; such that the total cost of these connections is bounded by
O(|7*]). These connections, along with 7* will serve as a network connecting all components
of the boundary of P, and the total length of this network cannot be shorter than the length
of MST* (the minimum Steiner tree connecting these components), which will give us the
second bound of the lemma. We only consider convex holes in this case because any reflex
chain obstacle is already connected to n* by definition.

Recall that when R; collapses (and creates pockets), there will be at least one collapsing
vertex which is supported by a reflex vertex of either 0P or 7*. Let x be any collapsing
vertex that belongs to pocket p and H be the convex hole in p, and let 7, be the (geodesic)
shortest path from H to x (see Figure 4 for an illustration). 7, is the shortest path between
a point v € 0H and x. We note that u is the only point shared between 7, and 0H because
if there is another point w € m, N 0H then 7, is suboptimal (we can simply remove the
subpath from u to w to get a better path). Therefore, if we remove H from p and compute
the shortest path between u and z, it will stay the same. Since 7, is the shortest path
between two points in a simple polygon (p without H), it cannot be longer than a half of dp:

2|mp| < 10pl. (2)

Let @, (resp. ®,.) be the set of all pockets of the convex holes (resp. reflex chains) in F;.
Note that @5 U@, = ®; and &, N P, = (). Using (1) and (2):

23 Impl+ D 1001 < Y 100l + D 10p| < |0F| = |ml + ) |0H].

pEP), pED, pedD) ped, HeH,

Recall that for each pocket of a reflex chain obstacle, the perimeter of the pocket is at least
double that of the reflex chain so 2y, [0H| <" g |0p|, therefore:

2 Ampl+2 Y |0HI <2 ) |ml+ Y 100l <Imil+ Y |0H]

pED), HeH, pEDy, pED, HeH,
1 1
= > Iml < 3 (Iml— Y 108]) < 5iml
pED), HeH,

Let @ be the set of all pockets containing convex holes of every face, by summing the above
inequality over all F; we obtain ) g |7, < |7*|. Finally, the length of the network connecting
all boundary components, i.e. the union 7 U (U,cq mp), I8 L = 3 cq [7p| + 77| < 2|7
Since L cannot be shorter than M.ST™:

|MST*| < L <2|x*| < 4-OPT. <



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

Figure 7 Pinwheel polygons show that 7' can be arbitrarily close to 27".

With the above lemma, the perimeter of the degenerate polygon P’ is |0P'| < (12+¢)-OPT
for any € > 0 (note that we need to double MST* to create P’), assuming we are using
a PTAS to compute the minimum Steiner tree connecting all boundaries of P. Based on
Lemma 4, the schedule computed on P’ using the approximation algorithm in Theorem 5
would yield a makespan within 4|0P’| < (48 + 4¢) - OPT. Thus, we obtain the theorem:

» Theorem 11. A (48 + ¢€)-approzimation for sweeping a polygonal domain with holes where
the agents must return to their depot can be computed in polynomial time.

5 Breakable Segment Sweeping

We consider the breakable segment sweeping problem in which the agents defining the
endpoints of the sweeping segments must stay within P, but we do not require that they
remain covisible at all times; however, a point p € P is swept only if p lies on the segment ab
at a moment when the agents a, b are covisible (i.e., ab C P).

5.1 Comparison with the unbreakable case

Allowing the sweeping segment to break can allow for a significantly reduced makespan. We
first consider the case of a simple polygon P, for which we can bound the ratio of makespans
between the breakable and unbreakable segment cases.

» Lemma 12. Given a simple polygon P, let T (resp. T') be the optimal makespan of an
unbreakable (resp. breakable) sweeping schedule. Then, T' < T < 2T".

The proof of this lemma can be found in Appendix C.

The upper bound in the lemma is tight: consider pinwheel polygons in which the edges
are angled so that no two convex vertices can see each other (Figure 7). To sweep this
polygon, an unbreakable segment has to spend about |OP \ .| where 7, is the longest reflex
chain. This is because after sweeping one pin, one endpoint has to wait for the other before
proceeding into the next pin. For a breakable segment, it only takes 0.5|0P \ 7| to sweep
all pins because once an endpoint of the segment reaches a convex vertex in a pin, the other
endpoint can start moving into an adjacent pin in parallel. This leaves an unswept region in
the center with the shape of a regular —gon. The perimeter of this region can be made
arbitrarily shorter than the length of the pins so that it only takes a tiny amount of time
for the breakable segment to clean it. Overall, the ratio T'/T” would approach 2 if we keep
adding more pins and stretching them.

Note that Lemma 12 does not apply to polygons with holes since a breakable segment is
allowed to pass through them while an unbreakable one is not. Figure 8 shows an example
in which T' can be worse than T’ by a factor of Q(|H|) where H is the set of holes in the
polygon. By Lemma 10, the optimal schedule of an unbreakable segment has makespan

39:13

WADS 2025



39:14

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

~—

—_

[ 1

\\ ]
¥
\

€

Figure 8 A square of side length 1 containing |#| horizontal rectangular holes of width at least
1 —e. The length € is not drawn to scale. The left (and right) edges of the bars are angled in such a
way that it only takes O(e) for a segment to sweep the portions left/right of the holes, if the segment
begins as a unit-length segment along the left/right side of the square.

S

—

t

Figure 9 Two notches (small squares) are attached to the end of the thin hallways in the gadget
shown in Figure 2. To sweep the red convex vertices, both agents are forced to travel to the end of
each hallway, incurring a cost of about 100ms in the makespan.

at least 0.25 x 2(1 — €)|H| = 0.5(1 — €)|H|. However, a breakable segment can sweep this
polygon in a time of at most 3.5 + O(e): The agents begin at the midpoint of the left side of
P, move apart vertically to extend along that unit-length side, spend time O(€) to sweep
the portion of P to the left of the holes, including the left sides of the holes, then move to
the right side (while not sweeping points, as the segment passes through holes), sweep the
portion on the right in time O(e), then reposition in time 1 to lie along the top edge of P,
and finally sweep downwards in time 1 to complete the sweep of the corridors between holes.

5.2 Hardness and approximation

As in the case of sweeping with an unbreakable segment, the problem of makespan optimization
is NP-hard for sweeping a simple polygon with a breakable segment:

» Theorem 13. [t is NP-hard to compute an optimal sweeping schedule of a simple polygon
P using a breakable line segment, even if P is an orthogonal simple polygon.

Proof. We use reduction from 3-PARTITION, similar to the proof of Theorem 1. We modify
the gadget by adding a small notch at the end of each narrow corridors (Figure 9), forcing
both agents to travel the entire lengths of these corridors in order to sweep the notches. <«

The algorithm given in Section 3 applies in the breakable segment sweeping case, yielding
a 9-approximation when P is a simple polygon, as the same lower bound applies. For the case
in which P has holes, we take a different approach to obtain a weaker and more specialized
approximation result than we obtained in the unbreakable case.

Consider the case in which P is a polyomino, a union of integer-coordinate unit squares
whose planar dual graph, joining pairs of squares (“pixels”) that share a common unit-
length edge, is connected. Consider the case in which we are to sweep P with a single



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

breakable vertical segment. The problem is strongly NP-hard, even if P is a simply connected
polyomino — the polygon in Figure 2 from our hardness proof in Section 2 can be turned into
a polyomino. Let N be the number of pixels making up P:

» Theorem 14. There exists a polynomial-time algorithm (in N ) achieving polylogarithmic
approximation of the minimum makespan sweep of a polyomino using a breakable vertical
sweeping segment.

See Appendix C for details of the proof. As pointed out by a reviewer of a previous version
of the paper, this result can be extended to polyominos built from rectangles whose perimeter
is bounded by a constant. The above algorithm also applies to sweeping a polyomino with
an axis-aligned (horizontal or vertical) breakable segment: in this version, the agents can
move arbitrarily but the sweep coverage happens only when the agents are covisible and
aligned vertically or horizontally.

6 Conclusion

We introduced a novel motion planning problem where two (or multiple pairs of) agents can
sweep a polygonal domain with their line of sight. The problem is strongly NP-hard, and we
designed constant-factor approximation algorithms for both simple domains and domains
with holes. We intend to improve the constants in these algorithms in our future work, either
by a tighter analysis or better methods to decompose the polygon. Many other variants of
the problem are to be considered as well, e.g., the starting point can be in the interior of P
or no starting point was given. One may also want to limit the maximum distance of the
pair, as this is a realistic assumption. In the multiple-segment case, if the agents are allowed
to change the pairing, the problem will become much more complex as well as interesting
(we thank our reviewer for raising this question).

—— References

1 Thttps://emalm.com/?7v=38JGp.

2  https://emalm.com/?v=8JzrX.

3 Mikkel Abrahamsen, Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Best laid
plans of lions and men. In Boris Aronov and Matthew J. Katz, editors, 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia,

volume 77 of LIPIcs, pages 6:1-6:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2017.

d0i:10.4230/LIPIcs.SoCG.2017.6.
4  Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry € Applications, 5:75-91, 1995.

do0i:10.1142/50218195995000064.

5 Esther M Arkin, Michael A Bender, Erik D Demaine, Sindor P Fekete, Joseph S. B. Mitchell,
and Saurabh Sethia. Optimal covering tours with turn costs. SIAM Journal on Computing,
35(3):531-566, 2005. doi:10.1137/S0097539703434267.

6  Esther M Arkin, Rathish Das, Jie Gao, Mayank Goswami, Joseph SB Mitchell, Valentin
Polishchuk, and Csaba D Téth. Cutting polygons into small pieces with chords: Laser-based
localization. In 28th Annual European Symposium on Algorithms (ESA 2020). Schloss Dagstuhl
— Leibniz Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.7.

7  Esther M Arkin, Sdndor P Fekete, Kamrul Islam, Henk Meijer, Joseph S. B. Mitchell, Yurai
Nuiiez-Rodriguez, Valentin Polishchuk, David Rappaport, and Henry Xiao. Not being (super)
thin or solid is hard: A study of grid hamiltonicity. Computational Geometry, 42(6-7):582-605,
2009. doi:10.1016/J.COMGED.2008.11.004.

39:15

WADS 2025


https://emalm.com/?v=38JGp
https://emalm.com/?v=8JzrX
https://doi.org/10.4230/LIPIcs.SoCG.2017.6
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1137/S0097539703434267
https://doi.org/10.4230/LIPIcs.ESA.2020.7
https://doi.org/10.1016/J.COMGEO.2008.11.004

39:16

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Esther M Arkin, Sdndor P Fekete, and Joseph S. B. Mitchell. Approximation algorithms
for lawn mowing and milling. Computational Geometry, 17(1-2):25-50, 2000. doi:10.1016/
50925-7721(00)00015-8.

Binay Bhattacharya, Asish Mukhopadhyay, and Giri Narasimhan. Optimal algorithms for
two-guard walkability of simple polygons. In Workshop on Algorithms and Data Structures,
pages 438-449. Springer, 2001. doi:10.1007/3-540-44634-6_40.

Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence of
polygons. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 473-482, 2003. doi:10.1145/780542.780612.

Adrian Dumitrescu, Ichiro Suzuki, and Pawel Zylifiski. Offline variants of the “lion and man”
problem — Some problems and techniques for measuring crowdedness and for safe path planning.
Theoretical Computer Science, 399(3):220-235, 2008. doi:10.1016/j.tcs.2008.02.039.
Alon Efrat, Leonidas J Guibas, Sariel Har-Peled, David C Lin, Joseph S. B. Mitchell, and
TM Murali. Sweeping simple polygons with a chain of guards. In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, pages 927-936, 2000.

Alon Efrat, Joseph S. B. Mitchell, Swaminathan Sankararaman, and Parrish Myers. Efficient
algorithms for pursuing moving evaders in terrains. In Proceedings of the 20th International
Conference on Advances in Geographic Information Systems, pages 33-42, 2012. doi:10.1145/
2424321.2424327.

Alon Efrat, Mikko Nikkild, and Valentin Polishchuk. Sweeping a terrain by collaborative aerial
vehicles. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 4—13, 2013. doi:10.1145/2525314.2525355.
Naveen Garg, Goran Konjevod, and Ramamoorthi Ravi. A polylogarithmic approximation
algorithm for the group steiner tree problem. Journal of Algorithms, 37(1):66-84, 2000.
doi:10.1006/JAGM.2000.1096.

Leonidas J Guibas, Jean-Claude Latombe, Steven M LaValle, David Lin, and Rajeev Motwani.
A visibility-based pursuit-evasion problem. International Journal of Computational Geometry
& Applications, 9(04n05):471-493, 1999. doi:10.1142/S0218195999000273.

Paul J Heffernan. An optimal algorithm for the two-guard problem. In Proceedings of the
Ninth Annual symposium on computational geometry, pages 348-358, 1993. doi:10.1145/
160985.161163.

Martin Held. Survey of direction-parallel milling. In On the Computational Geometry of
Pocket Machining, chapter 3, pages 37-52. Springer, 2005.

Stefan Hertel and Kurt Mehlhorn. Fast triangulation of simple polygons. In Foundations of
Computation Theory: Proceedings of the 1983 International FCT-Conference Borgholm, Sweden,
August 21-27, 1983 4, pages 207-218. Springer, 1983. doi:10.1007/3-540-12689-9_105.
Kien C. Huynh. Polygon sweeping with line of sight between covisible agents. Software
(visited on 2025-08-19). URL: https://github.com/KienHuynh/polygon_sweeping, doi:10.
4230/artifacts.24586.

Christian Icking and Rolf Klein. The two guards problem. International Journal of Computa-
tional Geometry & Applications, 2(03):257-285, 1992. doi:10.1142/S0218195992000160.
Rufus Isaacs. Differential games: a mathematical theory with applications to warfare and
pursuit, control and optimization. Courier Corporation, 1999.

Bo Jiang and Xuehou Tan. Searching for mobile intruders in circular corridors by two 1-
searchers. Discrete applied mathematics, 159(16):1793-1805, 2011. doi:10.1016/J.DAM.2010.
10.007.

Tsunehiko Kameda, Ichiro Suzuki, and Masafumi Yamashita. An alternative proof for the
equivalence of co-searcher and 2-searcher. Theoretical Computer Science, 634:108-119, 2016.
d0i:10.1016/J.TCS.2016.04.016.

Borislav Karaivanov, Minko Markov, Jack Snoeyink, and Tzvetalin S Vassilev. Decontaminating
planar regions by sweeping with barrier curves. In CCCG, 2014.


https://doi.org/10.1016/S0925-7721(00)00015-8
https://doi.org/10.1016/S0925-7721(00)00015-8
https://doi.org/10.1007/3-540-44634-6_40
https://doi.org/10.1145/780542.780612
https://doi.org/10.1016/j.tcs.2008.02.039
https://doi.org/10.1145/2424321.2424327
https://doi.org/10.1145/2424321.2424327
https://doi.org/10.1145/2525314.2525355
https://doi.org/10.1006/JAGM.2000.1096
https://doi.org/10.1142/S0218195999000273
https://doi.org/10.1145/160985.161163
https://doi.org/10.1145/160985.161163
https://doi.org/10.1007/3-540-12689-9_105
https://github.com/KienHuynh/polygon_sweeping
https://doi.org/10.4230/artifacts.24586
https://doi.org/10.4230/artifacts.24586
https://doi.org/10.1142/S0218195992000160
https://doi.org/10.1016/J.DAM.2010.10.007
https://doi.org/10.1016/J.DAM.2010.10.007
https://doi.org/10.1016/J.TCS.2016.04.016

K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Steven M LaValle, Borislav H Simov, and Giora Slutzki. An algorithm for searching a polygonal
region with a flashlight. In Proceedings of the sizteenth annual symposium on Computational
geometry, pages 260-269, 2000. doi:10.1145/336154.336212.

Kin Sum Liu, Brent Schiller, Jie Gao, Shan Lin, and Joseph SB Mitchell. Optimizing sensor
deployment with line-of-sight constraints: Theory and practice. In EWSN, pages 95-105, 2019.
Minko Markov, Vladislav Haralampiev, and Georgi Georgiev. Lower bounds on the directed
sweepwidth of planar shapes. Serdica Journal of Computing, 9(2):151-166, 2015.

Joseph S. B. Mitchell. Approximating watchman routes. In Proceedings of the twenty-
fourth annual ACM-SIAM symposium on Discrete algorithms, pages 844-855. SIAM, 2013.
d0i:10.1137/1.9781611973105.60.

Bengt J Nilsson and Eli Packer. An approximation algorithm for the two-watchman route
in a simple polygon. In Furopean Workshop on Computational Geometry, EuroCG, Lugano,
Switzerland (20160330-20160401), pages 111-114, 2016.

J Scott Provan. An approximation scheme for finding steiner trees with obstacles. SIAM
Journal on Computing, 17(5):920-934, 1988. doi:10.1137/0217057.

Giinter Rote. Pursuit-evasion with imprecise target location. In SODA, pages 747-753, 2003.
URL: http://dl.acm.org/citation.cfm?id=644108.644231.

Dorian Rudolph. Approximating the sweepwidth of polygons with holes. In FEuroCG, 2019.
Marcus Schaefer, Jean Cardinal, and Tillmann Miltzow. The existential theory of the reals as
a complexity class: A compendium. arXiv preprint arXiv:2407.18006, 2024. doi:10.48550/
arXiv.2407.18006.

Subhash Suri. On some link distance problems in a simple polygon. IEEFE transactions on
Robotics and Automation, 6(1):108-113, 1990. doi:10.1109/70.88124.

Ichiro Suzuki and Masafumi Yamashita. Searching for a mobile intruder in a polygonal region.
SIAM Journal on computing, 21(5):863-888, 1992. doi:10.1137/0221051.

Xuehou Tan and Bo Jiang. Minimization of the maximum distance between the two guards
patrolling a polygonal region. Theoretical Computer Science, 532:73-79, 2014. doi:10.1016/
J.TCS.2013.03.019.

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.6 edition,
2023. URL: https://doc.cgal.org/5.6/Manual/packages.html.

Auer Thomas and Held Martin. Heuristics for the generation of random poly-gons. In
Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG’96), pages
38-44. Citeseer, 1996. URL: http://www.cccg.ca/proceedings/1996/cccgl996_0007 . pdf.
Christopher Umans and William Lenhart. Hamiltonian cycles in solid grid graphs. In

Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 496-505.

IEEE, 1997. doi:10.1109/SFCS.1997.646138.

39:17

WADS 2025


https://doi.org/10.1145/336154.336212
https://doi.org/10.1137/1.9781611973105.60
https://doi.org/10.1137/0217057
http://dl.acm.org/citation.cfm?id=644108.644231
https://doi.org/10.48550/arXiv.2407.18006
https://doi.org/10.48550/arXiv.2407.18006
https://doi.org/10.1109/70.88124
https://doi.org/10.1137/0221051
https://doi.org/10.1016/J.TCS.2013.03.019
https://doi.org/10.1016/J.TCS.2013.03.019
https://doc.cgal.org/5.6/Manual/packages.html
http://www.cccg.ca/proceedings/1996/cccg1996_0007.pdf
https://doi.org/10.1109/SFCS.1997.646138

39:18

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

A Gadget for NP-hardness proof of SweepWithReturn

0 (stretched horizontally)
Chimneys (height: x;/2)

Inverted Chimneys (same heights)

Figure 10 Modified polygonal gadget for the hardness of SWEEPWITHRETURN. s is at the top
left of the polygon.

B Proof of Lemma 2

We restate the lemma here:
» Lemma 2. FEvery convex vertex of P must be visited by at least one agent.

Proof. In order for a convex vertex v to be swept, the point v must at some moment lie
on the sweeping segment. If v is not visited by an endpoint of the sweeping segment, then
it must be visited at some moment by a point interior to the sweeping segment. But this
implies that, at that moment, in the neighborhood of v the sweeping segment, ab, enters the
exterior of P, since the two collinear segments av and vb cannot both lie within the convex
cone with apex v that is defined by the edges of P incident to v. <

C Breakable Segment Sweeping

» Lemma 12. Given a simple polygon P, let T (resp. T') be the optimal makespan of an
unbreakable (resp. breakable) sweeping schedule. Then, T' < T < 2T".

Proof. The first inequality (77 < T') is immediate. We will now provide proof that 7' < 27"
given any sweeping schedule of a breakable segment, we can convert it into a schedule for an
unbreakable segment, while at most doubling the makespan. Recall that the two endpoints
of the breakable segment might, at some times, not see each other; however, points of P are
only being swept during times when the endpoints are covisible. Therefore, a schedule of a
breakable segment can be seen as a sequence of periods (intervals of time) during each of
which the endpoints are either always covisible or always hidden from each other. During
a covisible period, an unbreakable segment can simply follow the sweeping schedule of the
breakable segment (since it is not broken during this time interval), with no change in
makespan. For any hidden period, let a}b be the first position of the breakable segment and
ajb; be the last. If T}; is the makespan of the breakable segment in this period, then

Tj; > max{|m(a;, aj)|, |7 (b, b)|}, 3)

(]



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

;
’ a;
N a; p \/\//
N Pe \\\ -
N -
\\ //
q
/
bi

!
v v
g j (I b} (111)

@

Figure 11 Three cases that can happen when a'b’ moves from a;b; to a}b}. The dashed lines

denote the geodesic shortest paths between the pairs of points, the black polygonal lines represent the
boundary of P and the orange lines show how we decompose each case into sweepable components
for the unbreakable segment.

where 7(aj,a}) and w(b;,b};) are the geodesic shortest paths from a; to a} and b; to b}

respectively.
There are now three cases (Figure 11):

(1) ab; does not intersect a;b; and neither do m(a},a}) and 7(b;,b}). The union a;b; U

aib Um(aj, a’;) U (b}, b)) will bound a region P, which is an hourglass polygon (i.e. a
polygon consisting of two reflex chains that are connected by two edges a;b; and a’;b}).
Now, consider the triangulation of the hourglass polygon. Let the triangle containing
a;b; be A; and the triangle containing ab; be A;. If we consider each triangle as a
node of a graph and create an edge between two nodes if their corresponding triangles
share an edge in the triangulation, then this graph (the dual of the triangulation) is a
path from node A; to node A;. This is always true for an hourglass polygon. Note
that other than A; and A, a triangle in the triangulation consists of exactly two
chords of P and one edge on its boundary (an edge of 7(aj, a;) or m(b;,b’)). To let
the unbreakable segment sweep this hourglass, we use the following motion plan:

If ab lines up with an edge of some triangle Ay, this edge must be a;b;, a’t) or a

chord of Pp, but not an edge of 7(a;, a};) or m(bf, ).

Assume ab is lining up with one edge of an unswept triangle Ay, either a or b must

be incident to an edge of 7(a;, a}) or 7(b;,b;). Whoever is incident to such an edge

will move along that edge while the other stays stationary during the whole period.

This will sweep A, and let ab line up with an edge of the next triangle.

Repeat the above step until ab lines up with a;- b;-.

This whole process will cost no more than |m(a;, a})| + |7(b}, b’)|.

(1) aib; intersects with a}b.. Let ¢ = ajb; N a}b;. m(aj,a}) and w(b}, b)) will be two
reflex chains visible from ¢. We can view a;b} U (aj, a}) U a}b; U (b}, b)) as a self-

intersecting polygonal chain, or the boundary of a simple polygon with a degenerate
vertex g. To move from a;bj to a}b} using an unbreakable segment, we can rotate the
segment around ¢ while a moves along 7(aj, a;) and b moves along 7(b;, b;) in opposite
directions. This can be done as follows: we project all vertices from each reflex chain
onto the other chain using ¢ as a pinhole. The projections decompose the degenerate
polygon into smaller double wedges, which can be swept one by one. Each such wedge
has two bases, one of which is at least as long as the other. Sweeping a double wedge
will require a time equal to the length of the longer base.

(1) 7(aj, a) and 7(b;,b}) share some vertices. In this case, the two of them will create
two funnels whose bottom vertices are attached to the two ends of the shared portion.
Similarly to the hourglass case in (I), we can triangulate the funnels and:

39:19

WADS 2025



39:20

Sweeping a Domain with Line-Of-Sight Between Covisible Agents

Let the segment sweep the first funnel polygon by moving from one triangle to
another. Both a and b will eventually meet at the bottom vertex of the first funnel
polygon.

Since a and b are now colocated, they can both move along the shared portion
of m(aj,a}) and m(b;, b;) until both of them arrive at the bottom endpoint of the
second funnel polygon.

Finally, the segment ab can sweep the second funnel polygon by moving from one
triangle to another until they line up with a’b’.

This process also costs at most |7(a;, a’;)| + |7 (b}, b})].

In all cases, the produced schedule for the unbreakable segment is at most 27}; due to (3). <

» Theorem 14. There exists a polynomial-time algorithm (in N ) achieving polylogarithmic
approximation of the minimum makespan sweep of a polyomino using a breakable vertical
sweeping segment.

Proof. At any moment in time, the sweeping segment ab has a combinatorial type, (p,q),
indicating the pixel p currently containing a and the pixel ¢ currently containing b (possibly
p = q). At time 0, the combinatorial type is (ps, ps), where p is the pixel on whose boundary
the starting point s lies. For each pixel 7 € P, in order for points in v to be swept by ab,
at least one of the set C, of combinatorial types must be visited, where C, is the set of
combinatorial types (p, q) for which pq is a vertical column of pixels within P that contains
v (i.e., v € pq). Over the time window [0,7] of an optimal sweep, the segment ab has a
sequence, possibly with repeats, of combinatorial types, (p1,¢1), (p2,92),- -, (Pk, qx); this
sequence must contain at least one combinatorial type from C, for every v € P. (Note that
some of the types (p;, g;) may specify vertical columns of pixels that do not all lie within P;
we do allow ab to lie partially outside of P in the breakable segment sweeping problem.) By
continuity of motion of the agents a and b, for each i, the L, distance between pixel p; and
pit+1, and between ¢; and ¢;41, is at most 1 (it is 0 or 1). We define the distance between
(pi,q;) and (piy1,qi+1) to be max{|p;pi+il1,|¢,d+1]1}. Then, in this metric, we consider
the one-of-a-set (generalized) TSP path, to visit every set C,, for v € P. The optimal
makespan T must be at least the length of such a TSP path. Further, for any TSP path in
the “combinatorial type space” that visits all of the sets C.,, we can, with only an O(1) factor
greater length, execute a sweep with a vertical segment ab, with a € p; and b € ¢;, shifting
the vertical segment (of fixed length) around the boundaries of pixels p; and ¢;, so that all
points in the vertical column p;q; of pixels within P are swept. Since the one-of-a-set TSP
has a polylog factor approximation algorithm [15], applying it here will result in Theorem 14.

<

D Experiments

Sweeping a simple polygon with 1 segment can be done with the following heuristic which,
similar to our approximation algorithm (Section 3), has two phases: first, decompose P
into convex pieces (O(n) time [19]) — the dual graph of the decomposition is a tree; then,
sweep the pieces one-by-one in DFS order around the tree, starting with the component
that contains s (Figure 12 shows that the heuristic’s makespan can be ©(n - OPT)). We
implemented one-segment sweeping with return both with our algorithm (Section 3) and
the above heuristic; Python was used for the main procedures, while C++ was used as a
proxy for calling CGAL modules [38]. We generated 3 sets of random simple polygons (the
vertices are either within the unit square or unit disk), using the algorithm of [39] (for each



K. C. Huynh, J.S. B. Mitchell, and V. Polishchuk

/LH

L

T

Figure 12 P is a large central room, with small rooms (nooks) attached on the left/right sides;
sweeping the large central room first and then sweeping the small rooms on the left and then those
on the right takes O(L + nd) = O(L) time if § << L. The convex decomposition (blue segments)
splits the middle room into convex pieces: sweeping every node in the dual tree (i.e., using the
heuristic) forces the agents to move from left to right and vice versa ©(n) times, taking ©(nL) time.

polygon, s is a random vertex): 1000 polygons with 20 to 100 vertices each, 500 polygons
with 500 to 1000 each, and 50 polygons with 5000 to 10000 vertices each. The results of
experimenting with the polygons are shown in Fig. 13: it can be seen that although the
heuristic algorithm (HA) has no approximation guarantee, it outperforms the (provable)
approximation algorithm (AA) in most instances (the heuristic takes better advantage of
parallelism during the second step, by moving both agents at maximum speed when they
are able to do so; in the approximation algorithm, the agents move in parallel only when
sweeping histogram subpolygons H P(e), and even then the bottom agent slows down in
order to accommodate the top agent).

Table 1 shows the average and maximum ratios of the makespans of AA and HA; the
average speedup of HA is about 1.333 and the maximum speedup observed is 1.743. The
average ratio of the AA makespans and the theoretical lower bounds is between 3.903 and
4.032. In the worst instance of the experiments, the schedule computed by AA takes 5.116
more time than the proven lower bound; this observed factor is still significantly less than
the factor of 8 proved in Theorem 5; we believe that the reason is that the theoretical lower
bound is usually unachievable (except for some specific classes of polygons like convex).

Table 1 Average and maximum makespan ratios between AA, HA, and the lower bound (LB).

Makespan ratio AA/LB HA/LB AA/HA
n € [20,100] 3.903 2.933 1.337
n € [500, 1000] 4.007 3.022 1.327
Mean
n € [5000, 10000] 4.032 3.035 1.328
All n 3.941 2.965 1.333
Max | Alln 5.116 3.928 1.743

Figure 14 shows typical sweeping schedules of our algorithms; videos of our sweeps can be
viewed at [1,2]. Teal regions are swept earlier, red regions later. In some cases, red regions
are isolated from those of similar color, as in the bottom left region of the top left figure,
where the segment backtracks to sweep a region near s. Ideally, regions of similar color
should be close to each other; however, achieving this requires a better ordering to explore
the children of each node (better than the DFS).

39:21

WADS 2025



39:22 Sweeping a Domain with Line-Of-Sight Between Covisible Agents

B Lower bound == Lower bound
mmm Approximation algorithm
Bmm Convex decomposition heuristic

I Approximation algorithm
W Convex decomposition heuristic

Duration
-
G

Duration

-
=)

20= 28= 36 44= 52=< 500= 550= 600= 650=< 700= 750=< 800=< 850=< 900= 950=<

n n n n n n n n n n n n n n n n n n n
<28 <36 <44 <52 <60 <68 <76 <84 <92 <100 <550 <600 <650 <700 <750 <800 <850 <900 <950 =1000

(a) Instances of size 20 to 100. (b) Instances of size 500 to 1000.

300 mEE Lower bound
I Approximation algorithm
2501 mmm Convex decomposition heuristic

Duration

5000= 6000= 7000= 8000= 9000=

n n n n n
<6000 <7000 <8000 <9000 =<10000

(c) Instances of size 5000 to 10000.

Figure 13 The makespans computed using both algorithms in Section 3 for all three sets of
randomized polygons. The makespan lower bound for each instance is 1|0P| as mentioned in
Subsection 3.1. We grouped the results into bins by the number of vertices of the polygons (n) and
calculate the average value for each algorithm as well as the lower bound per group.

Starting color Ending color

Figure 14 Visualization of the sweeping schedules computed by the two algorithms. The top
polygon has 774 vertices and the bottom one has 895 vertices. The red dot indicates the starting
location of the agents and the green dots indicate where the agents are at the end of the schedule
before returning to red. Blue line segments within each polygon show how the polygon was
decomposed into subpolygons for the corresponding algorithm. To show the positions of agents over
time, we employ a transitioning color scheme in which the segment connecting them is teal at the
beginning and red at the end.



	1 Introduction
	2 NP-Hardness
	3 Approximation Algorithm for Simple Polygons
	3.1 Sweeping with return (default version)
	3.2 Sweeping with multiple segments with return

	4 Approximation Algorithm for Polygonal Domains with Holes
	5 Breakable Segment Sweeping
	5.1 Comparison with the unbreakable case
	5.2 Hardness and approximation

	6 Conclusion
	A Gadget for NP-hardness proof of SweepWithReturn
	B Proof of Lemma 2
	C Breakable Segment Sweeping
	D Experiments

