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Abstract
Geometric data sets that arise in modern applications are often very large and change dynamically
over time. A popular framework for dealing with such data sets is the evolving data framework,
where a discrete structure continuously varies over time due to the unseen actions of an evolver,
which makes small changes to the data. An algorithm probes the current state through an oracle,
and the objective is to maintain a hypothesis of the data set’s current state that is close to its actual
state at all times. In this paper, we apply this framework to maintaining a set of n point objects in
motion in d-dimensional Euclidean space. To model the uncertainty in the object locations, both the
ground truth and hypothesis are based on spatial probability distributions, and the distance between
them is measured by the Kullback-Leibler divergence (relative entropy). We introduce a simple
and intuitive motion model in which, with each time step, the distance that any object can move is
a fraction of the distance to its nearest neighbor. We present an algorithm that, in steady state,
guarantees a distance of O(n) between the true and hypothesized placements. We also show that for
any algorithm in this model, there is an evolver that can generate a distance of Ω(n), implying that
our algorithm is asymptotically optimal.
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1 Introduction

Many modern computational applications are characterized by two qualities: data sets are
massive and vary over time. A fundamental question is how to maintain some combinatorial
structure that is a function of such a data set. The combination of size and dynamics makes
maintaining such a structure challenging. Given the large data sizes, single-shot algorithms
may be too slow, and common dynamic algorithms, which support explicit requests for
insertions and deletions, may not be applicable because structural changes are unseen by the
algorithm.

Anagnostopoulos, Kumar, Mahdian, Upfal, and Vandin introduced a model for handling
such data sets, called the evolving data framework [2]. In this framework, the structure varies
repeatedly over time through the unseen actions of an evolver, which makes small, stochastic
changes to the data set. The algorithm can probe the current state locally using an oracle.
With the aid of this oracle, the algorithm maintains a hypothesis of the current state of the
structure that is as close as possible to its actual state at all times. The similarity between the
hypothesis and the current state is measured through some distance function. The algorithm’s
objective is to achieve, in the steady state, a small distance between the hypothesis and the
actual state. This framework has been applied to a variety of problems [1, 6, 17,21,36].
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4:2 Evolving Distributions Under Local Motion

Consider, for example, sorting. The data consists of a set of objects over some total
order. The evolver repeatedly selects a random pair of adjacent objects and swaps them. The
oracle is given two objects and returns their relative order. The objective of the algorithm
is to maintain an order that is as close to the current state as possible, where the distance
is measured in terms of the Kendall tau distance, that is, the number of pairwise order
inversions [22]. It has been shown that a Kendall tau distance of O(n) is achievable, and this
is optimal [5, 6]. It is noteworthy that the optimal algorithm in the evolving framework is
based on a simple quadratic-time sequential algorithm, and not O(n log n)-time algorithms,
as one might expect. The sorting problem has been generalized to tracking labels on a tree
in [1], laying the foundations for a geometric framework for evolving data.

This paper focuses on the question of how to maintain a set of points whose positions
evolve continuously in real d-dimensional space, Rd. In motion tracking applications, object
movement is recorded through various technologies, including GPS-enabled mobile devices [31],
RFID tags [28], and camera-based sensing [35]. Examples include the movement and migration
of animals on land and in oceans, traffic and transport, defense and surveillance, and analysis
of human behavior (see, e.g., [13, 24]).

Imprecision and uncertainty are unavoidable problems that arise in evolving systems. Due
to sensor latency, the exact location of any object cannot be known with certainty. In the
best case, any algorithm can maintain only an approximation to the current state. In order
to bound the degree of uncertainty, it is necessary to impose restrictions on object motion.
In traditional applications of the evolving data framework, the evolver acts randomly. This
is not a reasonable assumption in practice, where moving objects are subject to physical
laws or may have a sense of agency [15,32,34]. Much work has focused on realistic models of
motion, but these can be difficult to analyze theoretically. A widely used model assumes
that objects have a maximum speed limit, and as time passes, an object can be inferred to
lie within a ball whose radius grows linearly over time based on this speed limit [9, 12,20].
However, in practice, the speed that any object can move depends on the congestion within
its local environment.

In multidimensional space, there is no intrinsic total order, and it is less clear what
it means to accurately track imprecise moving objects. Given the inherent uncertainty,
we model the location of each object in terms of a spatial probability distribution. The
distance between the actual state of the system and our hypothesis is naturally defined as
the relative entropy (Kullback-Leibler divergence) between these two distributions. The
Kullback-Leibler (KL) divergence is a fundamental measure in statistics that represents the
distance between two probability distributions [23]. It has numerous applications in statistical
inference, coding theory, machine learning, among others [10]. In our case, it serves two
intuitive purposes. First, it measures how different the truth is from our hypothesis. Second,
it can be used to quantify the additional information required to encode the actual location
of each object, based on our hypothesis [10].

For the evolution of our data, we adopt a locality-sensitive stochastic motion model. We
assume that with each time step, the motion of an object is constrained by its immediate
environment, which we call the local-motion model. In this model, the distance that any
object can move in a single time step is a fixed fraction of the distance to its nearest
neighbor. The support of this object’s probability distribution is a region of size proportional
to the nearest-neighbor distance. This model has the advantage that it does not impose
arbitrary speed limits on the movement of objects, it is invariant under transformations that
preserve relative distances (e.g., translation, rotation, and uniform scaling), and it satisfies
the observed phenomenon that objects in dense environments have less personal space [16,19],
and exhibit slower movement than those in sparse environments [4, 29].
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To control the communication complexity in determining object locations, we do not
require that the oracle returns the exact object positions. Instead, we assume access to an
oracle that is given a Euclidean ball and the index i of an object. It returns a pair of bits
indicating whether the i-th object lies within this ball and (if so) whether there is any other
object of the set within this ball. Since every object’s location is subject to uncertainty,
the same query on the oracle might result in different outcomes at different times, and our
algorithm is robust to such variations.

In our framework, the evolver and the algorithm operate asynchronously and in parallel.
With each time step, the evolver selects an arbitrary object of the set and moves it in
accordance with the local-motion model. (This need not be random and may even be
adversarial.) This information is hidden from our algorithm. The algorithm selects an object
and invokes the oracle on this object. Based on the oracle’s response, the algorithm updates
the current hypothesized distribution for this point. Thus, the evolver and algorithm are
involved in a pursuit game, with the evolver incrementally changing object distributions
(possibly in an adversarial manner) and the algorithm updating its hypothesized distributions.
The algorithm’s goal is to minimize the relative entropy between these distributions at all
times. Our computational model and a formal statement of our results are presented in
Section 2.

2 Problem Formulation and Results

Objects

The objects that populate our system can be thought of as imprecise points [8,14,25] that are
drawn independently from probability distributions that depend on the proximity to other
objects. More formally, at any fixed time step, let Q = {q1, . . . , qn} ⊂ Rd denote a point set
of size n in d-dimensional Euclidean space, and let [n] denote the index set {1, . . . , n}. For
each qi ∈ Q, let Ni denote the distance to its nearest neighbor in Q\{qi}. Given x ∈ Rd and
nonnegative real r, let B(x, r) denote the closed Euclidean ball of radius r centered at x, and
let U(B(x, r)) denote the uniform probability distribution over this ball. Given a real β, where
0 < β < 1, define the β-local feature region of qi to be B(qi, βNi). Let Pi = Pi(β) denote the
uniform1 probability distribution, U (B(qi, βNi)), and let P = {P1, . . . , Pn} denote this set
of distributions. We refer to P as the truth or ground truth, as it represents the true state of
the system, subject to the given imprecision. Together, Q and β define a set n independent
random variables {X1, . . . , Xn}, with Xi distributed as Pi (see Figure 1a).

The Local-Motion Model

As mentioned in the introduction, there are many ways to model the realistic motion of a
collection of objects in an environment. A natural requirement is that each object’s motion
is affected by the presence of nearby objects. Although there are many ways to incorporate
this information (see, e.g., [29]), we have chosen a very simple model, where velocities are
influenced by the distance to the nearest neighbor.

We think of the objects of our system as moving continuously over time, and our algorithm
queries their state at regular discrete time steps. From the algorithm’s perspective, objects
move, or “evolve,” over time in the following manner. Given a parameter α, where 0 < α < 1,
at each time step, an entity called evolver selects an object i ∈ [n] and moves qi by a distance
of at most αNi in any direction of its choosing (see Figure 1). While the value of α is known,

1 Our choice of using a uniform probability distribution is not critical to our approach. In the full version
of the paper we show that our results apply to a much broader class of distributions.
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(a) Illustration of the objects, and the notations used.
The evolver’s action ε is shown in red.
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(b) Objects that were affected by ε are shown
in pink. Tiled regions show the previous state.

Figure 1 The model and an action by the evolver. Shaded regions represent objects.

the action of the evolver, including the choice of the object and the movement, is hidden
from the algorithm. Throughout, we assume that the evolver is a strong adversary, which
means that it has access to our algorithm and the input set [7].

For a nonnegative integer time step t, let Q(t) and P(t) denote the underlying centers and
distributions, respectively, at this time. To simplify notation, we omit the superscript when
talking about the current time. We assume that there exists a bounding region in the form
of a Euclidean ball B0 centered at the origin. At all times, the points Q(t) are restricted to
lie within B0. The algorithm has knowledge of this ball. Define the system’s initial aspect
ratio to be Λ0 = (radius(B0))/(mini∈[n] N

(0)
i ). Given any positive constant c, let cB0 denote

a factor-c expansion of this ball about the origin.

Oracle

Consider the state of the system at any fixed time t. Knowledge about the current state of
the system is provided by an entity O, called the oracle. It is given a Euclidean ball B(x, r)
and an object index i ∈ [n]. Recall that for each i ∈ [n], Xi denotes a random variable
distributed as Pi. The oracle is a function O : [n] × Rd × R+ → {Y, N} × {+,−}, where
O(i, x, r) returns:

“Y ” or “N” depending on whether Xi ∈ B(x, r) and
“+” or “−” depending on whether there exists j ̸= i, such that Xj ∈ B(x, r)

The first element of the pair is used to estimate the location of the object i, and the
second is used to estimate the distance to its nearest neighbor. Because Xi and Xj are
random variables, so is O(i, x, r). Consistent with previous applications of the evolving data
framework (see, e.g., [3]), we intentionally made the oracle as weak as possible, implying that
our algorithm can be used with stronger oracles.

Hypotheses and Distance

The algorithm maintains a hypothesis of the current object locations, which is defined to
be a set H = {H1, . . . , Hn} of spatial probability distributions in Rd. The distance between
the truth P and the current hypothesis H, denoted D(P,H), is defined as the sum of n

Kullback-Leibler divergences from the hypothesized distributions to the true ones. For
i ∈ [n], let

Di = DKL(Pi ∥ Hi) =
∫

x∈Bi

Pi(x) log Pi(x)
Hi(x)µ(dx),
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where µ(·) denotes the measure over Bi = B(qi, βNi) and define

D(P,H) =
n∑

i=1
Di =

n∑
i=1

DKL(Pi ∥ Hi). (1)

As a baseline for comparisons, we introduce a naïve hypothesis, denoted H∗, which
assumes no information about the locations of the objects, other than the fact that they lie
within the bounding region. Recall that B0 denotes this bounding region and 3B0 denotes a
factor-3 expansion about its center. Since all the points of Q lie within B0 and 0 < β < 1,
3B0 is guaranteed to contain all the β-local feature regions. For all i ∈ [n], let H∗

i be the
uniform distribution over 3B0, and let H∗ = {H∗

1 , . . . , H∗
n}. Regardless of the initial truth,

the initial distance of the ith object satisfies the following bound.

D∗
i =

∫
x∈Bi

Pi(x) log Pi(x)
H∗

i (x)µ(dx) =
∫

x∈Bi

Pi(x) log 1/(βNi)d

1/(3 · radius(B0))d
µ(dx)

= log
(

3 · radius(B0)
βNi

)d ∫
x∈Bi

Pi(x)µ(dx)

≤ d

(
log Λ0 + log 3

β

)
.

Let D =
∑

i∈[n] D∗
i . Under our assumption that d and β are constants, we have D∗ ∈

Θ(n log Λ0). The initial aspect ratio, Λ0, depends on the initial configuration of the points of
Q, and can be arbitrarily high. In the best case, when the points are uniformly distributed
in B0, we have Λ0 = Ω(n1/d) and hence D ∈ Ω(n log n). The objective of our algorithm is to
maintain a significantly smaller bound on this distance.

The combination of evolver, oracle, and distance function constitute a model of evolving
motion, which we henceforth call the (α, β)-local-motion model.

Class of Algorithms

We assume that the algorithm that maintains the hypothesis runs in discrete steps over time.
With each step, it may query the oracle a constant number of times, perform a constant
amount of work, and then update the current set of hypotheses. The number of oracle queries
is independent of n but can depend on dimension d, local feature scale factor β, and motion
factor α. In our case, this work takes the form of updating the hypothesis for the object that
was queried. In the purest form of the evolving data framework, the evolver and algorithm
alternate [2]. Instead, similar to the generalized framework proposed in [1], we assume that
there is a fixed speed-up factor, denoted σ. When amortized over the entire run, the ratio of
the number of steps taken by the algorithm and the evolver does not exceed σ.

Objective and Results

The objective of the algorithm is as follows. Given any starting ground-truth configuration,
after an initial “burn-in” period, the algorithm guarantees that the hypothesis is within a
bounded distance of the truth subject to model assumptions and the given speed-up factor.
Our main result is that there exists an algorithm with constant speed-up factor σ that
maintains a distance of O(n) in steady state.

▶ Theorem 1. Consider a set of n evolving objects in Rd under the (α, β)-local-motion model,
for constants α and β, where 0 < α, β < 1

3 . There exists an algorithm of constant speed-up σ,
and burn-in time t0 ∈ O(n log Λ0 log log Λ0) such that for all t ≥ t0, this algorithm maintains
a distance of O(n).

WADS 2025



4:6 Evolving Distributions Under Local Motion

The algorithm and its analysis will be proved in Section 4. Given that no algorithm can
guarantee an exact match between hypothesis and truth, it is natural to wonder how close
this is to optimal. In Section 3, we will show that it is asymptotically optimal by showing
that for any algorithm and any constant speed-up factor, there exists an evolver that can
force a distance of Ω(n) in steady state.

Why the KL Divergence?

The principal challenge in generalizing the evolving framework from simple 1-dimensional
applications like sorting to a multidimensional setting is the lack of an obvious distance
measure that captures how close the hypothesis is to the current state. Our approach is
motivated by an information-theoretic perspective. The KL divergence Di = DKL(Pi ∥ Hi)
serves as a measure of how different the actual object distribution Pi is from our hypothesis Hi.
(Note that the KL divergence is asymmetric, which is to be expected, given the asymmetric
roles of the truth and our hypothesis.)

As an example of this information-theoretic approach, consider the following application
in coding theory and space quantization [10]. The objective is to communicate the location
of an imprecise point Xi with any arbitrary resolution δ. From Shannon’s source coding
theorem [26], the theoretical lower bound for the expected number of bits required for
communication is given by the Shannon entropy [30]

bPi =
∑

Cδ∈Bi

Pi(Cδ) log 1
Pi(Cδ) ,

where Cδ is a cell (a d-dimensional box) of size δ in Rd, and P (C), by a slight abuse
of notation, is the probability associated with a cell C using the underlying probability
distribution function P . This is roughly achieved by a Huffman coding [18] of the space
around qi, which intuitively assigns a number of bits proportional to the log of the inverse of
the probability measure associated with an event, which in our case is Xi lying within a cell
Cδ of size δ.

Since the Pi’s are not available to us, we use a similar strategy of encoding the space
using Hi. Therefore, in expectation, we use roughly

bHi =
∑

Cδ∈Bi

Pi(Cδ) log 1
Hi(Cδ)

bits. When δ is arbitrarily small, the difference (bHi − bPi) ∼ Di. Therefore, D(P,H) =∑
i∈[n] Di roughly represents the expected number of additional bits needed to represent the

location of Xi’s individually using just Hi’s, compared to the absolute theoretical limit.

Paper Organization

The remainder of the paper is organized as follows. In the next section, we present Theorem 2,
which provides a lower bound on the distance achievable by any algorithm in our model. In
Section 4, we present the algorithm and analyze its steady-state performance. In Section 5,
we discuss possible relaxations to the assumptions made in our model.

3 Lower Bound

In this section, we show that maintaining D(P,H) ∈ O(n) is the best we can hope to achieve.
This is established in the following theorem. Due to space limitations, the proof has been
deferred to Section A.1.
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▶ Theorem 2. For any algorithm A, there exists a starting configuration Q(0) and an evolver
(with knowledge of A) in the local-motion model such that, for any positive integer t0, there
exists t ≥ t0, such that D(t) = D(P(t),H(t)) ∈ Ω(n).

The proof follows a similar structure to other lower-bound proofs in the evolving data
framework [1,3,6]. Intuitively, over a period of time of length cn, for c < 1, the algorithm
can inspect the locations of only a constant fraction of points. During this time, the evolver
can move a sufficient number of uninspected points so that the overall distance increases
by Ω(n).

4 Algorithm

In this section, we present our algorithm and analyze its performance. We begin by defining
our hypothesis. For every index i, we define two parameters: hi ∈ R, and ki = (ki,1, . . . ki,d) ∈
Rd. For x = (x1, . . . xd) ∈ Rd we set the hypothesis probability density for the ith point to
be the d-fold product of independent Cauchy distributions, one per coordinate, with center
at ki and scaling parameter hi [33]. That is,

Hi(x) = fhi,ki(x) = 1
πdhd

i

d∏
j=1

(
1 + (xj − ki,j)2

h2
i

)−1

(2: Hypothesis Def.)

(Note that this differs from the standard multivariate Cauchy [33].) If we let f1,0(x) denote
the probability density function for the standard d-fold product of Cauchy distributions
(centered at the origin unit scale), we can express this equivalently as

fhi,ki
(x) = 1

hd
i

f1,0

(
x− ki

hi

)
, where f1,0(x) = 1

πd

d∏
j=1

(
1 + x2

j

)−1
.

It will be convenient to define the hypothesis ball BH
i = B(ki, hi), which we use to

illustrate Hi. Note that, unlike our truth probabilities Pi, our hypothesis distributions
have unbounded support. Our algorithm modifies the parameters ki and hi in response to
information received from the oracle.

4.1 Potential Function
Due to the subtleties of tracking the Kullback-Leibler divergence, we introduce a potential
function Φ to aid in the analysis. For each object index i ∈ [n], we define an individual
potential function Φi, which bounds the distance Di to within a constant. The total potential
Φ will be the sum of these functions.

Let si = ∥qi − ki∥ denote the Euclidean distance between the center of the actual
distribution and the center of the hypothesis ball. Let li = βNi denote the radius of the
local feature of qi. Recall that hi is the radius of the hypothesis ball (see Figure 2). We
define the individual and system potentials to be

Φi = Φ(Pi, Hi) = log
(

max(si, li, hi)√
lihi

)
and Φ = Φ(P,H) =

∑
i∈[n]

Φi (3)

The following lemma shows that, up to additive and scalar constants that depend on the
dimension, distances can be bounded above by this potential.

WADS 2025
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qi

li

BH
i

Bi
x

ki
hi

si

Figure 2 The definition of the individual potential Φi.

▶ Lemma 3. There exists a constant cd (depending on dimension) such that for any i ∈ [n],
Di ≤ cd(1 + Φi), and hence D ≤ cd(n + Φ).

Proof. Recall that Pi(x) is the probability density function of a uniform distribution over a
ball of radius li. Thus, for x ∈ Bi, Pi(x) = ωd/ld

i , where ωd denotes the volume of the unit
Euclidean ball in Rd, and Bi. Therefore,

Di =
∫

Bi

Pi(x) log Pi(x)
Hi(x)µ(dx)

=
∫

Bi

Pi(x) log ωd/ld
i

(πdhd
i )−1∏d

j=1

(
1 + (xj−ki,j)2

h2
i

)−1 µ(dx)

=
∫

Bi

Pi(x) log
(
ωd πd

)
µ(dx) +

∫
Bi

Pi(x) log
hd

i

∏d
j=1

(
1 + (xj−ki,j)2

h2
i

)
ld
i

µ(dx). (4)

For x ∈ Bi and j ∈ [d], by the triangle inequality, we have

|xj − ki,j | ≤ ∥x− ki∥ ≤ ∥x− qi∥+ ∥qi − ki∥ ≤ li + si.

Therefore,

Di ≤ log
(
ωd πd

)
+
∫

x∈Bi

Pi(x) log

hd
i

ld
i

d∏
j=1

(
1 + (si + li)2

h2
i

)µ(dx)

≤ log
(
ωd πd

)
+ log

hd
i

ld
i

(
1 + (si + li)2

h2
i

)d
∫

x∈Bi

Pi(x)µ(dx)

= log
(
ωd πd

)
+ d log

(
h2

i + (si + li)2

li hi

)
≤ cd

(
1 + log max(si, li, hi)√

lihi

)
,

for a suitably chosen cd that depends only on the dimension. ◀

▶ Remark (Potential function and approximating pairwise distances). The potential function
Φi we define here is symmetric. It is remarkable that a symmetric function bounds an
asymmetric function Di under the choice of Cauchy distributions as hypotheses.

To demonstrate the value of our potential function, suppose that for ∀i, Φi < log c, for
some constant c. This implies that hi < c

√
lihi, which further implies hi < c′li for some

constant c′. Similarly, si < c
√

lihi < c′′li for some constant c′′. By the triangle inequality,
the distance between the centers of two hypothesis balls satisfies

∥ki − kj∥ ≤ si + sj + ∥qi − qj∥ ≤ c′′li + c′′lj + ∥qi − qj∥.

Since li = Ni/β ≤ ∥qi − qj∥/β, we have ∥ki − kj∥ ≤ c∗∥qi − qj∥, for some constant c∗.
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Since ∥ki − kj∥ is a constant approximation for ∥qi − qj∥, it immediately follows that we
can maintain a constant-weight approximation of structures like the Euclidean minimum
spanning tree and the Euclidean traveling salesman tour on Q by constructing the same on
ki’s, the centers of the hypotheses Hi’s. ⌟

An important feature of our choice of a potential function is that the evolver cannot
change its value by more than a constant with each step. Recall that the evolver selects
an object index i and moves qi by a distance of most αNi in any direction. This results
in at most an α fraction change in the values of li and si, and hence the resulting change
in Φi is bounded by a constant. However, note that the movement of qi could potentially
affect the local feature sizes of a number of other objects in the system. We can show by
a packing argument that there is only a constant number of indices j, whose Φj value is
affected. Furthermore, these values are only changed by a constant. This is encapsulated in
the following lemma. Its proof has been deferred to Section A.1.

▶ Lemma 4. Each step of the evolver increases the potential Φ by at most a constant.

4.2 The Algorithm
Next, we present our algorithm. The algorithm runs in parallel to the evolver, running
faster by a speed-up factor of σ (whose value will be derived in our analysis). Each step
of the algorithm involves a probe of an object by the oracle, and following that, a possible
modification of a hypothesis, Hi. The total running time of the algorithm is proportional to
the number of steps.

Let us begin with a high-level explanation. The details are provided in Algorithm Track-
ByZoom. Recall that we are given a set of n objects, each represented by Xi, a uniform
probability distribution over a ball Bi = B(qi, βNi), where Ni is the distance to its nearest
neighbor and β is the local feature scale. The points qi are restricted to lie within a bounding
ball B0 centered at the origin. The algorithm maintains a hypothesis in the form of n Cauchy
distributions, each represented by a hypothesis ball BH

i = B(ki, hi), where ki is the center of
the distribution and hi is the distribution’s scaling parameter.

The algorithm begins with an initial hypothesis, where each hypothesis ball is just B0.
This reflects the fact that we effectively assume nothing about the location of qi, except that
it lies within the bounding ball. The algorithm then proceeds in a series of iterations, where
each iteration handles all the n indices in order. The handling of each index involves two
processes, called zoom-out and zoom-in.

In the zoom-out process, we query the oracle on index i to check whether (1) the sampled
point Xi lies within its hypothesis ball and (2) at least one other Xj lies within a concentric
ball whose radius is larger by a factor of 1

β . If so, we expand the hypothesis ball by a factor
of 3/(1− 2β). (We show in Lemma 5 that this guarantees that the hypothesis ball BH

i now
contains the local feature ball Bi.) We then proceed to the zoom-in process. If not, we double
the hypothesis ball and repeat (see Figure 3).

In the zoom-in process, we first check whether Xi lies within the hypothesis ball. (The
evolver could have moved qi.) If not, we return to the zoom-out process. If so, we next check
the 1

β -expansion of this ball. If there is no other Xj in this expanded ball, we accept the
current hypothesis for i, and go on to the next point in the set. (We show in Lemma 10 that
Φi at this point in time is bounded by a constant). If there is such an Xj however, we may
need to shrink the hypothesis ball for the current index. We cover the hypothesis ball with a
collection of O(1) balls whose radii are smaller by a constant factor, and we test whether Xi

WADS 2025



4:10 Evolving Distributions Under Local Motion

Algorithm TrackByZoom Tracking Evolving Distributions.

1: procedure TrackByZoom(O, n, β,B0)
▷ Maintain hypothesis H by running the procedure at a speed-up factor σ, given the

membership Oracle:O, the input size:n, the local feature parameter:β, and the the

maximum bounding ball centered at origin:B0

2: for i← 1 to n do
▷ Initially set the hypotheses according to the given bounding ball

3: hi ← radius(B0), ki ← 0 ▷ Set Hi(x)← f0,R0 (x), as in Eq.(2: Hypothesis Def.)
4: end for

5: i← 1 ▷ Start with the first point

6: ZOOM_OUT:
7: Oi ← O(i, ki, hi), O∗

i ← O(i, ki, hi/β) ▷ Store values to use later

▷ If BH
i (hypothesis ball) contains Xi, and its 1/β-expansion contains some Xj

8: if Oi = (Y, ·) and O∗
i = (Y, +) then

9: hi ← 3
1−2β hi ▷ Update BH

i so that it contains Bi (local feature of qi)

10: go to ZOOM_IN
11: end if
12: hi ← 2hi ▷ Zoom out by expanding BH

i

▷ Keep zooming out until Xi ∈ BH
i , and its 1/β-expansion contains another Xj

13: go to ZOOM_OUT

14: ZOOM_IN:
15: Oi ← O(i, ki, hi), O∗

i ← O(i, ki, hi/β) ▷ Store values to use later

16: if Oi = (N, ·) then ▷ Xi no longer in BH
i

17: go to ZOOM_OUT
18: end if

▷ Xi ∈ BH
i , and its 1/β-expansion doesn’t contain another Xj

19: if Oi = (Y, ·) and O∗
i = (Y,−) then

20: i← 1 + i mod n ▷ Φi is a constant, ready to move to the next point

21: go to ZOOM_OUT
22: end if

▷ If BH
i (hypothesis ball) contains Xi, and its 1/β-expansion contains some Xj

23: if Oi = (Y, ·) and O∗
i = (Y, +) then

▷ Ψ is the set of balls of radius hi/
(
2⌈ 3

1−2β ⌉
)

which cover BH
i

24: for B(x, r) ∈ Ψ(BH
i , 2⌈ 3

1−2β ⌉) do
25: if O(i, x, r) = (Y, ·) then ▷ Found the nested ball that contains Xi

26: ki ← x, hi ← 3
1−2β r ▷ Expand the nested ball so that it contains Bi

27: end if
28: end for
29: end if

▷ Keep zooming in until Xi ∈ BH
i , and its 1/β-expansion contains no other Xj

30: go to ZOOM_IN

31: end procedure
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iBH,(1)
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i
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(1)
i

X
(2)
i

X
(0)
i

X
(1)
j

X
(0)
j

X
(2)
j

h
(1)
i /βh

(2)
i /β

ki

Bj

(a) Multiple stages of the zoom-out process starting at t = 0.
Stage t = 2 is the first time BH,(t)

i contains Xi, and its 1/β-
expansion contains Xj .

Bi
BH,(2)
i

BH,(3)
i

3
1−2βh

(2)
i

(b) BH,(3)
i is the hypothesis ball at

the end of the zoom-out process.
Note that Bi ⊂ BH,(3)

i .

Figure 3 The zoom-out process of TrackByZoom (Line 6).

lies within any of them (see Figure 4). As soon as we find one, we shrink the hypothesis ball
about this ball. We repeat this process until one of the earlier conditions applies (causing us
to return to the zoom-out process or move on to the next point).

Ψ1 Ψ2

Ψk

BH,(0)
i

h
(0)
i

h
(0)
i /

(
2⌈ 3

1−2β⌉
)

(a) Set of nested balls covering BH,(0)
i , which we

call Ψ. radius(Ψi) = radius(Bi)/
(
2⌈ 3

1−2β ⌉
)
, and

|Ψ| ∈ O(1).

Bi

BH,(0)
i

Ψk

BH,(k)
i = 3

1−2βΨk

BH,(k)
i /β

Bj

X
(0)
j

X
(k)
j

X
(0)
i

X
(k)
i

(b) Ψk is the first nested ball to contain Xi.
BH,(k)

i contains Xi, and its 1/β-expansion does
not contain Xj . TrackByZoom moves on to
index i + 1.

Figure 4 Illustration of the zoom-in process in TrackByZoom (Line 14).

4.3 Analysis

In this section, we analyze the distance that the algorithm maintains with the ground
truth. Recall that the initial hypotheses are based on the bounding ball B0, which is
centered at the origin. Letting R0 = radius(B0), we have H

(0)
i (x) = f0,R0(x), as defined in

Eq. (2: Hypothesis Def.). Using Eq. (3), the initial potential function satisfies:

Φ(0)
i = log

√
R0/l

(0)
i , and Φ(0) ∈ O(n log Λ0) (Λ0:Aspect Ratio) (5)
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4:12 Evolving Distributions Under Local Motion

Suppose the condition in line 8, and 23 are satisfied. We prove the following lemma to justify
the expansion factor 3

1−2β . The proof is rather technical and has been deferred to the full
version of the paper.

▶ Lemma 5 (Expansion Factor). If O(i, ki, hi) = (Y, ·) and O(i, ki, hi/β) = (Y, +), then
Bi ⊆ B

(
ki,

3
1−2β hi

)
.

Let us consider how Algorithm TrackByZoom affects the potential. For a particular
index i, during the zoom-out process, we double the radius hi of the hypothesis ball. If
the Euclidean distance between the centers of the hypothesis, and the local-feature ball is
much larger than hi, then Φ = log(max(si, li, hi)/

√
lihi) = log(si/

√
lihi) decreases by an

additive constant. However, once hi is greater than si, the algorithm risks increasing Φ. We
show that the number of steps where Φ increases is a constant for every index i. However,
during the zoom-in process, we maintain the invariant that the hypothesis ball contains the
local-feature ball (Lemma 5), which implies that max(si, li, hi) = hi. Therefore, Φ decreases
by a constant amount whenever we shrink the hypothesis ball by a constant factor. However,
if the evolver moves qi while index i is being processed, our algorithm may transition to the
zoom-out process again. Hence, if the evolver executes some ε⟨z⟩ steps in the zth iteration,
our algorithm may increase Φ by only O

(
n + ε⟨z⟩). We obtain the following lemma. The

proof is deferred to Section A.1

▶ Lemma 6 (Algorithm’s contribution towards Φ). For any iteration z, let ε⟨z⟩ denote the
number of steps executed by the evolver. Then TrackByZoom increases Φ in O

(
n + ε⟨z⟩)

steps, each time by O(1). In each of the remaining steps of the zth iteration, it decreases Φ
by Θ(1) in an amortized sense.

Let Φ⟨z⟩ be the potential function at the start of the zth iteration. And let ∆⟨z⟩ be
the time taken by the zth iteration of the algorithm. At the conclusion of the zoom-in
process for a particular index i, the algorithm fixes a hypothesis Hi which is at a reasonable
distance from the truth Pi. In fact, we show in Lemma 10 that at this point in time, Φi is
ϕ0, a constant. Therefore, by Lemma 6, TrackByZoom running at a constant speed-up σ

roughly spends ∼ Φ⟨z⟩
i time (within constant factors), in reducing Φ⟨z⟩

i to ϕ0. Summing over
all indices, we see that the time taken by zth iteration, ∆⟨z⟩, is ∼ Φ⟨z⟩. Intuitively, for a
sufficiently large speed-up factor, the actions of the evolver can only affect ∆⟨z⟩ by a small
fraction of this amount. We summarize these observations in the following lemma. The proof
is deferred to Section A.1

▶ Lemma 7 (Iteration time proportional to Potential). There exists a constant speed-up factor
σ for TrackByZoom such that ∆⟨z⟩ ∈ Θσ

(
n + Φ⟨z⟩).

We are now ready to derive how Φ⟨z⟩ changes over the course of multiple iterations. We
show that for a sufficiently large (constant) speed-up factor σ, after ∼ log log Λ0 iterations Φ
converges to O(n). (Recall that Λ0 is the initial aspect ratio.)

▶ Lemma 8. There exists a constant speed-up factor σ for Algorithm TrackByZoom and
z0 ∈ Z, such that for all z > z0, Φ⟨z⟩ ∈ O(n)

Proof. By Lemma 4, in the zth iteration the evolver takes at most ε⟨z⟩ = O(∆⟨z⟩) steps and
increases Φ by at most O(∆⟨z⟩). Therefore, by Lemma 6, TrackByZoom increases Φ by
O(n + ∆⟨z⟩). Since the algorithm runs at a speed-up factor σ it takes σ∆⟨z⟩ steps, and by
Lemma 6, it decreases Φ by at least λ(σ ∆⟨z⟩−O(n + ∆⟨z⟩)), for some λ ∈ O(1). Accounting
for all the increases and decreases we have:
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Φ⟨z+1⟩ ≤ Φ⟨z⟩ + O(∆⟨z⟩) + O(n + ∆⟨z⟩)− λ(σ ∆⟨z⟩ −O(n + ∆⟨z⟩))

≤ Φ⟨z⟩ + O(∆⟨z⟩)− σλ∆⟨z⟩ + O(n).

There exists a sufficiently large σ ∈ O(1) such that σλ∆⟨z⟩ −O(∆⟨z⟩) ≥ a∆⟨z⟩, for 0 < a ∈
O(1). So,

Φ⟨z+1⟩ ≤ Φ⟨z⟩ − a∆⟨z⟩ + O(n).

By Lemma 7, for a sufficiently large (constant) σ, there exists cσ > 0 such that ∆⟨z⟩ ≥
cσ

(
n + Φ⟨z⟩). Therefore,

Φ⟨z+1⟩ ≤ (1− acσ)Φ⟨z⟩ + (1− acσ)O(n) ≤ (1− acσ)z+1Φ⟨0⟩ +
(

z+1∑
y=1

(1− acσ)y

)
O(n).

By Eq. (5), Φ⟨0⟩ = Φ(0) ∈ O(n log Λ0), and since there exists b > 1 such that (1 − acσ) <

1/b < 1, we have

Φ⟨z+1⟩ ≤ O(n log Λ0)
bz+1 + O(n). (6)

Observe that this is O(n) whenever z > log log Λ0. ◀

If Φ⟨z⟩ ∈ O(n), then by Lemma 7, ∆⟨z⟩ ∈ Θ(n). Thus, Φ increases by at most O(n)
throughout iteration z. Therefore, for any time t during iteration z, Φ(t) ∈ O(n) as well.

Using Eq. (6) we observe that for all z > 1, Φ⟨z⟩ ≤ O(n log Λ0). By Lemma 7, this implies
that ∆⟨z⟩ ∈ Θ(n log Λ0). Hence, for some t0 ∈ O(n log Λ0 · log log Λ0), we have Φ(t) ∈ O(n),
for all t > t0.

By combining Lemmas 8 and 3, we complete the proof of Theorem 1. It is noteworthy
that there is a trade-off between the speed-up factor σ and the motion parameter α. Recall
that with each step, the evolver can move qi by a distance of up to αNi. If we reduce this
parameter to α′ = (1 + α) 1

c − 1, then it takes the evolver at least c steps to effect the same
change as before. Thus, by reducing the local-motion factor, it is possible to achieve a
speed-up factor of σ = 1. Formally we have,

▶ Corollary 9. There exists a motion parameter α′ < 1 such that for a set of n evolving
objects in Rd under the (α′, β)-local-motion model, where β < 1

3 , Algorithm TrackByZoom
(with speed-up factor 1) maintains a distance of O(n) for all t ≥ t0, t0 ∈ O(n log Λ0 log log Λ0)

5 Extensions and Conclusion

The local-motion model introduced in Section 2 assumes a uniform probability distribution
for each object. However, the algorithm TrackByZoom with an appropriate speed-up factor
can be applied to a wider class of probability distributions. A distribution Pi in this class
has Bi, the volume of the ith object, as its support, and is scaled according to li, the local
feature size. Many natural truncated distributions [11], such as the uniform distribution, the
truncated normal distribution [27], the truncated Cauchy distribution belong to this family.
Details are presented in the full version of the paper.

An additional refinement to the motion model we suggested might involve redefining
the local feature region and the speed of a point based on the distance to its k-nearest
neighbors for a fixed k, instead of just using the nearest neighbor distance. We conjecture
that our principal results extend to this generalization as well, given a suitable range counting
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4:14 Evolving Distributions Under Local Motion

oracle. Yet another variation of the model could possibly involve letting the uncertainty
associated with a point have unbounded support (for e.g. a normal rather than a truncated
normal distribution). This is a significantly harder problem, as a point may lie outside
its local feature with a constant probability, requiring a maintaining algorithm to have a
super-constant speed-up. We aim to study these in the future.
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A Appendix

A.1 Deferred Proofs
Note that some of the restatements of the lemmas given here provide additional details,
which were not present in the original statements.

The next lemma applies whenever Algorithm TrackByZoom has completed its processing
of an object on Line 20. It shows that the potential value for this object does not exceed a
constant.

▶ Lemma 10 (Done tracking Xi). There exists a constant ϕ0, such that whenever Algo-
rithm TrackByZoom completes its processing of any object i, Φi ≤ ϕ0 ∈ O(1).

Proof. The algorithm moves on to the next point when the condition in line 19 is satisfied
(O(i, ki, hi) = (Y, ·) and O(i, ki, hi/β) = (Y,−)). Since O(i, ki, hi) = (Y, ·), BH

i = B(ki, hi)
intersect. Moreover, if qj is the current nearest neighbor of qi, O(i, ki, hi/β) = (Y,−) implies
Xj lies outside the 1/β expansion of BH

i (see Figure 5).

ki qi

Xj

hi

hi
β

li

BH
i

Bi

lj
qj

li
β

Figure 5 Proof of Lemma 10.

Now because qj is the nearest neighbor of qi, Nj ≤ Ni, hence lj ≤ li. By triangle
inequality, the following series of inequality holds:

hi

β
≤ ∥Xj −ki∥ ≤ ∥Xj −qi∥+ ∥qi−ki∥ ≤

(
li
β

+ lj

)
+ (hi + li) ≤

(
1
β

+ 2
)

li + hi,

implying that 1−β
1+2β hi ≤ li.

Now consider the hypothesis ball, BH−

i , set by the algorithm in the previous step (via
Line 26). From Lemma 5, we have Bi ⊆ BH−

i . Let h−
i = radius

(
BH−

i

)
. Since the algorithm

shrinks the hypothesis ball by at least a factor of 2 during the zoom-in process, h−
i is at least

2hi. And therefore 2hi ≥ li. We also have si ≤ hi + li (see Figure 5). Therefore,

Φi = log
(

max(si, li, hi)√
lihi

)
≤ log

(
li + hi√

lihi

)

≤ log

 2hi + hi√
1−β

1+2β
hi · hi

 ≤ ϕ0, for ϕ0 = log
(

3 ·
√

1 + 2β

1− β

)
. ◀

▶ Theorem 2 (Lower Bound on the Distance). For any algorithm A, there exists a starting
configuration Q(0) and an evolver (with knowledge of A) in the local-motion model such that,
for any positive integer t0, there exists t ≥ t0, such that D(t) = D(P(t),H(t)) ∈ Ω(n).
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Proof. We construct a point set on the real line (R), and we will mention at the end how to
adapt the proof to any dimension d. Given the small constant β, the local feature constant,
we define Q(0) to be the following set of n = 2m points in R.

Q(0) =
⋃

i∈[m]

{
a

(0)
i = 100i

}
∪
⋃

i∈[m]

{
b

(0)
i = 100i + 1

}
.

Let Da,i = D2(k−1)+1, k ∈ [m], the distance corresponding to the first point in the tuple. We
similarly define Pa,i and Ha,i. Let Ni denote the current distance to ai’s nearest neighbor.
The local feature interval for ai, denoted Ii, is 100i + βNi[−1, 1]. Recall that Pa,i is the
uniform probability over Ii. Therefore, Pa,i(x) = 1/|Ii|, where |Ii| = 1/βNi is the diameter
of Ii. Now

D(t0)
a,i =

∫
x∈Ii

P
(t0)
a,i (x) log

P
(t0)
a,i (x)

H
(t0)
a,i (x)

dx

=
∫

x∈Ii

P
(t0)
a,i (x) log P

(t0)
a,i (x)dx −

∫
x∈Ii

P
(t0)
a,i (x) log H

(t0)
a,i (x)dx.

By the concavity of the log function and Jensen’s inequality, we have

D(t0)
a,i ≥ − log |Ii|

∫
x∈Ii

P
(t0)
a,i (x)dx − log

∫
x∈Ii

H
(t0)
a,i (x)P (t0)

a,i (x)dx

= − log |Ii| − log
∫

x∈Ii
H

(t0)
a,i (x)dx
|Ii|

= − log
∫

x∈Ii

H
(t0)
a,i (x)dx. (7)

We may assume that D(t0) ∈ o(n) (for otherwise we can set t = t0 and are done). This
implies there are only o(n) many ai’s such that D(t0)

a,i ∈ Ω(1). Call the remaining n/2− o(n),
ai’s the proximal set, denoted Ta.

We are now ready to describe the evolver’s actions. It chooses to stay dormant until
time t0. For a large enough constant M , consider the time interval [t0, t0 + n/M ]. The
algorithm A, running at a speed-up factor of σ, can modify at most σn/M hypotheses in
the time interval. The evolver chooses not to move any of those points. Therefore A can
only reduce D(t0) by o(n) over this time interval. Now there are at least n/2− σn/M − o(n)
members in the proximal set Ta, whose hypotheses were not altered by A. Call this set the
stable set, denoted Sa.

For κ = ⌈log(2/(1 + α))⌉, the evolver selects some n/(κM) members from Sa. Call that
set S′

a. To be specific, for all ai ∈ S′
a, the evolver chooses to move ai away from bi some κ

times, by a distance of exactly αNa,i, where Na,i is the distance of ai from its current nearest
neighbor. (Note that the nearest neighbor will remain bi throughout these operations.) Given
this value of κ, after the conclusion of these operations, the distance between ai and bi is
at least 2. For β < 1/3, the local feature of ai changes to an interval I ′

i, where I ′
i ∩ Ii = ∅.

Now, for t = t0 + n/M , using a similar analysis as Eq. (7), we have

D(t)
a,i ≥ − log

∫
x∈I′

i

H
(t)
a,i(x)dx. (8)

Thus, for all ai ∈ S′
a, we have H

(t)
a,i = H

(t0)
a,i and D

(t0)
a,i = o(1). Therefore,∫

x∈Ii

H
(t0)
a,i (x)dx ≥ e−o(1).
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4:18 Evolving Distributions Under Local Motion

If D(t)
a,i ∈ o(1) as well, then similarly from Eq. (8), we have∫
x∈I′

i

H
(t)
a,i(x)dx ≥ e−o(1).

But, this yields a contradiction since I ′
i ∩ Ii = ∅ and H

(t)
a,i = H

(t0)
a,i implies that∫

x∈I′
i
∪Ii

H
(t)
a,i(x)dx ≥ 2e−o(1) > 1.

Therefore, for ai ∈ S′
a, D(t)

a,i ∈ Ω(1), and since |S′
a| = Ω(n), we have D(t) ∈ Ω(n).

For a general dimension d, we define Q, in the same way except all the points lie on a
single axis. The evolver also moves these points along that particular axis. The rest of the
analysis involves integration over a region of space rather an interval, but is straightforward
and carries over to Rd. ◀

▶ Lemma 4 (Evolver’s contribution to Φ). Every step of the evolver increases the potential
function Φ by at most a constant.

Proof. Let’s say the evolver chooses to move qi at time 0. Now l
(0)
i /β is the nearest neighbor

distance of qi at time 0. Therefore qi moves by at most (α/β)l(0)
i distance, implying s

(1)
i ≤

s
(0)
i + (α/β)l(0)

i ≤ (1 + α/β) max
(

s
(0)
i , l

(0)
i , h

(0)
i

)
. Similarly (1− α)l(0)

i ≤ l
(1)
i ≤ (1 + α)l(0)

i .
Therefore,

Φ(1)
i − Φ(0)

i ≤ log
max

(
s

(1)
i , l

(1)
i , h

(1)
i

)
√

l
(1)
i h

(1)
i

− log
max

(
s

(0)
i , l

(0)
i , h

(0)
i

)
√

l
(0)
i h

(0)
i

≤ log
max

(
s

(0)
i + (α/β)l(0)

i , (1 + α)l(0)
i , h

(0)
i

)
√

(1− α)l(0)
i h

(0)
i

− log
max

(
s

(0)
i , l

(0)
i , h

(0)
i

)
√

l
(0)
i h

(0)
i

≤ log

1 + α/β√
1− α

max
(

s
(0)
i , l

(0)
i , h

(0)
i

)
√

l
(0)
i h

(0)
i

 − log
max

(
s

(0)
i , l

(0)
i , h

(0)
i

)
√

l
(0)
i h

(0)
i

= log 1 + α/β√
1− α

∈ O(1) (9)

Let Ni be the set of indices of points whose nearest neighbor at time 0 was q(0)
i , or

whose nearest neighbor at time 1 was q(1)
i . Only points with indices in this set have their

potential function changed. If j ∈ Ni, s
(0)
j , and h

(0)
j do not change. Since qi moves by

at most (α/β)l(0)
i distance, the nearest neighbor distance Nj = lj/β changes by at most

(α/β)l(0)
i as well. Therefore,

−(α/β)l(0)
i ≤ N

(1)
j −N

(0)
j ≤ (α/β)l(0)

i =⇒ −αl
(0)
i ≤ l

(1)
j − l

(0)
j ≤ αl

(0)
i (10)

Since (1− α)l(0)
i ≤ l

(1)
i , we also have

− α

1− α
l
(1)
i ≤ l

(1)
j − l

(0)
j ≤ α

1− α
l
(1)
i (11)
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If q(0)
i was the nearest neighbor of q(0)

j , then N
(0)
j ≤ N

(0)
i , and hence l

(0)
j ≤ l

(0)
i . Using

the last fact, and dividing Eq. (10) by l
(0)
j , we have (1− α) ≤ l

(1)
j /l

(0)
j ≤ (1 + α). Similarly,

If q(1)
i was the nearest neighbor of q(1)

j , then using Eq. (11) we have (1 − α/(1 − α)) ≤
l
(1)
j /l

(0)
j ≤ (1 + α/(1− α)). Therefore l

(1)
j /l

(0)
j ∈ Θ(1) for j ∈ Ni. And hence,

Φ(1)
j − Φ(0)

j = log
max

(
s

(1)
i , l

(1)
i , h

(1)
i

)
√

l
(1)
i h

(1)
i

− log
max

(
s

(0)
i , l

(0)
i , h

(0)
i

)
√

l
(0)
i h

(0)
i

= log
max

(
s

(0)
i , l

(1)
i , h

(0)
i

)
max

(
s

(0)
i , l

(0)
i , h

(0)
i

) − log

√
l
(1)
i h

(0)
i√

l
(0)
i h

(0)
i

≤

∣∣∣∣∣log l
(1)
i

l
(0)
i

∣∣∣∣∣ +

∣∣∣∣∣log l
(0)
i

l
(1)
i

∣∣∣∣∣ ∈ O(1), ∀ j ∈ Ni (12)

Finally, we show that |Ni| ∈ O(1). To that effect we solve a general problem: What
is the maximum number of points in Q, whose nearest neighbor is q1? Without loss of
generality, let q2 be the nearest neighbor of q1, such that ∥q2 − q1∥ = 1. Let q3’s nearest
neighbor be q1. Consider the line segment q1q3, and its intersection with B(q1, 1) the ball
centered at q1, and passing through q2. Call the intersection point q′

3. For any general
point qx ∈ Q, we similarly define q′

x. Note q′
2 = q2. By triangle inequality, we have

∥q′
3 − q′

2∥ ≥ ∥q3 − q2∥ − ∥q3 − q′
3∥ = ∥q3 − q2∥ − ∥q3 − q1∥+ ∥q1 − q′

3∥. Since q1 is the
nearest neighbor of q3, we have ∥q3−q2∥ ≥ ∥q3−q1∥. Therefore ∥q′

3−q′
2∥ ≥ ∥q1−q′

3∥ = 1.
Therefore, for any x, y ∈ [n], x ̸= y, such that q1 is the nearest neighbor of qx and qy,
we have ∥q′

x − q′
y∥ ≥ 1. Let M1 = {q′

x | q1is the nearest neighbor of qx}. Draw a ball of
radius 1/2 around q1, and every member of M1. Each of these balls are non-overlapping.
However all of them are contained within a ball around q1 of radius 3/2. Therefore
|M1| < (3/2)d/(1/2)d = 3d ∈ O(1). Observing that Ni ≤ 2M1, and using Eq. (9),
and 12 we have the result. ◀

▶ Lemma 6 (Algorithm’s contribution towards Φ). For any iteration z, let ε⟨z⟩ denote the
number of steps executed by the evolver. Then TrackByZoom increases Φ in O

(
n + ε⟨z⟩)

steps, each time by O(1). In each of the remaining steps of the zth iteration, it decreases Φ
by Θ(1) in an amortized sense.

Proof. For a particular index i, we first concentrate on the zoom-out routine of our Al-
gorithm TrackByZoom (see Line 6). Assume that the evolver leaves qi untouched for
the time being. We show later how to handle the case where the evolver moves qi, while
the algorithm is processing the index i. The algorithm increases hi by a constant factor in
Line 12. Therefore, Φ = log(max(si, li, hi)/

√
lihi) decreases by a constant amount whenever

max(si, li, hi) ̸= hi. Now suppose max(si, li, hi) = hi at time t, for the first time during
the zoom-out routine. That implies a 2-expansion of BH

i in line 12 contains the entire Bi.
Therefore, a further 1/β-expansion definitely contains another Xj , j ̸= i, satisfying the
condition in line 8. We conclude that once max(si, li, hi) = hi, the algorithm only increases
Φ by a constant amount before moving on to the zoom-in routine of the algorithm (line 14).

Now, we look at the zoom-in routine of the algorithm (line 14). The algorithm only zooms
in as long as the condition in line 23 is satisfied. Since we expand BH

i with an expansion
factor 3

1−2β in line 26, using Lemma 5 we conclude that Bi ⊂ BH
i in every step during the

zoom-in routine. That implies max(si, li, hi) = hi throughout the zoom-in process, further
implying Φi = log

√
hi/li.
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In line 24 we subdivide the hypothesis ball into |Ψ| =
(

2⌈ 3
1−2β ⌉

√
d
)d

∈ O(1) balls
and make constant number of queries to the oracle. Therefore, hi reduces by a factor of

3
1−2β /

(
2⌈ 3

1−2β ⌉
)
≥ 2. And hence, Φ reduces by at least a constant amount. We amortize

the reduction over the |Ψ| calls to the Oracle, to denote a constant reduction in Φ in every
zoom-in step.

If the evolver moved qi while the algorithm was processing the index i, there is a possibility
that Xi might move outside of BH

i during the zoom-in routine. We take care of this condition
in line 16 to initiate the zoom-out process. Since the algorithm possibly increases Φ by a
constant amount when switching from zoom-out to zoom-in, we conclude: For every evolver’s
step, our algorithm might increase Φ by at most a constant amount as well. ◀

▶ Lemma 7 (Iteration time proportional to Potential). There exists a constant speed-up factor
σ for TrackByZoom such that ∆⟨z⟩ ∈ Θσ

(
n + Φ⟨z⟩).

Proof. By Lemma 4, the evolver can only increase the potential by Φ⟨z⟩
ε = O(∆⟨z⟩) during

the iteration. By Lemma 6 we observe that the algorithm increases Φ by some amount that
is O(n + ∆⟨z⟩). Since by Lemma 10, the algorithm reduces each Φi to at most ϕ0, it reduces
the overall potential by at most Φ⟨z⟩ − nϕ0 + Φ⟨z⟩

ε + O(n + ∆⟨z⟩) = O(n + Φ⟨z⟩ + ∆⟨z⟩). For
a speed-up factor σ, the algorithm TrackByZoom spends O(n + Φ⟨z⟩ + ∆⟨z⟩)/σ time to
do so, implying ∆⟨z⟩ ≤ O(n + Φ⟨z⟩ + ∆⟨z⟩)/σ, further implying ∆⟨z⟩ ∈ Oσ(n + Φ⟨z⟩), for a
sufficiently large constant σ.

To see why ∆⟨z⟩ ∈ Ω(n + Φ⟨z⟩), we follow a similar logic, except to observe that the
evolver can decrease the potential by at most Φ⟨z⟩

ε = O(∆⟨z⟩) as well. By Lemma 10, the
algorithm reduces the overall potential Φ by at least Φ⟨z⟩ − nϕ0 −Φ⟨z⟩

ε = Ω(n + Φ⟨z⟩ −∆⟨z⟩),
which takes it at least Ω(n+Φ⟨z⟩−∆⟨z⟩)/σ time, implying that ∆⟨z⟩ ≥ Ω(n+Φ⟨z⟩−∆⟨z⟩)/σ,
resulting in ∆⟨z⟩ ∈ Ωσ(n + Φ⟨z⟩). ◀
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