Grandchildren-Weight-Balanced Binary Search
Trees

Vincent Jugé =
LIGM, Univ Gustave Eiffel & CNRS, Marne-la-Vallée, France
IRIF, Université Paris Cité & CNRS, France

—— Abstract

We revisit weight-balanced trees, also known as trees of bounded balance. Invented by Nievergelt

and Reingold in 1972, these trees are obtained by assigning a weight to each node and requesting
that the weight of each node should be quite larger than the weights of its children, the precise
meaning of “quite larger” depending on a real-valued parameter 7. Blum and Mehlhorn then showed
how to maintain them in a recursive (bottom-up) fashion when 2/11 < v < 1—1/+/2, their algorithm
requiring only an amortised constant number of tree rebalancing operations per update (insertion or
deletion). Later, in 1993, Lai and Wood proposed a top-down procedure for updating these trees
when 2/11 < v < 1/4.

Our contribution is two-fold. First, we strengthen the requirements of Nievergelt and Reingold,
by also requesting that each node should have a substantially larger weight than its grandchildren,
thereby obtaining what we call grandchildren-balanced trees. Grandchildren-balanced trees are not
harder to maintain than weight-balanced trees, but enjoy a smaller node depth, both in the worst
case (with a 6 % decrease) and on average (with a 1.6 % decrease). In particular, unlike standard
weight-balanced trees, all grandchildren-balanced trees with n nodes are of height less than 2log,(n).

Second, we adapt the algorithm of Lai and Wood to all weight-balanced trees, i.e., to all parameter
values v such that 2/11 <y <1-1/ V2. More precisely, we adapt it to all grandchildren-balanced
trees for which 1/4 < v < 1 — 1/\/§ Finally, we show that, except in limit cases (where, for
instance, ¥ = 1 — 1/4/2), all these algorithms result in making a constant amortised number of tree
rebalancing operations per tree update.

2012 ACM Subject Classification Theory of computation — Sorting and searching
Keywords and phrases Data structures, Balanced binary trees
Digital Object Identifier 10.4230/LIPIcs.WADS.2025.40

Related Version Full Version: https://arxiv.org/abs/2410.08825 [12]

1 Introduction

Among the most fundamental data structures are search trees. Such trees are aimed at
representing sets of pairwise comparable elements of size n while allowing basic operations
such as membership test, insertion and deletion, which typically require a time linear in the
depth of the tree. That is why various data structures such as height-balanced (AVL) trees [1],
weight-balanced trees [17], B-trees [4], red-black trees [9], splay trees [19], relaxed k-trees [8]
or weak AVL trees [10] were invented since the 1960s. All of them provide worst-case or
amortized O(log(n)) complexities for membership test, insertion and deletion, and may use
local modifications of the tree shape called rotations.

The most desirable features of such trees include their height, their internal and external
path lengths, and the amortised number of rotations triggered by an insertion or deletion.
Such statistics are presented in Table 1 below for families of binary trees.

Note that, although relaxed k-trees can be made arbitrarily short (given that each tree
should be of height at least log,(n)), achieving these excellent guarantees on the height of
the trees requires performing significantly more rotations, and thus considering other data
structures may still be relevant. This is, for instance, why Haeupler, Tarjan and Sen proposed

© Vincent Jugé;
37 licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 40; pp. 40:1-40:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:vincent.juge@univ-eiffel.fr
https://orcid.org/0000-0003-0834-9082
https://doi.org/10.4230/LIPIcs.WADS.2025.40
https://arxiv.org/abs/2410.08825
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

40:2

Grandchildren-Weight-Balanced Binary Search Trees

Table 1 Asymptotic approximate worst-case height, internal/external path length and amortised
number of rotations per update in binary trees with n nodes. Next to each worst-case bound are
indicated references where this bound is proved.

. Worst-case

Tree family - -
height path length am. rotations/update
AVL 1.44041og5(n) [1] 1.4404nlog,y(n) [13] O(log(n)) 2]
Weight-balanced 2logy(n) [17) 1.1462nlog, (n) [17) o(1) [5]
Red-black 2logy(n) [9] 2nlogy(n) [7] o(1) [9]
Splay n [19] n?/2 [19] o(1) [19]
Relaxed k- (14 ¢)logy(n) [8] (I1+¢e)nlogy(n) [8] O(1/e) [8]
Weak AVL 2logy(n) 19 2nlog,(n) [7] o(1) [10]

Griﬁ;ﬂ;ﬁm 1.8798 log, (1) 1.1271nlog,(n) o(1)

weak AVL trees in 2009: these are a variant of AVL trees, isomorphic to red-black trees,
whose height can be worse than that of AVL trees (but never worse than that of red-black
trees), but which require only a constant number of rotations per update, whereas standard
AVL trees may require up to log(n) rotations per update.

In 1972, Nievergelt and Reingold invented weight-balanced trees, or trees of bounded
balance [17]. This family of trees depends on a real parameter v, and is denoted by BB[v].
It is based on the notion of weight of a node n, which is the integer |n| defined as one
plus the number of descendants of a node n; alternatively, |n| is the number of empty
sub-trees descending from n. Although they might be less efficient than other families of
balanced trees in general, they are a reference data structure for order-statistic trees: they
are relevant in contexts where we need to store the rank of elements in a dynamic set [6]
(i.e., finding efficiently the k*" smallest element, or counting elements smaller than a given
bound). They are also widely used in libraries of mainstream languages, e.g., Haskell set or
map implementations [15, 16].

The family BB[~] consists of those binary search trees in which, for all nodes u and v, we
have |u| > 7|v| whenever wu is a child of v. Nievergelt and Reingold also gave an algorithm
for dynamically maintaining BB[y]-trees of size n whenever v < /2 — 1, which required
only O(log(n)) element comparisons and pointer moves per modification.

Blum and Mehlhorn then found that this algorithm worked only when 2/11 < v < v/2—1.
They also proved that, in that case, it required only O(1) amortised pointer moves per
modification [5]. Lai and Wood subsequently proposed an algorithm for maintaining such
trees through a single top-down pass per modification whenever 2/11 < v < 1/4, or whenever
updates were guaranteed to be non-redundant [14]. This limitation on the domain of v when
tackling possibly redundant updates is somewhat unfortunate, given that those values of ~
for which BB[y] have the best upper bounds on their height and path length are those for
which v approaches v/2 — 1.

Top-down maintenance algorithms have two main advantages over bottom-up algorithms.
First, bottom-up algorithms require maintaining a link from each node to its parent or storing
the list of nodes we visited along a given branch on a stack, which makes them typically
slower than top-down algorithms [3]. Second, they are also a strong bottleneck in concurrent
or parallel settings: going down to a leaf and then back to the root must be an atomic
operation (or requires maintaining children-to-parent links), since it might finish by changing
the root [9, 10].

V. Jugé

Thus, our goal here is two-fold. First, by making small changes to a long-known data
structure, we improve the guarantees it offers in terms of tree height. Second, we aim at
circumventing the limitations of the algorithm from Lai and Wood, by proposing a top-down
updating algorithm that will be valid in all cases, and which we also extend to our enhanced
data structure.

Contributions

We propose a new variant of weight-bounded trees, which we call grandchildren-balanced trees.
This family of trees depends on two real parameters « and 8, and is denoted by GCBJa, j3].
It consists of those binary search trees in which, for all nodes v and v, we have |u| < a|v|
whenever u is a child of v, and |u| < S|v| whenever u is a grandchild of v. Grandchildren-
balanced trees generalise weight-bounded trees, because GCBla, a?] = BB[1 — a.

We prove that, for well-chosen values of « and 3, the height and internal and external
path lengths of grandchildren-balanced trees are smaller than those of weight-bounded trees;
in particular, we break the 2log,(n) lower bound on the worst-case height of weight-balanced
trees. These results are achieved by using Algorithm 11.

We also extend the algorithm of Lai and Wood, and propose an algorithm for maintaining
grandchildren-balanced trees in a single top-down pass per modification, which requires
only O(1) amortised pointer moves per modification; this is Algorithm 16. Our algorithm is
valid for all relevant values of o and 3, including those for which GCB|«, 5]-trees enjoy the
best upper bounds on their height and path length.

Most proofs are omitted in the body of this article. Those of Sections 2 and 3 can be
found in the appendix; the other ones can be found in the complete version of this article [12].

2 Grandchildren-balanced trees

In this section, we describe a new family of binary search trees, called grandchildren-balanced
trees, which depends on two real parameters o and §. We also describe the domain in which
the pair («,) is meaningful and, for such pairs, we provide upper bounds on the height and
internal and external path lengths of grandchildren-balanced trees.

Let us first recall the definition given in Section 1.

» Definition 1. The weight of a binary tree T, denoted by |T|, is defined as the number of
empty sub-trees of T ; alternatively, |T| — 1 is the number of nodes of T. The weight of a
node n of T, also denoted by |n|, is defined as the weight of the sub-tree of T rooted at n.

In what follows, it may be convenient to see each empty tree (of weight 1) as if it had two
empty children of weight 1/2 each, themselves having two empty children of weight 1/4 each,
and so on. In other words, we may see each empty tree as an infinite complete binary tree
whose nodes of depth d have weight 2~%.

Let n be a node of T, let ny and ny be its children, and let ny1, ni2, noy and nsg be
its grandchildren. The child-balance and the grandchild-balance (also called C-balance and
GC-balance) of n in T are defined as the real numbers

max{|ny|, [na|} max{|ni1], 12|, [na1], 22|}

In

balc(7,n) = and balgc(T,n) =

|

When the context is clear, we may omit referring to T, thereby simply writing balc(n)
and balgc(n); alternatively, when n is the root of T, its C-balance and the GC-balance may
also be directly denoted by balc(T) and balgc(T).

40:3

WADS 2025

40:4

Grandchildren-Weight-Balanced Binary Search Trees

5
1
e 2 e
9/16
1/2 :
B(1//2)] //
4/ 9 .
1/4 Q
N D@ o ~
= AR
i
Figure 1 Two-dimensional domains D’ C C D, and one-dimensional (thick, gray) curve C.

Whereas BB[1 — aJ-trees correspond to choosing («, 3) on the curve C, our GCBJa, B]-trees can be
created on the entire domain D’.

Given real numbers o and §, we say that a node m of T is a-child balanced
(or «a-C-balanced) when balc(n) < «a; S-grandchild-balanced (or B-GC-balanced)
when balge(n) < B; and («, B)-balanced when n is both a-C-balanced and B-GC-balanced.

Finally, we say that T is a GCB, 4w, B]-tree when its root is (x,y)-balanced and its other
nodes are (a, 8)-balanced. For the sake of concision, we simply say that T is a GCB,[a]-tree,
a GCB|a, f]-tree or a GCB[a]-tree when (y,5) = (1,1), (z,y) = (o, 8) or (x,y,8) = (a, 1, 1),

respectively.

Below, we will be mostly interested in the family of GCB[a, §]-trees. Although it generalises
weight-bounded trees invented by Nievergelt and Reingold, we had to shift away from their
notation. Indeed, weight-bounded trees were parametrised with a real number v, by requesting
that |u| > v|v| whenever u is a child of v; however, being 5-GC-balanced cannot be expressed
by using constraints such as “|u| > v|v| whenever u is a grandchild of v”. In particular,
in [5, 17], the root-balance of the node n is simply defined as the real number p(n) = |n1|/|n|;
here, we set balc(n) = max{p(n),1 — p(n)}.

The family of GCBJa«, 5]-trees coincides with

both families of GCB[a]-trees and BB[1 — aj-trees when o? < f3;

the empty set when o < 1/2;

the family of GCBJ[1, f]-trees when 1 < «;

the family of GCB[2/, f]-trees when 8 < a/2;

the family of all binary trees when o = 3 = 1.

Thus, we assume below that the pair (a, 8) belongs to the domain

D={(a,p):a/2<B<a?and 1/2< a <1})\ {(1,1)},

represented in Figure 1 along with two other domains D’ and D" at the end of Section 2.
We first obtain the following upper bound on the height of GCBJa, 3]-trees.

» Theorem 2. When («,) € D, each GCBJa, §]-tree with N nodes is of height

h < —2logs(N +1).

V. Jugé

Proof. Let T be a GCBJq, 8]-tree with N nodes. Let h be its height, and let n be a node of T
at depth h. An induction on k proves that \n(k)| > Zﬁ_k/%z whenever 0 < k < h, where n(
denotes the k'™ ancestor of n, and is defined by n if k = 0, or as the parent of n(*=1) if & > 1.
It follows that N + 1 > [n(®] > 287"/2a > B="/2 ie., that h < —2logg(N + 1). <

We also focus on the internal and external path lengths of GCBJa, S]-trees. The internal
path length of a tree T is the sum of the lengths of the paths from the root of 7 to the nodes
of T; the external path length of 7 is the sum of the lengths of the paths from the root
of T to the empty sub-trees of 7. These lengths are closely related to the average number of
queries required to check membership in the set of labels of 7.

Indeed, let T be a binary search tree whose N nodes are labelled by elements of a linearly
ordered set &£, and let A\jpr and Aey be its internal and external path lengths. The labels
of the nodes of T form a linearly ordered set S C £ of size N, which splits £ into N + 1
intervals. Then, the average number of queries used to find an element z is:

Aint/N when z is chosen uniformly at random in S;

Aext/(IN + 1) when z is chosen in £ \ S, and the interval of £\ S to which z belongs is

chosen uniformly at random.

By construction, each node n increases the lengths Ay and Aext by |n| — 2 and |n|,
respectively. This means that Ae is the sum of the weights of the tree nodes, and
that)\int =)\ext — 2N.

By adapting the proof from [18], we obtain the following upper bound on the external
path lengths of GCBJa, 3]-trees.

» Theorem 3. When (o, 8) € D, each GCB|w, B]-tree with N nodes is of external path length
A< (N+1)logy(N+1)/A,
where A = (Ha(a) + aHa(8/a))/(1 + &), and Ha(z) = —zlogy(z) — (1 —) logy(1 —) is

Shannon’s binary entropy.

In what follows, we will investigate more closely the family of GCB|a, §]-trees when (o,)
belongs to the more restricted domain

Vit+4da—1

D' = {(a,B): 1/\/5 < a < 3/4 and Z(a) < B < a?}, where B(a) = 5

In the limit cases where o = 1/v/2 ~ 0.7071 and 3 = %(a) ~ 0.4783, Theorems 2 and 3
translate into the inequalities

h < 1.8798logy(N + 1) and A < 1.1271(N + 1) log, (N + 1),
thereby improving the inequalities
h < 2logy(N +1) and A < 1.1462(N + 1) logy (N + 1)

obtained in the best case (i.e., in the limit case where a = 1/4/2 and 8 = 1/2) for BB[1 — a]-
trees.

On the domain D', or even on the larger domain D" = {(a, 8): 2/3 < f/a < a < 3/4},
the upper bounds presented in Theorem 2 and 3 are (unsurprisingly) quite tight.

» Proposition 4. Let (, 8) be a pair belonging to D", and let N > 0 be an integer. There
exists a GCB[a, B]-tree with N nodes, of height h > —2log, (N + 1)/ logs(8) — 7 and external
path length A > (N + 1) logy(N +1)/A — 4N.

40:5

WADS 2025

40:6

Grandchildren-Weight-Balanced Binary Search Trees

3 Bottom-up algorithm

In this section, we propose a simple algorithm for rebalancing a GCBJ«, 3] tree T after having
added a leaf to T or deleted a node from 7, when the pair («,) belongs to the domain D’.

Rebalancing GCB|w, 3] trees might also be possible when 3/4 < o < 1 and %(a) < 8 < o
by using similar ideas, but doing so may require more complicated algorithms, in particular
for dealing with base cases, which is not necessarily worth the effort since such parameters
provide us with trees of larger height and path length.

In case of a deletion, as illustrated in the three cases of Figure 2, we can safely assume
that the node to be deleted is a leaf s, by using Hibbard’s deletion technique [11]. Indeed,
if the targeted node a has just one child, since a is a-C-balanced and o < 3/4, we know
that |a| < 3, which means that this child is a leaf; thus, we can just focus on deleting that
child and, a posteriori, replace the key of a with the key of this just-deleted child. Similarly,
if the targeted node a has two children, we can first identify the successor of a as the deepest
node b of the left branch stemming from the right child of a; b has no left child, which means
that we can just focus on deleting it and, a posteriori, replace the key of a with the key of
this just-deleted node b.

In both cases, let r be the root of 7, and let s be the node that must be inserted or
deleted. The weights of the nodes from r to s need to be incremented by 1 in case of a
non-redundant insertion (since s just replaced an empty tree, we can pretend that its weight
was 1 before it was inserted), or decremented by 1 in case of a non-redundant deletion
(since s was a leaf and is replaced by an empty tree, we can pretend that its new weight is 1).
However, if the update is redundant, i.e., if we tried to insert a key that was already present
in T, or to delete an absent key, these weights will not be changed.

In practice, each tree node will contain two fields for storing explicitly its label and its
weight. Moreover, in the description below, we simply say “if s lies in a sub-tree 7’7 as a
place-holder for “ determine, based on the key x that you want to insert or delete and on the
key y stored in the root of the current tree, which sub-tree 7’ should contain s”.

Our algorithm is based on two algorithmic building blocks, called C-balancing
(Algorithm 5) and GC-balancing (Algorithm 6). They consist in locally performing rotations
in order to make a given node better balanced when needed, without damaging the balance
of its parent and children too much.

In a nutshell, the idea of our bottom-up updating algorithm, which will be made more
precise in Algorithm 11, is as follows:

1. We recursively update the sub-tree that needs to be updated.

2. Using the C-balancing algorithm ensures our root and its children are suitably child-
balanced.

3. Using the GC-balancing algorithm then ensures our root is suitably child- and grandchild-
balanced.

This is the same general idea as the original algorithm from Nievergelt and Reingold [5, 17],

adapted to take grandchild balances into account: one should first make our tree child-

balanced, and only then can one make it grandchild-balanced too.

One difficulty is that, when we perform a rotation to make our root child- or grandchild-
balanced, this rotation should be worth its cost: we expect that, for the next few updates
(a quantity that can be made precise, and will be studied in Section 5), no update will be
required at all. This is what will make the amortised number of rotations per update a
constant.

V. Jugé

P

A

Figure 2 Inserting or deleting a key z: either an empty sub-tree grows into a leaf or a leaf shrinks
to an empty sub-tree. When we wish to delete an internal node, we just focus on deleting a leaf
descending from that node, and then swap node keys.

In what follows, 7 denotes a binary tree that may need to be rebalanced. Its root is
denoted by n and, for every node x, the left and right children of x are denoted by z1 and x5,
respectively. Furthermore, we consider that nodes move when rotations are performed. For
instance, when either rotation represented in Figure 3 is performed, the node n, which used
to be the root of the tree, becomes the right child of the root of the tree resulting from the
rotation.

Below, we also say that a node whose children list changed during the rotation was
affected by the rotation. We will always make sure that, when a simple or double rotation

is performed on a tree T, the resulting tree 7' satisfies the inequality balc(7") < balc(T).

That way, if 7 was in fact rooted at some child of a node z, neither the C-balance nor
the GC-balance of x, or of any unaffected node, will increase as a result of the rotation.

» Algorithm 5 (C-balancing). Given real numbers u, v, w and x, the C(u,v,w, z)-balancing
algorithm operates as follows on the binary tree T it receives as input:

1. if |n1| > uln| + w and |n11| = (1 —v)|n| — x, perform the simple rotation of Figure 3;
if [n2] > uln| +w and |ng2| = (1 —v)|n| — x, perform the mirror image of that rotation;
if |n1| > uln| + w and |n11| < (1 —v)|n| — z, perform the double rotation of Figure 3;

if |n2| > uln| + w and |nga| < (1 — v)|n| — x, perform the mirror image of that rotation;

LA

if max{|n1|, |n2|} < uln| 4+ w, do not modify T.

40:7

WADS 2025

40:8

Grandchildren-Weight-Balanced Binary Search Trees

() () g () () doune
< (m))

@ @ rotation @ @ rotation

Figure 3 Performing a simple or double rotation. Affected nodes are coloured in grey.

» Algorithm 6 (GC-balancing). Given real numbers y and z, the GC(y, z)-balancing algorithm
operates as follows on the binary tree T it receives as input:

if |n11| > y|n| + z, perform the simple rotation shown in Figure 3;

if |naa| > y|n| + z, perform the mirror image of that rotation;

if In12| > y|n| + z, perform the double rotation shown in Figure 3;

if |n21| > y|n| + z, perform the mirror image of that rotation;

if max{|ni1|, |niz|, [ne1l, Ine2|} < yn| + 2, do not modify T.

Lol

Parameters w, x and z can be seen as terms governing some error margin, that we will
set equal to zero in Section 3 and will be non-zero in Section 4. Indeed, in the former case,
we develop bottom-up updating algorithms, and thus have a perfect knowledge of 7. By
contrast, in the latter case, we develop top-down algorithms and thus cannot yet know where
the leaf s should be inserted or deleted: depending on the answer, the tree 7 may have
different shapes, and we cannot anticipate which will be chosen.

The idea of the C-balancing algorithm is to either check that our tree root is u-C-balanced
or to transform it into a v-C-balanced node; in the latter case, each affected node will also
be made v-C-balanced, which will improve the C-balance of our tree root by at least u — v
without damaging the balances of other nodes too much. If we perform a simple rotation, n1;
will be a new root child, and it will definitely not be too large, but its new sibling, of
weight |n| — |n11|, might prevent our new root from being v-C-balanced; this undesirable
case should occur when |ny1| < (1 — v)|n|, which is why, in that case, we perform a double
rotation instead of a simple one. More precisely, here is a result that can be stated about
the C-balancing algorithm.

» Lemma 7. Let a be a real number such that 1/v/2 < o < 3/4. Then, let a® = 19/24 and

l+a—/(1—-a)b—a)
2(2a — 1) '

é{:

We have 1/\/5 < & < a. Moreover, when & < u < «, the five cases in which
the C(u, &, 0,0)-balancing algorithm consists are pairwise incompatible, and those rotations
they trigger can always be performed; the algorithm itself transforms each GCBye[a]-tree T
whose root is not u-C-balanced into a GCBla]-tree T’ such that balc(T") < balc(T") and whose
affected nodes are &-C-balanced.

Proof. Below, we will use the following (in)equalities, which are all easy to check
with any computer algebra system (whereas some are quite tedious to check by hand)
whenever 1/v/2 < a < 3/4. Except the first two inequalities, each of them is labelled and
later reused to prove another inequality with the same label; equality (2.1+ 2.5) is used to
prove both subsequent inequalities (2.1) and (2.5).

V. Jugé

1/V2<a &< a;

aa® < &; (1.1) (1-a&)(a®*—144a) <a(l-a®); (1.2)
(1—a)? <a*(1 -) (1.3) 1-a)P2=al-a)2a—1); (2.1+25)
(1-a)a? < a(l —a); (2.2) (1-a)(1-a)+aa® < a; (2.3)
(1—a)a?a® <a(l—a®); (24) 1+ (a® —1)a < é. (2.6)

This already proves the inequality 1/v/2 < & < « of Lemma 7.

Then, let |m| denote the weight of a node m in the tree T, and let |m|" denote its weight
in 7. When these weights are equal, we will prefer using the notation |m| even when
considering the weight of m in 7’. The root of T is denoted by n, its left and right children
are denoted by n; and no, and so on. Hence, when u > &, we have 2u|n| > v/2|n| > |n1|+|na|,
which makes the inequalities |n1| > u|n| and |na| > u|n| incompatible.

Proving that the desired rotations can indeed be performed amounts to showing that n
and n; are actual tree nodes (instead of spurious empty nodes of weight 1/2 or less) in case 1,
and that nis is also a tree node in case 3; cases 2 and 4 will be treated symmetrically. In cases 1
and 3, since |n1| > u|n| > |n|/2, the node n is an actual tree node, and cannot be a leaf, which
means, as desired, that n and n; are tree nodes; furthermore, |ny| > u(|ny|+1) > (|n1|+1)/V2,

, il > 1+ \f > 2, and therefore |ny| > 3 and |n| > 4. Then, in case 3, we also
have [n12] = |n1| — [pa1] > uln| — (1 — &)|n| > (ﬁ, 1)|n| > 1, which means that n;s is also
a tree node.

It remains to prove that each affected node is &-C-balanced: if the root of 7 was
not u-C-balanced, we will have balc(7”") < & < u < balc(T).

When a®|n| > |n1| > uln| = &n| and |n11| = (1 — &)|n|, a simple rotation is performed,

and
In11] < alni] < aa®|n] < &|n| = &|nql’; (1.1)
(I =a&)|niz| = (1 = &)(Jn1] = [nu|) < (1 = &)(a®|n| — (1 — &)[n])
< a(1—a®)[n| < a(|nf — |ni]) = alnal; (1.2)
(1 =4&)|n2| = (1 —a&)(|In| — |n1]) < (1 = &)(1 — &)[n]
<41 —a)aln| < (1 — a)|ln| < &(|na| = [naa]) = dlnaz|; (1.3)
In|" = [n| = [nu| < [n] = (1 = &)[n| = &|n| = a&lm|’, (1.4

which means precisely that n and n; are &-C-balanced in 7.

Similarly, when a®|n| > |n1| > u|n| > &|n| and |nq1| < (1 — &)|n|, a double rotation is
performed, and
(1—a)*|n| = a(1 - a)(@n| — (1 - &)|n)

(1 = a)(|n1] = |nu]) = &(1 — a)|niz|

(1 —a&)lnu|

INCINCININ N
>

(In12] = |n122]) = &lnaz; (2.1)
(1= a)lmai| < (1 = @)alniz| < (1 - a)a’|ni
&(1 = a)ln| < &(lna| = Iniz]) = &lna; (2:2)
In1]" = |n11] + |ni21| < [nag| + ajniz| = (1 — a)|ngg| + alng |
< (1= a)(1 — &)}nl + aa®ln| < afal = dlnsal; (23
(1= a)|maa| < (1 = @)alniz| < (1= a)a’ni| < (1 - a)a’a®in|
< &(1—a®)n| = alng| (2.4)

40:9

WADS 2025

40:10

Grandchildren-Weight-Balanced Binary Search Trees

(1= &)lna| = (1 = &)(In| = |m]) < (1 = a)*|n| = 4(1 - a)(aln| — (1 - &)In])

< a1 = a)(|ni] = Ini|) = &(1 — a)[nio|

< &(|nzf = [nia1|) = élnazal; (2.5)
In|" = |n| = [na] + [na2a| < [nf = [na] + afnis|

< fnf+ (@ = Dlna| < [nf + (@ = Dan| < @|n| = dlnaal’, (2.6)

which means precisely that n, n; and ni, are &-C-balanced in 7.
Finally, the cases where |na| > w|n| are symmetrical, and therefore the conclusion of
Lemma 7 is valid in these cases too. <

Similarly, the GC-balancing algorithm aims at making our tree root y-GC-balanced. If
our tree is too unbalanced, we will either promote the responsible grandchild to being a
child (if this grandchild was n1; or ngs) with a simple rotation, or split it in two (if this
grandchild was nqs or ngy) with a double rotation. For adequate values of the parameters u, v
and y, each node affected by the GC-balancing algorithm will be (v, §)-balanced for some
real number § < y (that does not need to be given as parameter), thus avoiding any damage
to the GC-balance of affected nodes, and improving that of our tree root by at least y — .
Hence, here is a result that can be stated about the GC-balancing algorithm; its proof is
similar to that of Lemma 7, and can be found in appendix.

» Lemma 8. Let a and B be real numbers such that 1/v/2 < a < 3/4 and B(a) < B < o?.
Then, let

1—2a+6a%2—/(1-a)5—a)
52— 1)

I+a—+/(1-a)?+4a(a® - p)

B= 201 —a? 1 B) “

&:

as well as & = min{a, /a}.

We have 1/4 < B < fB. Moreover, when & < u < «a and B <y < B, if
we apply the GC(y,0)-balancing algorithm on a GCBa 1o, f]-tree T, cases 1 to 5 are
pairwise incompatible, and those rotations they trigger can always be performed; if the
root of T is not y-GC-balanced, the algorithm transforms T into a GCB,, 4 [cv, B]-tree T’ such
that balc(T") < balc(T) and whose affected nodes are (3, 3)-balanced.

Finally, these building blocks can be combined to ensure that a GCB[a, 8]-tree whose
root is suddenly slightly out of line will be rebalanced.

» Algorithm 9 (CGC-balancing). Given real numbers u, v, y and §, the CGC(u,v,y,§)-
balancing algorithm executes the following operations on the tree T it receives as input:
1. the C(u,v,0,0)-balancing algorithm transforms T into a tree T ;
2.4 T #TW,
the GC(g, 0)-balancing algorithm is applied (in parallel) to the left and right sub-trees
of TM, which transforms T into a tree T ;
then, the GC(7,0)-balancing algorithm is applied to T?) itself;
3. otherwise, the GC(y,0)-balancing algorithm is applied to T .

» Proposition 10. Let o and B be real numbers such that 1/v/2 < o < 3/4
and B(a) < B < o?; we recall that B(a) = (V1 + 4o —1)/2. Then, let a® = 19/24,

1—2a+6a%2—/(1-a)5—a)
52— 1)

s 1+a—/(1-a)?+4a(a® - p)
and = 20— a2+ f) Q.

&:

V. Jugé

When & < u < a and B < y < B, the CGC(u, &,y,B)-balancing algorithm, when applied
to a GCBqe 1], B]-tree T whose root is not (u,y)-balanced, transforms T into a GCB, sla, B]-
tree T such that balc(T") < balc(T) and whose affected nodes are all (&, 3)-balanced.

Proof. If the root of T is (u,y)-balanced, the CGC-balancing algorithm does nothing. If
this root is u-C-balanced but not y-GC-balanced, the GC(y, 0)-balancing algorithm is called;
Lemma 8 ensures that every affected node will be (&, 3)-balanced and that balc(7”) < balc(T).

Finally, if the root of T it is not u-C-balanced, we will call the C(u,&,0,0)-algorithm,
obtaining a GCBla, f]-tree T, whose root will be denoted by 7. Nodes affected by this call
are r and one or two of its children r; and r5. The GC(B, 0)-balancing algorithm is then
applied to the GCB,, 1 [, 3]-trees rooted at r; and ro; as a result, 7(?) is a GCB, ;[a, B]-tree
rooted at r, to which the GC(B,O)—balancing algorithm is applied once more. No tree to
which the C- and GC-balancing algorithms were applied saw its C-balance increase, and
thus ba|c(T/) < ba|c(T).

Moreover, each node m affected by the CGC-balancing algorithm is either affected by
some call to the GC-balancing algorithm or the root of some tree that the GC-balancing
algorithm did not modify; the latter case may only concern nodes r, r; and r2. In both

A

cases, m ends up being (&, 8)-balanced, which completes the proof. |

Now is the time when we actually describe our update algorithm, which we will apply to
a GCB|a, B]-tree in which a leaf s is to be inserted, or from which s is to be deleted. We have
two regimes: the first one concerns trees with 11 nodes or less, which we can just restructure
in order to make them as balanced as possible, and the second regime concerns trees with 12
nodes or more.

» Algorithm 11 (Bottom-up update). Let o, & and 8 be real numbers given in Proposition 10.
Our updating algorithm executes the following operations on the tree T it receives as input:
if T contains 11 nodes or less, insert or delete s (if possible) and make the resulting tree a
perfectly balanced tree, i.e., a tree in which the weights of two siblings differ by at most 1;
if T contains 12 nodes or more,
1. recursively rebalance the (left or right) sub-tree in which s lies, and then
2. if the update turned out to be non-redundant, update the weight of the root of T, and
then apply the CGC(q, @,ﬁ,ﬁ)-balancing algorithm to T .

Due to the recursive flavour of this algorithm, the rebalancing operations are performed
bottom-up. We will see in Section 4 how to perform these operations top-down.

» Theorem 12. Let o and (3 be real numbers such that 1/v/2 < a < 3/4 and %(a) < B < o?.
The tree obtained by using Algorithm 11 to insert a leaf in a GCBla, f]-tree T or delete a
node from T is also a GCB|a, B]-tree.

Proof. Our proof is a variant of the proof of [5].

Let 7’ and 7" be the trees obtained just after step 1 and step 2 of Algorithm 11,
respectively. We will prove by induction on |7 that 7" is a GCBJ«, f]-tree. The result being
correct by construction when |7| < 12, we assume that |7] > 13.

Let 71 and 73 be the left and right sub-trees of T, and let ¢t = |T|, t; = |T1| and t2 = |T3|.
Similarly, let 7/ and 7 be the left and right sub-trees of 77, and let ¢ = |T'| t| = |T{|
and t;, = |75|. Without loss of generality, we assume that the update was non-redundant,
and that the tree T was altered by adding s to 71 or by deleting s from 7. This means
that either (¢',¢],t5) = (¢t + 1,t1 + 1,t2) or (¢],t5) = (¢t — 1,t1,t2 — 1). In both cases, the
induction hypothesis ensures that 7; and 75 are GCBJ[a, 5]-trees.

40:11

WADS 2025

40:12

Grandchildren-Weight-Balanced Binary Search Trees

We prove now that the root of 7’ is «a®-C-balanced, thereby allowing us to use
Proposition 10 and completing the induction. Indeed, let t = t; + t5 and ¢/ = t} + 5.
Since 4t < 4at < 3t, we know that 4¢; < 3t — 1.

Thus, in case of an insertion, t{ = t; + 1 < (3t + 3)/4 = 3t'/4 < ot
and th =t < at < a®t’.

Similarly, in case of a deletion,] = t; < (3t—1)/4 = (3t'4+2)/4 = a*t'—(t'—12)/24 < a*t/,
whereas th =to — 1 < at — 1 < o’ < a®t'. <

4 Top-down algorithm

In this section, we propose a top-down algorithm for inserting an element into (or deleting
an element from) a weight-balanced tree. This algorithm is valid whenever 1/v/2 < o < 3/4
and %(a) < B < o?, thereby completing the algorithm of Lai and Wood [14], which works
only when 3/4 < a < 9/11 and 3 = o%. This new algorithm is inspired by theirs: we wish to
perform a top-down restructuring pass while adjusting weight information. If the update is
redundant, a second top-down pass will be needed to update this information, but no further
restructuring will be needed.

More precisely, we aim at having a top-down algorithm that requires considering only a
constant number of tree nodes at each step; this number may not depend on the parameters
such as a and 3. Moreover, we still wish, by using this algorithm, to perform only a constant
number of rotations per update; this number may depend on «, S and other parameters.
Consequently, the idea of the algorithm, which will be made more precise in Algorithm 16, is
as follows:

1. If the tree is large enough, we may rebalance it to make sure it will remain balanced even
if we recursively update one of its children. Like in Section 3, rotations performed in
this phase should be so efficient that only an amortised constant number of rotations per
update will be useful.

2. If the tree is small enough, we make it as balanced as possible, the notion of being
top-down being void in this case.

A key object towards defining and proving the correctness of our algorithm is the notion
of robust grandchildren-balanced trees.

» Definition 13. Let n be a node of a binary tree T, let ny and ns be its children, and
let n11, n12, no1 and nag be its grandchildren. Given real numbers o and [, we say that n is
robustly a-C-balanced when

max{|n1|, |n2|} + 1 < a(|n| + 1) and max{|ni|, |n2|} < a(|n| — 1);
that n is robustly 8-GC-balanced when
max{|ni1|, [n12|, 21, [n2el}+1 < B(|n|+1) and max{[ni1|, [nizl, [n21l, [n2a|} < B(|n|—1);

and that n s robustly («,()-balanced when n s robustly «-C-balanced and
robustly B-GC-balanced.

Finally, we say that o tree T is a RGCB, ,[a, B]-tree when its root is robustly (x,y)-
balanced and its other nodes are («, B)-balanced. For the sake of concision, we simply say
that T is a RGCB|a, B]-tree or a RGCB[a]-tree when (z,y) = («, 8) or (z,y,8) = (o, 1,1),
respectively.

V. Jugé

Inequalities |n;|+1 < a(|n|+1) and |n;| < a(|n| — 1) ensure that, even if a leaf is inserted
into or deleted from 7', the node n will remain a-C-balanced. Inequalities [n;;|+1 < (|n|+1)
and |n;;| < B(|n|—1) serve the same purpose, but for ensuring that n remains 3-GC-balanced.
Finally, each tree node is robustly (1, 1)-balanced.

Setting R(¢) = min{—¢,¢—1} and observing that min{¢(|n|+1)—1,¢t(jn|—1)} = t|n|+R(t)
for all real numbers t provides us with a more succinct characterisation of («,f)-
balanced nodes, which will require giving non-zero values to the parameters w, x and z:
the node n is robustly (a,3)-balanced if and only if max{|ni|,|n2|} < «aln| + R(a)
and max{[ni1[, [ni2], [na1l, [ne2l} < BInf + R(B).

We can now group several calls to the C- and GC-balancing algorithms into a so-
called RCGC-balancing algorithm, whose aim is to make a tree root robustly balanced.

» Algorithm 14 (RCGC-balancing). Given real numbers u, v, y and §, the RCGC(u,v,y, §)-
balancing algorithm executes the following operations, in this order, on the tree T it receives
as input, thus transforming it into a tree T':

1. the C(u,v, R(u), R(v))-balancing algorithm transforms T into a tree T);

2. if T#TW,
the CGC(v,v, 9, §)-balancing algorithm is applied (in parallel) to the left and right
sub-trees of T, which transforms T into a tree TP ;
the GC(9, R(4))-balancing algorithm transforms T into a tree T);
the CGC(v,v, 9, §)-balancing algorithm is applied (in parallel) to the left and right
sub-trees of T®), which yields the tree T";

3. otherwise, the GC(y, R(y))-balancing algorithm transforms T into a tree T®), and then,
if T # T, the CGC(v,v, 9,))-balancing algorithm is applied (in parallel) to the left
and right sub-trees of T3, which yields the tree T';
otherwise, T' = T.

The idea is similar to that of the plain C- and GC-balancing algorithm, but we wish to
transform a tree whose root is not robustly (u,y)-balanced into a tree 7’ whose root will
be robustly (v, §)-balanced. Calling the C(u, v, R(u), R(v))-, GC(§,R(9))- and GC(y, R(y))-
balancing algorithms achieves this goal, while possibly damaging the balance of the children
of the root of 7’; we solve this issue by the CGC-balancing algorithm to the sub-trees rooted
at these children.

» Proposition 15. Let o, &, [and B be real numbers given in Proposition 10.
The RCGC(a, &, B3, B)—balancing algorithm transforms each GCBq 1[a, B]-tree T with 30 nodes
or more and whose root is not robustly («, 3)-balanced into a RGCB|a, B]-tree T' such
that balc(T") < balc(T) and whose affected nodes are all (¢, B)-balanced.

We finally describe our top-down updating algorithm, which we will apply to a GCBJa, j]-
tree in which a leaf s is to be inserted, or from which s is to be deleted. Like the algorithm
of Lai and Wood [14], this algorithm is not purely top-down, because (i) if we wanted to
delete an internal node a, as illustrated in Figure 2, it requires maintaining a pointer to a,
whose key will later be replaced by another node key, and (ii) if the update turned out to
be redundant, a second top-down pass will be required to cancel every weight update we
performed. Alternative representations of weight-balanced trees or GCB[a, 8]-trees allow
omitting this second pass: instead of storing the weight |n| at each node n, we should store
one of the weights |n1| or |ng| as well as a bit indicating which weight we stored.

40:13

WADS 2025

40:14

Grandchildren-Weight-Balanced Binary Search Trees

» Algorithm 16 (Top-down update). Let o, &, 3 and B be real numbers given in Proposition 10.
Our updating algorithm executes the following operations on the tree T it receives as input:
if T contains 29 nodes or less, insert or delete s (if possible) and make the resulting tree a
perfectly balanced tree, i.e., a tree in which the weights of two siblings differ by at most 1;
if T contains 30 nodes or more,
1. apply the RCGC(a,@,ﬁ,B)-balancing algorithm to T, then
2. update the weight of the root of T, and finally
3. recursively update the (left or right) sub-tree of T that contains s.

» Theorem 17. Let o and 8 be real numbers such that 1/\/§ <a<3/4and Bla) < B <’
The tree obtained by using Algorithm 16 to insert a leaf in a GCB|w, 8]-tree T or delete a
node from T is also a GCBJ«, B]-tree.

5 Complexity analysis

In this final section, we prove that Algorithms 11 and 16 proposed above perform an amortised
constant number of rotations per attempted insertion or deletion.

The idea consists in evaluating the sums of child- and grandchild-balances of all tree
nodes. Indeed, inserting or deleting a leaf s will slightly damage the child- and grandchild
balances of the ancestors of s, which may increase the sum of these balances by no more
than a constant. In the opposite direction, whenever the CGC- or RCGC-balancing algorithm
changes a sub-tree T, some node will see its child-balance decrease by approximately a — &,
or its grandchild-balance decrease by approximately § — B; other node balances might be
damaged in the process, but not to the point of exceeding (&, /3’) Thus, not too many changes
may be performed.

These ideas lead to the following result.

» Theorem 18. Let a and 3 be real numbers such that 1/v/2 < o < 3/4 and B(a) < B < a?.
Let 1 and € be given by n = a — 1/v/2 and ¢ = min{B — B(a),a® — B} if B(a) < B < a?,
ore=11if B=a’

Then, let To, Ti,- .., Tr be GCB|o, B]-trees defined as follows: Ty is the empty tree and,
for all £ > 0, the tree Tyy1 is obtained by inserting a leaf in Ty or deleting a leaf from Ty,
using either Algorithm 11 or 16 to do so. Gradually transforming To into Tr via such steps
requires only O(k/n + k/e) rotations.

Proof outline. Each node n is given a real-valued counter c(n) that receives the value 0
when n is created (i.e., inserted in a tree) or affected by a rotation, and is increased by 2/|n|
when a descendant of n is about to be created or deleted.

Finally, let C be the sum of all these counters c(n), and let § = min{a— &, 3 — 3,1/62} /2.
One can prove that the sum C increases by no more than 16 when a leaf is inserted or deleted,
and decreases by at least 6 when the CGC- or RCGC-balancing algorithms trigger a rotation
and the tree contains at least 32 nodes; if the tree contains fewer than 32 nodes, rotations do
not make C increase anyway.

Since the sum C is initially zero, and terminates with a non-negative value, no more than
O(k/) rotations are performed on trees with 32 nodes or more, and no more than O(k)
rotations can be performed on trees with fewer than 32 nodes. <

In particular, let us focus on some approach to the critical
point (ac,B.) = (1/v2,%(1/v/2)). When setting @« = a. + = and f = f. + =, and
provided that 0 < 2 < 1/10, the inequalities 1/v/2 < a < 3/4 and %(a) < < a? are valid.
Moreover,

V.

—— References

1

10

11

12

13

14

15

Jugé

Theorem 2 states that GCB[a, 8]-trees with IN nodes are of height
h < —2logy(N + 1)/logy(Be) + Tlogy (N + 1)x;

Theorem 3 states that GCB[a, §]-trees with IN nodes are of external path length
A< (N+1)logg(N+1)/Ac+ 2(N + 1) logy (N + 1)z,

where Ac = (Ha () + acHa(Bc/ac)) /(1 + ac);

Theorem 18 states that inserting or deleting k leaves in GCB|a, §]-trees requires O(k/x)
rotations. More precisely, digging in the constants hidden in the O notation yields a
(crude) upper bound of less than 30(1 + 28/x)k rotations.

Georgii Maksimovich Adel’son-Velskii and Evgenii Mikhailovich Landis. An algorithm for
organization of information. Doklady Akademii Nauk, 146(2):263-266, 1962.

Mahdi Amani, Kevin Lai, and Robert Tarjan. Amortized rotation cost in AVL trees.
Information Processing Letters, 116(5):327-330, 2016. doi:10.1016/j.ipl.2015.12.009.
Lukas Barth and Dorothea Wagner. Engineering top-down weight-balanced trees. In 22™
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 161-174. STAM, 2020.
d0i:10.1137/1.9781611976007.13.

Rudolf Bayer and Edward McCreight. Organization and maintenance of large ordered indices.
Acta Informatica, 1:173-189, 1972. doi:10.1007/BF00288683.

Norbert Blum and Kurt Mehlhorn. On the average number of rebalancing operations in weight-
balanced trees. Theoretical Computer Science, 11:303-320, 1980. doi:10.1016/0304-3975(80)
90018-3.

Gerth Stglting Brodal and Allan Grgnlund Jgrgensen. Data structures for range median
queries. In International Symposium on Algorithms and Computation, pages 822-831. Springer,
2009. doi:10.1007/978-3-642-10631-6_83.

Helen Cameron and Derick Wood. A note on the path length of red-black trees. Information
Processing Letters, 42(5):287-292, 1992. doi:10.1016/0020-0190(92)90038-W.

Rolf Fagerberg, Rune Jensen, and Kim Larsen. Search trees with relaxed balance and
near-optimal height. In 7" International Workshop on Algorithms and Data Structures
(WADS), volume 2125 of Lecture Notes in Computer Science, pages 414-425. Springer, 2001.
doi:10.1007/3-540-44634-6_38.

Leonidas Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In 19™
Annual Symposium on Foundations of Computer Science (FOCS), pages 8-21. IEEE Computer
Society, 1978. doi:10.1109/SFCS.1978.3.

Bernhard Haeupler, Siddhartha Sen, and Robert Tarjan. Rank-balanced trees. ACM
Transactions on Algorithms (TALG), 11(4):1-26, 2015. doi:10.1145/2689412.

Thomas Hibbard. Some combinatorial properties of certain trees with applications to searching
and sorting. Journal of the ACM, 9(1):13-28, 1962. doi:10.1145/321105.321108.

Vincent Jugé. Grand-children weight-balanced binary search trees, 2024. doi:10.48550/
arXiv.2410.08825.

Rolf Klein and Derick Wood. A tight upper bound for the path length of AVL trees. Theoretical
Computer Science, 72(2&3):251-264, 1990. doi:10.1016/0304-3975(90)90037-1.

Tony Lai and Derick Wood. A top-down updating algorithm for weight-balanced trees.
International Journal of Foundations of Computer Science, 4(4):309-324, 1993. doi:10.1142/
S0129054193000201.

Daan Leijen. Set implementation in Haskell 2010.
hackage.haskell.org/package/containers-0.7/docs/Data-Set.html, 2002.

40:15

WADS 2025

https://doi.org/10.1016/j.ipl.2015.12.009
https://doi.org/10.1137/1.9781611976007.13
https://doi.org/10.1007/BF00288683
https://doi.org/10.1016/0304-3975(80)90018-3
https://doi.org/10.1016/0304-3975(80)90018-3
https://doi.org/10.1007/978-3-642-10631-6_83
https://doi.org/10.1016/0020-0190(92)90038-W
https://doi.org/10.1007/3-540-44634-6_38
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1145/2689412
https://doi.org/10.1145/321105.321108
https://doi.org/10.48550/arXiv.2410.08825
https://doi.org/10.48550/arXiv.2410.08825
https://doi.org/10.1016/0304-3975(90)90037-I
https://doi.org/10.1142/S0129054193000201
https://doi.org/10.1142/S0129054193000201

40:16

Grandchildren-Weight-Balanced Binary Search Trees

16 Daan Leijen and Andriy Palamarchuk. Map implementation in Haskell 2010.
hackage.haskell.org/package/containers-0.7/docs/Data-Map.html, 2008.

17 Jirg Nievergelt and Edward Reingold. Binary search trees of bounded balance. In 4%
Annual ACM Symposium on Theory of Computing (STOC), pages 137-142. ACM, 1972.
doi:10.1145/800152.804906.

18 Jiurg Nievergelt and C. K. Wong. Upper bounds for the total path length of binary trees.
Journal of the ACM, 20(1):1-6, 1973. doi:10.1145/321738.321739.

19 Daniel Sleator and Robert Tarjan. Self-adjusting binary search trees. Journal of the ACM,
32(3):652—686, 1985. doi:10.1145/3828.3835.

A Missing proofs of Sections 2 and 3
» Theorem 3. When («, 8) € D, each GCBJ|a, f]-tree with N nodes is of external path length
A< (N4 1)logy(N+1)/A,

where A = (Ha(a) + aH2(8/@))/(1 + @), and Ha(x) = —xlogy(x) — (1 —) logy(1 —) is
Shannon’s binary entropy.

Proof. Let A(T) be the sum of the weights of the nodes of a tree T: we prove by induction
on |T] that A(T) < [T log,(|T1)/A.

When |T| = 1, this inequality rewrites as 0 < 0. When |T| = 2, it rewrites as A < 1,
which follows from the fact that Ha(x) < 1 whenever « € [0,1]. Therefore, we assume
that |7 > 3.

Let n be the root of 7, and let 7; and T3 be its left and right sub-trees. Without loss of
generality, we assume that |7;| > |7T2|. Thus, |71| > |T|/2 > 1, and 7T; is non-empty. Let ny
be its root, and let 711 and 712 be the left and right sub-trees of n;. Once again, without
loss of generality, we assume that |711| = |[T12]-

Let t = |T|, x = |T1|/|T| and y = |T11]/|71|- The induction hypothesis states now that

ANT)/t = Az +1) + AXNT11)/t + AXN(T12) /t + AXN(T2)/t
(z +1) + zylogy(try) + z(1 — y) logy (tx(1 — y)) + (1 — x) logy (t(1 — x))

<A
< Az + 1) + logy(t) — xHa(y) — Ha(z),

and it remains to prove that the quantity F,g(z,y) = zHa(y) + Ha(z) — Az + 1) is
non-negative.

First, let v = f/a. If v < & < «, since Hy is decreasing on the interval [1/2,1]
and 1/2 < y < f/z, we know that F,g(z,y) > F.p(x,8/x). Moreover, the
function G: z — F, g(z, 5/x) is concave on [y, o, because its second derivative is

1-p
(z =)1 —2)In(2)

whenever 8 < v < z < o < 1. Observing that G(a) = F,, (e, y) = 0 and that

<0

G//(.’E) — _

G(7) = Fap(y,a) = (BH2(a) + Ha(7)) — (v + 1)(Ha(a) + aHa (7)) /(e + 1)
= (1= B)(Ha2(y) = Ha(a))/(a + 1) 2 0,

we conclude that F, g(z,y) > G(z) > min{G(a), G(y)} > 0 whenever v < = < a. Finally,
if 1/2 <z <, and since 1/2 < y < «, we have Fo g(z,y) 2> Foz(x,y) > Fa(z,) 2 0. <«

https://doi.org/10.1145/800152.804906
https://doi.org/10.1145/321738.321739
https://doi.org/10.1145/3828.3835

V. Jugé

Figure 4 Trees 7 (1) to 7(6). Nodes are labelled by their weight; empty trees are denoted by L.

» Proposition 4. Let (o, 3) be a pair belonging to D", and let N > 0 be an integer. There
exists a GCB[a, B]-tree with N nodes, of height h > —2log,(N + 1)/ logs(8) — 7 and external
path length A > (N 4 1) logy(N +1)/A — 4N.

Proof. Let v = 8/a. For each integer s > 1, we define inductively a tree T (s) of weight s as
follows:
if s < 2, T(s) is the only tree of weight s;
if s > 3, T(s) is the tree whose left child is 7 (s;) and whose right child’s children
are T (s21) and T (s22), where s1 = s — |as], so1 = [v|as]] and saa = s — 51 — $21.

We present in Figure 4 the trees 7 (s) obtained when 1 < s < 6. Since 2/3 < v < a < 3/4,
these trees do not depend on the values of o and v (or 3).

We first prove by induction on s that 7 (s) is a GCB|a, f]-tree. This is visibly true
when s < 4, hence we assume that s > 5. Let s = |as| be the weight of the right
child of T (s): it suffices to prove that s; < 7s, so < as, s21 < 7s2 and s92 < 7yse. The
inequalities s; < as and sg; < vs2 are immediate, and sy > |2s/3]| > 3, thereby proving
that:

s1<(1—a+1/s)s<(1-2/3+1/5)s < 2s/3 < s;

s20 < (1—~v+1/s9)s2 < (1 —2/3+1/3)s0 = 282/3 < 7ysa.

Now, let h(s) be the height of T (s) and let A(s) be the sum of the weights of the nodes
of T(s). We will prove inductively that h(s) > h™(s + x) and A(s) = AT (s + k) + v for
all s > 1, where we set h* (z) = —2logg(z) =7, AT (z) = zlogy(z) /A —4x, k = (y+1) /(1)
and v = (1+ (o + 1)k)/2.

First, we observe, when («a, 3) € D', that 4/5 < Ha(3/4) < A < Ha(2/3) < log,(5e)/4,
3< Kk <4and 3 < v <4 We will use these inequalities several times below.

For example, k + 1 < 5 < (4/3) < % and k +2 < 6 < (4/3)7 < 872, so0
that h(s) =s—2> hT(s+ k) when s =1 or s = 2.

Then, if s > 3, observing that so; + £ > 8s — v — 1 = (s + k) and using the induction

hypothesis proves that h(s) > h(sa1)+2 = ht (so1+k)+2 > 2—2logs(B(s+k)) =7 = ht (s+k).

Second, let A7 (s) be the smallest possible sum of the weights of the nodes of a binary

tree with weight s. By construction, A(s) > A~ (s), and A~ shines as the non-decreasing

convex function defined by A~ (1) =0 and A~ (s) = s+ A" (|s/2]) + A~ ([s/2]) for all s > 2.

Consequently, observing that
A (s+k)+v<5(s+k)logy(s+k)/4—4(s+k) +v < 5(s+4)logy(s+4)/4—4(s+3) +4

whenever s > 1 suffices to check (by computer) that A(s) > A7 (s) = s[logy(s)| = AT (s + k)
for all integers s < 26.

40:17

WADS 2025

40:18

Grandchildren-Weight-Balanced Binary Search Trees

Then, if s > 27, observe that a(l — a)(s+ &) > 2/3 x 1/4 x 30 > 5. It follows that:

s1i+e2(l—a)s+=2(1—a)(s+ k) > 5;

soa1t+KkZays+rk—v—1=ay(s+ k) > 5;

ssmt+rzall—9)s+r+v—12a(l—7)(s+k)=5.

Moreover, the function A" is increasing on the interval (162 /e, +00), and 164 /e < 5. In
addition, the equality A*(z) = (a+ 1)z + AT ((1 — @)z) + AT (ayz) + AT (a1 — v)z is valid
for all x > 1. Thus, the induction hypothesis proves that

A(s) = s+ 82 + A(s1) + A(s21) + A(s22)
s+s2+ AT (s1+K)+ A (s21 +K) + AT (s22 + 8) + 3v
(@+1)s +AT((1 = a)(s +) + AT (av(s + £)) + AT (a(l = 7)(s +) + (3v — 1)

Ts4+r)—(@+k+ Bv—1)=AT(s+ &) +v.

\ZRR\VARR VARV

>

Finally, we check by hand that A(s) > s|logy(s)] > Bslogy(s)/4 —4s+4 > slogy(s)/A —
4s+ 4 when 1 < s < 8, whereas, since AT is increasing on [5, +00),

AS) = AT (s+ k) +v=AT(s+3)+3=(5s+3)logy(s+3)/A—45—9
> (slogy(s) +3logy(s +3))/A—4s—9
>s

logy(s)/A 4 151ogy(12)/4 — 4s — 9 > slogy(s)/A — 4s + 4
when s > 9. <

» Lemma 8. Let a and B be real numbers such that 1/v/2 < a < 3/4 and (o) < B < o?.
Then, let

1—2a+6a% —/(1—a)(—a)
5(2a—1)

1+a7\/(17a)2+4a(a275)a
2(1—a?2+p) ’

d:

b=

as well as & = min{a, /a}.

We have 1/4 < B < B. Moreover, when & < u < « andﬁA <y < B, if
we apply the GC(y,0)-balancing algorithm on o GCBa1|a, f]-tree T, cases 1 to 5 are
pairwise incompatible, and those rotations they trigger can always be performed; if the
root of T is not y-GC-balanced, the algorithm transforms T into a GCB,, y[c, B]-tree T’ such
that balc(T") < balc(T) and whose affected nodes are (6, B)-balanced.

Proof. Below, we will use the following inequalities, which are all easy to check with
any computer algebra system (whereas some look too frightening to check by hand)
whenever 1/v/2 < a < 3/4 and %(a) < B < a?. Except the first three inequalities,
each of them is labelled and later reused to prove another inequality with the same label;
the first two inequalities already prove that 1/4 < B < f, as stated in Lemma 8.

1/4 < B; B<B;

o < 25 a? < 6 (3.1)
(1—=0)(a—pB) < (1 —a); (3.2) (1-96)1-4) <031 - a); (3.3)
1-3<0; (34) (1=0)(a—p) <(B—ap); (4.1)
(1—-6)8<d6(1—a); (4.2) a—pB+ab <6 (4.3)
(1-=0)ap < (1 — a); (4.4) 1<6(1+p); (4.5%)
1—64(+85—1)a<6p; (4.5P) 14+ (B-1)7 <. (4.6)

V. Jugé

Then, let |m| denote the weight of a node w in the tree 7, and let |m|" denote its weight
in 7'. When these weights are equal, we will prefer using the notation |m| even when
considering the weight of m in 7’. The root of T is denoted by n, its left and right children
are denoted by n; and na, and so on. Finally, we set 4 = 3/a, so that § = min{a, 4}.

Since 28 > «a and n is a-C-balanced, observing that 26|n| > «|n| > |n1| = |n11| + |n12]
proves that the inequalities |n11] > f|n| and |ni2|] > Sln| are incompat-
ible. Similarly, the nodes m; and ny, are «-C-balanced, and thus observing
that 25|n| > a|n| = a|ni| + alna| = |n11| + |n21| proves that the inequalities |nii| > SB|n|
and |n2;| > f|n| are incompatible. Finally, for symmetry reasons, all four
inequalities |n;;| > B|n| are incompatible: this makes our description of the algorithm
unambiguous, as announced.

Then, proving that the desired rotations can indeed be performed simply requires showing
that, if some case 1 to 4 happens, the grandchild n;; be a grandchild of n whose weight |n;;|
is maximal is an actual tree node instead of an empty node of weight 1/2 or less. If this
were the case, we would have |n;| = 2|n;;| < 1, and n; would be either an empty node
or a leaf; in both cases, we would have |n| > 2|n;|, i.e., |n| > 4|n;;|, contradicting the
inequality |ni;| > y|n| = Bln| > |n|/4.

It remains to prove that each affected node m is ¢-C-balanced; its children
being a-C-balanced, it will then be B—GC—balanced. Furthermore, if a rotation was
triggered, n was not ,B GC-balanced but its children were a-C-balanced, which proves
that balc(T) > 8/a = 0 = balc(T7).

When |n:| > w|n| > B|n|, a simple rotation is performed, and

11| < afna| < o®fn| < 8|n| = dlnal; (3.1)
(1= 8)lmz| = (1= 0)(jna| = [nua]) < (1 = 8)(aln| - Blnl)
< O(1—a)ln| <o(|nf = |ml) = dnaf; (3-2)
(1 =08)In2[= (1 = d)(|In] = [na]) < (1 = 8)(|In[— [nul/e) < (1 =6)(1 =F)n|
<01 = a)n| <6(1/a = Dnu| < d(|na| = naaf) = dnaal; (3.3)
In = In| = Inu| < (1= B)ln| < 8ln| = é|n. [,

which means precisely that n and n; are §-C-balanced in 7.
Similarly, when |nia| > w|n| = §|n|, a double rotation is performed, and

(1= 8)[nu| = (1= 8)(jna| — n12]) < (1= 8)(aln| = Bln|)

< 6(BIn| — aBln|) < 8(|n1a| — Blnal) < 8(Jnazl — [nazel) = d|nazal; (4.1)
(L =0)niz21| < (1= 8)Bln1| < 6(na| — afna]) < 6(|na| — [nazf) = dlnal; (4.2)
Ina|" = || = [nae] + (a2 | < |na| = [naz] + Blna
< (o= B+ ap)in| < dln| = d|naa|’; (4.3)
(I =0)niza| < (1= 6)Bln1| < (L =d)afn| < 6(1 — a)[n| < 6(|n| — [nu|) = d[nal; (4.4)
(1 = 0)In2| < (1 = 0)[n2| + Bd|n1| — b[niar| = (1 = 0)|n| + (6 + 86 — 1)[n1| — d|ni121]
< (1 =d)n|+ (6 + B — Laln| — d|niz| (4.5%)
< 65\n| — d|ni21| < d|nia| — §|nia1| = d|n1aal; (4.5P)
In|" = [n| = [na] + |na22] < [nf + (8 — 1)|na]
< |nl + (B = Dlnizl/a < [n] + (8 = 1)In| < d|n| = d|naal’, (4.6)

which means precisely that n, ni and niy are §-C-balanced in 7.
Finally, the cases where |n21| > w|n| or |naa| > win| are symmetrical, and therefore the
conclusion of Lemma 8 is valid in these cases too. |

40:19

WADS 2025

	1 Introduction
	2 Grandchildren-balanced trees
	3 Bottom-up algorithm
	4 Top-down algorithm
	5 Complexity analysis
	A Missing proofs of Sections 2 and 3

