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—— Abstract
In this study, we investigate a scheduling problem on identical machines in which jobs require
initial setup before execution. We assume that an algorithm can dynamically form a batch (i.e., a
collection of jobs to be processed together) from the remaining jobs. The setup time is modeled
as a known monotone function of the set of jobs within a batch, while the execution time of each
job remains unknown until completion. This uncertainty poses significant challenges for minimizing
the makespan. We address these challenges by considering two scenarios: each job batch must be
assigned to a single machine, or a batch may be distributed across multiple machines. For both
scenarios, we analyze settings with and without preemption. Across these four settings, we design
online algorithms that achieve asymptotically optimal competitive ratios with respect to both the
number of jobs and the number of machines.
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1 Introduction

Efficient job allocation across multiple workers or machines is crucial for optimizing productiv-
ity in industrial environments. For example, consider distributing computational jobs across
multiple virtual machines. The processing time for a batch of jobs consists of two components:
the setup time, which includes configuring the environment or installing necessary software
or libraries, and the execution time, which represents the duration of performing the actual
tasks. While setup times are typically known in advance, the execution time of each job is
often unpredictable until the job is completed. This uncertainty complicates the design of
scheduling algorithms aimed at minimizing the makespan, which is the time when all jobs
are completed.

In this paper, we introduce a scheduling problem involving n jobs on m identical machines
with known setup times and unknown execution times, referred to as the unknown execution
time scheduling (UETS) problem. We assume that an algorithm can dynamically form a
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batch — a collection of jobs that are processed together — from the remaining jobs. The setup
time for a batch is defined as a set function over subsets of jobs, representing the total time
required to prepare the jobs in the batch for processing. We explore two primary scenarios:
one called sUETS, in which each constructed batch must be assigned to a single machine,
and the other called mUETS, in which a batch can be distributed across multiple machines.
Additionally, we examine two settings based on whether preemption is allowed. In the
non-preemptive setting, once a batch process is started, it must be run without interruption
until completion. In the preemptive setting, the processing of a batch can be interrupted.
After an interruption, only uncompleted jobs are regrouped into batches and the process is
resumed from the setup phase (completed jobs do not need to be processed again). Note
that, the non-preemptive setting generally requires longer processing times compared to the
preemptive one, because preemption allows for more flexible handling of incomplete batches
and may reduce redundant processing.

Our objective is to design online algorithms for these scheduling problems. We analyze
the performance of an online algorithm by the competitive ratio, which is the worst-case
ratio between the makespan achieved by the online algorithm and that of an optimal offline
algorithm. We assume that offline algorithms have complete knowledge of each job’s execution
time in advance. We refer to the schedule produced by the optimal offline algorithm as the
optimal schedule and its makespan as the optimal makespan. We refer to the makespan of the
schedule produced by an algorithm simply as the algorithm’s makespan. An online algorithm
is said to be p-competitive if its makespan is at most p times the optimal makespan for any
instance. We will design online algorithms with asymptotically optimal competitive ratios
with respect to both the number of machines and the number of jobs.

1.1 Our results

We study the competitive ratios for the scheduling problem with setup time and unknown
execution times. We first show that any algorithm designed for jobs with a release time of 0
can be adapted to handle arbitrary release times at the expense of only a constant factor
increase in the competitive ratio. We formally state this in Theorem 2. Thus, we may assume
that the release time of each job is 0, i.e., jobs can start processing immediately at time 0. A
summary of our results is provided in Table 1.

For the non-preemptive sUETS problem, we present two algorithms. First, we construct
an algorithm with a competitive ratio of m (Theorem 3). Second, we design an algorithm
that is O(W)—competitive (Theorem 5). By combining these two algorithms, we obtain
an O(n'/?)-competitive algorithm (Corollary 6). Moreover, we prove lower bounds showing
that every online algorithm for this problem must have a competitive ratio of at least Q(m)
(Theorem 11) and Q(n'/3) (Theorem 10). For the preemptive sSUETS problem, we design an
algorithm with a competitive ratio of O(logn/loglogn) (Theorem 8), and we demonstrate
that the competitive ratios of O(m) and O(logn/loglogn) are best possible (Theorem 11).

Turning to the non-preemptive mUETS problem, we first construct an O(y/m)-competitive
algorithm (Theorem 12). By integrating this with the O(y/n/m)-competitive algorithm for
the non-preemptive sSUETS problem (Theorem 5), we derive an O(nl/ 4)-competitive algorithm
for the non-preemptive mUETS problem (Corollary 13). We further prove that O(y/m) and
O(n'/*) are optimal (Theorem 17). Finally, for the preemptive mUETS problem, we establish
that the best possible competitive ratios are ©(logm/loglogm) and O(logn/loglogn)
(Theorems 8, 15, and 18).

Due to space limitations, some proofs are omitted in this version. The complete proofs
are available in a full version of the paper.
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Table 1 The competitive ratios of the UETS problems with n jobs and m machines.

single multiple

O(m) (Thms. 3 and 10) O(y/m) (Thms. 12 and 17)
O(n'/®) (Cor. 6 and Thm. 10) O(n'/*) (Cor. 13 and Thm. 17)

non-preemptive

. O(m) (Thms. 3 and 11) @(1 lolgm ) (Thms. 15 and 18)
preemptive oglogm
@(blg?ign) (Thms. 8 and 11) @(1o:ign) (Thms. 8 and 18)

1.2 Related work

Classical scheduling problems typically assume that the setup time is 0 for every job batch.

In this case, the well-known list scheduling algorithm achieves (2 — 1/m)-competitive, which
is proven to be optimal [16-18,32]. This algorithm assigns unprocessed jobs to any available
machine in the order they appear on the job list, disregarding execution times.

When execution times are unknown until job completion, the problem falls under the
category of non-clairvoyant scheduling [26]. Recent studies have explored non-clairvoyant
scheduling in input prediction models [3,21]. Shmoys et al. [32] introduced a technique to
transform a p-competitive algorithm for a scheduling problem without release times into
a 2p-competitive algorithm for the same problem with release times. For comprehensive
overviews of online scheduling, see surveys [29,31] and the book by Pinedo [28].

Scheduling problems that incorporate both setup times and execution times arise in
various applications, such as cloud computing (where virtual machines must be initialized
based on job types) and and production systems (where machines require reconfiguration,
such as changing molds or colors) [1,9,13,20,25,30]. For example, in plastic production
systems, attaching a specific mold to a machine constitutes the setup time. If consecutive
jobs use the same mold, no additional setup time is required. The total setup time for a
batch can be precomputed as the minimum time needed for attaching, exchanging, and
removing molds.

Gambosi and Nicosia [13] studied an online version of scheduling with setup times in
the one-by-one model. Mécker et al. [24] investigated non-clairvoyant scheduling with setup
times and proposed an O(y/n)-competitive algorithm for minimizing maximum flow time
on a single machine. Dogeas et al. [10] considered a scenario where the execution time of
each job is only revealed after an obligatory test with a known duration. This test time can
be viewed as a kind of setup time, although it differs in that the execution time becomes
apparent.

Goko et al. [15] introduced a scheduling model with a metric state space that involves
setup time and unknown execution time settings together. Their model includes a scheduling
problem faced by repair companies where each worker needs to visit customers’ houses, do
the repair jobs, and then return to the office. The setup time corresponds to the shortest tour
length for the customers’ houses, and the execution time corresponds to the duration of the
repair jobs. Their model also includes the online dial-a-ride problem [2,4-7,11,22,23], in which
taxis are offered to pick up and drop passengers for transportation jobs. Our preemptive
mUETS problem can be seen as an abstraction of their model, and hence, a similar approach
can be used to solve it. However, the other problems (i.e., preemptive/non-preemptive
sUETS and non-preemptive mUETS) are different and require other approaches.
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The setting in which all jobs have an execution time of 0 and are released at time 0, with
only the setup time considered as processing time, can be viewed as an offline load balancing
problem. This problem is NP-hard even if the setup time is additive and the number of
machines is two, as this special case corresponds to the PARTITION problem [14]. For the
additive setup time, the list scheduling algorithm works as a (2 — 1/m)-approximation algo-
rithm. Moreover, this problem admits a polynomial time approximation scheme (PTAS) [19].
Svitkina and Fleischer [33] presented an O(y/n/logn)-approximation algorithm for the

submodular setup times, and demonstrated that this is best possible. Furthermore, Nagano
S5 1

J€lm] TFIST D -ra(57)

for the subadditive setup times, where (S7,...,S} ) is an optimal partition and .(S) is the

curvature of cat S C J.

and Kishimoto [27] provided a 2 - (max

)-approximation algorithm

2 Preliminaries

For a positive integer k, we write [k] to denote the set {1,2,...,k}. We are given a set J of
n jobs and m identical machines. We assume that all jobs are given and released at time
0. As we will show in Section 2.2, this assumption only increases a constant factor in the
competitive ratios. We denote the set of machines by [m]. We assume that n > m > 2, as
the optimal scheduling is clear otherwise. The jobs are executed in batches, and each batch’s
processing time consists of two components: the setup time and the execution time.

The setup time is the total time one machine takes to set up jobs in the batch. For a
batch X C J, the setup time for X is represented as ¢(X) € R;. The execution time for
each job j € J, denoted by pj, is unknown until its process is completed. We write p(X)
to denote the total execution time of a batch X C J, i.e., p(X) = >_,c x p;j. Consequently,
the overall processing time of a batch X on a single machine is given by p(X) + ¢(X). We
assume that the setup time ¢(X) for every X C J is available in advance, while the execution
time of each job is unknown until its completion.

We also deal with a situation where one batch can be assigned to multiple machines. We
assume that when a batch X is assigned to k& machines, each of the machines incurs a setup
time ¢(X), and the jobs are executed on a first-come, first-served basis. For example, when a
batch X is processed in a production system, we assume that each machine forms a queue of
the attachments needed for jobs in X, and proceeds as follows: (i) dequeues and installs the
first attachment in the queue, (ii) repeatedly executes an unprocessed job that is compatible
with the current attachment as long as such a job exists, and (iii) removes the current
attachment and returns to step (i) if the attachment queue is not empty. The minimum
processing time for batch X across & machines falls within the range of ¢(X) + p(X)/k and
c(X) 4+ p(X)/k + max;ex p;.

At each time, we can assign a batch of jobs that have not yet been completed and are
not assigned anywhere else. In the sUETS and mUETS problems, a batch can be allocated
to a single machine and multiple machines, respectively. Our objective is to minimize the
makespan, which is the time at which all the jobs are completed.

We assume that the setup time function c: 27 — R is monotone subadditive. Monotonic-
ity means that ¢(X) < ¢(Y) for any X CY C J. Subadditivity means that for any disjoint
subsets X and Y from J, the sum of their setup times is greater than or equal to the setup
time of their union, i.e., ¢(X) +¢(Y) > ¢(X UY). Note that this assumption of subadditivity
does not lose generality. To observe this, for any (not necessarily subadditive) function
¢, define the function ¢(X) = min(x, .. x,): partition of X Zle ¢(X;). This new function ¢ is
monotone and subadditive by construction — it represents the minimum total setup time
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achievable if one were allowed to split the batch X into sub-batches and incur the setup
cost separately for each. Importantly, replacing ¢ with ¢ in our analysis does not change the
fundamental nature of the scheduling problem, and thus we assume without loss of generality
that the setup time function is monotone and subadditive.

We explore two settings based on whether an allocated batch can be preempted. In the
non-preemptive setting, once a batch is assigned, it must be processed to completion without
interruption. Conversely, in the preemptive setting, the processing of a batch can be halted
and canceled. Suppose that a batch X is assigned to k machines and is preempted after ¢
units of time from the start of its processing. In this case, we assume that the machines
will become available to process another batch after at most ¢(X) + max;cx p; units of
time. This assumption ensures that the processing time does not increase even if preemption
occurs during the setup phase. Furthermore, at the moment of preemption, let X’ C X
denote the set of jobs that have been completed. Then, the following inequality holds:
c(X)+p(X')/k +maxjex p; > t. This condition ensures that the total time spent up to the

point of preemption is consistent with the setup and execution times for the completed jobs.

Note that, in any setting, we can assume that an optimal schedule does not perform
preemptions and assigns only one batch to each machine at the beginning because the setup
time c is subadditive. Thus, an optimal schedule can be represented as a partition of jobs
(XT,...,X;,) and the optimal makespan is max;cp,)(c(X;) + p(X;)) independently of the

m
settings. Based on this observation, we derive a lower bound for the optimal makespan, as

formalized in the following lemma.

» Lemma 1. The optimal makespan is at least

max{(thxmmin max ¢(X;), (e(J)+p(J))/m, max(c({j}) +Pj)}~

): partition of J i€[m] JjeJ
Proof. Let (X7§,...,X}) be an optimal schedule. Then, the optimal makespan is at least

max (c(X;) + p(X])) > max ¢(X]) > min max ¢(X;).
ze[m]( ( ) p( >> i€[m] ( ) (X1,...,Xm): partition of J i€[m] ( )

Additionally, we have

max (c(X]) +p(X)) 2 max (c({7}) +p;) = (e(J) +p(])/m

i€[m)]

by monotone subadditivity of the setup time. Therefore, we have the lower bound. |

2.1 Examples of setup times

This subsection illustrates several examples of setup times raised in practical applications.

In addition, we discuss the approximability of the partition (load balancing) problem

min max c(X;) (1)
(X1,...,Xm): partition of J i€[m]

for each class of setup times.

Constant setup times. One of the simplest examples of the setup time family is the constant
setup time, where the setup time is a certain constant independent of the batch. Formally,
the setup time is represented as c¢(X) = 1 for X € 27\ {0} and ¢()) = 0. It is not difficult to
see that any partition of the jobs (X,...,X,,) is optimal for the problem (1).
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Type-specific setup times. In production systems with attachments, jobs are partitioned
based on their types. Let T be the set of types and (J;):er is the partition of jobs with
types T, i.e., Uyer Jt = J and J; N Jp = 0 for all distinct ¢, € T. Let w; be the setup
time for type t. Then, the setup time for X C J is defined as ¢(X) = 3, 7. xn7, 20 Wt-
Additionally, we say that a type-specific setup time c is unweighted if wy =1 for all t € T',
ie,c(X)=[{teT:XnNJ #0} for X CJ. We can obtain a PTAS for the problem (1)
with type-specific setup times by treating each J; as a single job and applying a PTAS for the
load balancing problem [19]. Moreover, for the unweighted case, the problem (1) is solvable
in polynomial time because an optimal solution can be obtained by simply balancing the
number of types assigned to each machine.

Library-based setup times. In cloud computing environments, where each job requires the
installation of multiple libraries, and each library takes a fixed amount of time to install.
The setup time needed to process a batch of jobs is the total installation time of the required
libraries. Let L be the set of libraries, and let L; C L be the set of required libraries for
job j € J. Let wy be the installation time for library ¢ € L. Then, the setup time for
X C J is defined as ¢(X) = ZZEUJ‘QX 1, we- Note that if every job j € J requires a unique

library (i.e., |L;| = 1), this is a type-specific setup time. This setup time is a monotone
submodular function; more specifically, it is a weighted coverage function. Hence, we can
apply the O(y/n/logn)-approximation algorithm for the uniform submodular load balancing
problem [33] to solve the problem (1).

TSP-based setup times. For applications like repair companies, the setup time is defined
by the optimal value of a traveling salesman problem (TSP) instance. Let (V,d) be a metric
space with an origin o € V. The origin corresponds to the location of the company. Each
job j € J is associated with a point v; € V. Then, the setup time for X C J is defined as
the optimal value of the TSP on V' = {v; : j € X} U{o}. Note that this class of setup times
is a generalization of type-specific setup times. Indeed, for a star metric (T'U {0}, d) where
d(t,0) = wy/2 for all t € T and d(t,t') = (wy +wy)/2 for all distinct ¢,¢" € T, the setup time
is o(X) = > ter. xry 0 Wt for X C J when v; =t for each job j € J;. For TSP-based setup
times, the problem (1) can be viewed as the m-TSP. It is known that the m-TSP admits a
2.5-approximation algorithm [8,12].

2.2 Reduction of the Problem with Release Time

In this subsection, we show that our assumption that all jobs have a release time of 0 (i.e.,
each job is available for processing from time 0) does not lose generality. Suppose instead
that each job has a release time, and its existence is hidden until its release time. Let ALG
be a p-competitive algorithm for a UETS problem in a certain setting without release times.
Then, we demonstrate that ALG can be transformed into a (2p + 1)-competitive algorithm
for the UETS problem with release times of the corresponding setting. For this end, we use
the IGNORE strategy, which appeared in the paper of Shmoys et al. [32] and is named by
Ascheuer et al. [2].

The IGNORE strategy keeps the machines remain idle until a set S of jobs appears.
Then, IGNORE immediately decides a schedule for the jobs in S following the algorithm
ALG and assigns job batches to machines. We refer to this schedule as a subschedule for S.
All jobs that arrive during the process of the subschedule are temporarily ignored until the
subschedule for S is completed. After all the machines complete the jobs in S, IGNORE
decides a subschedule for all new jobs that arrived during the previous process. If there are
no such jobs, all the machines become idle. The IGNORE strategy repeats this procedure.
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» Theorem 2. The IGNORE strategy with a p-competitive algorithm ALG is (2p + 1)-
competitive for the UETS problem with release time.

Proof. Fix an instance, and let OPT be the optimal makespan. For a subset of jobs J', we
denote ALG(J') as the makespan of the algorithm, assuming that jobs in J' are given at
time 0. Note that ALG(J’) < p- OPT by the monotonicity of the optimal makespan with
respect to the jobs.

If the instance contains no job, then IGNORE is clearly optimal. Thus, we assume that
the instance contains at least one job. Let t* be the last release time of the jobs. Then,
OPT > t* as the last released job can only be processed from t*.

Suppose that the machines are idle at time t*. Let R be the set of jobs processed in the
last subschedule by the IGNORE strategy. Then, the makespan of IGNORE is

t* + ALG(R) < OPT + p- OPT < (2p+ 1) - OPT.

On the other hand, suppose that some machines are not idle at time ¢*. Then t* is in
the second last subschedule of the algorithm, and the last subschedule starts right after the
second-to-last subschedule ends. Let R and S be the sets of jobs processed in the last and
the second-to-last subschedules, respectively. Then, the makespan of IGNORE is

t* 4+ ALG(S) + ALG(R) <OPT +p-OPT + p-OPT = (2p+1) - OPT.
Therefore, the competitive ratio of IGNORE is at most 2p + 1. <

It should be noted that this reduction remains valid even when the competitive ratio p
of ALG depends on the number of machines m or the number of jobs n, provided it is
monotonically nondecreasing with respect to n. From this theorem, the optimum competitive
ratio is the same up to a constant factor regardless of the release time.

3 Single Machine Batch Allocation

In this section, we analyze the sSUETS problem where each batch can be allocated only on a
single machine. Recall that n is the number of jobs and m is the number of machines.

3.1 Algorithms

We first observe that the algorithm of processing the batch consisting of all jobs by a single
machine without preemption is m-competitive, where m is the number of machines. Note
that this algorithm is feasible for any settings of sSUETS and mUETS since no cancellation is
performed.

» Theorem 3. The algorithm of processing the batch consisting of all jobs by a single machine
is m-competitive for the non-preemptive sUETS problem.

Proof. As the makespan of the algorithm is ¢(J) + p(J) and the optimal makespan is at
least (C'(J) + p(J))/m by Lemma 1, the competitive ratio is at most

o) e(J) +plJ) _ D)
el (X)) +PX)) g€ + oK) m ~ D)+ p( ) fm ™

where the second inequality is implied by the subadditivity of the setup time c. |

Second, we analyze the competitive ratio of the list scheduling algorithm.
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» Theorem 4. The algorithm that greedily assigns a batch consisting of a single unprocessed
job to any available single machine is O(n/m)-competitive for the non-preemptive sUETS
problem.

Proof. The makespan of the algorithm is at most

(1) + )+ max(e({}) + i) < 2+ OPT = O(n/m) - OPT,

jeJd
where the inequality holds by Lemma 1. Thus, the competitive ratio is at most O(n/m). <

Next, we provide an O(W)—competitive algorithm, which is an improved version of
the list scheduling algorithm. The idea is to reduce the total setup time by grouping jobs.
The algorithm first divides the jobs into m + [W} batches in such a way that this partition
minimizes the maximum setup time, under the condition that each batch contains at most
{\/n/im] jobs. Then, it processes the batches according to the list scheduling algorithm, which
greedily allocates an unprocessed batch to any available machine. The formal description of
this algorithm is summarized in Algorithm 1.

Algorithm 1 O(y/n/m)-competitive algorithm for the non-preemptive SUETS problem.
Let k=m + [\/mn];

Compute a k-partition (X7, ..., Xy) of the jobs J such that |X;| < ﬂ/n/m—‘ for all
i € [k], and among such partitions, minimize max;¢y) c(X;);

N =

3 fori«+ 1,2,...,kdo
4 Wait until at least one machine is available;
5 Assign batch X; to an available machine;

» Theorem 5. Algorithm 1 is O(«/n/m)—competitive for the non-preemptive sUETS problem.

Proof. Let (X7,..., X}, be the optimal schedule and let OPT denote the optimal makespan
max;e ) (¢(X7) + p(X})). Define k = m + [/mn], and let (X1,..., X)) be a k-partition of
the jobs J that minimizes max;e ) ¢(X;) subject to | X;| < [/n/m]| for all i € [k].

We first observe that max;cy ¢(X;) < OPT. This is because by dividing each X7 with i €
[m] into [|X}|/\/n/m| sub-batches of almost equal size, we can obtain a partition (Y1, ...,Y})

that refines (X7,..., X%). Here, we have |Yy| < max;c [|X;|/[\X;‘|/W/mﬂ < [vaym)
for all i' € [k]. Thus, it holds that max;cpy c(X;) < max;epy c(Y;) < max;epy, ¢(X;) < OPT.
Then, the makespan of the algorithm is at most

S (elX) + p(X0)) + max(e(X1) + p(X)

i€ k] i€lk]
k- OPT + p(J) .
< == 5 X;| - ;
= - +max | X - max(e({7}) +p;)

IA

(k/m F14 {\/nTm]) - OPT = O(y/njm) - OPT,

where the first inequality follows from the subadditivity of the setup time and the second
inequality from Lemma 1. Hence, Algorithm 1 is O(\/n/m)—competitive. <

By combining Theorems 3 and 5, we obtain the following corollary.



Y. Kawase, K. Makino, V.L. Phan, and H. Sumita

» Corollary 6. There exists an O(n'/3)-competitive algorithm for the non-preemptive sUETS
problem.

Proof. If m < n'/3, then the algorithm that processes the batch J by a single machine is
m = O(n'/?)-competitive by Theorem 3. On the other hand, if m > n'/3, the competitive
ratio of Algorithm 1 is O(y/n/m) = O(n'/3) by Theorem 5. Thus, an O(n'/?)-competitive
algorithm exists for either case. <

» Remark 7. Obtaining the partition at line 2 in Algorithm 1 is computationally hard. Thus,
we mention the competitive ratio when we can utilize an a-approximation algorithm for
the problem (1). Let (X7{,...,X,,) be an m-partition of the jobs J that is obtained by
the approximation algorithm. Let k' = m + {W} Then, we can easily construct a
K'-partition (Y{,...,Y},) that is a refinement of (X7,..., X/,) and satisfies |Y/| < [\/a'-n/m]|
for all ¢ € [k']. By using k' instead of k& and employing this partition at line 2, Algorithm 1
is O(a + \/m)—competitive for the non-preemptive SUETS problem. By combining this
with Theorem 4, we can obtain an O(min{+/a - n/m, n/m})-competitive algorithm. Moreover,
by combining this with Theorem 3, we can also obtain an O(min{(an)'/3,/n})-competitive
algorithm.

In the rest of this subsection, we provide an O(logn/loglogn)-competitive algorithm
for the preemptive SUETS problem. For a given instance of the sUETS problem, let ¢
be an integer such that ¢¢ > n > (¢ — 1)?"!. Note that ¢ = ©(logn/loglogn). The
execution of our algorithm consists of ¢ + 1 phases. Without loss of generality, we may
assume that m > 2q, since otherwise the competitive ratio of the algorithm in Theorem 3 is
m = O(q) = O(logn/loglogn).

The intuition of our algorithm is as follows. Our algorithm repeatedly completes a
(1 — 1/g)-fraction of the jobs in each phase. Consequently, all the jobs can be processed in
O(q) iterations. This increases the cost of the setup time by a factor of O(g). Additionally,
we ensure that at least m/q machines work at any point of the algorithm. This guarantees
that the cost in terms of execution time will only increase by a factor of at most ¢q. By these
properties, the competitive ratio of the algorithm is O(q) = O(logn/loglogn).

Let us explain our algorithm more precisely. Initially, it computes an m-partition
(X1,...,X) of the jobs J that minimizes the maximum setup time max;cpmy) c¢(X;). In the
first phase, X; is allocated to machine ¢ for each ¢ € [m]. Then, each machine processes the
assigned batch until either the machine completes the batch or the number of uncompleted
machines becomes less than or equal to |[m/q]. At that time, the machines still processing
will preempt their batches. In the kth phase (k = 2,3,...,q), the algorithm computes an
m-partition (Yl(k)7 .. 7Y,glk)) of the remaining jobs such that, for any ¢ € [m], |Yi(k)| <n/¢" !
and Yi(k) C X, for some j € [m]. We can always obtain such a partition by dividing each
batch left in the previous phase into ¢ sub-batches. Thereafter, each machine processes the
assigned batch until either the batch is completed or the number of uncompleted machines
becomes less than or equal to [m/q|. At the end of gth phase, the number of remaining jobs
is at most (n/q? 1) - [m/q] <m-(n/q?) < m. In the (¢ + 1)st phase, the algorithm assigns
up to one remaining job to each machine. A formal description of the algorithm is provided
in Algorithm 2.

» Theorem 8. Algorithm 2 is O(log’ign)-competitive for the preemptive sUETS problem.

Proof. Let ¢ be an integer such that ¢? > n > (¢ — 1)971. If m < 2q, then the competitive
ratio is m = O(q) = O(logn/loglogn) by Theorem 3. Thus, we assume m > 2q.
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Algorithm 2 O(lolgoﬁ)gn)—competitive algorithm for the preemptive sUETS problem.

Let q be an integer such that ¢¢ > n > (¢ — 1)971;

if m < 2q then Assign batch J to one machine and exit;

Compute an m-partition (Xy,..., X,,) of the jobs J that minimizes max;ep,, c(Xs);
Let R « J be the set of uncompleted jobs;

for k< 1,2,...,q do // phase k

(=2 I L B S R VR

Compute an m-partition of (Yl(k), cee Y,&k)) of the remaining jobs R*~1 such
that, for each i € [m], |Yl-(k)| <n/q*~1 and Yl-(k) C X; for some j € [m];

7 Assign batch Yi(k) to machine ¢ for each i € [m];

Each machine processes the assigned batch until the batch is completed or the
number of uncompleted machines becomes less than or equal to [m/q];

9 Let R™) be the set of uncompleted jobs;

10 Asmgn up to one job R? per machine; // phase q+ 1

Let OPT be the optimal makespan and let pyax = max;csp;. In addition, let 7, be the
time length of phase k € [¢ + 1]. By the definition of the algorithm, the jobs in R*~1)\ R(¥)
are completed in phase k € [g]. Thus, the total execution time of jobs in phase k € [¢] is
at most p(R*F=D\ R®)) + pax - [m/q] because at most [m/q] jobs are partially executed.
Taking into account the setup time of at most max;e,,) ¢(X;) and the time for preemption
of at most max;e[m] ¢(X;) + Pmax, the length of phase k € [¢] is

7. < max ¢(X;) +
b < poae(Xa) [m/q]

<1

P(RED\RW) o+ puay - mfa) | ( )

m[ax] c(X5) + Pmax
p(RE=V\ R®) 4 40PT < % -p(R*=D\ R®)) + 40PT,

where the second inequality is by Lemma 1 and the third is by m > 2¢. In addition, by
Lemma 1, the time length 7,11 of phase ¢ + 1 is

71 < max(e({7}) +,) < OPT.

Thus, the makespan of Algorithm 2 is

g+1 q
> 1< (4g+1) OPT—|— Z (R*=1\ Ry
k=1 k=1

2q
< (4¢ + 1)OPT + T p(J) < (4g + 1)OPT + 2¢ - OPT = O(q) - OPT.
Hence, the competitive ratio of Algorithm 2 is O(q) = O(logn/loglogn). <

» Remark 9. Similar to Remark 7, suppose that we take an m-partition (Xi,...,X,,) of
the jobs J that is an a-approximation of the problem (1) at line 6 in Algorithm 2. Then,
the competitive ratio of Algorithm 2 becomes O(a . 102)5) gn)—competitive for the preemptive
sUETS problem. Moreover, by setting q to be the integer that satisfies ¢ > n® > (g —1)971,

we can slightly improve the competitive ratio to O(lolgﬁ) g(; ).
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Algorithm 3 O(y/m)-competitive algorithm for the non-preemptive mUETS problem.
1 Let k = [/m];
2 Compute a k-partition (Xi,..., X}) of the jobs J that minimize max;e c(X);
3 Assign batch X; to |[m/k] machines for each i € [k];

3.2 Lower bounds

In this subsection, we show that the algorithms provided in Section 3.1 are asymptotically
optimal with respect to both the number of machines and the number of jobs.
We first provide a lower bound for the non-preemptive setting.

» Theorem 10. The competitive ratio of the non-preemptive sUETS problem is at least Q(m)
and Q(n'/3) even for constant setup times.

Proof. Let n = m3 and ¢(X) = 1 for any non-empty batch X C J (i.e., constant setup
times). We will set the execution time 1 for at most m jobs (referred to as heavy jobs) and
0 for the other jobs (referred to as light jobs) depending on the behavior of a given online
algorithm. It is not difficult to see that the optimal makespan is at most 2.

We fix an online algorithm. Let us consider its behavior when every job is light. Suppose
that every batch assigned to machines consists of at most m jobs. Then, the algorithm
assigns at least n/m = m? batches to the machines in total. Consequently, some machines
must process at least m batches, which requires m setups. Thus, the makespan is at least m
in this case, and we have done.

Conversely, suppose that the algorithm allocates a batch consisting of more than m jobs
in the instance where every job is light. In another instance where m jobs in the first such

batch are set to be heavy, the algorithm’s behavior is the same until the batch is assigned.

Thus, the algorithm assigns all the heavy jobs to one machine, and the makespan is at
least m. Therefore, in both cases, the competitive ratio is at least Q(m) = Q(n'/3). <

Next, we provide a lower bound for the preemptive setting.

» Theorem 11. The competitive ratio of the preemptive sUETS problem is at least Q(m)
and Q(logn/loglogn) even for constant setup times.

4  Multiple Machines Batch Allocation

In this section, we explore the mUETS problem, where a batch can be allocated to multiple
machines.

4.1 Algorithms

We first provide an O(y/m
The algorithm computes a

)
!

v/m|-partition of J that minimizes maximum setup time. Then, it

allocates each batch to |y/m| machines. The algorithm is formally described in Algorithm 3.

» Theorem 12. Algorithm 3 is O(y/m)-competitive for the non-preemptive mUETS problem.

-competitive algorithm for the non-preemptive mUETS problem.
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Algorithm 4 O(lolgolg%)—competitive algorithm for the preemptive mUETS problem.

Let g be an integer such that ¢¢ > m > (¢ —1)77 1
Compute an m-partition X1,..., X;, of the jobs J that minimizes max;ep,,) c(X;);
Set k* < [log, m] + 1 and let I(®) <~ [m] be the set of unprocessed batch indices;
for K+ 1,2,...,k* do // phase k
Assign batch X; to ¢"~! machines for each i € I
Continue processing the assignment until the number of uncompleted batches
becomes |m/q*|. Once this condition is met, preempt all remaining
uncompleted batches;
7 Define I®) to be the set of uncompleted batch indices;

k—1).
)

o s W N -

Proof. Let (X7,...,X}) be an optimal schedule and let OPT be the optimal makespan. In
addition, let & = [/m] and (X1, ..., X}) be a k-partition of J that minimizes max;¢ ) ¢(X;).
We analyze the algorithm that allocates each batch X; to [m/k| machines. The makespan

of the algorithm is at most max;c[ (c(Xi) + f:q(jj;gj + max;ex, pj). By the choice of

(X1,...,Xk) and the subadditivity of the setup time ¢, we have

[m/k]
X;) < X7 —1)+j
e < mpxe | U Mmoo
[m/k] m
<ms 3 oXfuuron) <[] -OPT. .

where we denote X = ) for ¢ > k. Therefore, by Lemma 1 and (2), the makespan is at most

max (C(XZ-) + ﬁfj/(kﬂ +jnéa)m§pj) < (m + ﬁ + 1) - OPT = O(y/m) - OPT,

which means that the competitive ratio of the algorithm is O(y/m). <
By combining Theorems 5 and 12, we can obtain the following corollary.

» Corollary 13. There is an O(n'/*)-competitive algorithm for the non-preemptive mUETS
problem.

Proof. If m < /n, then the algorithm in Theorem 12 is O(y/m) = O(n'/*)-competitive.
On the other hand, if m > \/n, the competitive ratio of Theorem 5 is O(y/n/m) = O(n'/4).
Thus, in either case, there is an O(n'/4)-competitive algorithm. <

» Remark 14. To account for the computational issue, suppose that we only have an m-
partition (X7,...,X/,) of the jobs J that is an a-approximation for the problem (1). Let
k' = |/am]|. Then, the schedule that assigns batch U;Z{M Xk (i—1)45 t0 Lm/K']
machines for each i € [k] is O(y/am)-competitive for the non-preemptive mUETS problem.
By combining this with Remark 7, we can obtain an O(min{\/a - n'/4, \/n})-competitive

algorithm for the non-preemptive mUETS problem.

For the preemptive mUETS problem, Algorithm 2 is also O(logn/loglog n)-competitive,
and this is asymptotically best possible as we will see in Theorem 18. Thus, even when we are
allowed to assign a job batch to more than one machine, we cannot improve the competitive
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ratio with respect to the number n of jobs. In contrast, we show that the competitive ratio
with respect to the number m of machines can be exponentially improved by allowing batches
to be assigned to multiple machines.

Let ¢ be an integer such that ¢? > m > (¢ —1)9" and let k* be [log, m] + 1. Here,
k* < qand ¢* ~' <m < ¢*. We have ¢ > 2 from the assumption that m > 2.

Our algorithm for the preemptive mUETS is similar to Algorithm 2 for the preemptive
sUETS. However, instead of splitting the uncompleted batch into several smaller batches of
similar size, the algorithm increases the number of machines assigned to that batch. This

ensures that the competitive ratio of the algorithm does not depend on the number of jobs n.

Our algorithm computes an m-partition (Xi,...,X,,) of the jobs J that minimizes the
maximum setup time max;e(y,) ¢(X;). In the first phase, each batch X is allocated to one
machine. Then, each batch is processed until it is completed, or the number of uncompleted
batches becomes less than or equal to |m/q|. In the kth phase (k = 2,3,...,k*), each

k=1 machines, and it is processed until it is completed,

uncompleted batch X; is assigned to ¢
or the number of uncompleted batches becomes |m/q*|. If the number of uncompleted
batches becomes smaller than |m/q* | because multiple batches are completed simultaneously,
then break the tie arbitrarily and defer the rest batches to the next phase. Note that this
allocation is feasible because |m/q*~!] - ¢*~1 < m. At the end of the k*th phase, all the
batches are completed since [m/¢* | = 0 by k* = |log, m] + 1 > log, m. Our algorithm
is formally described in Algorithm 4. It should be noted that this algorithm is based on a

similar idea to that of [15, Algorithm 1].

» Theorem 15. Algorithm 4 is O(lolg‘jignm)—competitive for the preemptive mUETS problem.

Proof. Let OPT be the optimal makespan and let pyax = max;ey p;. For each k € [k*], let
S#) = (k=1 \ [(¥) be the set of indices of batches that have been completed in the kth
phase. By the definition of the algorithm, we have

B | ™ m m 1 m | 1 m 1 m
set= (g - ] =[] o ) = O-a) [l =2 [o)
Let 71, be the time length of phase k € [k*]. We first bound it for k € [k* — 1]. As

every batch in S (k+1) is not finished in phase k£ and the preemption takes time at most
max;c g (¢(X;) + maxjex, pj) < 20PT, we have

X
7, < min <C(Xi)+p (k )+pmax> +20PT
i€ S(k+1) qr—
1 P(Xz‘)
< g 2 <C<Xi) + 0 4 b ) +20PT
1€SK41
LY 0. m/q" p(Xi)

= - TAOPT < ————— - q- 2= 4+ 4OPT.

iES;HU [SEHD] g 5 m/q*] 165;#1) m

Note that z/|x| <2 if z > 1 and m/q* > 1 for k € [k* — 1]. Thus, we have

"<y 4q-p(7n)§i)+4OPT (3)

ieSk+1)

for every k € [k* —1].
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Next, we bound the time length 74+ of phase k*. As the batch X; for each i € S*7) ig
processed by ¢~ machines, we have
p(Xi)
« < Xz max
Tre < iég&(xkg) <c( )+ s +p )

< pUJ)

*qk —1

+20PT < ¢- 2Y) 4 90pT < (g4 2)0PT. (4)

m

Hence, by (3) and (4), the makespan of the algorithm is
i
> T <
k=1

<dgq- ]% +4(¢ — 1)OPT + (¢ + 2)OPT < (9¢ — 2)OPT = O(q) - OPT.

k*—1

> < > 4q~p(mXi)+4OPT>+(q+2)OPT

k=1 \jeS(+1)

Therefore, the competitive ratio of Algorithm 4 is O(q) = O(logm/loglogm). <

» Remark 16. Suppose that we take an m-partition (X7, ..., X,,) of the jobs J that is an
a-approximation for the problem (1) at line 2 in Algorithm 2. Then, the competitive ratio

of Algorithm 4 becomes O(a . logi gm)—competitive for the preemptive mUETS problem.

Moreover, by setting ¢ to be the integer that satisfies g¢ > m® > (¢ — 1)¢7!, we can slightly
loe me

log('jfgorgnm” ) :

improve the competitive ratio to O(

4.2 Lower Bounds

In this subsection, we show the asymptotic optimality of our algorithms. We first provide
lower bounds for the non-preemptive case.

» Theorem 17. The competitive ratio of the non-preemptive mUETS is at least Q(y/m) and
Q(n'/*) even for unweighted type-specific setup times.

Next, we provide lower bounds for the preemptive case.

» Theorem 18. The competitive ratio of the preemptive mUETS problem is at least
Q(logm/loglogm) and Q(logn/loglogn) even for unweighted type-specific setup times.

5 Conclusion and Discussion

In this paper, we introduced the UETS problem and studied it in terms of competitive
analysis. We obtained tight bounds of the competitive ratio in each setting. In the following,
we discuss the application of our results to variant settings.

When a batch X C J is assigned to k machines, we have assumed that every machine incurs
a setup time ¢(X). However, for instance, in the production system example, unnecessary
reassignment of attachments can be skipped. Additionally, if a machine processes multiple
batches, the setup time incurred from the second or subsequent batch may be reduced. Our
algorithmic results remain valid even for these cases as long as an optimal schedule assigns
only one batch to each machine separately. This is because, for algorithms, a decrease in
setup time only contributes to decreasing the makespan.

In the preemptive setting, we assumed that a job completed at the time of preemption
does not need to be executed again. We can also consider a setting in which, if a batch
process is preempted, the entire batch must be restarted from scratch. This means that even



Y. Kawase, K. Makino, V.L. Phan, and H. Sumita

completed jobs in the batch must be executed again. Algorithm 4 also works in this setting,

and it is O(logm/ loglogm)-competitive because its analysis does not use the information

of which jobs are completed. However, Algorithm 2 may not achieve the competitive

ratio of O(logn/loglogn) as the proof does not work for this setting. Nevertheless, if we

can obtain information on the execution time of completed jobs, we can reestablish an

O(log n/ loglog n)-competitive algorithm by processing the jobs that are completed once but

need to be reprocessed between phases.
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