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Abstract
In this work, we study the problem of computing a maximum common contraction of two vertex-
labeled graphs, i.e. how to make them identical by contracting as little edges as possible in the two
graphs. We study the problem from a parameterized complexity point of view, using parameters
such as the maximum degree, the degeneracy, the clique-width or treewidth of the input graphs
as well as the number of allowed contractions. We put this complexity in perspective with that
of the labeled contractibility problem, i.e determining whether a labeled graph is a contraction of
another. Surprisingly, our results indicate very little difference between these problems in terms of
parameterized complexity status. We only prove their status to differ when parameterizing by both
the degeneracy and the number of allowed contractions, showing W[1]-hardness of the maximum
common contraction problem in this case, whereas the contractibility problem is FPT.
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1 Introduction

Graphs are used as an abstract model in a wide variety of applicative fields. For instance, in
bioinformatics, they can represent structured RNAs [40, 45, 36, 8], evolutionary histories [26],
or interaction networks [31]. In several applications, a common computational task is the
quantitative comparison of graphs, in order to underline a common structure. For example,
the comparison of phylogenetic networks (graphs representing evolutionary histories) has a rich
line of work in evolutionary bioinformatics [13, 37, 26, 11, 12, 22, 33]. Likewise, the network
alignment problem has been formulated to compare biological interaction networks [17, 19, 28].
As for the comparison of molecules, it has motivated work on the maximum common subgraph
problem [1, 2, 18]. The graph edit distance [23] was also studied for this purpose, especially
in a context of image processing and machine learning [43, 44].

The philosophy of the graph edit distance is to compare two input graphs by counting
the number of “edit operations” required to transform one graph into the other. This
edition process can amount to “reducing” the first graph to a “maximum common reduced
graph” before applying “augmenting” operations to get the second graph. For instance,
the computation of the graph edit distance, given its use of the vertex deletions and
insertions, amounts to the computation of a maximum common subgraph under a special
cost function [10]. Following this philosophy, the edge contraction operation has been used to
define one of the most widely-used distance on evolutionary trees, called the Robinson-Foulds
distance [41], whose computation finds a maximum common contraction of the two trees.
Recently, this approach was generalized to the comparison of phylogenetic networks [37],
which are directed graphs representing evolution. However, as far as the authors know, the
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42:2 The Parameterized Landscape of Labed Graph Contractions

FPT boundary for Labeled Contractibility

FPT boundary for Max. Common Contraction
?

FPT for both

Para-NP-hard or W[1]-hard for bothclique-width min(tw(G), tw(H))† degeneracy† k

treewidth k+degen.

k +min(tw(G), tw(H))

tw(G ∪H) k+degree

Figure 1 Illustration of our results on the compared parameterized complexity of Labeled
Contractibility and Maximum Labeled Common Contraction. Results marked with a † are
derived from the litterature [37, 9]. The clique-width, degeneracy and treewidth are to be understood
as the maximum value of these parameters on the two input graphs. An arrow from (1) to (2)
indicates that bounding (1) implies bounding (2).

problem of computing a maximum common contraction between two undirected graphs has
received little to no attention from an algorithmic perspective. There are several deterring
factors that may explain this. First, if the graphs are unlabeled, then determining whether no
contractions are required is equivalent to checking whether they are isomorphic, a notoriously
difficult problem to tackle. To make matters worse, even if the input graphs are two
(unlabeled) trees, determining whether one is a contraction of another is NP-hard [38]. On
the other hand, this hardness does not apply to labeled trees, where each vertex has a unique
identifier, since polynomial-time algorithms exist (even just leaf-labeled trees as in [41]).

In this article, we study the Maximum Common Labeled Contraction, i.e. the
problem of computing a maximum-size common contraction of two fully-labeled graphs,
from the perspective of parameterized complexity. The input graphs are uniquely labeled
(two distinct vertices of a graph have distinct labels), but each graph may have labels
not present in the other. We use structural parameterizations, such as the treewidth or
clique-width of the input graphs, but also the maximum degree, degeneracy or number
of contractions. We also study the contractibility problem (given two labeled graphs, is
one a contraction of the other ?) and compare the parameterized complexity aspects of
both problems. Our results are summarized on Figure 1, and outline little difference in
complexity between both problems. We fully establish the location of the barrier between
FPT and W[1]-hardness/para-NP-hardness for our chosen parameters – with the notable
exception of the maximum common contraction problem when both graphs have bounded
treewidth, which remains open. We see that the two problems behave similarly, apart from
the parameter k + δ, with δ the degeneracy.

This paper is organized as follows. After an overview of related works, preliminary
notions and results are given in Section 2. Then, Section 3 proves our results regarding the
contractibility problem, and Section 4 those on the maximum common contraction problem.
Due to space constraints, some proofs have been deferred to the Appendix, or to the full
online version (https://arxiv.org/abs/2502.16096).

Related works. A rich related line of work is the study of the H-Contractibility problem
on undirected, unlabeled graphs. It consists in deciding whether an input graph G can be
transformed into a graph isomorphic to H using only edge contractions. In a seminal article [9],
H-contractibility was proven NP-hard with H = P4, the path on 4 vertices. Follow-up
works [34, 35] gave characterizations of the graphs H such that H-Contractibility is
NP-hard. On the positive side, H-Contractibility was proven polynomial-time solvable if
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G is chordal [7, 5], or if H is planar (but still fixed) [29]. A polynomial algorithm for H of
bounded degree and G of bounded treewidth was also given in [38], in addition to the proof
that deciding if a tree is a contraction of another is NP-hard (already mentioned above).
Variations of the problem, for instance deciding whether k contractions are enough to make
a graph fall into a given class, have also been studied, including under the parameterized
complexity point of view. These include the contractibility into grid graphs [42], bipartite
graphs [24], paths/trees [25, 30] or graphs of bounded degree [6].

As mentioned in the introduction, maximum common contractions were studied on
phylogenetic networks [37], which are directed acyclic graphs with a single root and labeled
leaves. In [37], the NP-hardness of the problem is proven, and a polynomial-time tractable
sub-case is identified, but the parameterized complexity of the problem was not explored.
Nonetheless, hardness proofs from [37] as well as [9] can be easily adapted to fully-labeled
undirected graphs. It gives the following starting points: contractibility into a P4 graph is
NP-hard on labeled graphs [9], the maximum common contraction problem on labeled graphs
is NP-hard if both input graphs have constant degree (and thus also constant degeneracy) [37,
Theorem 8], and the labeled contractibility problem is NP-hard on graphs of bounded
degeneracy (also in [37, Theorem 8], as although the reduction is to the maximum common
contraction problem, it falls back to a contractibility instance of bounded degeneracy).

2 Preliminary notions

For an integer n, we may use the notation [n] = {1, 2, . . . , n}. We denote the vertex set and
edge set of a graph G by V (G) and E(G), respectively. The subgraph of G induced by a
subset of vertices X ⊆ V (G) is denoted G[X]. We write G − X for the graph G[V (G) \ X],
and if X = {x} has a single element we may write G − x. For a vertex u, NG(u) is the
set of neighbors of u in G, and NG[u] = NG(u) ∪ {u}. We say that two disjoint subsets
X, Y ⊆ V (G) are adjacent if there exists an edge between an element of X and an element
of Y . The maximum degree of G is denoted ∆(G). The degeneracy of G is δ(G), which is
the smallest integer such that every subgraph of G has a vertex of degree at most δ(G).

Given two graphs G and H, we write G = H if and only if V (G) = V (H) and E(G) =
E(H). This differs from the more common notion of isomorphism: the vertex sets of the
two graphs must consist of precisely the same elements, and edges must connect the same
pairs of vertices. We can thus view the vertices of G and H as uniquely labeled, and equality
requires that vertices with the same labels share the same edges in both graphs. However, we
prefer to avoid labeling functions, and instead compare the vertices and edges directly. Note
that sets of labels may both intersect (V (G) ∩ V (H) ̸= ∅, in fact no common contraction is
possible otherwise) and contain elements not present in the other graph (V (G)∆V (H) ̸= ∅).

Labeled contractions of graphs. Given a graph G and an edge uv of G, the labeled
contraction (u, v) is an operation that transforms G as follows: (1) add an edge between
u and every vertex of NG(v) \ NG[u]; (2) remove v and all its incident edges. The graph
obtained from G after the labeled contraction (u, v) is denoted G/(u, v). Note that because
the sets of vertices of our graphs matter, contracting (u, v) is different than contracting (v, u),
that is, G/(u, v) ̸= G/(v, u) (as these two graphs remove a different vertex). Do note that
G/(u, v) and G/(v, u) are isomorphic in the traditional sense.

A labeled contraction sequence S on G is a list of vertex pairs S = ((u1, v1), . . . , (uk, vk))
such that, for each i ∈ {0, 1, . . . , k − 1}, if Gi is the graph obtained after the application of
the first i labeled contractions (with G0 = G), then ui+1vi+1 is an edge of Gi and Gi+1 is
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42:4 The Parameterized Landscape of Labed Graph Contractions

obtained by applying the labeled contraction (ui+1, vi+1) on Gi. We denote the resulting
graph Gk as G/S (if S cannot be applied on G, then G/S is undefined). The number of
pairs in S is denoted |S|, which here is k.

We say that a graph H is a labeled contraction of G if there exists a labeled contraction
sequence S such that G/S = H. Again, we emphasize that we require equality here. If a
graph M is a labeled contraction of both G and H, it is called a common labeled contraction.
A maximum common labeled contraction of G and H is a common labeled contraction with
a maximum number of vertices. Equivalently, it is the result of applying a minimum number
of labeled contractions on G and H. Formally, we are interested in the following problem.

Maximum Common Labeled Contraction
Input: two graphs G and H, integer k.
Question: Are there labeled contraction sequences S1 and S2 such that G/S1 = H/S2

and |S1| + |S2| ≤ k ?

This can be viewed as the computation of a graph distance, since |S1| + |S2| give a minimum
number of contractions and expansions required to transform G into H, where expansions
are the reverse of contractions. Note also that the problem is equivalent to asking, given G

and H whether there is a common contraction M such that 2|V (M)| ≥ |V (G)| + |V (H)| − k.
An “easier” variant is when the common contraction must be the smaller input graph.

Labeled Contractibility
Input: two graphs G and H with V (H) ⊆ V (G).
Question: is H a labeled contraction of G ?

▶ Remark 1. In the remainder, all contractions are labeled, so we may simply write “contrac-
tion” instead of “labeled contraction”.

Maximum Common Labeled Contraction generalizes Labeled Contractibility.
Indeed, H is a contraction of G if and only if G and H have a common contraction
of size at least |V (H)|, or using at most |V (G) \ V (H)| contractions. Therefore, our
hardness results that apply to Labeled Contractibility transfer to Maximum Common
Labeled Contraction. Note that in either problem, we do not require the input graphs
to be connected. In Labeled Contractibility, the connected components of G can be
matched uniquely to those of H using common vertices. In Maximum Common Labeled
Contraction, one could proceed as follows: for each connected component C1 from G and
C2 from H, compute a maximum common contraction between G[C1] and G[C2], and assign
a weight on {C1, C2} equal to the size of the common contraction (−∞ if none exists). Then,
find a maximum-weight perfect matching in the resulting edge-weighted bipartite graph.
Hence, disconnected graphs only affect the complexity by a potential polynomial factor.

Witness structures. When applying a contraction sequence G/S = H, each vertex that
gets removed from G can be seen as “subsumed” by exactly one of the remaining vertices in
H. It is common to replace the result of a contraction sequence with the vertex partition
of V (G) that groups subsets of vertices that end up in the same vertex. Such a partition
witnesses the existence of a contraction sequence from G to H, formalized as follows.

Let G, H be two graphs with V (H) ⊆ V (G). Let W = {W1, . . . , W|V (H)|} be a partition
of V (G) with |V (H)| non-empty sets. For u ∈ V (G), we denote by W(u) ∈ W the set of
W that contains u. We say that W is a witness structure of G into H if all the following
conditions are satisfied (see Figure 2):
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contractions onG: (5, 2), (3, 4), (7, 8)
contractions onH : (5, 2), (3, 4), (3, 6)

X = {{1}, {2, 5}, {3, 4}, {6, 7}}

Y = {{1}, {2, 5}, {3, 4, 6}, {7}}

5 : representatives

Figure 2 Example of two graphs G, H and a common contraction M . On the graphs, the shaded
areas represent the witness sets. The witness structures of respectively G and H into M are called X
and Y, and are given on the right. Note that V (G) ̸= V (H), as allowed by our problem statement.

For every Wi ∈ W, the induced subgraph G[Wi] is connected.
Every Wi ∈ W contains exactly one vertex of H. This vertex is called the representative
of Wi (in H).
For every distinct u, v ∈ V (H), uv ∈ E(H) if and only if W(u) and W(v) are adjacent.

We note that there is a natural bijection between W and V (H) formed by the representatives.
The following equivalence is well-known in the case of unlabeled graphs [9, 34], and is easily
seen to hold in labeled graphs. An example of two graphs, a common contraction, and the
corresponding witness structures is given on Figure 2.

▶ Observation 2. Let G, H be graphs. Then H is a contraction of G if and only if there
exists a witness structure of G into H.

Note that each contraction reduces the number of vertices by exactly one, and so if W is a
witness structure of G into H, then the number of contractions needed is

∑
Wi∈W(|Wi| − 1).

To finish, we prove that contractions within a witness set can essentially be done in any
order, as long as the representative stays. The idea is that if we apply any contraction within
a witness set first, we can update the affected witness set and get a witness structure for the
modified graph.

▶ Observation 3. Let W be a witness structure of G and H, and let uv ∈ E(G) such that
u, v are in the same witness set of W. If v /∈ V (H), then H is a contraction of G/(u, v).

3 Labeled Contractibility

We begin by describing where the hardness barrier resides for the contractibility problem.
We focus on difficult parameters first, then study those that lead to FPT algorithms.

3.1 W[1]-hardness in parameter k

We first consider the parameter k, which is the number of contractions needed to transform G

into H, or equivalently k = |V (G)|−|V (H)|. We reduce from the well-known Multicolored
Clique problem, a W[1]-hard problem [20] which we recall.

Multicolored Clique
Input: a graph GC = (V, E) along with a partition {V1, . . . , Vk} of V into k sets, with

each Vi called a color class.
Output: does GC contains a multicolored clique, i.e., a clique that contains exactly one

vertex per color class?

WADS 2025



42:6 The Parameterized Landscape of Labed Graph Contractions

Let GC = (V, E) be an instance of MultiColored Clique, with V = V1 ∪ . . . ∪ Vk

partitioned into k color classes. We assume that for every distinct i, j ∈ [k], each vertex
v ∈ Vi has at least one non-neighbor in Vj . This is without loss of generality, as we can add
an isolated vertex to each Vi without changing the answer to the instance.

Let us construct two graphs G and H from GC . We start with the simpler H, which is
obtained by copying GC , and making each Vi a clique. More specifically

V (H) = V (GC) E(H) = E(GC) ∪
⋃

i∈[k]

{uv : u ∈ Vi, v ∈ Vi, u ̸= v}.

To obtain G, start with a copy of H, then add k new vertices t1, . . . , tk, which are not present
in H. Then, make {t1, . . . , tk} a clique, and for each i ∈ [k], add every possible edge between
ti and the vertices Vi in G. This concludes the construction of G and H.

▶ Theorem 4. The Labeled Contractibility problem is W[1]-hard in parameter k, which
is the number of contractions needed to transform one input graph into the other.

Proof sketch. Considering the above construction, if GC has a multicolored clique u1, . . . , uk,
then we can apply the set of contractions (ui, ti), for i ∈ [k]. This can only add edges between
distinct ui, uj vertices, but those edges were already present in G (and in H) since the ui’s
form a clique. In other words, this just gets rid of the ti vertices without adding any new
extra edge, and thus the resulting graph is identical to H.

Conversely, if G can be contracted into H, then we can argue that each ti must be
contracted with some ui ∈ Vi (contracting it with a uj ∈ Vj , j ̸= i would add all edges
between uj and Vi, which are not in H). For i ̸= j, if we contract (ui, ti) then (uj , tj), the
edge uiuj will be created if not already present. This must be prevented to reach H, so uiuj

must already be in G, so the ui’s contracted with the ti’s must form a clique. ◀

We observe that this problem is easily seen to be in XP when parameterized by k. Indeed,
given graphs G and H, we can just try every sequence of k contractions in G that suppress a
vertex of V (G)\V (H). There are O(n2) choices and we make at most k contractions, resulting
in complexity of the form O(n2k). Note also that since our reduction is from Multicolored
Clique and it preserves the parameter k exactly, it also implies [16, Corollary 14.23]
no f(k) · no(k) algorithm for Labeled Contractibility under the Exponential-Time
Hypothesis (ETH). Therefore, the aforementioned XP algorithm is essentially optimal under
ETH.

3.2 para-NP-hardness for clique-width
We recall the definition of clique-width. Each vertex of a graph can be assigned a color, and
the clique-width is the minimum number of colors required to build a graph using a sequence
of the following operations:

Creation of a new vertex with color i.
Disjoint union of two (vertex-colored) graphs.
Adding all possible edges between vertices colored i and vertices colored j, i ̸= j.
Recoloring all vertices with color i to color j, where i ̸= j.

The clique-width of a graph G is denoted cw(G).
We describe a reduction from Unary Bin Packing, and more specifically the variant in

which we ask that every bin is filled exactly up to its capacity, and the input integers are
encoded in unary (an integer a takes a bits in the input). We call it Unary Perfect Bin
Packing.
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Unary Perfect Bin Packing
Input: Integers a0, . . . , an−1 (item sizes) encoded in unary, bin capacity C, and number

of bins k, such that
∑n−1

x=0 ax = Ck.
Output: Is there an assignment ϕ : [0, n − 1] → [0, k − 1] of each item to a bin such that

∀i ∈ [0, k − 1],
∑

j : ϕ(j)=i aj = C ?

Note that item size and bin subscripts are indexed at 0 to simplify some calculations later
on. We know from [27] that Unary Bin Packing is NP-hard and W[1]-hard in the number
of bins k. It turns out that Unary Perfect Bin Packing is also W[1]-hard in parameter k,
and also NP-hard [32]. We use this problem to show that Labeled Contractibility is
NP-hard even when both input graphs have clique-width at most 4.

Reduction description. Consider an input to Unary Perfect Bin Packing, with item
sizes a0, . . . , an−1, bin capacity C, and number of bins k. An illustration of the reduction is
given in Figure 3. From an instance a0, . . . , an−1, C, k of Unary Perfect Bin Packing, we
construct graphs G, H as follows. Both G and H contain a set of vertices B = {b0, . . . , bk−1},
each corresponding to a bin, connected as a clique in both graphs. Again in both G and H,
there is also a set of Ck vertices D = {d0, . . . , dCk−1}, connected as a clique in both graphs.
In H, each vertex dj ∈ D has exactly one neighbor in B, which is bi such that ⌊j/C⌋ = i

(thus each bi has exactly C neighbors in D). This finishes the construction of H. In G,
there also vertices T = {t0, . . . , tn−1} not present in H, which represent the items. The set
T forms an independent set. The vertex sets T and B form a bi-clique, so every possible
edge between the two sets is present. For each tx ∈ T , we also include in G a set of vertices
Ax = {α0

x, . . . , αax−1
x } containing ax elements, each having tx as a neighbor. We denote

the set A0 ∪ . . . ∪ An−1 as A (see Figure 3), which forms an independent set and is absent
from H. The set A forms a bi-clique with the vertices D in G.

For H to be a contraction of G, there must be a way for each bi to acquire the neighbors
specified by H. In particular, each bi is connected in H to exactly C vertices of the set
D (recall that C is the bin capacity). Specifically, in H there is an edge (bi, dj) for any
i ∈ [0, k − 1] and j ∈ [0, Ck − 1] such that ⌊j/C⌋ = i. To do this, each bi must be contracted
with some tx vertices, making bi acquire a certain number of neighbors in A. Each such
neighbor must then disappear, and to do that there must be a contraction with an element
of D. Since |A| = |D|, each element of A is contracted with a single element of D, so bi must
have acquired exactly C neighbors into A to start with. We proceed to the proof of this idea.

▶ Theorem 5. The Labeled Contractibility problem is NP-hard, even if the input
graphs have clique-width at most 4.

Proof sketch. The graph G actually has clique-width 3. We can first create the G[T ∪ A]
subgraph, a forest of star trees, using two colors. We can create the B clique and then
connect it to all of T using a third color, recoloring B to the color of T , then adding D and
connecting it to A reusing that third color. As for H, we can incorporate each subgraph
H[{bi} ∪ (NH(bi) ∩ D)] one at a time. We assume we already have the b1, . . . , bi−1 vertices
using one color, and their neighbors in D using another, and we add bi using a new color and
its neighbors in D using another new color, which allows connecting them to the previous B

and D vertices (and then we recolor bi and its neighbors in D).
To see that the generated instance is equivalent, suppose that ϕ assigns items to

bins perfectly. If bin i has items ai1 , . . . , aiq
, in G we contract (bi, ti1), . . . , (bi, tiq

).
Since each tij has aij neighbors in A, this gives bi exactly C neighbors from A, say
v0, . . . , vC−1. Then to ensure that bi has the correct neighbors from D, we contract
(v0, diC), (v1, diC+1), . . . , (vC−1, d(i+1)C−1). This results in the graph H.
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b0 b1 b2 b3

t0 t1 t2 t3 t4 t5 t6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

B

T

A

D

G

b0 b1 b2 b3

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

H

B

D

b0 b1 b2 b3

t0 t1 t2 t3 t4 t5 t6

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

Figure 3 Illustration of the reduction from Unary Perfect Bin Packing to fully-labeled con-
tractibility, on an instance. This instance of Unary Perfect Bin Packing has 4 bins (represented
by the vertices labelled b0, . . . , b3), 7 items (represented by the vertices t0, . . . t6), the items have
size respectively 2, 4, 3, 1, 2, 3 and 1 as represented by their number of neighbors (without counting
bi), and the size of each bin is 4 (as represented by the number of neighbors each bi vertex has in
H). On the right, the contraction of the highlighted edges yields H. As we discuss in the proof, the
green edges then encode a solution to Unary Perfect Bin Packing.

Conversely, if we can contract G into H, then we can argue in terms of witness sets:
bi ∈ B cannot be in the same witness set as v ∈ A, since bi would become adjacent to all
of D; a ti ∈ T cannot be with a dj ∈ D, as dj would become adjacent to all of B. This
implies that each ti ∈ T is in the witness set of an element of B, and each v ∈ A with an
element of D. Moreover, each dj ∈ D must have some v ∈ A in its witness set, as otherwise
dj becomes impossible to connect with any bi ∈ B. Hence the witness sets containing vertices
of A and D form a perfect matching. This then makes it easy to show that if some bi has
ti1 , . . . , tiq

in its witness set, then these members of T must have had exactly |NH(bi)| = C

neighbors in D, establishing the correspondence with perfect bin assignments. ◀

3.3 An FPT algorithm in k and degeneracy
Let us start with a definition of the degeneracy. Given a total order σ of the vertices of
a graph G, we denote by NG

≥,σ(u) the neighbors of u that are after it according to σ. We
define the degeneracy δ(G) of a graph as: δ(G) = minσ maxu∈V (G) |NG

≥,σ(u)|.
We call NG

≥,σ(u) the remaining neighborhood of u according to σ. This denomination is
to be understood in an interpretation of degeneracy as an elimination process.

▶ Lemma 6. If H is obtained from G by ≤ k contractions, then δ(H) ≤ δ(G) + k

Proof sketch. We prove that a single contraction of an edge u, v in a graph only increases
the degeneracy by at most one. Given an elimination ordering σ optimal for δ(G), we modify
it to place the merged vertex (whose degree might have doubled compared to u, v) as late into
σ as possible. By placing it after all of its neighbors, we make its remaining neighborhood
empty, while augmenting it by at most 1 vertex for other vertices. ◀

We describe a branching algorithm for Labeled Contractibility that tries a bounded
number of contractions at each recursion. On a recursive call that receives graphs G, H and
integer k, the enumeration proceeds as described below. This algorithm is also given in
pseudo-code in the appendix.
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If G = H we return true. If k < 0, or |V (G) \ V (H)| > k, we return false.
Otherwise, we take a vertex u of G of minimum degree. Assuming that G is the result of
at most k contractions, by Lemma 6, the degree of u is at most δ(G) + k.
If u is in G but not in H, we know that u must be removed by a contraction at some
point. So we branch into at most δ(G) + k ways of contracting u with one of its neighbors
(which is safe by Observation 3 on the order of contractions), and decrease k by 1.
Otherwise, u is in both G and H and must be kept. If NG(u) = NH(u), then we may
simply ignore u from now on, as further contractions on G that remove vertices outside
of H will not change the neighborhood of u. We thus remove u from both graphs (note
that this step may fail on the maximum common contraction problem).
If NG(u) ⊊ NH(u), i.e. u has a neighbor v in H, but v /∈ NG(u), then we know that some
contraction must affect u or v, as otherwise the edge uv will never be created. We branch
into all ways of contracting u with one of its neighbors not in H, or v with one of its
neighbors not in H. (if there is no such neighbor for either of them, we return false).
This branches into at most 2k cases, because |V (G) \ V (H)| ≤ k.
If u has a neighbor v ∈ V (H) in G, but v /∈ NH(u) (i.e. both u, v must be kept, but they
share an unwanted edge) then we return false.
Finally, if none of the above holds, then NH(u) ⊆ NG(u), and u has a neighbor v in G

with v /∈ V (H). This vertex v must be contracted into one of its neighbors. It cannot be
contracted into a vertex of V (H)\NH(u) (as NH(u) is already complete), it may therefore
only be contracted into a vertex in V (G) \ V (H)(which contains ≤ k − 1 elements when
not counting v) or NG(u) ∪ {u} (which contains ≤ δ(G) + k + 1 elements) We branch
over these δ(G) + 2k possibilities.

▶ Theorem 7. Labeled Contractibility can be solved in time O
(
(δ(G) + 2k)k · (n + m)

)
,

where k is the number of contractions, n = |V (G)|, and m = |E(G)|.

Proof sketch. The algorithm is a bounded search tree with two kinds of recursive calls:
non-branching calls (when NH(u) = NG(u)) and branching calls involving a contraction. In
the latter, we make at most δ(G) + 2k recursive calls that each decrease k by 1. ◀

4 Maximum Common Labeled Contractions

We now turn to maximum common contractions. We start with our hardness result on graphs
of small degeneracy, contrasting with the positive result for the contractibility problem.

4.1 W[1]-hardness in 4-degenerate graphs
We show that Maximum Common Labeled Contraction is W[1]-hard in parameter k

even on graphs of degeneracy 4. Therefore, there is little hope for an FPT algorithm in
parameter k + δ(G). To give credit where is due, the reduction was initially inspired by [39]
for the hardness of domination problems on graphs of bounded degeneracy, although the
adaptations required for our proof makes it largely different. We will need the following
lemma, which is a generalization of Observation 3.

▶ Lemma 8. Let H be a contraction of a graph G, and let W be the witness structure of G

into H. Let R ⊆ E(G) be a matching of G such that, for every edge xy ∈ R, the vertices x

and y are in the same witness set of W.
Let G′ be the graph obtained after contracting every edge of R, making sure not to remove

a representative vertex of W. Then H is a contraction of G′.
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Figure 4 Left: an illustration of the vertices of and edges of G relating V1 and V2. Gray vertices
represent V ′

1 and V ′
2 , and black vertices represent Z′

12 (the bottom two vertices in each group represent
extra vertices). Some edges are colored blue only for clarity. Middle: the same subgraph but in H.
The red edges are those that are unique to H. Note that a1 has other neighbors c13, . . . , c1k, similar
with a2, but all the neighbors of b1, b2, c12, d12 are shown. Right: witness sets corresponding to
contractions in a solution for the forward direction (assume witness sets {a1, u1}, {a2, u2}, {c12, ze}
such that e = uiuj). Whether the red edges are present or not, this will result in the same graph.

We can now describe our reduction. Let GC = (V, E) be an instance of Multicolored
Clique with V = V1 ∪ V2 ∪ . . . ∪ Vk partitioned into k color classes. Construct an instance
G, H of Maximum Common Labeled Contraction, starting with the description of G.
The reader may refer to Figure 4. First, for each i ∈ [k], define V ′

i as a set of vertices obtained
by starting with Vi, then adding 4k3 new vertices. We refer to elements of V ′

i \ Vi as extra
vertices. Add to G the set of vertices V ′

1 ∪ . . . ∪ V ′
k. Then for each distinct i, j ∈ [k], and for

each edge edge e = uv of GC with u ∈ Vi and v ∈ Vj , create a new vertex ze and add the
path u − ze − v (or said differently, add the edge uv to G and subdivide it, which creates
ze). We may write ze = zuv = zvu. Denote by Zij the set of ze vertices created at this step
(we consider that Zij = Zji). Next, obtain the set of vertices Z ′

ij = Z ′
ji by adding 4k3 new

vertices to Zij (these new vertices are also called extra vertices).
Then for each i ∈ [k], add two new vertices ai and bi, and make ai and bi adjacent to

every vertex of V ′
i in G. Note that ai and bi are not adjacent, and that the extra vertices

of V ′
i are only adjacent to ai and bi. Finally, for each distinct i, j ∈ [k], add two vertices

cij and dij , non-adjacent. We define cji = cij and dji = dij . Make cij and dij adjacent to
every vertex in Z ′

ij . In particular, extra vertices of Z ′
ij are only adjacent to cij , dij . This

completes the construction of G. To construct H, start with a copy of G, then add the
following edges: aibi for each i ∈ [k]; aicij , ajcij and cijdij for each distinct i, j ∈ [k]; Finally,
define K := 2(k +

(
k
2
)
). This concludes the construction.

▶ Theorem 9. The Maximum Common Labeled Contraction is W[1]-hard in parameter
k, the total number of contractions needed to achieve a common contraction, even if both
input graphs have degeneracy 4.

Proof sketch. The graphs G, H have degeneracy at most 4 since we can have an elimination
order that removes every Z ′

ij first (vertices of degree 4), then the V ′
i vertices (remaining

degree 2), followed by the cij , dij vertices and then the ai and bi vertices.
Next, if GC has a multicolored clique u1, . . . , uk, in either graph G or H, we contract each

(ai, ui) pair, and each (cij , zuiuj
) pair, as in Figure 4. Since, in G and H, the edges uizuiuj

and ujzuiuj
exist, the effect is “collapsing” these red edges in H. Since the rest of the graphs

are the same, this results in identical graphs. The other direction assumes that K contraction
suffice on G and H to reach a common contraction, and produces a multicolored clique of
GC . We can argue that in G, one of ai or bi is incident to a contraction because of the red
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edge aibi in H, and one of cij or dij is incident to a contraction because of cijdij ∈ E(H).
These require K/2 contractions in G and there must be K/2 contractions in H. These are
all of the contractions, which are therefore a matching. Lemma 8 is used in a more involved
argument to show that it is actually the ai and cij vertices that are incident to a contraction
(using bi or dij vertices leads us to add too many new neighbors to extra vertices). Once this
is established, we can argue that the contraction partners ui of ai and uj of aj must form an
edge uiuj , because the situation from Figure 4 on the right is enforced. ◀

4.2 Parameterization by k + ∆
Let G be a graph of maximum degree ∆. It is not hard to see that applying at most k

contractions to G results in a graph of maximum degree O(k∆), which we make precise in
the next lemma. It then becomes relatively easy to get an FPT algorithm in k + ∆.

▶ Lemma 10. Let G be a graph of maximum degree ∆ ≥ 2. Then applying t ≥ 0 contractions
to G results in a graph of maximum degree at most ∆ + t(∆ − 2).

Moreover, this bound is tight, that is, for any t, there exists a graph G of maximum degree
∆ and a sequence of t contractions that results in a graph of maximum degree ∆ + t(∆ − 2).

Proof sketch. For the upper bound, consider a witness set W from a witness structure
of G into a graph H obtained after t contractions. Note that G[W ] has at least |W | − 1
edges since it is connected. After contracting W to a single vertex, its degree is at most
|W |∆ − 2(|W | − 1), since the inside edges are double-counted. Using |W | ≤ t + 1 gives the
bound. The lower bound is achieved from a graph that starts as a path with t + 1 vertices.
We add leaves adjacent to every path vertex until they have degree ∆. Contracting the whole
path gives the lower bound. ◀

▶ Proposition 11. The Maximum Common Labeled Contraction problem can be solved
in time O((8(k +1)∆)k+1 ·n), where k is the number of contractions, ∆ = max(∆(G), ∆(H)),
n = |V (G)| + |V (H)| and m = |E(G)| + |E(H)|.

Proof sketch. Consider a recursive branching algorithm as follows. If there exists a vertex
u present in one graph but no the other, we know that u must be incident to a contraction
and must disappear. By Observation 3, we may do this contraction first. By Lemma 10, u

has degree at most ∆ + k(∆ − 2), which we bound by (k + 1)∆ for simplicity. We branch on
all the ways of contracting u with a neighbor. If no such u exists, then V (G) = V (H). If
E(G) = E(H), we are done, so assume there is uv ∈ E(G) \ E(H). We observe that u or v

must be incident to some contraction, although it could be in either graph, and u/v could be
the kept vertex or not. There are 8(k + 1)∆ ways to branch on such contractions. Since each
branch reduces the parameter k by 1, we get a recursive search tree with (8(k + 1)∆)k calls.
We add a factor proportional to k∆n to check all the edges at each recursion. ◀

4.3 Tractability when parameterizing by the treewidth of G ∪ H

We now prove that Maximum Common Contraction is FPT in tw(G ∪ H), i.e. the
treewidth of the graph with vertices V (G) ∪ V (H), and edges E(G) ∪ E(H). We remark
that tw(G ∪ H) could be unbounded even if both G, H have bounded treewidth [3], but
nonetheless we derive consequences from our result at the end of the section. We use
Courcelle’s theorem [15] by formulating the problem in the monadic second-order logic on
graphs. More precisely, we use an extended version of Courcelle’s theorem [4] allowing for
labeled edges and labeled vertices if labels are taken from a finite set. Indeed, in G∪H, we still
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need to distinguish vertices in V (G) and V (H), and edges in E(G) and E(H). Alternatively,
following the terminology of [21], we are applying Courcelle’s theorem on a relational structure
(Theorem 11.37 in [21]) on V (G) ∪ V (H), containing two unary relations labeling V (G) and
V (H), and two binary relations for E(G) and E(H). One can verify that the treewith of
this relational structure (in the sense of [21, Definition 11.23]) is tw(G ∪ H).

▶ Theorem 12. Maximum Common Conraction on fully-labeled graphs is fixed-parameter
tractable in tw(G ∪ H).

Proof. In this proof, we denote V (G) by V1, V (H) by V2, E(G) by E1 and E(H) by E2 for
simplicity. We use the following formulation of the problem: we are looking for sub-sets
S1 ⊆ E1 and S2 ⊆ E2 of edges, and a subset R ⊆ V1 ∩ V2 of vertices (“representatives”) such
that S1 and S2 induce, in G and H respectively, connected components (the witness sets)
and such that each connected component contains exactly one vertex in R.

This can be expressed in MSOL in the following way:

∃S1 ⊆ E1,∃S2 ⊆ E2, ∃R ⊆ V1 ∩ V2 s.t
contraction1(S1, R) and contraction2(S2, R) and
∀r, r′ ∈ R edge1(S1, r, r′) iff edge2(S2, r, r′)

Where in this formula, for i = 1, 2 contractioni(Si, R) checks that that there is exactly one
element of R per connected component of Vi induced by Si, and edgei(Si, r, r′) is true if
and only there is an edge in Ei between the connected components induced by Si on Vi

containing r and r′, respectively. We express contractioni(Si, R) as follows:

contractioni(Si, R) = ∀r, r′ ∈ R, r ̸= r′, ¬path(r, r′, Si) and ∀u ∈ Vi \ R ∃r ∈ R s.t.
path(u, r, Si) and ∀r′ ̸= r ¬path(u, r′, Si)

Where in this formula, path(x, y, U) checks whether x = y or there exists a path between
x and y using only edges in U (which can be checked in MSOL [14]) if x ̸= y. Indeed, two
vertices are in the same connected component induced by a sub-set of edges if and only there
is a path between them using only edges from the sub-set.

As for edgei(Si, r, r′), it can be expressed as:

edgei(Si, r, r′) = ∃x, y ∈ Vi s.t. path(x, r, Si) and path(y, r, Si) and {x, y} ∈ Ei

Overall, this expression only uses quantification over edge subsets (S1, S2) and vertex sub-
sets (R). By the extended version of Courcelle’s theorem allowing to optimize for the size of
monadic variables ([4] or [21, Exercise 11.44]), one can find S1, S2, R verifying this formula
while maximizing |R| (or equivalently minimizing |S1| + |S2|) in a complexity FPT in the
treewidth of (V1 ∪ V2, E1 ∪ E2) = G ∪ H. ◀

We now derive consequences of Theorem 12 by establishing parameterizations that lead
G ∪ H to have bounded treewidth. In the following, we have graphs G and H and G ∪ H is
the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). For space reasons, the
definition of a tree decomposition can be found in the appendix.

▶ Lemma 13. If H is a contraction of G, then tw(G ∪ H) ≤ 2 · tw(G).

Proof sketch. Start with a tree decomposition T = (T, {Xt}t∈V (T )) of G. Then take a
witness structure W of G into T . For each bag Xt of T , and for each x ∈ Xt, add to Xt

the representative of W(x) in H, if not already there. This at most doubles the treewidth.
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The bags that contain some u ∈ V (G) ∪ V (H) are connected in the modified decomposition,
as otherwise a bag that separates u would also separate W(u), which should be connected.
Also, for each uv ∈ E(H) some bag has both u, v because W(u), W(v) are adjacent. ◀

▶ Lemma 14. If G and H are such that ∃S1, S2 labeled contraction sequences of size
|S1| + |S2| ≤ k and G/S1 = H/S2, then tw(G ∪ H) ≤ min(tw(G), tw(H)) + k

Proof sketch. Let M be a maximum common contraction of G and H. Since contractions do
not increase the treewidth, tw(M) ≤ min(tw(G), tw(H)). Then, take a tree decomposition T
of M , then add (V (G) \ V (H)) ∪ (V (H) \ V (G)) to every bag. This adds at most k vertices
to each bag, and one can argue that this is a valid tree decomposition of G ∪ H. ◀

▶ Corollary 15. The following results holds:
Labeled Contractibility is FPT in parameter max(tw(G), tw(H)).
Maximum Common Labeled Contraction is FPT in parameter k +
min(tw(G), tw(H)).

Conclusion. We have explored the parameterized complexity of computing a maximum
common contraction of two fully-labeld graphs, in which each label is used at most once
in each graph. Natural follow-ups could look at the case where labels can be used more
than once. Note that it is the hardest possible case, as it contains both unlabelled and
uniquely labeled graphs. A first step could be to bound the number of times each label may
be present. As for the unlabeled case, it consists in computing edge-contraction distances
between graph isomorphism classes, and has not been explored yet. We finish with some
open problems: (1) given Theorem 5, is Labeled Contractibility still NP-hard if both
input graphs have clique-width three, or even if they are both cographs (clique-width two)?
(2) is there a 2O(δk)nc time algorithm for Labeled Contractibility, and/or a 2O(∆k)nc

time algorithm for Maximum Common Labeled Contraction? Or better, could there be
subexponential algorithms parameterized by δk or ∆k? (3) is Maximum Common Labeled
Contraction FPT in max(tw(G), tw(H))?
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A Proofs for Section 2 (Preliminary notions)

▶ Observation 2. Let G, H be graphs. Then H is a contraction of G if and only if there
exists a witness structure of G into H.

Proof. The forward direction can be obtained by starting with G and a partition of V (G)
in which every vertex is by itself, then after each contraction (u, v), we update the set
associated with u by adding all the elements associated with v. When we are done, only
V (G) remains and the resulting vertex-set association forms a witness structure. For the
reverse direction, we note that the connected subgraphs G[Wi] can all be contracted to a
single vertex independently, and under the conditions of witness structures, doing so must
result in H. ◀

▶ Observation 3. Let W be a witness structure of G and H, and let uv ∈ E(G) such that
u, v are in the same witness set of W. If v /∈ V (H), then H is a contraction of G/(u, v).

Proof. Denote G′ = G/(u, v). It suffices to consider the partition W ′ of V (G′) obtained
from W by just removing v from W(u). It is easy to see that |W ′| = |V (H)|, that W(u) \ {v}
still contains the same representative of V (H) since v /∈ V (H), and that G′[W(u) \ {v}] is
still connected. Moreover, the edges with one endpoint in W(u) \ {v} and the other outside
are the same as W(u), and so W ′ is a witness structure of G′ into H. By Observation 2, H

is a contraction of G. ◀

B Proofs for Section 3 (Labeled Contractibility)

▶ Theorem 4. The Labeled Contractibility problem is W[1]-hard in parameter k, which
is the number of contractions needed to transform one input graph into the other.

Proof. Let GC be an instance of Multicolored Clique and let G, H be constructed as
above. We show that GC has a multicolored clique if and only if H is a contraction of G.

Suppose that GC has a multicolored clique u1, . . . , uk, where ui ∈ Vi for each i ∈ [k].
We present a witness structure W of G into H. In W, add the sets {ui, ti} for each i ∈ [k],
and the singleton sets {{v} : v ∈ V (GC) \ {u1, . . . , uk}}. This corresponds to the sequence
of contractions (u1, t1), . . . , (uk, tk). It is clear that |W| = |V (H)|, that each element of
W has a unique element of V (H), and that each G[Wi] is connected. We must argue that
vw ∈ E(H) if and only if there is some edge between W(v) and W(w) in G.

Let v, w ∈ V (H) be two distinct vertices of H, which are also vertices of G and GC .
If vw ∈ E(H), then because G started as a copy of H, vw ∈ E(G). This edge still exists
between W(v) and W(w) in G, because W(v) ̸= W(w). So instead assume that vw /∈ E(H).
Let v ∈ Vi, w ∈ Vj , and notice that i ̸= j since we made Vi and Vj cliques in H. Suppose for
contradiction that there is some edge between W(u) and W(v) in G. By construction, this
edge cannot be vw, and it cannot be tiw nor tjv, which do not exist. So W(v) must contain

https://doi.org/10.1007/S42979-021-00792-5
https://doi.org/10.14778/1687627.1687631
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ti and W(w) must contain tj . By the construction of W , this means that v = ui and w = uj .
Since ui, uj are in a clique, vw ∈ E(G) and vw ∈ E(H), a contradiction. Thus W(u) and
W(v) are not adjacent in G, and it follows that W is a witness structure of G into H. By
Observation 2, H is a contraction of G.

Conversely, suppose that one may apply at most k contractions to G to obtain H. Let
W be a witness structure of G into H. For i ∈ [k], consider the vertex ti of G, and denote
by u the representative of W(ti), where u ∈ V (H). We claim that u ∈ Vi, so assume instead
that u ∈ Vj , with i ̸= j. Recall that ti is adjacent to every vertex in Vi in G, so if u ∈ Vj ,
then W(u) = W(ti) is adjacent to every witness set that contains a vertex of Vi. But u ∈ Vj ,
a contradiction since we assume that u has at least one non-neighbor in Vi in GC , and thus
in H as well. It follows that the unique vertex u of G in the same witness set as ti belongs
to Vi.

Since this holds for every i ∈ [k], this also implies that no two ti vertices belong to the
same witness set. We may then define the set of k distinct vertices u1, . . . , uk where, for
i ∈ [k], ui is the vertex of Vi in the same witness set as ti. We argue that this set forms
a clique of GC . Let i, j ∈ [k] with i ̸= j. Because of the edge titj , W(ti) and W(tj) are
adjacent in G. Thus there is an edge between W(ui) and W(uj), and by the conditions of
witness sets the edge uiuj must exist in H. Thus u1, . . . , uk forms a multicolored clique
of GC . ◀

▶ Theorem 5. The Labeled Contractibility problem is NP-hard, even if the input
graphs have clique-width at most 4.

Proof. We first prove the correctness of the reduction, and then argue about the clique-width
of the constructed graphs.

Let a0, . . . , an−1, C, k be an instance of Unary Perfect Bin Packing, and G, H

constructed as described above. Suppose first that Unary Perfect Bin Packing is a
yes-instance, i.e., that there exists an assignmnent ϕ of the items to the bins such that the
sum of the sizes of the items in a bin is exactly C for each of the k bins. In G, we first contract
each edge (bi, tx) such that ϕ(x) = i (green edges on the example in Figure 3), keeping the
vertex bi. Since each item is assigned to a bin, each tx is contracted into some vertex in B,
therefore the set of vertices T disappears. Since for each bin i,

∑
x : ϕ(x)=i ax = C, and each

tx has exactly |Ax| = ax neighbors in A, each bi now has exactly C neighbors in A. Let i be
an integer between 0 and k − 1, and let us denote v0

i , . . . , vC−1
i the C neighbors of bi in A

in this partially contracted graph. We next contract each vy
i (for 0 ≤ y ≤ C − 1) with the

vertex dCi+y of D (we can, as A and D form a bi-clique in G), keeping the dCi+y vertices.
Doing this for all i, we delete the set A, which leaves only B and D. As required, B D each
form a clique, and there is an edge bidj if and only if ⌊j/C⌋ = i. We have therefore described
a contraction sequence from G to H.

In the other direction, suppose that H is a contraction of G. Let W be a witness structure
of G into H. To ease notation a bit, we will denote by W b

i = W(bi) the witness set of each
bi and by W d

j = W(dj) the witness set of each dj . We argue that each element of T must
be part of some W b

i . Indeed, as B and D are the only vertex sets left in H, the sets W b
i

and W d
j must form a partition of V (G), and in particular of the elements of A and T are in

one of those witness sets. However, if a vertex tx from T is in some W d
j , then the after the

contractions the vertex dj becomes connected to all of B, which is not the case in H. Each
vertex tx is therefore in one of the sets W b

i .
We can then define ϕ as ϕ(x) = i if and only if tx ∈ W b

i (such an i is unique as the W b
i

do not intersect).
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Let us now argue that ϕ assigns items to bins perfectly. Let u be some vertex of A. If u is
in a witness set W b

i , then after contracting the vertex bi becomes connected to all of D, which
is not the case in H. Therefore, u is in some witness set W d

j . We also argue the opposite,
that for any dj ∈ D, there is some u ∈ A such that u ∈ W d

j . Indeed, if some W d
j contains no

element of A, then note that in G the neighborhood of dj is composed of D \ {dj} ∪ A, and
other elements of D cannot be in W d

j . Therefore, we would have W d
j = {dj}. In G, {dj} is

only adjacent to witness sets that contain some vertex of A or D. As we just argued, each
vertex of A is in the witness set of a D vertex. Thus the witness set W d

j has no neighbor
belonging to a W b

i set, which is a contradiction as dj shares an edge with some vertex of B

in H.
Therefore, we have both that all vertices in A are in some W d

j , and that each W d
j contains

some vertex in A. Since |A| =
∑n−1

x=0 ax = Ck = |D|, this implies that each W d
j is of the form

{dj , u}, for some u ∈ A uniquely associated to j. In particular, this implies that each vertex
tx, which has ax neighbors in A, is therefore adjacent to exactly ax distinct witness sets W d

j .
We write Sx = {dj ∈ D : NG(tx) ∩ W d

j ̸= ∅}, i.e., the set of vertices of D whose witness set
is adjacent to that of tx. We have |Sx| = ax, and for x ̸= y, we also have Sx ∩ Sy = ∅. Now,
∀i ∈ [0, k − 1], ∪x:ϕ(x)=iSx denotes the representatives of the witness sets of D neighbor
to W b

i , and therefore the neighborhood of bi outside of B in H. As each bi has exactly C

neighbors outside of B in H, we must have
∑

x : ϕ(x)=i |Sx| =
∑

x : ϕ(x)=i ax = C. Therefore,
a0, . . . , an−1, C, k is a yes-instance.

Clique-width analysis. We finish by arguing that both G and H have clique-width at most 4.
Let us start with H, which we construct inductively on k = 0, 1, . . . , k − 1. For k = 0, we add
vertices d0, . . . , dC−1 with color 1, b0 with color 2, and add all edges between colors 1 and 2.
This finishes the construction for k = 0, with vertices of D added so far having color 1 and
those of B having color 2. Then, given the graph H constructed with k − 1 vertices in B,
with all vertices of D having color 1 and those of B having color 2, we introduce the vertices
d(k−1)C , . . . , dkC−1 under color 3, vertex bk−1 under color 4. We add all edges between color
3 and 4 (which creates exactly the required edges between bk−1 and d(k−1)C , . . . , dkC−1),
then connect color 1 and 3 as a bi-clique (making D a clique) and likewise for colors 2 and 4
(making B a clique). We finish this step by recoloring 3 with 1 and 4 with 2, in case we may
pursue the construction.

As for G, it actually has clique-width 3. We can first construct the subgraph induced by
A and T using two colors. Indeed, G[A ∪ T ] is a forest of star trees, so we can just create
each star tree independently with two colors, and then take the disjoint union of all those
star trees. This can be done in a way that G[A ∪ T ] is built with vertices of A having color 1
and those of T having color 2. We then construct the B clique independently using two
colors and recolor every vertex of B to 3. We then add B to the construction and add all
edges between B and T (colors 1 and 3). Then recolor 3 to 1, so that B and T have the
same colors. In the same manner, we construct the D clique and give it color 3, and add
edges between colors 2 and 3 (A and D). This results in G. ◀

▶ Lemma 6. If H is obtained from G by ≤ k contractions, then δ(H) ≤ δ(G) + k

Proof. We prove the result by induction. The base case k = 0 is trivial. Let us therefore
consider now G′ obtained from G by a single contraction, of u into v. Let also σ be an
elimination order such that maxx∈V (G) |NG

≥,σ(x)| = δ(G). We distinguish below two cases.
In both, we find an order σ′ of the vertices of G′ such that maxx∈V (G′) |NG′

≥,σ′(x)| ≤ δ(G) + 1,
which allows to conclude.
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If N(u) ∪ N(v) (neighborhood of v in G′) contains no element ranked higher than v in
σ, we simply get σ′ by removing u from σ. We have NG

σ,≥(v) = NG′

≥,σ′(v) = ∅. As for
x ∈ V (G′) and x ̸= v, |NG′

≥,σ′(x)| ≤ |NG
≥,σ(x)| if x is before u in σ (the size decreases by 1

if x is a neighbor of both u and v and stays the same otherwise), |NG′

≥,σ′(x)| = |NG
≥,σ(x)|

if x is after v in σ and |NG′

≥,σ′(x)| ≤ |NG
≥,σ(x)| + 1 if x is between u and v in σ (with

an increase in the case where x is a neighbor of u but not v). Overall, we do have
maxx∈V (G′) |NG′

≥,σ′(x)| ≤ δ(G) + 1.
Otherwise, let t be the highest-ranked element of N(u) ∪ N(v) by σ (it is after v, as
otherwise we would be in the previous case). In this case, we get σ′ by removing u an
moving v right after t in σ. By doing so, we have |N≥,σ′(v)| = 0, while for x ∈ V (G′)
such that x ̸= v, |NG′

≥,σ′(x)| ≤ |NG
≥,σ(x)| + 1 if x is a neighbor of u after u in σ, or if x is

a neighbor of v after v in σ. If x is not a neighbor of u and v, or if x is before u in σ,
|NG′

≥,σ′(x)| ≤ |NG
≥,σ(x)|. Again, we obtain maxx∈V (G′) |NG′

≥,σ′(x)| ≤ δ(G) + 1.
We have therefore found an ordering σ′ of G′ such that maxx∈V (G′) |NG′

≥,σ′(x)| ≤ δ(G) + 1.
By definition of the degeneracy, δ(G′) ≤ δ(G) + 1. Therefore, by induction over the number k

of contractions, δ(H) ≤ δ(G) + k ◀

C Proofs for Section 4 (Maximum Common Labeled Contractions)

▶ Lemma 8. Let H be a contraction of a graph G, and let W be the witness structure of G

into H. Let R ⊆ E(G) be a matching of G such that, for every edge xy ∈ R, the vertices x

and y are in the same witness set of W.
Let G′ be the graph obtained after contracting every edge of R, making sure not to remove

a representative vertex of W. Then H is a contraction of G′.

Proof. As in the proof of Observation 3, it suffices to observe that if we start from W and
contract (x, y), where xy ∈ R, then after removing y from W(y), the resulting collection W ′

is a witness structure of G/(x, y) into H (this of course requires y to not be a representative).
Moreover, if R \ {xy} is non-empty, then any edge that remains still has its ends in one
witness set, because R is a matching. Thus we may continue applying such contractions
inductively. ◀

▶ Theorem 9. The Maximum Common Labeled Contraction is W[1]-hard in parameter
k, the total number of contractions needed to achieve a common contraction, even if both
input graphs have degeneracy 4.

Proof of Theorem 9. Consider an instance GC = (V, E) of Multicolored Clique and
graphs G, H constructed as above, along with parameter K = 2(k +

(
k
2
)
), the total number

of contractions.
We first argue that the degeneracy of G and H is at most 4. Since G is a subgraph of H,

it suffices to consider H only. We provide an elimination sequence in which every vertex
has at most four neighbors before being deleted. First consider any extra vertex in a V ′

i or
Z ′

ij set. These have degree two, so we may delete them first. Next consider any ze vertex
of H from some Zij set, where e = uv. It has four neighbors {u, v, cij , dij}. Delete all the
Zij vertices, for every i, j. After that, consider any u vertex in some Vi set. It has two
remaining neighbors ai and bi. Delete all of those next. Then delete the dij vertices (one
remaining neighbor cij) and the cij vertices (two remaining neighbors ai, aj). The resulting
graph has maximum degree 1 as the aibi’s form a matching, and it follows that H and G

have degeneracy 4.
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We next show that GC admits a multicolored clique if and only if G, H have a common
contraction that can be achieved with a total of at most K contractions.

Suppose that GC admits a multicolored clique u1, u2, . . . , uk, where each ui is in Vi. We
perform the same contractions in G and H. In either graph:

for each i ∈ [k], contract (ai, ui);
for each distinct i, j ∈ [k], contract (cij , zuiuj

).

Note that the kept vertex is ai and cij , respectively. This clearly requires K = 2(k +
(

k
2
)
)

contractions in total. We must argue that applying them in G or H results in the same
graph. Let MG and MH be the graphs obtained by applying the above contractions on G

and H, respectively. We use the witnesses for our arguments.
Let W be the witness structure of G into MG. Note that W contains {ai, ui} for i ∈ [k],

{cij , zuiuj
} for distinct i, j ∈ [k], and every other vertex is in a witness set of size 1. Also

note that W is also a witness structure of H into MH , since we apply the same contractions
on both graphs. We argue that two witness sets of W are adjacent in G if and only if the
same two witness sets are adjacent in H, from which we can deduce that MG = MH .

First consider i ∈ [k] and some vertex v ∈ V ′
i \ {ui}. Then {v} is an element of W . From

the construction, we see that H adds no neighbor to v. Thus NG(v) = NH(v), and it
follows that {v} is adjacent to some W ∈ W in G if and only if {v} is adjacent to W

in H.
Consider distinct i, j ∈ [k] and a z ∈ Z ′

ij \ {zuiuj } vertex. Then {z} ∈ W , and again from
NG(z) = NH(z) we make the same conclusion as in the previous case.
From now on we do not need to consider the adjacencies of {v} and {z} witness sets.
Only witness sets of the form {bi}, {dij}, {ai, ui}, {cij , zuiuj } remain. Consider vertex bi,
where i ∈ [k]. Then {bi} ∈ W. In either graph, {bi} is adjacent to {ai, ui} and no other
remaining witness set.
Consider vertex dij , with distinct i, j ∈ [k]. In either graph, {dij} is only adjacent to
{cij , zuiuj

} among the witness sets that remain to consider.
The remaining witness sets have the form {ai, ui} or {cij , zuiuj }. Consider i ∈ [k] and
witness set {ai, ui}. Among the witness sets that remain to consider, in H, it is adjacent
to all witness sets in {{cijzuiuj } : j ∈ [k] \ {i}}, but not to any other {ajuj} set nor to
any other {cjhze} witness set with j, h ̸= i. The same is true in G, because ui has every
zuiuj

, j ∈ [k] \ {i} in its neighborhood.
Finally, for distinct i, j ∈ [k], we must consider {cij , zuiuj }. In either graph, all their
adjacencies were handled previously, as these are not adjacent to any other {cxy, zuxuy

}
set.

We have thus shown that if we partition V (G) into W and apply the corresponding contrac-
tions, and do the same on H, we obtain the same graph.

In the converse direction, let M be a common contraction of G and H achievable in a
total of K contractions. We need two witness structures, one for G into M and one for H

into M . So let X be a witness structure of G into M , and Y a witness structure of H into M .
Note that for a vertex w, we write X (w) for the witness set of X that contains w, and Y(w)
for the witness set of Y that contains w.

We must consider multiple ways that G and H could be turned into M , so we split the
proof into claims.

▷ Claim 16. For each i ∈ [k], at least one of X (ai) or X (bi) has two elements or more.
Likewise, for each distinct i, j ∈ [k], at least one of X (cij) or X (dij) has two elements or
more.
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Proof. Suppose for contradiction that X (ai) = {ai} and X (bi) = {bi}. Then ai, bi are
representatives in X and thus vertices of M . Since aibi /∈ E(G), they do not share an edge
in M . Now considering H, we have Y(ai) ̸= Y(bi) since ai, bi are both in M . However,
Y(ai), Y(bi) are adjacent in H, and thus according to Y we should have the edge aibi in M ,
a contradiction.

The argument for X (cij), X (dij) is identical. Assume that X (cij) = {cij} and X (dij) =
{dij}. Then cij , dij are in M and do not share an edge since cijdij /∈ E(G). However,
cijdij ∈ E(H), leading to the same contradiction as above. ◁

Claim 16 lets us construct a matching R ⊆ E(G) as follows. For each i ∈ [k], by Claim 16
there is either an edge aiu or biu whose ends are in the same set of X , where u is a neighbor
of ai or bi in G and thus u ∈ V ′

i . Choose any such edge and add it to R (make one choice
per i ∈ [k], which clearly gives a matching so far). Likewise for distinct i, j ∈ [k], there is
either an edge cijz or dijz whose ends are in the same set of X , where z ∈ Z ′

ij . Add any
such edge to R, for each i, j, and notice that this does produce a matching R such that the
ends of each edge are in the same witness set.

By Lemma 8, R corresponds to a set of contractions we can perform first in a sequence
from G to M . We have |R| = k +

(
k
2
)

= K/2, and applying the contractions removes K/2
vertices from G. Since V (G) = V (H), at least K/2 vertices must also disappear from H to
M , and it follows that H also requires at least K/2 contractions. Because M can be reached
with a total of K contractions, we deduce from Claim 16 that after applying the contractions
corresponding to R, there is no room for further contractions. It follows that exactly one
of ai or bi has a partner in its witness set of X , and the same holds for cij versus dij (we
note that ai, bi cannot be in the same witness set of X since they are not neighbors, same
for cij , dij). Furthermore, the edges contracted from G to M must consist of precisely R,
although we do not know which end of each edge is kept or removed. However we can argue
that it is the ai’s and the cij ’s that are part of the matching, not the bi’s or dij ’s.

▷ Claim 17. For each i ∈ [k], X (ai) = {ai, u} for some u ∈ V ′
i . Likewise for each distinct

i, j ∈ [k], X (cij) = {cij , z} for some z ∈ Z ′
ij .

Proof. Let i ∈ [k] and note that by Claim 16 and the above discussion that either |X (ai)| = 2
or |X (bi)| = 2, but not both. Suppose for contradiction that X (bi) = {bi, u} for some u ∈ V ′

i .
Then X (ai) = {ai}. Since at most one vertex of V ′

i can be part of a contraction, in M every
vertex of V ′

i \ {u} is present. So by inspecting NG(ai), we infer that in M , the vertex ai is
adjacent to V ′

i \ {u}, and to u or bi, whichever is the representative of X (bi), and ai has no
other neighbor in M .

Consider vertex cij of H and Y(cij). We cannot have Y(ai) = Y(cij), as this would
make Y(ai) adjacent to all extra vertices of Z ′

ij that are in H (and such vertices exist in M

since there are 4k3 > K of them). The established adjacencies of ai in M do not allow this.
Thus Y(cij) ̸= Y(ai) and the two witness sets are adjacent in H because aicij ∈ E(H). The
representative x of Y(cij) must be a neighbor of ai in M , and so x is in V ′

i ∪ {bi}. However,
this makes x adjacent to all extra vertices of Z ′

ij that remain in M , which is clearly not
possible by applying the contractions on G of the matching R discussed above. Therefore,
|X (ai)| = 2.

Let us move on to the second part, that each X (cij) has two elements. The proof
goes along the same lines. Suppose instead that X (dij) = {dij , z} for some z ∈ Z ′

ij and
X (cij) = {cij}. From NG(cij) we infer that in M , cij has only elements of Z ′

ij ∪ {dij} in
its neighborhood. Now consider Y(ai) and note that Y(ai) ̸= Y(cij) as this would make cij

adjacent to extra vertices of V ′
i . The two witness sets are adjacent, and so the representative

x of Y(ai) is in Z ′
ij ∪ {dij}. This makes x adjacent to extra vertices of V ′

i , which is not
possible from the contractions of R on G. Thus |X (cij)| = 2. ◁
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By Claim 17, each ai is contracted with exactly one ui ∈ V ′
i . We claim that if we take all

ui’s in the same witness set as an ai, we get a multicolored clique of GC .

▷ Claim 18. Consider distinct i, j ∈ [k] and ui, uj be such that X (ai) = {ai, ui} and
X (aj) = {aj , uj}. Then ui ∈ Vi, uj ∈ Vj , and uiuj ∈ E(GC).

Proof. We know that ui ∈ V ′
i and uj ∈ V ′

j . Let us assume that either ui or uj is an extra
vertex, or that uiuj /∈ E(GC). Either way, in G and H the vertex zuiuj

does not exist. Now
let z ∈ Z ′

ij such that X (cij) = {cij , z}, which exists by Claim 17. In G and H, at least one
of ui or uj is not adjacent to z, as otherwise z would be zuiuj

. Suppose without loss of
generality that ui is not adjacent to z, and let x ∈ {ai, ui} be the representative of X (ai),
and y ∈ {cij , z} the representative of X (cij). Then in G, the witness sets X (x) = {ai, ui}
and X (y) = {cij , z} are not adjacent.

Observe that in M , the neighborhood of x includes all extra vertices V ′
i \ {x}. Likewise,

y has among its neighbors in M all extra vertices of Z ′
ij \ {y}. One implication is that in H,

Y(x) must be adjacent to all witness sets of Y that contain an extra vertex of V ′
i (except

possibly Y(x) itself). Since there are 4k3 > 2K extra vertices, this is only possible if Y(x)
has a vertex that is a neighbor of all extra vertices, which is either bi or ai. Since bi is in M ,
bi /∈ Y(x), and thus ai is in Y(x). Using the same reasoning on y and cij , we get that cij is
in Y(y). Hence Y(x) and Y(y) are adjacent in H, a contradiction since X (x) and X (y) are
not adjacent in G. ◁

By this last claim, we can take the set {ui : ui ∈ X (ai), i ∈ [k]}, and all these vertices are
in GC and every pair shares an edge. Thus GC has a multicolored clique. ◀

▶ Proposition 11. The Maximum Common Labeled Contraction problem can be solved
in time O((8(k +1)∆)k+1 ·n), where k is the number of contractions, ∆ = max(∆(G), ∆(H)),
n = |V (G)| + |V (H)| and m = |E(G)| + |E(H)|.

Proof. Consider an instance of Maximum Common Labeled Contraction consisting
of labeled graphs G, H of maximum degree ∆ or less, and parameter k for the allowed
number of contractions. We describe a recursive branching algorithm in which each branching
path makes at most k contractions (or otherwise returns that no solution is possible in this
path). By Lemma 10, any instance encountered in a recursion has maximum degree at most
∆ + k(∆ − 2), which we upper bound by (k + 1)∆ for simplicity.

So we assume that we are in a recursive call which receives G and H and integer k.
Suppose that there is some v ∈ V (G) such that v /∈ V (H). Then to obtain any common
contraction, v must be in the same witness set as one of its neighbors. We branch on every
possible contraction (w, v), for every neighbor w of v. We decrease the parameter k by 1 in
each branch. This branches into at most (k + 1)∆ cases, and by Observation 3 one of these
branches will lead to a maximum common contraction with k operations if one exists. The
same branching can be applied if H has some v not in G.

So assume that V (G) = V (H). If E(G) = E(H) then we are done, so assume without
loss of generality that G has an edge uv that is not in H. Observe that to obtain a
common contraction, u or v must be incident to at least one contraction, in at least one
of G or H, as otherwise the edge uv stays present in G and it remains a non-edge in H.
That is, one of u or v has a neighbor in the same witness set, in one of the graphs. By
Observation 3, we can branch into all the contractions that u or v could be part of, in either
graph, i.e., we branch into every contraction (x, y) where {u, v} ∩ {x, y} ≠ ∅, and where
xy ∈ E(G) ∪ E(H). The number of such possible contractions incident to u is at most
2(|NG(u)| + |NH(u)|) ≤ 2((k + 1)∆ + (k + 1)∆) = 4(k + 1)∆ (we multiply by 2 because
contractions are ordered pairs). The same bound holds for v, so in total we branch into at
most 8(k + 1)∆ possibilities, still decreasing k by 1 in each case.
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It is easy to see that the algorithm finds a common contraction achievable with at most
k contractions if and only if one exists. For the complexity, the algorithm creates a recursion
tree in which each vertex has at most 8(k + 1)∆ children, and whose depth is at most k. In
each recursive call, there are at most 2k∆ · n edges, so we can check in time O(k∆n) whether
G and H are the same graph, and if not find a vertex or a vertex pair to branch on. This
results in a running time of O((8(k + 1)∆)k+1 · n). ◀

Let G be a graph. A tree decomposition of G is a pair T = (T, {Xt}t∈V (T )) where T is a tree
and, for each t ∈ V (T ), Xt ⊆ V (G). The sets Xt are called bags. Moreover, T satisfies the
following:
1. for each x ∈ V (G), some bag Xt of T contains x.
2. for each x ∈ V (G), the vertices of T corresponding to bags that contain x form a connected

subtree of T .
3. for each edge uv ∈ E(G), some bag contains both u and v.
The width of T is maxt∈V (T )(|Xt| − 1), and the treewidth of G is the minimum width of a
tree decomposition of G.

▶ Lemma 13. If H is a contraction of G, then tw(G ∪ H) ≤ 2 · tw(G).

Proof. Let T = (T, {Xt}t∈V (T )) be a tree decomposition of G, and W a witness structure
of G into H. We build a new decomposition T ′ = (T, {Zt}t∈T ) and argue it is a tree
decomposition of G ∪ H. The underlying tree T is the same for T and T ′. As for the bags,
we set:

Zt = Xt ∪ {u ∈ V (H) : ∃x ∈ Xt s.t x ∈ W(u)}

In other words, we take each bag Xt, and for each x ∈ Xt we add the representative in H

of the witness set of x, which results in Zt. Let us check that T ′ is a valid tree decomposition
of G ∪ H.

(connectivity of vertex representation) First note that a vertex x ∈ V (G) \ V (H) belongs
to Zt if and only if x belongs to Xt, since only vertices of H are added to bags. Since the
bags containing x are connected in T , they are still connected in T ′. Now Let u ∈ V (H)
and t ∈ V (T ). First, note that since u ∈ V (G), there is at least one bag of T and thus T ′

containing it. Then, let t1, t2, t3 be three vertices of T such that t3 is on the path from
t1 to t2. Suppose that u ∈ Zt1 , u ∈ Zt2 but u /∈ Zt3 . By definition of T ′, ∃a ∈ Xt1 such
that a ∈ W(u) and b ∈ Xt2 such that b ∈ W(u). Note that a = u is possible, in which
case u ∈ Xt1 (likewise, b = u is possible). We also have W(u) ∩ Xt3 = ∅, as otherwise u

would be added to Zt3 , and in particular, a, b /∈ Xt3 .
If a = b, we have a contradiction with T being a valid tree decomposition of G, since
a ∈ V (G) and the bags of T containing it would be disconnected by t3. If a ̸= b, since T
is a tree decomposition of G, Xt3 separates a from b, i.e. intersects all paths from a to b

in G. However, by the connectivity of W(u), there is a path from a to b lying entirely in
W(u), which yields a contradiction.
(edge representation) For uv ∈ E(G), some bag of T contains u and v, and the same holds
in T ′. Then, for each edge uv of H, there must be at least one edge xy of G such that
x ∈ W(u), y ∈ W(v). There must be a bag in T containing both x and y. By definition,
this bag contains u and v in T ′, therefore representing the edge.

By definition of T ′, each of its bag Zt is at most twice as big as Xt, because each x ∈ Xt

enforces the addition of at most one new vertex in Zt, namely the u ∈ V (H) that is the
representative of its witness set. Therefore the width of T ′ is at most 2tw(G). ◀
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