On the Complexity of Finding 1-Center Spanning
Trees

Pin-Hsian Lee =

National Taiwan Normal University, Taipei, Taiwan

Meng-Tsung Tsai &

Academia Sinica, Taipei, Taiwan

Hung-Lung Wang &

National Taiwan Normal University, Taipei, Taiwan

—— Abstract

We consider the problem of finding a spanning tree T" of a given undirected graph G such that any
other spanning tree can be obtained from T by removing k edges and subsequently adding k edges,
where k is minimized over all spanning trees of G. We refer to this minimum k as the treeradius
of G.

Treeradius is an interesting graph parameter with natural interpretations: (1) It is the smallest
radius of a Hamming ball centered at an extreme point of the spanning tree polytope that covers the
entire polytope. (2) Any graph with bounded treeradius also has bounded treewidth. Consequently,
if a problem admits a fixed-parameter algorithm parameterized by treewidth, it also admits a
fixed-parameter algorithm parameterized by treeradius.

In this paper, we show that computing the exact treeradius for n-vertex graphs requires 2™
time under the Exponential Time Hypothesis (ETH) and does not admit a PTAS, with an inapprox-
imability bound of 1153/1152, unless P = NP. This hardness result is surprising, as treeradius has
significantly higher ETH complexity compared to analogous problems on shortest path polytopes
and star subgraph polytopes.
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1 Introduction

We consider the problem of finding a most representative spanning tree of a given undirected
connected simple graph G = (V, E). A spanning tree T of G is considered most representative
if any other spanning tree of G can be obtained from T by removing k edges and subsequently
adding k edges, where k is minimized over all spanning trees of G. We refer to this minimum
k as treeradius. We show that if the treeradius of G is bounded, then the treewidth of G also
is bounded. Consequently, if a problem admits a fixed-parameter algorithm parameterized by
treewidth, it also admits a fixed-parameter algorithm parameterized by treeradius. Moreover,
such a spanning tree has applications in devising algorithms for computing multi-objective
spanning trees, which we discuss in Section 1.1.

The most representative spanning tree of G corresponds to a discrete 1-center among the
extreme points in the spanning tree polytope of G, a concept that is well-established in the
literature. Formally, for each spanning tree T of G, we define its indicator vector v(T") € 2%,
where the ith coordinate of v(T) is 1 if the ith edge in F is included in T, and 0 otherwise.
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Placing the starting points of these indicator vectors at the origin in the space 27, the convex
hull of their endpoints is the spanning tree polytope. Since all indicator vectors have the
same number of coordinates with value 1, their endpoints are precisely the extreme points
of the polytope. A discrete (resp. continuous) 1-center among these extreme points is an
extreme point p (resp. any point p in the space) that minimizes the radius of the Hamming
ball centered at p and covering the entire polytope. If the representing point of a spanning
tree corresponds to a discrete 1-center of the polytope, we refer to it as a 1-center spanning
tree of G. Clearly, the notion of a 1-center spanning tree is equivalent to that of the most
representative spanning tree. An illustration of the spanning tree polytope is depicted in
Figure 1.
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Figure 1 The spanning tree polytope of the banner graph, a 5-vertex pseudotree with a 4-cycle,
contains the maximum number of vertices among all spanning tree polytopes in three-dimensional
space, as shown in Lemma 26.

Though a discrete 1-center in a set of n points can be found in O(n?) time using a naive
algorithm and cannot be computed in O(n?~¢) time for any constant € > 0 [1] unless the
Hitting Set Conjecture [3] fails, finding a discrete 1-center among the extreme points in the
spanning tree polytope is a fundamentally different and potentially more computationally
intensive, as the number of spanning trees in G can be exponential in |V|. Assuming the
Exponential Time Hypothesis (ETH) [16, 17], we have the following result:

» Theorem 1. Given an n-vertex undirected connected simple graph G, finding a 1-center
spanning tree of G requires 22" time unless ETH fails and can be solved in 2° time.
Moreover, computing the treeradius of G is APX-complete with inapprozimability constant

1153/1152.

We say that a problem has ETH complezity 26(n°) if there exists an algorithm that solves
it in 20("%) time, and assuming ETH every algorithm solving this problem requires at least
294%) time, where Q(f(n)) = Q(f(n)polylog n) and O(f(n)) = O(f(n)polylog n). We find
the ETH complexity 26(n") of 1-center spanning trees interesting when compared to the
computation of discrete 1-centers among the extreme points of other polytopes associated
with G, as summarized in Theorem 2. Finding a discrete 1-center among the extreme points
naturally generalizes to any graph problem where the solution is chosen from a collection
of edge sets of equal size, ensuring a one-to-one correspondence between solutions and the
extreme points of the polytope in 2. However, the polytopes we considered are not arbitrary
and must satisfy the following conditions.

We exclude the polytopes where outputting an extreme point is intractable. This is

because outputting a discrete 1-center among the extreme points is no easier, so the

hardness result for outputting an extreme point already implies the hardness of finding a

discrete 1-center among the extreme points.
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Typical examples include finding a discrete 1-center among the extreme points in the
Hamiltonian path polytopes and the k-edge dominating set polytopes [13].

We exclude the polytopes where enumerating all extreme points can be solved in polyno-
mial time. This is because outputting a discrete 1-center among the extreme points is
eagy if all extreme points are given.

Typical examples include finding a discrete 1-center among the extreme points of the
minimum cut polytope, which has O(n?) minimum cuts [15], and the k-cycle polytope
for any fixed k, which contains O(n*) k-cycles. In both cases, all extreme points can be
identified efficiently.

» Theorem 2. The ETH complezities of finding a discrete 1-center among the extreme points
in the spanning tree polytope, the shortest s,t-path polytope, and the star subgraph S, polytope
of an n-vertex graph are

2(:)(”1), 2(:)(”1/2), 2(:)(”0), respectively.

In addition, we note that finding a continuous 1-center in a set of n points is known to
be NP-hard [12, 20] but admits a PTAS [21]. This complements the APX-hardness result in
Theorem 1, as both problems involve finding a 1-center and have exponentially large solution
spaces relative to their input sizes.

1.1 Applications

Finding a 1-center spanning tree has applications in devising algorithms for computing multi-
objective spanning trees, such as max-color spanning trees [8, 23] and max-leaf spanning
trees 7, 10, 19, 25].

For graph classes with treeradius at most k, a 1-center spanning tree Ti-center iS @ good
approximation of a max-color spanning tree Tinqz-color because T qz-color Can be obtained
from Ti_center by removing k edges and subsequently adding k edges. So the number of
colors in Ti-center cannot be less than that in Th,q0-cotor DY k.

Similarly, for such graph classes, a 1-center spanning tree T1-center i also a good approxi-
mation of a max-leaf spanning tree T},q4-1caf- Because deleting £ edges and subsequently
adding k edges can change the degrees of at most 4k nodes, the number of leaves in Ti-center
cannot be less than that in Tyaz-1ear by 4k.

1.2 Related Work

Finding a discrete (resp. continuous) 1-center has been widely studied when the input
consists of a collection of strings. While related to our work, these studies differ in that our
polytope is defined by specific edge subsets of an underlying graph, serving as a succinct
representation of the polytope. In contrast, the strings in these related works are given
explicitly and do not allow for such a compact representation. This distinction makes proving
hardness in our setting more challenging.

The task in the previous work is defined as follows: given a set S of n length-d strings
over an alphabet ¥, find a string s* that minimizes the radius of the Hamming ball centered
at s* enclosing all strings in S. There are two major variants:

the continuous closest string problem [2, 5, 12, 14, 20, 21, 24], where the string s* can be

chosen from anywhere in ¢, and

the discrete closest string problem [1, 2], where the string s* can be chosen only from S.
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1.3 Paper Organization

The paper is organized as follows. In Section 2, we establish our results on 1-center spanning
trees, proving Theorem 1. Next, in Section 3 and Section 4, we analyze the problem of
finding a discrete 1-center among the extreme points of the shortest s, ¢t-path polytope and
the star subgraph polytope, thereby proving Theorem 2. In Section 5, we present an extremal
bound on the number of vertices in a spanning tree polytope in three-dimensional space
using 2-distance sets. Finally, in Section 6, we explore the relationship between treewidth
and treeradius.

2 1-Center Spanning Tree

The graph under consideration is assumed to be connected, simple, and undirected. We use
G — F to denote the spanning subgraph of G with edge set F(G) \ F. For the difference
A\ B of two sets A and B, when B is a singleton, say {b}, we write A —b. The number of
components of a graph H is denoted by c¢(H).

Let G be a graph, and let I'(G) be the set of spanning trees of G. The 1-center spanning
tree of GG is a spanning tree with minimum eccentricity, where the eccentricity of a spanning
tree T is defined as

ece(T) = max (|E(T)\ E(T")|+|E(T")\ E(T)]).

T/el(G)
Notice that the eccentricity of a 1-center spanning tree is exactly twice the treeradius of
the graph. We start with a simple but essential observation regarding the eccentricity of a
spanning tree.

» Proposition 3. Let G be a graph of order n, and let T be a spanning tree of G. Then
ecc(T) =2(n — k), where k = ¢(G — E(T)).

Proof. Take k — 1 edges from E(T) to connect the k components of G — E(T'). Along with a
spanning forest of G — E(T"), we have a spanning tree that shares exactly k — 1 edges with T,
and thus ecc(T') > 2(n — k). On the other hand, every spanning tree of G takes at least k — 1
edges from E(T) to connect the components of G — E(T), implying ecc(T) < 2(n — k). <«

» Remark 4. As an immediate result, computing the eccentricity of a spanning tree can be
done in linear time.

A cut is a set of edges whose removal disconnects the graph!, and a k-cut for any integer
k > 2 is a cut whose removal results in at least k£ components. From Proposition 3 we know
that the edge set of a 1-center spanning tree T is a cut that induces no cycle with ¢(G — E(T))
as large as possible. It is worth noting that every connected graph G contains a spanning
tree T with ¢(G — E(T)) > 2. A natural relaxation is to ask how a cut that induces no cycle
can be computed, with the resulting components as many as possible. A cut that induces no
cycle is called cycle-free.

» Observation 5. For n > 2, complete graph K,, has a cycle-free k-cut if and only if k = 2.
Moreover, any subgraph of K,, induced by a cycle-free 2-cut is isomorphic to Ky ,_1.

! In the literature, a cut typically refers to a partition of the vertices into two subsets. Here, we slightly
override this definition to better align it with the notion of a k-cut. Specifically, a cut in our context
refers to a superset of the standard cut-set, the set of edges with end-vertices in different subsets of the
partition.
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We relate the eccentricity of a spanning tree with a cycle-free cut as follows.

» Proposition 6. Let G be a graph of order n. There is a spanning tree T with ecc(T') <
2(n — k) if and only if G has a cycle-free k-cut.

Proof. By Proposition 3, a spanning tree T with ecc(T) < 2(n — k) is a k-cut. Thus
the necessity follows. For sufficiency, let F' be a cycle-free k-cut. Since F induces no
cycle, there is a spanning tree T' of G such that F C E(T). It follows immediately that
k=c¢(G-F) < c¢(G—E(T)). By Proposition 3, ecc(T) =2 (n — ¢(G — E(T))) < 2(n—k). <

By Propositions 3 and 6, we have the following equivalent definitions for a 1-center
spanning tree.

» Definition 7 (Restatements of 1-Center Spanning Trees). Let T be a spanning tree of a
graph G. The following statements are equivalent:

(i) T is a spanning tree with minimum eccentricity.
(ii) T is a spanning tree that maximizes the number of components in G — E(T).

(iii) T is a spanning tree consisting of the edges in a cycle-free k-cut C' with the largest
possible k and the edges in a spanning tree of each component in G — E(C).

We adopt these alternative definitions in the following sections. Our first main result,
Theorem 1, is developed based on

Lemma 14, in Section 2.2, for the lower bound of 2°2(") on the time complexity, assuming

ETH,;

)

Corollary 19, in Section 2.3, for the APX-completeness and the inapproximability factor.

The problems involved in the subsequent discussion, including the sources of hardness,
are named below.

CENTERSPANNINGTREE: Given a graph G, find a spanning tree of G with minimum
eccentricity. The optimal eccentricity is denoted by OPT ..

CYCLEFREECUT: Given a graph G, find a cycle-free cut F' that maximizes ¢(G — F).

CyYCLEFREECUT-D: This is the decision variant of CYCLEFREECUT. Namely, for a given
graph G and an integer k, determine whether there is a cycle-free k-cut of G.

B-MAXINDEPSET: Given a graph with maximum degree at most B, find an independent
set of maximum size. The optimal size is denoted by OPT;.q.

B-INDEPENDENTSET: Given a graph GG with maximum degree at most B and an integer k,
determine whether G contains an independent set of size k. We write INDEPENDENTSET
if the graph under consideration has no degree constraint.

The following hardness results are known:

» Theorem 8 (Johnson and Szegedy [18]). There is no algorithm with running time 2°™ to
solve 3-MAXINDEPSET unless the Exponential Time Hypothesis (ETH) fails.

» Theorem 9 (Berman and Fujito [6]). It is APX-hard to approximate 3-MAXINDEPSET.

» Theorem 10 (Chlebik and Chlebikova [11]). It is NP-hard to approzimate 4-MAXINDEPSET
within a factor of j—?.
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U1

€4 €1
V4 €3 V2

€2

U3

Figure 2 The reduction given in the proof of Theorem 11. The left is a graph G, which is the
graph in an INDEPENDENTSET instance, while the right is the graph G’ in the reduced instance of
CyCLEFREECUT-D. The gadget for each edge of G is a 4-cycle in G’. The vertex set X UY forms a
clique.

2.1 NP-Hardness

A split graph is a graph whose vertex set can be partitioned into two sets I and K, where
is an independent set and K is a clique.

» Lemma 11. Given a graph G and a positive integer k, it is NP-hard to determine whether
G has a cycle-free k-cut, even when G is a split graph.

Proof. We reduce INDEPENDENTSET to CYCLEFREECUT-D. Precisely, for an instance (G, k)
of INDEPENDENTSET, we construct an instance (G', k + 1) of CYCLEFREECUT-D as follows
(see Fig. 2). The vertex set of G' is V' UX UY, where [V'| = |V(G)| and |X| = |Y]| = |E(G)|.
Each member of V' corresponds to a vertex of GG, and each member of X or Y corresponds to
an edge of G. We use the bijections f: V(G) = V', fx: E(G) - X, and fy: E(G) Y
to describe the correspondences, and for convenience let g = f~1, gx = f;l, and gy = fy L
Two vertices a and b of G’ are adjacent if

a and b are incident in GG; namely, one of them corresponds to an edge of G and the other

corresponds to an endpoint of the edge, or

{a,b} C X UY.
We claim the following.

> Claim 12. G has an independent set of size at least k if and only if G’ has a cycle-free
(k + 1)-cut.

For k£ = 1, the claim holds due to Observation 5 so we assume that k& > 2. For necessity,
let I be an independent set of size k and let I’ = f(I). Consider the set of edges F =
{e € E(G"): e has an endpoint in I’}. Clearly, G’ — F contains at least k + 1 components.
Moreover, every member z in X UY has at most one neighbor in I’ since otherwise the two
neighbors a and b of x have the corresponding vertices g(a) and g(b) adjacent in G. Thus,
there is no cycle between I’ and (V' \ I') U X UY, showing that F is cycle-free.

For sufficiency, let F' be a cycle-free (k + 1)-cut of G’. We show that

X UY is contained in a component of G’ — F, and

the other components, each consisting of a single vertex, together correspond to an
independent set of G.

First, G’ — F contains at least three components. If the clique X UY is not contained in
a component, then by Observation 5 there exists x € X UY with z in a component and
(X UY) — z contained in another. Without loss of generality, assume that = € X. The third
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Figure 3 The reduction from INDEPENDENTSET to CYCLEFREECUT-D on sparse graphs.

component contains a vertex, say v/, in V’'. Let v = g(v'), e = gx (), and y = fy(e). If v
is an endpoint of e, then z, y, and v’ form a triangle contained in F. Otherwise, v is an
endpoint of an edge ¢’ of G. Let 2’ = fx(e’) and ¢y = fy(€¢’). Then v/, 2/, ¢/, and z form a
4-cycle contained in F. Therefore, X UY is contained in a component of G’ — F.

For the second, except the component containing X UY', all components consist of vertices
from V'. Since V' induces an independent set of G’, each of these components consists of a
single vertex. In addition, let u and v be the endpoints of an edge e in G, and let v’ = f(u),
v = f(v), z = fx(e) and y = fy(e) be the corresponding vertices in G’. If both v’ and v’
are in components not containing X UY, then «’, v/, x and y form a 4-cycle, violating that
F is cycle-free. Thus, the components not containing X UY correspond to an independent
set of G of size at least k.

Since V' induces an independent set and X UY induces a clique, the graph G’ is a split
graph. Thus, the theorem follows. |

2.2 Exact 1-Center Spanning Trees in Sparse Graphs

Assuming ETH, solving 3-MAXINDEPSET takes 2(") time, where n is the number of vertices
of the input graph [18], as stated in Theorem 8. The same result can be obtained for
CENTERSPANNINGTREE; that is, finding a 1-center spanning tree in a graph takes 22(V)
time, assuming ETH, where IV is the number of vertices of the graph. This follows from the
reduction given in Lemma 11 with the hardness source replaced with a 3-MAXINDEPSET
instance, making N = O(n). Below, we strengthen the result, showing that the ETH lower
bound of 2% (22(N)) still holds for finding a 1-center spanning tree in a sparse graph.

We modify the reduction given in the proof of Lemma 11. Recall that we reduce an
independent set instance (G, k) to a cycle-free cut instance (G, k+1), with V(G') = V/UXUY
(see Fig. 2). Instead of making X UY a clique, we substitute it with a sparse structure, a
complete 3-partite graph K 1 xuy| (see Fig. 3), to ensure the sparsity of the whole graph.
Like a complete graph, a complete 3-partite graph admits cycle-free k-cuts only if k = 2, as
shown in Lemma 13. With this property, an argument similar to that given in the proof of
Lemma 11 can be obtained. Details are given in the proof of Lemma 14.

» Lemma 13. For s > 3 and k > 3, any complete s-partite graph has no cycle-free k-cut.

Proof. Suppose to the contrary that there is a complete s-partite graph G that has a cycle-
free k-cut F, for kK > 3. Observe that there is a component of G — F' that intersects at least
two partite sets since otherwise F' induces a C3. Let @ be such a component. We claim that
there is a C5 or a Cy connecting @ and two other components Q" and Q”.

43:7
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If Q intersects only two partite sets, we take )’ as a component that intersects another
partite set, say U, and Q" an arbitrary component other than Q and Q”. Let ¢’ and ¢” be
two vertices from @’ and Q”, respectively, with ¢’ € U. If ¢’ and ¢” are adjacent, then there
is a C3 induced by ¢’, ¢”, and a vertex in @; otherwise, both ¢’ and ¢’ belong to U, and
there is a Cy formed by ¢’, ¢”, and two vertices from different partite sets in Q.

If @ intersects three or more partite sets, ' and Q" can be arbitrary. Then an argument
similar to the above applies. Consequently, F' is not cycle-free in either case, which is a
contradiction. <

» Lemma 14. Assuming ETH, there is no 2°N)-time algorithm to compute a I1-center
spanning tree of an N-vertex sparse graph.

Proof. We reduce 3-INDEPENDENTSET to CYCLEFREECUT-D. Let (G, k) be an instance of
3-INDEPENDENTSET. The reduced instance, (G’, k+2), is constructed like the reduction given
in the proof of Lemma 11. The vertex set V(G’) is V' UX UY U {a, b}, where |V'| = |V(G)|,
|X| = Y| = |E(G)|. The correspondences are the following bijections:

f:V(G) =V,
fx: E(G) — X, and

Also, for convenience, let g = =, gx = f)}l, and gy = f;l. The adjacency in G’ is defined
as follows. The subgraph induced by X UY U {a,b} is a complete 3-partite graph, with
partite sets {a}, {b}, and X UY. In addition, for every edge e of G with endpoints u and v,
we make a 4-cycle f(u) = fx(e) = f(v) = fy(e) = f(u). See Fig. 3 for an illustration.

We claim that G has an independent set of size k if and only if G’ has a cycle-free
(k + 2)-cut. For sufficiency, let F' be a cycle-free (k + 2)-cut. Then G’ — F has at least k + 2
components. By Lemma 13, X UY U {a, b} intersects at most two components so at least k
components consist of vertices from V’. Since V' induces an independent set of G’, each of
these components consists of a single vertex. Let v and v be two such components. There is
no edge e of G with endpoints g(u) and g(v) since otherwise u, fx(e), v, and fy(e) form a
4-cycle. Thus, the components consisting of vertices in V'’ correspond to an independent set
of GG, with size at least k.

For necessity, let I be an independent set of G with |I| > k. Let F be the cut of G’ such
that the components G’ — F' are the subgraphs induced by the following vertex subsets:

{f(u)}, for each u € I,

(XUY U{a,b} U(V'\ f(I))) — fx(e), where e is an arbitrary edge of G, and

{fx(e)}.

Clearly, F is a (k + 2)-cut. We show that F is cycle-free below. Let C' be the component
induced by (X UY U{a,b}U(V'\ f(I))) — fx(e). Each vertex of C has at most one neighbor
outside C, which implies that F' induces no cycle passing through C'. The remaining subgraph,
induced by fx(e) U f(I), contains at most two edges so there is no cycle, either. Thus, F is
a cycle-free (k + 2)-cut.

The graph G’ in the reduced instance is sparse. The reason is that it has n + 2m + 2
vertices and 8m + 1 edges, where n and m are the numbers of vertices and edges of G,
respectively. In addition, when the maximum degree of G is no more than three, we have
N = O(n), and by Theorem 8 the theorem follows. <
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Since the number of spanning trees in an N-vertex sparse graph is of 20V the naive
method of enumerating all spanning trees and keeping the one with minimum eccentricity is
optimal for sparse graphs.

» Corollary 15. To compute a 1-center spanning tree of a sparse graph G, the naive method
of checking all spanning trees of G is optimal, assuming ETH.

2.3 Approximation

We show that there is a PTAS reduction from B-MAXINDEPSET to CENTERSPANNING TREE,
with the error parameter linearly preserved.

» Lemma 16. Let G and G’ be instances of B-MAXINDEPSET and CENTERSPANNINGTREE,
respectively, with G’ reduced from G by the reduction given in the proof of Lemma 11. For 0 <
§ < (B?+2B)~ ! and e > 0, given a spanning tree T of G’ satisfying ecc(T) < (1+6¢)OPT e,
an independent set I of G satisfying |I| > (1 —&)OPTing can be computed in polynomial time.

Proof. Recall that for a given graph G, the requested graph G’ has V(G') = V' UX UY,
where there are one-to-one correspondences between V(G) and V/, E(G) and X, and E(G)
and Y, respectively. Each edge of G corresponds to a 4-cycle in G’, and X UY forms a clique
(see Fig. 2). We show
(i) how a spanning tree T of G’ corresponds to an independent set I of G, and
(ii) the error parameter is linearly preserved; i.e., if ecc(T) < (1 + de)OPTecc, then |I| >
(1 —¢)OPTing-

Let N = |V(G")|. For (i), we choose I to be the set of vertices that correspond to the
single-vertex components of G’ — T'. Moreover, we claim the following.

> Claim 17. G has an independent set of size k if and only if G’ has a spanning tree of
eccentricity 2(N — (k + 1)).

Since every spanning tree is a cycle-free cut, the sufficiency follows immediately from Claim 12.
For necessity, by Claim 12 there is a cycle-free (k + 1)-cut, say F, with ¢(G' — F) =k + 1.

Specifically, there is a subset U’ of V' forming k of the components, where every single vertex

forms one. The remaining component, say C, is the subgraph induced by X UY U (V' \ U’).

Since X UY is a clique and every vertex of V' \ U’ has degree at least two in C, there is a
spanning tree Tr of G’ containing all edges in F' without disconnecting C'. By Proposition 3,
ecc(Tp) =2 (N — (k+1)). According to the analysis above, it can be further derived that

cce(T) = 2(N — (1] + 1), (1)
and
OPTeee =2(N — (OPTing + 1)). (2)

For (ii), assume that ecc(T) < (1 + 6)OPTece. We claim that |I| > (1 — &)OPTpg. Let
n = |V(G)]|. Since the maximum degree of G is upper bounded by B, we have

N = [V(G)| +2|E(G)| < (B + Dn. (3)

The chromatic number of a graph is upper bounded by the maximum degree plus one [9]. It
follows that

OPTiy > —

~“B+1 (4)
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Along with Eq. (2),

OPTwa o _ n/(B+1) n/(B+1) 1

= . )
OPTece/2 (a)2) N —OPTing —1 (3 (B+1)n—n/(B+1)—1 B2+2B—o0(1) (5)

Thus, we have

T 1
=N =D v 0 50PT 1 > OPTg — OPT...

M 2 2 & 2
> OPTipg — (B* +2B) 0c0PTing > (1 — £)OPTing. (6)
®

<

» Corollary 18. CENTERSPANNINGTREE is APX-complete even when the input is restricted
to split graphs. Moreover, it is NP-hard to approxzimate within a factor of 1153/1152.

Proof. The APX-hardness follows immediately from Lemma 16. For the inapproximability
factor, by Theorem 10 we have that 4-MAXINDEPSET is NP-hard to approximate within a
factor of 48/47. Taking B =4, § = (B?+2B)~!, and ¢ = 1/48 in Lemma 16, the corollary
is established. |

Analogous to how we modify the proof of Lemma 11 to obtain Lemma 14, by replacing
G’ in Lemma 16 with the sparse graph in Lemma 14, we have the following results.

» Corollary 19. CENTERSPANNINGTREE is APX-complete even when the input is restricted
to sparse graphs. Moreover, it is NP-hard to approzimate within a factor of 1153/1152.

3 1-Center Shortest Path

Let G be an undirected simple graph, and let s and ¢ be two distinct vertices of G. The
set of shortest s,¢-paths is denoted by P ;. For a path P and two vertices v and v on P,
the subpath running between v and v is denoted by gsik if v and v are adjacent on P,
we write u — v when depicting the subpath. When referring to a path P, we use the same
symbol P to denote the set of edges on the path. Analogous to the eccentricity of a spanning
tree, the eccentricity of a shortest s,t-path P is defined to be

P)= P P|).
ece(P) Qnel%ft“ \QI+[Q\ P)
A shortest s, t-path P* is said to be I-center if

ecc(P*) = Prgi)nt ecc(P).

The distance between two vertices u and v is denoted by d(u,v), which is the number of
edges on a shortest u, v-path. For an edge with endpoints u and v on a shortest s, t-path, we
denote it by ww if d(s,u) < d(s,v).

Notice that the two conditions for the polytopes we consider are satisfied since a shortest
s, t-path can be computed in polynomial time, whereas enumerating all shortest s, t-paths
requires exponential time in the worst case.
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c_gadget_1
v gadget 1 B R LR LR LR LR LR R LR LRELREL AL RLLRLERLALE
v_gadget 2 .

c_gadget 2

Figure 4 The variable gadgets and clause gadgets. The instance of the 3SAT has two variables
z1 and x2, and two clauses ¢1 and cz. In this example, ¢; = {z1,Z1, 22} and c2 = {T1, z2,7z}. The
upper and the lower paths in a variable gadget correspond to the positive and the negative literals
of the variable, respectively.

3.1 NP-Hardness

A double star Sqp, with a > 2 and b > 2, consists of two stars, K , and K 3, along with an
additional edge, called the critical edge, connecting the two internal nodes. We distinguish
the two stars, the K , and the K, of a double star as the left star and the right star,
respectively. For two sets P = {P1,..., Py} and @ = {Q1,...,Qq} of disjoint paths, bridging
P and Q using a double star S}, 4 is to identify the p leaves of the left star of S, , with
designated vertices on P, ..., P,, respectively, and to identify the ¢ leaves of the right star
with designated vertices on Q1,...,Qq, respectively. For two paths P and @), we say that P
hits Q if PN Q # 0, and P touches Q if |[PNQ| = 1.

» Lemma 20. Given a graph G and two distinct vertices s and t, it is NP-hard to determine
whether G contains a shortest s,t-path that hits all shortest s,t-paths in G; i.e., to determine
if there is a path P such that ecc(P) < 2d(s,t).

Proof. We give a reduction from 3SAT. We assume that each clause contains exactly three
literals and each variable appears in some clauses. Consider a 3SAT instance ¢ with n

variables z1,...,z, and m clauses ci, ..., ¢y,. In the reduced instance (G, s, t), there are
two distinguished vertices, one for s and the other for ¢;
n variable gadgets, v__gadget,,...,v_gadget,,, each consisting of two Pj,s;
m clause gadgets, c_gadget,...,c_gadget,,, each consisting of three Pg,,_2s;

an assignment gadget, consisting of n + 2m — 1 double stars; for each double star, the
internal nodes u and v of the left and the right stars are connected to s and ¢, respectively,
each with a path of specific length. We denote the s, u-path by Rs(u) and the v, t-path
by R:(v).

Each path in the variable gadgets and the clause gadgets is called a literal path. For
the two literal paths in a variable gadget, one corresponds to the positive literal and the
other the negative one. For the three literal paths in a clause gadget, there is a one-to-one
correspondence to the literals in the clause. To ease the presentation, we embed each literal
path in the plane horizontally, with a left end and a right end. Vertices on a literal path are
numbered from left to right. Let D(X,4) = {v: v is the ith vertex on a path in gadget X},
where X is a variable gadget or a clause gadget. The gadgets are interrelated as follows.
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Figure 5 The assignment gadget. In this example, n = 2 and m = 2. There are five double stars,
one Sy 2, one Sz 3, and three S3 3s, induced by the red edges. The dotted arcs are the paths Rs(u)
and R, (v), for uv the critical edges. The number beside each arc indicates the length, i.e. the number
of edges, of the path. The shaded path corresponds to the truth assignment (z1,z2) = (true, true).
For each clause, the shaded path passes through two literal paths of the three, excluding one that
corresponds to a true literal.

The left end of each literal path in a variable gadget is made adjacent to s; the right end
of each literal path in a clause gadget is made adjacent to ¢; for each pair of literal paths
(P,Q), with P in a variable gadget and @ in a clause gadget, if both P and @ correspond to
an identical literal, concatenate these two paths by making the right end of P and the left
end of @ adjacent. We call the resulting graph H. See Fig. 4 for an example.

Consecutive variable gadgets, consecutive clause gadgets, and the literal paths in a clause

gadget are bridged using the double stars in the assignment gadget. Details are given below.
Each of the first n — 1 double stars is an S5 2, bridging a pair of consecutive variable
gadgets. To bridge v_gadget; and v_gadget; |, for i € [n — 1], the designated sets of
vertices are D(v_gadget;,4i — 2) and D(v_gadget; ,,4i +1).
The nth double star is an S3 3, bridging the nth variable gadget with the first clause
gadget. The designated sets of vertices are D(v_gadget,,,4n — 2) and D(c_ gadget;, 1).
The following 2m — 1 double stars are S5 3s. Except for the last one, every two of them
bridge a clause gadget with itself, and the clause gadget with the next one; the last double
star bridges the last clause gadget with itself only. For i € [m], to bridge c_ gadget, with
itself, the designated sets of vertices are D(c_ gadget,, 8 —6) and D(c_ gadget;, 8 — 3); to
bridge c_ gadget; with c_ gadget; , , the designated sets of vertices are D(c_gadget;, 8i—2)
and D(c_gadget;,,8i + 1).

For a critical edge uv of a double star in an assignment gadget, the numbers of vertices on

Rs(u) and R(v) are chosen so that the path s ~» w — v ~» ¢ has length equal to a

R (u) Ry (U)
shortest s, t-path in H and remains a shortest s, t-path in GG. This completes the construction
of (G, s,t). See Fig. 5 for an example.

» Observation 21. If a shortest s,t-path passes through no critical edges, then the subpath
excluding s and t consists of two literal paths, one from a variable gadget and the other from
a clause gadget. Moreover, the two literal paths correspond to the same literal.

We now show that & is satisfiable if and only if there is a shortest s, t-path that hits all
shortest s, t-paths in G. For necessity, given a satisfiable assignment, we consider a shortest
s, t-path P such that
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P passes through all critical edges in the assignment gadget;

P touches the path corresponding to a true literal of every variable gadget;

P touches two of the three paths of every clause gadget, excluding an arbitrary one
corresponding to a true literal in the clause.

If there is a path @ not hit by P, then @) contains no critical edges. By Observation 21, @
contains two disjoint subpaths corresponding to the same literal. However, the one from the
variable gadget corresponds to a false literal, and the other, which is from a clause gadget,
corresponds to a true literal. This leads to a contradiction, so P is the requested path. For
sufficiency, observe that the path P contains all critical edges. In addition, P touches exactly
one literal path in each variable gadget. Let A be the truth assignment such that true literals
have their corresponding literal paths in the variable gadgets touched by P. We claim that

A satisfies ®. Suppose to the contrary that there is a clause that contains no true literal.

Then, there is a literal whose corresponding literal paths in the variable gadget and the
clause gadget are not hit by P, and so is the shortest s, t-path that passes through these two
literal paths, a contradiction. <

» Remark 22. For a 3SAT instance of n variables and m clauses, the reduced instance in the
proof above has O((n + m)?) vertices. It follows that computing a 1-center shortest path
cannot be done in 2°(V") time, assuming ETH.

» Corollary 23. Let G be an n-vertex graph, and let s and t be two vertices of G. Assuming
ETH, there is no 2°V™ _time algorithm to compute a 1-center shortest s, t-path of G.

3.2 An Exact Algorithm to Compute a 1-Center Shortest s, t-Path

A naive way to compute a 1-center shortest s, t-path is to enumerate all shortest s, t-paths,
and keep the one with minimum eccentricity. The eccentricity of a given shortest s, t-path P
can be computed in polynomial time by finding a shortest s,¢-path that uses the edges on
P as few as possible. Thus, this naive method takes 20(") time. In the following, we aim
for developing a 2°(vV™_time algorithm. To achieve the reduced running time, we consider
another way, a dynamic programming algorithm, to compute the eccentricity of a shortest
s,t-path, say P. The vertex set of the graph is partitioned into layers, depending on the
distances from s. For each vertex u in layer i, we record the least number of edges that an
s, u-path shares with P. This value, which we call the intersection index of u with respect to
P, can be computed recursively by finding an optimal path of the form s ~ u’ — u, where
u' is some vertex in layer 7 — 1.

To compute the eccentricity of a 1-center shortest s,¢-path, it suffices to compute for
every shortest s,t-path P the intersection index of ¢ with respect to P and maintain the
minimum. We treat the intersection indices of the vertices in a layer with respect to P as a
function, called the index function of P to the layer. A key observation is that for any layer,
the number of different index functions is upper bounded by (d(s,t) + 1)!V:l. The idea of
our algorithm is to distinguish the layers by their “thickness”, the numbers of vertices in
the layers. For thin layers, we maintain all possible index functions. On the other hand, we
enumerate all subpaths passing through the thick layers and compute its eccentricity using
the naive method mentioned above. These two parts can be combined and balanced so that
the requested running time 2°0(V™) is achieved.

Precisely, let | = d(s,t), and let V; = {v € V(G): d(s,v) = i,d(v,t) = | — i} for
1 €{0,...,1}. The layered subgraph H of G with respect to s and ¢ is defined as
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V(H)=VU---UV, and

EH)={w e E(G): ueV,_1,veV,iecll}
Each V; is called a layer. A path wo,...,u is said to be forward if for all ¢ € [k] there
exists some j € [I] such that u;—1 € V;_1 and u; € V;. Notice that there is a one-to-one
correspondence between the set of shortest s, ¢-paths of G and that of forward s, t-paths of
H. In the following we show how a 1-center forward s,t-path of H is computed.

A layer V; is called thin if |V;| < y/n and thick otherwise. Let S be an ezact hitting set of
the thick layers; namely for all i € [[]

SOV = 1, if V; is thick
0, otherwise.

A forward path P is S-governed if every node u on P that belongs to a thick layer is in S.
Let P, ., be the set of all forward u,v-paths in H, and, for a given exact hitting set S of
thick layers, let S5+ be the set of S-governed forward s, ¢t-paths in H.

For every possible S, we compute an S-governed forward s, t-path P* with minimum
eccentricity; namely, such a path P* satisfies

min |[P*NQ@|= max min [PNQ|.
QEPs ¢ | Q| Pesit QEPs ¢ ‘ Q|

Let Uy, ..., Ui be the thin layers. For each S-governed forward s,¢-path P, we associate
k + 1 functions g;|p: U; — {0,...,1}, the index function of P to layer U;, for i € {0,...,k},
and k functions h;|p: U;—1 x U; = {0,...,1}, for ¢ € [k], where

: — min |[PN
gilp(v) Qrél%?ﬂ Q|

and

00, if 'Pum =0
PNQ| otherwise.

hilp(u,v) = {

mnQep,,,

Notice that go|p = 0, the zero function, and gy |p(t) = mingep, , [PNQ)|. For i € [k], observe
that

gilp(v) = i (gi—1lp(u) + hilp(u,v)) . (7)
Let

Gile = {gilp: P € Ss 4, P passes through x,z € U;}
and

Hile,y = {hilp: P € Ss, P passes through z and y,z € U;_1,y € U;}.

» Lemma 24. Let f: U; —{0,...,1} and y € U;. Then, f € G;|y if and only if there exists
x€Ui—1, g € Gi—1le, and h € H;|q, such that

frv— min (g(u)+ h(u,v)).

uelU;_1
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Proof. The necessity follows immediately from the definition. For sufficiency, we claim that
there is an S-governed forward s, t-path P such that ¢ = g;—1|p and h = h;|p, and then by

Eq. (7)

= mi h = min (g;— hilp(u,v)) = g; )
F@) = min (g(u) +h(e.0) = min (gialp(w) +hilp(.0) = alp0)
for all v € U;. Such a path P can be constructed in a straightforward manner. Let
{P',P"} C S, such that g = g;—1|p and h = h;|pr. Clearly, the path s wTY tis

P// P/I
the requested one. |

Algorithm 1 An exact algorithm to find a 1-center shortest s, t-path of a graph G.
Input: (G, s,1)
Output: The minimum eccentricity of a shortest s, t-path

1 H + the layered subgraph of G w.r.t s and ¢

2 for each exact hitting set S of the thick layers do

3 for x € S do

4 ‘ Gol. + {0}

5 for i<+ 1 to k do

6 for z € Uifl,y € U; do

7 ‘ compute H;|y,y

8 for y € U; do

9 F+0

10 for x € U;_; do

11 for g € Gi_1|s, h € Hily,y do
12 for v € U; do

15 | F)  mingeo, , (9(u) + hu,v)
14 F <« FU{f}
15 Qz|y — F

16 return maxg max,ecg,|, 9(t)

Time complexity. A thick layer has size greater than /n, so there are no more than
V/n ones. Since each thick layer has size at most n, there are O(nv™) different exact
hitting sets of the thick layers. For each exact hitting set S of the thick layers, since
all S-governed forward s, t-paths P coincide on S, there is exactly one function in H;|; ,,
given ¢ € U;_1 and y € U;. This function can be computed in polynomial time by find-
ing a forward x,y-path that uses the edges on P as little as possible. For x € U;_q,

the set G;_1|, contains O ((l + 1)\/ﬁ> functions so along with Lemma 24 computing G|,
for all y € U; takes O ((|Ui,1\ |Ui)? - (l—i—l)ﬁ) time. The overall running time is

9] (n\/ﬁ (\/ﬁ_,_ Zle (poly(n) + (|U;i1] - |Ui|)2 I+ 1)\/5))) = 20(V") See Algorithm 1
for the pseudocode.

4 1-Center Star Subgraph S,

We consider the problem of finding a discrete 1-center among the extreme points in the star
subgraph polytope of an undirected graph. Given an undirected graph G = (V, E) and an
integer r > 2, one can identify all the star subgraphs with r leaves. Each star subgraph
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S, corresponds to an indicator vector v(S,.) € 2, where the ith coordinate of v(S,.) is 1 if
the ith edge in F is included in S, and 0 otherwise. Placing the starting points of these
indicator vectors at the origin in the space 2F, the convex hull of their endpoints is the star
subgraph polytope. Note that the indicator vector of each star subgraph S, corresponds to an
extreme point in the star subgraph polytope because every S, contains exactly r edges.
The two conditions for the polytopes we considered are clearly satisfied since a star
subgraph can be output in time linear to the input size, whereas enumerating all star
subgraphs requires Q(n") time in the worst case, which is superpolynomial for superconstant r.
We show that:

» Lemma 25. [t takes linear time to find a star subgraph S, such that every other star
subgraph S.. can be obtained from S, with removing k edges and subsequently adding k edges
and k is minimized over all choices of star subgraphs with r leaves.

Proof. Assume that x € V is the center node of the target S;. Classify the star subgraph S,
other than S¥ into the following three categories. Let deg(z) denotes the degree of node x
in G.
S, shares the same center node with S*. Thus, deg(z) > r. Then the largest Hamming
distance from any such S, to S is 2r if deg(xz) > 2r or 2deg(z) — 2r otherwise. Let &y
be the largest Hamming distance in this case.
Sy has the center node y and y # z, and G does not contain {z,y} as an edge. Thus,
deg(x) > r and deg(y) > r. Then the largest Hamming distance from any such S, to S
is 2r. Let ko be the largest Hamming distance in this case.
Sy has the center node y and y # x, and G contains {z,y} as an edge. Thus, deg(z) > r
and deg(y) > r. If deg(y) > r + 1, then the largest Hamming distance from any such
Sy to S¥ is 2r. Otherwise deg(y) = 7, such a center node y is the only chance that the
choices of leaves of S} matter. If there are more than r such center nodes y, then the
largest Hamming distance from S} to some star subgraph is 2r. Otherwise, set k3 as
2r — 1 in this case.

Taking the maximum of ki, ks, and k3 gives the desired k under the assumption that x is
the center node of the target S;. To find the optimal center, we iterate over all possible nodes
as candidates. Since each category above requires O(1) time, and the process is performed
for each of the O(m) edges in G, the total running time remains linear in the input size. <«

Lemma 25 proves the results on star subgraph polytopes stated in Theorem 2.

5 An Extremal Bound

In this section, we show that the polytope depicted in Figure 1 contains the maximum
number of vertices in three-dimensional space.

» Lemma 26. Any spanning tree polytope that is embeddable in three-dimensional space
contains at most four vertices.

Proof. We say a point set P is a k-distance set if the number of distinct pairwise distances
between points in P is exactly k. In three-dimensional space, any 1-distance set contains at
most 4 points and any 2-distance set contains at most 6 points [22].

Let G be an undirected simple graph whose spanning tree polytope is embeddable in 3D.
Then G cannot contain any of the following graphs as a subgraph.
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Any cycle of length ¢ > 5. Here is why. Let H be a spanning pseudotree of G that
contains the cycle Cy. Then the number of vertices on the spanning tree polytope of H is
£ and each pair of the vertices has distance 2. This forms a 1-distance set of £ > 5 points,
but every 1-distance set in 3D contains at most four points. Because these vertices is a
subset of the vertices on the spanning tree polytope of G, then the spanning tree polytope
of G cannot be embedded in 3D.

Any pair of edge-disjoint simple cycles. Suppose that G contains a pair of edge-disjoint
simple cycles Cy and C; for some ¢,t > 3. Let H be a connected spanning subgraph
of G that contains only the two cycles Cy and C;. Then the number of vertices on the

spanning tree polytope of H is ¢t and each pair of the vertices has distance either 2 or 4.

This forms a 2-distance set of £t > 9 points, but every 2-distance set in 3D contains at
most 6 points. By a similar reason, the spanning tree polytope of G cannot be embedded
in 3D.

The diamond graph. Let H be a connected spanning subgraph of G that contains only
the three simple cycles on the diamond. Then the number of vertices on the spanning
tree polytope of H is 8 and each pair of the vertices has distance either 2 or 4. This forms
a 2-distance set of 8 points, but every 2-distance set in 3D contains at most 6 points. By
a similar reason, the spanning tree polytope of G cannot be embedded in 3D.

The K, 3 complete bipartite graph. Let H be a connected spanning subgraph of G that
contains only the three simple cycles on the K3 3. Then the number of vertices on the
spanning tree polytope of H is 12 and each pair of the vertices has distance either 2 or 4.
This forms a 2-distance set of 12 points, but every 2-distance set in 3D contains at most 6
points. By a similar reason, the spanning tree polytope of G' cannot be embedded in 3D.

Thus, to have the spanning tree polytope of G embeddable in 3D, G contains at most
one cycle of length 3 or 4. The latter attains the claimed extremal bound. |

6 Concluding Remarks

As a final remark, we relate the two graph parameters: treeradius and treewidth, as stated
in Theorem 28. Consequently, if a problem admits a fixed-parameter algorithm parameterized
by treewidth, it also admits a fixed-parameter algorithm parameterized by treeradius.

» Lemma 27 ([4]). For any vertex v in a graph G, we have
treewidth(G) < treewidth(G — v) + 1.

» Theorem 28. For any graph G,
treewidth(G) < 2 - treeradius(G) + 1.

Proof. Let F be an edge subset that induces a forest in G, and let p =n — ¢(G — F), where
n is the number of vertices of G and ¢(G — F') is the number of components of G — F. By
Proposition 3, it suffices to show that treewidth(G) < 2p + 1. Denote by C,...,C, the
vertex sets of the nontrivial components of G — F, i.e., components of at least 2 vertices.
Then

T

p=n—c(G—F)= (C(G—F)—r+§:|0i|) —c(G—F):Z<|CZ-|—1>7
=1

i=1

Since |C;| =1 > 1 for i € [r], we have r < p. Hence Y ;_, |C;| = p+ 1 < 2p.
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Let H be the graph obtained by removing all vertices contained in the nontrivial com-
ponents of GG. As the remaining vertices in H can only be joined by edges in F', the
graph H is a forest and thus has treewidth 1. Applying Lemma 27 repeatedly yields
treewidth(G) < 2p + 1. <

» Remark 29. Theorem 28 shows that if the treeradius of a graph is bounded then its
treewidth is also bounded. Nonetheless, the converse does not hold in general. For example,
as shown in Lemma 13, the complete tripartite graph K i , has treeradius of n, which grows
unboundedly with n, even though its treewidth is 2.
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