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Abstract
The contributions of the paper span theoretical and implementational results. First, we prove that
Kd-trees can be extended to Rd with the distance measured by an arbitrary Bregman divergence.
Perhaps surprisingly, this shows that the triangle inequality is not necessary for correct pruning in
Kd-trees. Second, we offer an efficient algorithm and C++ implementation for nearest neighbour
search for decomposable Bregman divergences.

The implementation supports the Kullback–Leibler divergence (relative entropy) which is a
popular distance between probability vectors and is commonly used in statistics and machine learning.
This is a step toward broadening the usage of computational geometry algorithms.

Our benchmarks show that our implementation efficiently handles both exact and approximate
nearest neighbour queries. Compared to a linear search, we achieve two orders of magnitude speedup
for practical scenarios in dimension up to 100. Our solution is simpler and more efficient than
competing methods.
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1 Motivation

Nearest neighbour search is a fundamental method offered by computational geometry, with
applications in a wide range of fields. Bentley’s k-dimensional tree [11], Kd-tree for short, is
among the simplest and most practical data structures for this task.

Like many other computational geometry techniques, Kd-trees were initially designed for
Euclidean space and later extended to more general metric spaces. However, many modern
geometric problems, particularly in data science, use distances that are not proper metrics.
For example, it is common to represent data as probability vectors and use specialized
dissimilarities to measure distances between them. While standard geometric algorithms do
not work with non-metric distances, they can often be extended to such settings.

Indeed, it is interesting that many computational geometry algorithms – that are typically
assumed to require a metric – can work with significantly weaker assumptions. Specifically,
we may omit the requirement of symmetry or the triangle inequality. We will mention
prominent examples in Section 2, and prove that the above statement extends to Kd-trees.
In particular, correctness and efficiency guarantees can be retained.

Applications. One practical example of such a non-metric distance is the Kullback–Leibler
(KL) divergence [28]. Originating in information theory [47], the KL divergence is a standard
way of comparing discrete probability distributions (probability vectors). For example, it
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is used as a loss function minimized in machine learning [34,37,50], such as in variational
auto-encoders [26]. Approximate nearest neighbours queries are becoming an increasingly
important component of modern machine learning. In particular, retrieval-augmented
generation (RAG) aims to improve large language models by searching for existing documents
to support generated answers. This is done by a nearest neighbour search within probability
vectors. Typically, heuristic methods, such as the small world graphs [30], which lack
performance guarantees, are used [33,35,51]. Recently, Indyk and Xu [24] warned that the
methods used in such contexts can catastrophically fail. Regardless, there is a growing field
of vector databases focusing on supporting nearest neighbour queries [23].

Problem statement. We revisit the topic of nearest neighbour search, focusing on algorithms
that provide exact answers as well as approximate results with guarantees. In particular,
we investigate non-metric geometries induced by Bregman divergences – of which the KL
divergence is a prominent member.

Given a finite collection of points X ⊂ Ω ⊂ Rd and a query point q ∈ Ω, select k points
from X with the smallest distance to q. Specifically, the distance will be measured using a
Bregman divergence, which we discuss in Section 3. We will design and implement a modified
Kd-tree for answering queries in this setting.

Contributions. We list the contributions of this paper:
1. Theoretical results on correctness and efficiency of Kd-tree queries in the setting of

Bregman divergences.
2. The first implementation of Kd-trees for Bregman divergences. It is currently the fastest

method for exact k-nearest neighbour queries in the Bregman setting and works for
arbitrary decomposable divergences1.

3. Benchmarks showing the method is usable in practical situations with real datasets.

2 Related work

Kd-Trees were introduced by Jon Bentley in 1975 [11]. Further improvements were made by
him, Friedman and Finkel [22] and many others. Bregman divergences were introduced by
Lev Bregman in 1967 [16].

Many computational geometry techniques have been extended to operate with Bregman
divergences instead of a metric. In the context of nearest neighbour search, Cayton first
extended ball-trees [19], implementing prototype software for the KL and Itakura–Saito
divergences. Cayton also proved theoretical results towards extending Kd-trees [17], which
we strengthen as well as provide algorithms and an efficient implementation. In turn, Nielsen,
Piro, and Barlaud extended Vantage point trees [40,41]. The same authors further improved
Bregman ball-trees [18, 42]. These methods rely on a bisection search and in some cases
a preprocessing transformation. We show that Kd-trees are able to perform exact nearest
neighbour searches without relying on these computations.

Rectangle-trees (R-trees) and vector approximation files (VA-files) were extended by
Zhang and collaborators [53]. These implementations inspired Song and collaborators to
develop BrePartitions [48]. Ring-trees combined with a quad-tree decomposition have been
proven to work sublinearly for finding approximate nearest neighbours by Abdullah, Moeller,

1 We are working on incorporating our implementation into the popular scikit-learn [44] library, which
will increase both the generality and efficiency of its existing Kd-trees implementation.
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and Venkatasubramanian [2]. In 2013, Boytsov and Naidan developed their own Bregman
VP-trees extension [15] for approximate nearest neighbours. Naidan later incorporated
his VP-trees and Cayton’s ball-trees into the Non-Metric Space Library (NMSLIB) [14].
This library also includes other approximate Bregman similarity searches including small
world graphs [32]. The hierarchical navigable small world graph has been a popular choice
for similarity searches in vector databases [33,35,51] and performs well in benchmarks for
metrics [8]. However, its implementation in NMSLIB is currently experimental for Bregman
divergences [31]. Recently Abdelkader, Arya, da Fonseca and Mount proposed an approach
to proximity search in non-metric settings, which includes Bregman divergences [1]; as we
understand it, this has not yet been implemented.

More broadly, Banerjee and collaborators extended k-means clustering [9] to arbitrary
Bregman divergences – with the surprising twist that the existing algorithm works without
changes. Coresets have also been extended to the Bregman setting by Ackermann and
Blömer [3]. Nielsen, Boissonnat, and Nock developed Bregman Voronoi diagrams and
Delaunay triangulations [13]. Edelsbrunner and Wagner extended topological data analysis
methods to the Bregman case [21].

In the Euclidean case, robust software is available for all of these techniques. One popular
package in the Euclidean case is the ANN library by Mount and Arya [5–7,36]. Our current
implementation is inspired by this library.

3 Background on Bregman divergences

We begin by setting up definitions for Bregman divergences [16], which we use as a measure of
distance. These divergences are usually asymmetric and do not generally satisfy the triangle
inequality – and as such do not define a proper metric. Despite this limitation, decomposable
Bregman divergences will efficiently work with Kd-trees with minimal changes.

Each Bregman divergence is parametrized by a convex function with particular prop-
erties [10]. We set the stage by letting Ω ⊆ Rd be an open convex set. Next, we define a
function of Legendre type [46] as a function F : Ω → R that is:

I differentiable and
II strictly convex.

III We additionally require that lim
x→∂ Ω

∥∇F (x)∥ = ∞, provided ∂ Ω is nonempty.
The third requirement is often omitted, but will prove important in Section 5.

Given a function F of Legendre type, the Bregman divergence generated by F is a
function DF : Ω × Ω → R. The value of the divergence between x and y is the difference
between F (x) and the best affine approximation of F at y also evaluated at x, or simply

DF (x∥y) = F (x) − (F (y) + ⟨∇F (y), x − y⟩). (1)

See Figure 1 for an illustration. We refer to DF (x∥y) as the divergence in the direction
from x to y. Due to the lack of symmetry, we will be mindful about the direction in which
we compute it.

All Bregman divergences fulfill the following:

▶ Property 1 (Bregman Nonnegativity). DF (x∥y) ≥ 0 for each x, y ∈ Ω, with equality if and
only if x = y.

Despite failing to satisfy the requirements for a metric, various computational geometry
algorithms extend to Bregman divergences. Also, despite the seemingly simple definition,
the resulting divergences have interesting properties and interpretations.

WADS 2025
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Figure 1 Visualization of a Bregman divergence construction for a one-dimensional domain.

Table 1 List of common decomposable Bregman divergences.

Domain Legendre type function Divergence Name

Rd
∑d

i=1 x2
i

∑d
i=1(xi − yi)2 Squared Euclidean (SE)

Rd
+ −

∑d
i=1 xi log2

1
xi

∑d
i=1 xi log2

xi

yi
+ yi−xi

ln 2 Generalized Kullback–Leibler (GKL)
△d−1 −

∑d
i=1 xi log2

1
xi

∑d
i=1 xi log2

xi

yi
Kullback–Leibler (KL)

Rd
+ −

∑d
i=1 log xi

∑d
i=1

xi

yi
− log xi

yi
− 1 Itakura–Saito (IS)

Rd
+ −

∑d
i=1 −√

xi

∑d
i=1

√
yi

2 + xi

2√
yi

− √
xi Bhattacharyya-Like

Ω1 ∩ Ω2 λF1 + (1 − λ)F2, λ ∈ [0, 1] λDF1 + (1 − λ)DF2 Interpolated divergence

Decomposable Bregman divergences. Our focus is on a sub-family of Bregman divergences
called decomposable Bregman divergence [38, 52]. They are generated by a function
F =

∑d
i=1 fi, where each fi is a univariate function of Legendre type. The function, F ,

generates a Bregman divergence of the form DF (x∥y) =
∑d

i=1 Dfi(xi∥yi) for xi, yi (namely
the components of x and y) lying in the domain of fi [39]. Most divergences used in practice
belong to this family.

We list common decomposable Bregman divergences in Table 1. The most commonly
used decomposable Bregman divergence is the squared Euclidean distance (SE). Of
particular interest is the generalized Kullback–Leibler divergence (GKL) defined over
Rd

+. It reduces to the standard KL divergence for points on the open standard simplex,
△d−1 = {x ∈ Rd :

∑d
i=1 xi = 1, xi > 0}. Another example is the Itakura–Saito (IS)

divergence [25], which is useful for working with speech and sound data [20]. There are many
other decomposable Bregman divergences, some inspired by popular tools in statistics such
as the Bhattacharyya distance. Additionally, given functions of Legendre type, F1 and F2, we
can form a new divergence generated by the weighted sum λF1 + (1 − λ)F2 for λ ∈ [0, 1] [46].
This new Bregman divergence which can be viewed as an interpolation between the two
Bregman divergences DF1 and DF2 .

One outlier is the squared Mahalanobis distance [29] which is popular in statistics. While
not decomposable, nearest neighbour problems involving this divergence can be reduced to
the squared Euclidean distance that is decomposable [27]. Another one is the KL divergence
on the closed simplex. While it does not fall under our definition, it can be treated as a limit
case of the KL on the open simplex.

Overall, as the prominent Bregman divergences are decomposable, restricting our attention
to decomposable divergences over open domains will not limit the choice of divergences
handled in practice.
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q

q

Figure 2 Left: primal Itakura–Saito balls. Right: primal generalized Kullback–Leibler balls.

Bregman balls. Due to the asymmetry, one can define two types of Bregman balls [43]. We
start from the primal Bregman ball of radius r ≥ 0 centered at q which is defined as

BF (q; r) = {y ∈ Ω : DF (q∥y) ≤ r}. (2)

Namely, it is the collection of points with Bregman divergence measured from the center not
exceeding r. See Figure 2 for an illustration.

The dual Bregman ball of radius r ≥ 0 centered at q is defined as

B′
F (q; r) = {y ∈ Ω : DF (y∥q) ≤ r}. (3)

As seen in Figure 2, and observed in [13], primal Bregman balls can be non-convex (when
viewed as a subset of Euclidean space). It is reasonable to question if all balls are necessarily
connected. In Section 5 we will show that the balls are indeed connected, and emphasize
why this property is crucial.

Bregman projections. While different in many aspects from metrics, Bregman divergences
often exhibit familiar behaviours. We mention standard results related to projections, which
we sharpen in the subsequent sections.

Given a Bregman divergence DF , we consider the Bregman projection to a point q

from a nonempty C ⊂ Ω:

projF (q, C) = arginf
x∈C

DF (x∥q).

When C is closed and convex, this projection exists and is unique. In this case, this point is
declared to be the Bregman projection of q onto C [4]. In analogy with projection distance,
we define the Bregman projection divergence as DF (projF (q, C)∥q), the infimum of
divergences from C to q. We state the following useful statement [13].

▶ Lemma 1 (Bregman Projection [13]). Given a nonempty closed convex set C ⊂ Ω and
q ∈ Ω, denote qC = projF (q, C). For all x ∈ C:

DF (x∥q) ≥ DF (x∥qC) + DF (qC∥q).

If C is an affine subspace, the above is an equality.

However, this definition and theorem only apply when DF is computed to q from qC . As
DF (x∥y) may not be convex in the second coordinate, a projection, arg minx∈C DF (q∥x), is
not generally defined in Bregman divergence literature. However, by restricting the setup to
axis-aligned boxes, we obtain a similar result working in both directions. We provide results
for divergences computed from a query, but results and proofs for the reverse direction are
analogous.

WADS 2025
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4 Kd-trees

We briefly overview a version of the Kd-tree data structure introduced by Bentley [11],
focusing on nearest neighbour queries. It is a binary tree which encodes recursive partitioning
of Rd (in practice: a sufficiently large box contained in it) into axis-aligned boxes. We
consider a variant in which each node corresponds to an axis-aligned box and the data points
are stored only in the leaves. We highlight the changes required to extend the standard
method to the Bregman setting.

Construction. Kd-trees partition the space by cutting it with axis-aligned hyperplanes,
often called splitting planes or cutting planes. The details of the construction, i.e. the order
and locations of the splits, can have a significant impact on efficiency of Kd-trees [11,12,22,49].
However, the construction does not depend on the choice of a metric, or divergence. We
therefore only mention that the standard splitting methods work in the Bregman case. It
is worth emphasizing that once the tree is constructed, each query can be made efficiently
using any decomposable divergence.

Nearest neighbour queries in the Bregman case. Consider a Kd-tree constructed from
a finite set of data points, X ⊂ Ω ⊂ Rd. To simplify exposition, we focus on finding
the single, exact nearest neighbour of the query point q among the points in X. More
precisely, we consider the primal Bregman nearest neighbour, argminx∈X DF (q∥x). The
proposed algorithm is applicable for any Bregman divergence and is particularly efficient in
the decomposable case.

We recall that the query can be performed using a simple recursive procedure. It traverses
the tree trying to prune as many subtrees as possible, while guaranteeing that all viable
candidates are considered. We overview the algorithm in the Bregman case now, and present
an implementation in Section 7.

The base case: divergences from q to the points stored in a leaf are compared with the
divergence, rnn, to the current best candidate which is updated if needed.
We first visit child nodes based on the relative location of the query point and the splitting
plane at this node. As such, this step does not depend on the choice of divergence.
Moving back to the root, we visit the remaining subtrees only if they cannot be safely
pruned. This is decided by what we call the pruning test. Conceptually, we rephrase it
as an intersection test between the axis-aligned box corresponding to the remaining
node and a primal Bregman ball. Specifically, we mean the ball centered at q of radius
rnn. Clearly, if the box and the ball are disjoint, all data points in the box are in the
complement of the ball, and are therefore too far away to contribute.

Details. We mention that finding the dual Bregman nearest neighbour is completely
analogous. Finding the k nearest neighbours, is another easy modification involving a priority
queue. In this case r is set to the divergence to the current k-th nearest neighbour, or infinity.
To allow approximate queries, the radius of the ball is decreased to r

1+ε . Our implementation
supports all these options. We skip the details for brevity.

Pruning test in practice. In practice, to determine if a given box can be safely pruned,
we will perform a Bregman projection of the query point onto the boundary of the box.
Before we describe the implementation, we must prove that – despite the lack of symmetry
and triangle inequality – correct and efficient pruning is possible. To this end, we focus
on problems related to intersecting a Bregman ball B ⊂ Ω ⊂ Rd with an axis-aligned box
A ⊂ Rd.



T. Pham and H. Wagner 45:7

We divide our argument into two parts. Part I is presented in Section 5 and is more
topological: we show that intersecting B with the boundary of A is an equivalent test. This
argument works for arbitrary Bregman divergences, not only decomposable ones. Part II
is presented in Section 6 and is more geometric: we replace the intersection test with a
projection and show it can be computed in a simple efficient way. This part is specific to
decomposable divergences.

5 Proof of pruning correctness

We consider a Bregman ball B ⊂ Ω ⊂ Rd and an axis-aligned box A ⊂ Rd. The intersection
test checks if the intersection A ∩ B is nonempty. We first prove a crucial result which relies
on the Legendre Transform.

Legendre transform. The Legendre transform is a tool from convex geometry [46]. In the
context of Bregman divergences, it is used to map a Bregman generator over a domain into
another generator over a possibly different domain [13]. In particular, it transforms primal
balls in one domain into dual balls in the other domain, and vice versa. We will see one basic
application of this tool.

More technically, given a function of Legendre type, F : Ω → R, there exists the Legendre
transform which maps F to a conjugate F ∗ : Ω∗ → R, where Ω∗ = {∇F (x) : x ∈ Ω} is the
conjugate domain. Under this transformation, F ∗ is also a function of Legendre type [46]
and we can define the Bregman divergence associated to F ∗. We now use this result to prove
the connectedness of Bregman balls.

▶ Lemma 2 (Connectedness). Primal and dual Bregman balls are connected.

Proof. The dual balls are trivially convex [13], hence connected.
The primal balls are more interesting, so we show an explicit proof. First, recall that F

is strictly convex and differentiable, implying it is continuously differentiable [46]. Therefore,
the Legendre transform of F induces a homeomorphism h : Ω → Ω∗. In particular, h maps
dual balls in Ω∗ to primal balls in Ω. Since connectedness is a topological property, any primal
ball in Ω is connected as the homeomorphic preimage of a connected dual ball in Ω∗. ◀

This particular proof is useful for clarifying the importance of the three assumptions in
the definition of the Legendre-type function. (I) and (II) gives continuous differentiability,
and consequently the crucial homeomorphism. As for (III), let us show how things can go
wrong without it. Specifically, if we allowed arbitrary convex restrictions of the domain.
Consider Ω′ as a restriction of Ω to the preimage under h of a non-convex primal ball in Ω∗.
Since Ω′ is convex, everything appears to work. However, the restricted h now maps Ω′ to a
non-convex conjugate domain, where the Legendre transform is not well defined. The above
proof would therefore fail if we restricted the domain in this way and we could not rule out
the existence of non-connected balls. Requiring condition (III) prevents us from making this
mistake. Rockefellar [46] mentions that this is a very common mistake in general – it is also
present in the Bregman divergence literature.

We now use connectedness for the following lemma.

▶ Lemma 3 (Boundary Intersection). Let Ω ⊂ Rd be the domain for a Bregman divergence,
DF , A ⊂ Rd be an axis-aligned box of positive finite volume with boundary ∂A and q ∈ Ω \ A

be the center of a Bregman ball BF of finite radius r. If B ∩ ∂A = ∅, then A ∩ Ω lies in Ω \ B.

WADS 2025
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Proof. As A has finite volume, it is a codimension-1 topological sphere, and thus ∂A divides
Rd into the inside and the outside, by the Jordan–Brouwer separation theorem. Because
B ∩ ∂A = ∅, q /∈ A, and B is connected, we have that B is necessarily on the outside of ∂A

and so B ∩ A = ∅. Therefore, A ∩ Ω indeed lies in the complement of B in Ω. ◀

Thus B ∩∂A = ∅ implies that the divergence from q to each potential data point in A exceeds
the radius of B, namely r. This means that the intersection test with the boundary of A is
sufficient to safely prune points in the Kd-tree query. We omit the analogous case for dual
balls. We mention that the finite volume assumption is just a technicality as in practice
Kd-trees partition a box of finite volume.

6 Proof of pruning efficiency

In this section we show that the pruning test can be performed efficiently in the case of
decomposable Bregman divergences. Specifically, we aim to update the projection in O(1)
running time, independently of the dimension of the ambient space. To this aim, we rephrase
the pruning test in terms of a Bregman projection onto the boundary of the box. We call
this the boundary projection test.

▶ Lemma 4. Let D′
F be a decomposable Bregman divergence defined on Ω′ × Ω′. Then D′

F

is a restriction of a divergence defined on an axis-aligned box.

Proof. Let D′
F be a decomposable Bregman divergence. Then F =

∑d
i=1 fi, where each

fi is a univariate function of Legendre type. Thus, each fi has a convex domain in R, ωi,
which must be an interval. Thus, DF is a Bregman divergence defined on an axis-aligned
box. Then, as both are generated by the same function of Legendre type, DF |Ω′×Ω′ = D′

F

and thus D′
F is a restriction of DF . ◀

This lemma further emphasizes the importance of Legendre-type function assumption (III),
as a restriction on a Bregman divergence’s domain is induced by a domain restriction on the
parametrization function F . For example, the GKL divergence on Rd

+ may be restricted to
the KL divergence on △d−1 but not to (0, 1)d.

For a given query and set of data points the nearest neighbours are identical under both
DF and a restricted D′

F , allowing use of either divergence. The assumption on the domain
Ω =

∏d
i=1 ωi ensures that Lemma 5 and Corollary 1 apply to Kd-trees. This is important

because Kd-trees decompose Rd and not the chosen domain of a Bregman divergence.
Additionally, in the unrestricted domain, Lemma 6 enables efficient query processing and
ensures that our underlying algorithm remains robust under any domain restriction.

From boxes to hyperplanes. We first consider a simplified problem, namely a Bregman
projection onto a single axis-aligned hyperplane.

▶ Lemma 5 (Axis-Aligned Projection). Let F =
∑d

i=1 fi be a decomposable function of
Legendre type defined on an axis-aligned box, Ω.

Let P ⊂ Rd be an axis-aligned hyperplane such that P ∩Ω ̸= ∅. Let qP be the Bregman pro-
jection of a point q ∈ Ω onto P with respect to DF , arg minx∈P DF (x∥q). Then qP coincides
with the orthogonal projection of q onto P . (The same is true for arg minx∈P DF (q∥x).)

Proof. Let P be an axis-aligned hyperplane orthogonal to the j-th standard basis vector.
Specifically, each point p ∈ P has its j-th coordinate fixed.
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Because: (1) q is fixed; (2) pj is fixed for each p ∈ P ; and (3) DF is decomposable,
we can write DF (q∥p) =

∑d
i=1 Dfi

(qi∥pi) = Dfj
(qj∥pj) +

∑
i ̸=j Dfi

(pi∥qi). To minimize
DF (q∥p), we minimize

∑
i̸=j Dfi

(qi∥pi), and since each Dfi
is a Bregman divergence, Bregman

Nonnegativity (Property 1) applies. So each Dfi(qi∥pi) ≥ 0, with equality if and only if
pi = qi. Consequently, arg infp∈P ∩Ω DF (q∥p) = (q1, q2, . . . , pj , . . . , qd). Therefore, the
Bregman projection of q onto P is precisely the orthogonal projection. ◀

Generally our Bregman projection from q, arg minx∈P DF (q∥x), would not be considered a
Bregman projection, and Lemma 1 would not apply to it. In our case, the two projections
coincide, so we will refer to the resulting point as the Bregman projection onto the axis-aligned
hyperplane. With this we get the following corollary.

▶ Corollary 1 (Box Projection Divergence). Let F =
∑d

i=1 fi be a decomposable function of
Legendre type defined on an axis-aligned box. The Bregman projection divergence of q ∈ Ω
onto A, with respect to the Bregman divergence generated by F , can be computed as

d∑
i=1

Dfi
(qi∥pi) = DF (q∥p),

where p is the (squared) Euclidean projection of q onto A.

Back to the pruning test. To decide if the input points in the current box can be pruned,
we compare two values. One is the divergence to the current best candidate; the second one
is the projection divergence of q onto an axis-aligned box A. This also works for divergence
computed in the reverse direction.

In the end, the situation is very simple. This simplicity allows us to compute the projection
divergence in time O(d) – exactly as in the (squared) Euclidean case.

Efficient projection. We focus on maintaining the projection divergence during the course
of the query, rather than computing it every time. It turns out a single update can be done
in constant time, independent of the dimension.

▶ Lemma 6 (Updating Projection Divergence in Constant Time). Let F =
∑d

i=1 fi be a
decomposable function of Legendre type, where each fi has domain ωi ⊆ R. Then the
projection divergence can be updated in constant time.

Proof. Let q ∈ Ω and B =
∏d

i=1[ai, bi] be a box corresponding to a splitting node of our
Kd-tree. By corollary 1, the Bregman projection of q onto B is on the boundary of B. Denote
this Bregman projection x = arg infp∈B DF (q∥p). As x lies on the boundary, xi is either
ai, qi, or bi.

For the box C corresponding to a child node, we change only one wall of B by the
construction of the Kd-tree. Without loss of generality, C = [c, b1] ×

∏d
i=2[ai, bi], with

a1 < c < b1. For y = arg infp∈C DF (q∥p) we similarly have yi = xi for i = 2, . . . , d.
Since DF is decomposable, Dfi

(qi∥xi) = Dfi
(qi∥yi) for i = 2, . . . , d. Thus DF (q∥ρ) =

DF (q∥ω) − Df1(q1∥ω1) + Df1(q1∥ρ1). This is illustrated in Figure 3.
Thus, as we move from a splitting node to its child, updating the projection divergence is

independent of the dimension, d. ◀

Moving from a Kd-tree node to its child, the corresponding box shrinks along a single
dimension. The projection divergence can therefore be updated using at most two divergence
computations (one negative, one positive) along the same dimension. The update is O(1)
and independent of the embedding dimension. See Figure 3.
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Figure 3 Left: Calculation of projection divergences of each point qi onto the box decomposed
as the sum of divergence computations along individual dimension. Right: Efficient update of
projection divergence.

As Corollary 1 follows from Lemma 5 and Lemma 6 solely depends on the decomposable
structure, the results apply for Bregman divergences computed in either direction.

7 Implementation

Our implementation is based on the ANN (Approximate Nearest Neighbour) C++ library
by Mount and Arya [36]. It is an optimized library for Kd-trees.

Bregman query implementation. Algorithm 1 shows a C++ implementation of the Bregman
query algorithm using this optimization (modulo unimportant technicalities). The code is
structured after the implementation in the ANN library. We show only the part of the code
for splitting nodes; handling leaf nodes is straightforward.

We assume that splitting nodes are instances of class kd_tree_splitting_node. Leaf
nodes store input points and queries are handled with a linear search algorithm. Variable
eps is used for approximate queries. Finally, D_f is assumed to compute the decomposable
Bregman divergence along a selected coordinate – for all practical decomposable divergences
this takes time O(1) by utilizing Lemma 6 at lines 18 and 20. Line 18 adds the new projection
divergence, new_proj_div, and the old projection divergence is removed in line 20. We
remark that many implementations, including KDTree from the popular sklearn library [44],
use a slower O(d) approach, adding unnecessary work in higher dimensions.

The variable knn_priority_queue is used to maintain the k-nearest neighbours. To
perform the dual query, just swap the parameters in the function used to compute D_f. The
extra argument in D_f is just a technicality which allows one to use different 1-dimensional
divergence depending on the currently considered dimension.

Expected computational complexity of a query. While we perform a single visit of an
internal node in an optimal (constant) time, the expected complexity of the query remains
an open problem. In particular, proving the O(log n) bound for uniformly distributed data
is significantly harder in our setting. First, it is not clear what it means to uniformly
distribute points with respect to a given divergence. Second, standard proofs rely on volume
arguments [11] – but in our case the Euclidean volume of a Bregman ball depends on its
location.
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Algorithm 1 Bregman Kd-tree query implementation.

1struct kd_tree_splitting_node : kd_tree_node {
2kd_tree_node *child_lower, *child_higher;
3int cut_dim;
4float cut_val, upper_bound, lower_bound;
5virtual void search(...);
6};
7

8using div_t = std::function<float(const float, const float, const int)>;
9

10float D_GKL(const float x_i, const float y_i, const int dim) { // example
11return x_i*log(x_i) − x_i*log(y_i) − x_i + y_i;
12}
13

14void virtual kd_tree_splitting_node::search(const point& q,
15float box_proj_div, div_t D_f, float eps=0.0) {
16if (q[cut_dim] < cut_val) { // q lower than the cutting plane
17child_lower−>search(q, box_proj_div, D_f, eps); // more promising child
18float new_box_proj_div = box_proj_div+D_f(q[cut_dim], cut_val, cut_dim);
19if (lower_bound > q[cut_dim])
20new_box_proj_div −= D_f(q[cut_dim], lower_bound, cut_dim);
21if (box_div*(1+eps) < knn_priority_queue−>max_divergence())
22child_higher−>search(q, new_box_proj_div, D_f, eps); // recursive call
23}
24else {/* analogous for q higher than the cutting plane... */ }
25}

Although the constant time computations only rely on splitting planes being axis aligned,
the impact of how splitting planes are chosen in the Bregman case similarly relies on the
properties of Bregman balls. While the depth of the trees is not influenced by the choice of
metric or divergence, the interactions of Bregman balls and axis-aligned boxes can be highly
nonuniform.

These issues necessitate new, significantly more sophisticated, proof techniques. We leave
this as an open problem, and show experimentally that the method performs well in practical
situations.

8 Experiments

The main practical motivation of our work is to apply computational geometric algorithms
to the point clouds produced by machine learning models. In particular, we wish to compare
two collections of probabilistic (soft) predictions using the KL divergence. Efficient nearest
neighbour queries are useful in this setting, however using the Euclidean tools in this setting
can lead to severe discrepancies, seen in Section 8.1. Finally, the dimension is often not
overly high (often 10-100) which gives hope that Kd-trees can be efficient.

We will benchmark Bregman Kd-trees for exact and approximate nearest neighbour
queries and compare with other methods. Additional results are reported in Section A.

We stress that efficiency is just one aspect determining the practicality of a method.
Bregman Kd-trees have several unique advantages which make them practical. For example,
once a Bregman Kd-tree is constructed, each query can be performed using a different
decomposable Bregman divergence.

Data sets. We use synthetic data, standard datasets, and probabilistic predictions coming
from a machine learning model. For all data, we use 50,000 points and 10,000 query points.
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In the machine learning setup, we consider popular image datasets CIFAR10 and CI-
FAR100. Each contains 50,000 training and 10,000 test images, with 10 and 100 different
labels respectively. We train two neural networks, M1 and M2, on a classification task on
CIFAR100. They achieve 80.22%, and 71.74% test accuracy respectively. From each model,
we produce two sets of probabilistic predictions: (trni, tsti), for i ∈ {1, 2}. By Q → D we
mean we query dataset D with queries Q. Since the network is trained to minimize the total
KL divergence, these predictions lie on the △99 ⊂ R100 equipped with KL divergence.

We also consider a model trained to 95.2% test accuracy on CIFAR10 and extract its
probabilistic predictions on training and test points. These predictions are contained in R10.
We also use the standard Corel Image Features data contained in △99.

Compiler and hardware. Software was compiled with Clang 14.0.3. The experiments were
done on a single core of a 3.5 GHz ARM64-based CPU with 4MB L2 cache using 32GB
RAM. We observed similar speed ups on an x86-64 CPU.

8.1 Nearest neighbour comparisons

One may assume that a Euclidean ball and Bregman ball with the same center and radius
have large intersections and thus a query would return the same nearest neighbours in both
cases. We experimentally show that this is not the case, which necessitates the usage of data
structures specialized for the Bregman case.

We first compare the sets of nearest neighbours obtained by using Euclidean distance and
the KL divergence. For tst1 →trn1, we find the 10 nearest for each query in tst1 with respect
to the KL divergence and Euclidean distance. For each query, we compare the two sets of
neighbours while disregarding order. Of the 10,000 queries, 9,962 had different sets of nearest
neighbours with 134 having no common nearest neighbours. This is expected as the geometry
of KL balls can vary depending on the location of the center whereas the Euclidean balls
grow more uniformly. A lower dimensional example with three nearest neighbours computed
can be seen in Figure 4. When the sets are ordered, the average of number of neighbours with
matching indices is 0.8422 of 10, with only two queries having the same nearest neighbours
in the same order. In conclusion, the reported nearest neighbours rarely coincide in the
same order and often have different neighbours completely. Thus we cannot simply use fast
Euclidean algorithms to analyze machine learning models trained using Bregman divergences.

8.2 Baselines

We stress that there are no robust, general libraries for the exact and approximate Breg-
man nearest neighbour computations. We compare our package to Cayton’s experimental
implementation of Bregman ball-trees [19] (BBT) for exact and approximate nearest neigh-
bours. Two other available (experimental) implementations [40] are not usable, due to severe
compilation issues (the code is non-portable) and limited documentation.

We additionally compare our package to the fastest implementation in NMSLIB [14] for
Bregman divergences. We stress that these methods are recall-approximate: they may return
the correct nearest neighbour, but offer no guarantees (unlike our method). These methods
are therefore not in direct competition with our method, but it is interesting to observe the
trade-offs between efficiency and guarantees.
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q

Figure 4 Three nearest neighbours of a query q with respect to the KL divergence and the
Euclidean distance on △2. The blue area is the KL ball and the yellow is the Euclidean ball whose
radius is determined by the respective third nearest neighbour.

Table 2 Build time comparison between Kd-trees and Bregman ball-trees for different divergences
and data sets.

Bregman Ball Trees [18]

Kd-tree SE KL IS

trn1 0.43s 5.75s 10.05s 7.71s
Corel 64 0.08s 1.30s 6.27s 6.08s
CIFAR10 0.04s 0.20s 1.30s 0.88s

8.3 Exact queries
In Table 2, we measure the construction time of Kd-trees and ball trees. Ball trees are
constructed with Cayton’s Bregman Ball trees. We note that the same Kd-tree works for
any decomposable divergence for either direction, while a ball tree construction depends on
the given divergence and direction.

Table 3 shows the speed up in finding nearest neighbours using our method compared to
linear search and BBT. We use the KL, IS, BL, and an interpolated divergence. For exact
queries with the KL divergence on the 100-dimensional CIFAR data sets we observe ≈ 100×
speed compared to the linear search. We compare our speeds to Cayton’s Bregman ball trees,
achieving minimum 3× speed up with KL divergence and up to 20× speed up for the IS
divergence. As BBT has not implemented BL or interpolated divergences, these times are
not available.

8.4 Approximate Bregman queries
Given ϵ, an approximate nearest neighbour query must return each nearest neighbour
x′ such that DF (q∥x′) ≤ (1 + ϵ)DF (q∥x), where x is the true nearest neighbour.

To evaluate our method for approximate queries, we compare it with an implementation of
Bregman Ball trees (BB-trees) by Cayton [18,19]. It is specialized for KL, with experimental
support for IS. Unlike our method, extending it to other divergences is nontrivial.
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Table 3 Runtimes of Kd-trees compared to Bregman ball-trees and linear search. Speed ups of
Kd-trees compared to linear and BBT are listed. For example Kd-trees are 92.12× faster than a
linear search on tst1 →trn1. The interpolated (Int) divergence is 0.9KL + 0.1SE.

tst1 →trn1 tst2 →trn1 Corel64 CIFAR10

K
d-

tr
ee

KL 3.06s 3.66s 18.26s 0.30s
IS 24.95s 26.65s 67.95s 1.13s
BL 4.72s 5.78s 27.05s 0.49s
Int 5.55s 6.44s 21.94s 0.50s

Li
ne

ar

KL 281.90s 92.12× 286.63s 78.31× 177.77s 9.74× 30.53s 101.77×
IS 277.87s 11.14× 274.58s 10.30× 173.79s 2.05× 30.20s 23.01×
BL 88.59s 18.77× 87.84s 15.20× 55.46s 2.05× 8.89s 18.14×
Int 309.21s 55.71× 311.63s 48.39× 196.99s 8.98× 34.20s 68.40×

B
B

T

KL 9.62s 3.14× 14.33s 3.92× 99.10s 5.43× 0.91s 3.03×
IS 507.45s 20.34× 614.97s 23.08× 397.97s 5.86× 3.53s 3.53×
BL N/A N/A N/A N/A
Int N/A N/A N/A N/A

We compare the query times for the Kd-tree search to the Bregman ball tree search for a
range of ϵ values in Figure 5. Our method is between 3-5 times faster for KL queries, and
between 5-15 times faster for IS queries.

Our Kd-tree method works with arbitrary decomposable divergences (computed in either
direction): one can either use a predefined divergence, or implement a custom one. This only
requires implementing a single function in the user’s code that computes the divergence – no
changes to the Kd-tree library are required. This allows the method to work out of the box
in various contexts.

The above is in contrast with Bregman Ball trees: they are more general but require
tailoring to different divergences [19]. Also, there is a big difference between the simple
squared Euclidean case and the Bregman case. Finding a projection onto a (dual) Bregman
ball generally requires performing a 1-dimensional convex optimization. In practice, this is
done using a binary search, with a full divergence computation at each step, making each
step Ω(d). In our case this entire projection is O(1). As evidenced by BB-tree’s relatively
lower performance for the IS divergence, extending BB-trees to other divergences poses an
algorithmic challenge.

8.5 An unfair comparison with fast heuristics
The Non-Metric Space Library [14] by Naidan has algorithms adapted for working with
Bregman divergences and other non-metric distances. Benchmarks for methods have been
published specifically for the KL and IS divergences [45]. In particular, the small-world graph
(SWG) [30] search is considered a state-of-the-art method. For brevity (and because these
heuristic methods do not directly compete with methods for exact and approximate queries),
we limit the comparison to this method.

Unlike Kd-trees, the SWG method does not offer guarantees on the number of correct
nearest neighbours. While they tend to behave well in practice, Indyk and Xu showed [24] that
such methods can fail catastrophically. Generally, recall tends to drop in higher dimensions.
In particular, in dimension 100, 15.71% results for the KL divergence contained some incorrect
nearest neighbours; in 4.54% of cases, all of the reported neighbours were incorrect.
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Figure 5 Total query time compared for (1 + ϵ)-approximate nearest neighbours for tst1 →trn2

(lower is better). Left is KL and right is IS divergence. Starting from ϵ = 0.1. Vertical bars mark
the speed up of Kd-trees over ball-trees for a given ϵ.

Table 4 Comparing Kd-tree and SWG method for 10 nearest neighbours. For SWG, error
frequency is number of times < 10 correct nearest neighbours are returned. Min recall is the
minimum number of correct nearest neighbours. The interpolated (Int) divergence is 0.9KL+0.1Euc.

Kd-tree
Build
time

Kd-tree
query
time

SWG
build
time

SWG
query
time

Avg
recall

Error
freq

Min
recall

Min
recall
freq

KL
tst2 →trn1 0.43s 5.76s 4.84s 1.32s 0.928 1571 0 454
Corel64 0.08s 29.60s 6.99s 1.70s 0.998 152 7 5
CIFAR10 0.04s 0.45s 2.90s 0.59s 0.998 76 1 1

IS
tst2 →trn1 0.43s 29.29s 8.84s 2.31s 0.883 3292 0 387
Corel64 0.08s 76.03s 17.13s 4.05s 0.900 4608 0 1
CIFAR10 0.04s 2.05s 2.90s 0.85s 0.991 287 0 17

BL All data sets N/A N/A N/A N/A N/A N/A

Int All data sets N/A N/A N/A N/A N/A N/A

In any case, the benchmarks reported in Table 4 reveal an interesting trade-off. Compared
to our implementation, the SWG offers faster query time (typically one order of magnitude
faster), at the cost of slower build time (typically two orders of magnitude slower). We
reiterate that these methods do not provide performance guarantees – while our method
does. Overall, SWG is useful for performing numerous imprecise searches, while Kd-trees are
useful for fewer searches or when guarantees are required.

9 Summary

We proved several results on Bregman divergences, demonstrating that the geometries they
induce are well-behaved. In particular, we show that the lack of symmetry and triangle
inequality does not preclude them from being used as a measurement for Kd-trees. This is
perhaps unexpected, since the triangle inequality is typically used to prove the correctness of
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Kd-trees. Furthermore, we show that certain additional properties of decomposable Bregman
divergences enable an efficient query algorithm. These theoretical results provide the basis
for an efficient implementation, whose properties are outlined below.

Computational complexity: a crucial operation is optimized to work in O(1) time.
In comparison, several popular Euclidean Kd-trees implementations use a naive O(d)
algorithm.
Speed: it is up to 100× faster than linear search and between 3 and 20× faster than
competing methods on practical data in dimension 100.
Simplicity: the algorithm is simple which makes it more likely to be adopted in practice.
Ease of use: works for any decomposable Bregman divergence out of the box (competing
approaches requires custom, nontrivial implementation for each divergence).
Flexibility: handles exact and guaranteed ϵ-approximate Bregman queries with divergence
computed in either direction.

From an applied perspective, one can now perform efficient queries for practical data
measured with the KL divergence, in particular on medium-dimensional data coming from
machine learning. This opens up new ways of using computational geometry algorithms
within machine learning.

On the theoretical side, this work opens up new questions. Of primary importance is the
expected computational complexity of a Kd-tree query. This problem is significantly more
involved than in the Euclidean case, and will require developing novel proof techniques and
deepening our understanding of the geometries induced by Bregman divergences.
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A Additional tests

A.1 Higher dimensional experiments
Baselines in higher dimensions. For 50,000 data points and 10,000 query points sampled
sampled from the simplex, we can compare query times between Kd-trees and Cayton’s BBT.
In Table 5, we compare query times in higher dimensions. Although Kd-trees are often said
to be slower in higher dimensions, we see a speed up in our method even at 500 dimensions.

Table 5 Kd-tree and BBT 10 nearest KL–neighbours search times for increasing dimensions.

Dimension 100 150 200 250 500 1000

Kd-tree query 208.39s 321.54s 469.21s 588.67s 1,229.72 2,689.70s
BBT query 247.80s 402.93s 517.07s 625.38s 1,237.84s 2,410.28s
Speed-up ≈ 1.19× ≈ 1.25× ≈ 1.10× ≈ 1.06× ≈ 1.00× ≈ 0.90×

SW-graph comparison. In comparison to Kd-trees, SWG has slow build times. We compare
the SWG build time on 500,000 points in △999 ⊂ R1000, with parameters reduced for speed
while maintaining >0.9 average recall for 10 queries. SWG build time was 1464.07s, while
Kd-tree build time and query time were 19.44s and 25.76s respectively. The build time for
SWG is >30× longer than the sum of build and query time for Kd-trees.

A.2 Other exact query experiments
For these additional tests, □100 is a uniform sample of the unit cube with the same data
sizes as above. In Table 6, we record total query time of other possible pairs of prediction
data and □100.

Table 6 Additional total query time comparisons.

tst1 →trn2 □100 trn2 →trn1 trn1 →trn2

KL
Kd-Tree 4.46 17.22 12.73 264.84s
Linear Search 285.16 1435.50 1431.93 407.80s
Speed up 63.94× 83.36× 112.49× 1.54×

IS
Kd-Tree 26.76 121.49 180.55 170.58s
Linear Search 277.77 1377.00 1365.40 397.75s
Speed up 10.38× 11.33× 7.56× 2.33×

SE
Kd-Tree 0.41 1.89 1.87 89.95s
Linear Search 23.32 116.44 116.466 24.36s
Speed up 56.88× 61.61× 62.28× 0.27×
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