
Skipping Ropes: An Efficient Gray Code Algorithm
for Generating Wiggly Permutations
Vincent Pilaud #

Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain

Aaron Williams #

Department of Computer Science, Williams College, Williamstown, MA, USA

Abstract
Wiggly permutations were introduced by Bapat and Pilaud (Wigglyhedron Mathematische Zeitschrift
2025). We positively answer one of their conjectures by finding a Hamilton path in the wiggly flip
graph that is isomorphic to the wigglyhedron. Our path provides a Gray code in which successive
wiggly permutations are obtained by a single jump or hop, meaning that one or two consecutive
symbols move past some number of smaller symbols. The Gray code has a simple greedy description
that produces a recursive zig-zag pattern reminiscent of plain changes for permutations. More
broadly, our results extend Algorithm J and the series of papers on zig-zag languages initiated by
Hartung, Hoang, Mütze and Williams (Combinatorial Generation via Permutation Languages SODA
2020). Finally, we use wiggly changes as the basis for an O(n)-time delay generation algorithm.
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1 Introduction

We use a classic order of permutations called plain changes as inspiration for ordering an
interesting new subset of permutations called wiggly permutations. Plain changes can be
described as a swap Gray code of permutations, meaning that it lists all n! permutations
so that successive permutations differ by a swap (i.e., the transposition of two adjacent
symbols)1. It is arguably the most prominent non-lexicographic order of permutations, and it
is often used when generating permutations efficiently. Likewise, we use our wiggly changes as
the basis for the first efficient generation algorithm of wiggly permutations. This introductory
section also discusses how our results can be seen as the next step in the broad generalization
of plain changes from the recent Permutation Languages series of papers.

1 For excellent background information on Gray codes see Mütze’s dynamic survey [34].
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(a) n = 3.
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(b) n = 4.

Figure 1 Plain changes is a swap Gray code for the permutations of {1, 2, . . . , n}. It is visualized
here with one rope per number, where each swap moves a larger rope over an adjacent smaller rope.
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(a) Permutahedron for n = 4.
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(c) Wigglyhedron for n = 4.

Figure 2 Polyhedra with Hamilton paths on their 1-skeletons. The vertices are (a) permutations,
(b) 231-avoiding permutations, and (c) wiggly permutations. The edges are cover relations in Hasse
diagrams (see Figure 6) and are (a) swaps, (b) minimal jumps, and (c) wiggly flips. The paths follow
(a) plain changes, (b) Algorithm J [16], and (c) wiggly changes. The paths are all created greedily
by Algorithm F via the edge labels in Definition 6. We also generate wiggly changes efficiently.

1.1 Plain Changes for Permutations

In the 17th century bell-ringers faced a combinatorial problem. They wished to list all n!
permutations of [n] = {1, 2, . . . , n} so that successive permutations differ by a swap (i.e.,
the transposition of two adjacent symbols). In this context, a permutation of [n] represents
the order in which n large church bells can be rung by n individuals, the ringing of all n!
permutations is a peal, and the closeness condition on successive permutations represents a
physical limitation in altering the cadence of each bell. Over the course of several decades
the community devised a pattern for n = 4 bells and then generalized it to arbitrary n [21].
The resulting plain changes is often illustrated using ropes, where each rope illustrates the
movement of an individual bell. Figure 1 provides the order for n = 3 and n = 4 along with
a subtle but important graphical feature: larger ropes go over smaller ropes. For example,
we view the transition from 1243 to 1423 not just as a swap, but as 4 moving over 2. To
emphasize this perspective, we will often write such a transition as 1 2 4 3 to 1 4 2 3.

In the 20th century computer scientists faced the same combinatorial problem. This time
the goal was to generate all n! permutations as quickly as possible within a computer program.
Plain changes was discovered independently multiple times, and the pattern became known
in this community as the Steinhaus-Johnson-Trotter algorithm [51, 19, 54].

We can visualize this type of problem using a flip graph. Its vertices are the objects
to create and its edges represent the allowable changes between objects. A solution is a
Hamilton path. We refer to the order of successive objects on the path as a Gray code for
the associated objects using the associated operations or changes. The flip graph for the
bell-ringing problem is shown in Figure 2a for n = 4 and it can be described in a number of
other ways. For example, it is the Cayley graph of the symmetric group under swaps [12]. It
is also the Hasse diagram of the permutations under the weak order [55] as seen in Figure 6a.
The flip graph is also isomorphic to the permutahedron [38] as seen in Figure 2a.

Plain changes is typically defined using local recursion meaning that each permutation of
[n− 1] is expanded into n permutations of [n]. The first n permutations in the order for [n]
is obtained by sweeping the value n from right-to-left through the first permutation in the
order for [n− 1]. Then n is swept from left-to-right through the second permutation in the
order for [n− 1], and so on. This zig-zag pattern is illustrated by the red rope in Figure 1.
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Alternatively, plain changes for [n] can be defined using a simple greedy algorithm without
any reference to the order for [n−1]. The algorithm starts a list from 12 · · ·n, then repeatedly
extends the list to a new permutation as follows: from the most recently added permutation
swap the largest value that gives a new permutation. For example, consider the algorithm
once it has generated the partial list 1234, 1243, 1423, 4123. At this point the most recently
added permutation is 4123. The algorithm cannot swap the largest value 4 to the left (since
it is in the leftmost position) or to the right (since 4123 = 1423 is already in the list). So it
considers swapping the next largest value 3, which produces the next permutation in the list
4123 = 4132. Note that the algorithm description is potentially ambiguous since it doesn’t
specify whether a particular value should prefer to swap to the left or right, however, it turns
out that such a choice never arises. This greedy interpretation was introduced at WADS
2013 as part of a larger investigation that showed how simple greedy algorithms can recreate
the recursive definitions used in classic Gray code constructions [58].

1.2 Jump Gray Codes for Zig-Zag Languages

Permutations can be used to represent other combinatorial objects. For example, a permuta-
tion p1p2 · · · pn avoids the pattern 123 if there is no increasing subsequence of length three.
That is, ∄i < j < k with pi < pj < pk. These permutations were first studied over a hundred
years ago by MacMahon [29] and were shown to be counted by the Catalan numbers. Knuth
then showed that the same numbers count the 231-avoiding permutations. Both sets of
permutations have natural bijections with other objects counted by the Catalan numbers,
including binary trees with n nodes [50]. For basic concepts in pattern avoidance see [2].

Using these types of bijections we can create lists of various combinatorial objects by
creating lists of corresponding permutations. In this context it is sometimes the case that a
small change in the permutation corresponds to a small change in the combinatorial object
that it represents. In other words, a Gray code for the permutations may provide a Gray
code for the combinatorial objects. This connection has been explored in great detail by
the recent Permutation Languages series of papers starting from [16]. In these papers, it
is shown that every “zig-zag language” has a jump Gray code, meaning that consecutive
permutations differ by moving one larger symbol over some number of smaller symbols.
Furthermore, these Gray codes can be seen as natural generalizations of plain changes. They
are generated by a simple greedy algorithm called Algorithm J: jump the largest possible
value the shortest possible distance that creates a new permutation in the language. When
applied to 231-avoiding permutations the algorithm generates a Hamilton path in a flip graph
that is isomorphic to the associahedron [38] as shown in Figure 2b. And just like in plain
changes, this algorithm creates a locally recursive zig-zag pattern, except this time a value
may skip over some positions when it sweeps from side to side as shown in Figure 3a.

1.3 Not-So Plain Changes: Wiggly Changes

We consider wiggly permutations which were recently introduced by Babat and Pilaud [1].
Informally, a wiggly permutation restricts the values between pairs of the form (2j − 1, 2j).
More specifically, if the smaller value 2j − 1 appears to the left/right of the larger value 2j,
then the values between them must be larger/smaller. To make this idea more concrete,
consider a wiggly permutation π for n = 8 and the restrictions placed on it by the pair (3, 4).

If π = _3_4_, then the middle piece is restricted to values selected from {5, 6, 7, 8}.
If π = _4_3_, then the middle piece is restricted to values selected from {1, 2}.

WADS 2025
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(a) 231-avoiding permutations. The order uses
jumps that are not swaps (e.g., the 4 jumps in ∗).
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(b) Wiggly permutations. The order uses hops that
are not jumps (e.g., the 34 hop together in ∗).

Figure 3 Gray codes for two permutations languages visualized using n = 4 ropes. To avoid
invalid permutations, the red rope changes speed in (a), and also reverses direction earlier in (b).
These two “skipping rope” patterns (and plain changes) are generated by Algorithm F .

Just as permutations are the vertices of the permutahedron, and 231-avoiding permutations are
the vertices of the associahedron, the wiggly permutations are the vertices of the wigglyhedron
(see Figure 2). When viewed as a graph, the edges of the wigglyhedron represent wiggly flips,
which are formally defined in Section 3 along with other wiggly concepts.

▶ Conjecture 1 ([1]). The wigglyhedron has a Hamilton path. In other words, there is a
Gray code for wiggly permutations using wiggly flips.

We affirm a stronger version of Conjecture 1 that only allows jumps and hops. A hop is
like a jump except that a pair of consecutive and adjacent symbols moves over some adjacent
smaller values. For example, 65784132 = 65413782 is a hop as the consecutive and adjacent
pair 78 moves over the adjacent smaller values 413. It is also minimal since the larger symbols
move the shortest possible distance to create another valid wiggly permutation.

▶ Theorem 2. There is a minimal jump and minimal hop Gray code of wiggly permutations.

1.4 Generation Algorithms
We proved Theorem 2 using a simple greedy algorithm that generalizes Algorithm J. Further-
more, the Gray code creates a locally recursive zig-zag pattern. Unlike the jump Gray codes
for zig-zag languages, more than one symbol moves between the end of one sweep and the
start of the next sweep (see Figure 3b). Nevertheless, we use our new Gray code order in an
efficient generation algorithm. It runs with O(n)-time delay meaning each wiggly permutation
of [n] is generated exactly once, and worst-case O(n)-time is used between successive wiggly
permutations; further analysis may reduce this to amortized O(1)-time delay.

Our algorithm is the first to generate wiggly permutations, and it adds to a new trend
in the area of combinatorial generation [42, 24]. When developing a generation algorithm,
one must first decide on which order to follow. The most common choices are lexicographic
orders [43, 60] followed by Gray code orders. While Gray code orders have certain benefits
they are typically assumed to be more challenging. This assumption has long been false for
permutations [49] and other basic combinatorial objects [11, 21] including combinations [46].
Gray code algorithms for more general objects have also been simplified over the years –
compare the pioneering Gray code algorithms for multiset permutations [22, 23] to more
modern examples [57]. However, Gray code algorithms have almost always been developed
after lexicographic algorithms. But this practice has begun to change with the rise of
greedily constructed Gray codes (see Section 2) which often produce orders that can be
used in generation algorithms that are simpler, faster, and easier to analyze. Other recent
examples of this trend include the generation of various permutation languages representing
rectangulations [30] and s-Stirling permutations representing s-increasing trees [3].
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1.5 Outline
Section 2 formulates the greedy Gray code algorithm using edge-labeled graphs. Section 3
provides background on wiggly concepts. Section 4 describes wiggly changes both greedily
and using local recursion. Finally, Section 5 generates our Gray code efficiently. Appendix A
has a full Python implementation. Wiggly changes for n = 4, 5, 6 appears in Table 2 and can
serve as a handy reference.

2 Greedy Gray Code Algorithm

The greedy Gray code algorithm (GGA) was originally presented using an initial object x ∈ X
and a prioritized list of operations O = o1, o2, . . . , ok where oi : X→ X for all 1 ≤ i ≤ k. We
now reformulate the approach with edge-labeled flip graphs2. For example, plain changes is
created in the permutahedron by labeling the edges with the larger value that is swapped.

Algorithm F (Greedy max-flips).

This algorithm attempts to greedily traverse a Hamilton path in an edge-labeled flip graph
starting from an initial node.
1. [Initialize] Start a path at the initial node.
2. [Greedy] Extend the path to a new node using an edge with a label that is as large as

possible. If there is no such edge (i.e., every neighbour is in the path) or ambiguity (i.e.,
multiple suitable edges with the same label), then halt. Otherwise repeat 2.

Figure 4 shows how Algorithm F creates the binary reflected Gray code (BRGC) [14].
The edges of the hypercube are labeled by the index of the bit that differs between adjacent
vertices. The BRGC was previously described in [58] as “greedily flip the rightmost bit”.
Algorithm F is sensitive to the choice of edge labels. For example, a Hamilton path is not
created in the permutahedron when labeling its edges by the index of the swap (see Figure 5).

One of the most famous Gray codes is the middle levels theorem by Mütze [33], which is a
Hamilton cycle in the middle two levels of the hypercube for odd n. While the proof has been
simplified over the past decade [35], it seems very unlikely that the theorem could be proven
with any simple greedy construction. Nevertheless, the GGA has been used to reinterpret
many previous Gray code results that were originally described recursively. For example, see
the Lucas–Roelants van Baronaigien-Ruskey tree rotation Gray code [28] described in [15].
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(a) Edge-labeled flip graph.
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(d) Completed path.

Figure 4 Algorithm F is run on the hypercube in (a) starting at node 000. The partial path
after five steps is shown in (b). The next step is shown in (c) where the edges incident to the most
recently added node 111 are considered; the largest label that leads to a new node is 2, so that edge
is selected. It halts in (d) with a Hamilton path that follows the binary reflected Gray code.

2 This reformulation is too strong as it can generate any Hamilton path (i.e., label edges on the path
with 1 and others with 0). The algorithm is intended to be used with simple locally-defined labels.

WADS 2025



46:6 An Efficient Gray Code Algorithm for Generating Wiggly Permutations

3 2 3 2 3

1

3 2 3 2 3
1

3 2 3 2 3

1 2

1243 1423 1432

3412 3421

13241342

3124 3142 32143241

2314 2341 24132431 213421431234
3

Figure 5 Algorithm F does not work on the flip graph of Sn with swaps (i.e., the permutahedron)
with the (smaller) index of the swap as edge labels. When n = 4 the above path of length 18 is
created from the initial node 1234. The algorithm terminates at 2134 because each of its edges is
incident to a previously visited node. Note that none of the vertices starting with 4 were visited.

The GGA has also been used to create new Gray codes. One of the most striking new
results is a simple greedy algorithm for generating an exchange Gray code for the bases of
any matroid [31]. In particular, the spanning trees of any graph are generated by giving
its edges distinct labels and then by greedily performing any edge exchange that minimizes
the larger of the two labels. When approaching a new problem like Conjecture 1 we can try
labeling the flip graph’s edges (i.e., prioritizing the flips) in various ways. But the “correct”
prioritization may not be obvious, so it is important to be creative and exercise patience.
For example, the second author tried hundreds of greedy approaches for generating spanning
trees before the simple solution described above was found by Merino [31] (also see [32]).

The GGA is inefficient as it remembers visited objects. However, it tends to produce
simple orders that can be re-expressed to support efficient generation. We aim for history-free
(i.e., previous objects are not remembered) and iterative (i.e., non-recursive) algorithms.
Prior examples of this involve pancake flipping for signed and colored permutations [47, 5].

3 Wiggly Concepts

This section formally defines the objects and flip operations in our Gray code. The latter
requires a discussion of the weak order. Additional motivation for our results is then provided.

3.1 Wiggly Permutations
Wiggly permutations restrict the values that are between partners which are (2j−1, 2j) pairs.
When the smaller odd-value is to the left of its larger even-value partner, then the values
between them are larger. In contrast, if the larger even-value is to the left of the smaller
odd-value, then the values between them are smaller. This is formalized in Definition 3.

▶ Definition 3. A permutation π over [n] is wiggly if the following two points hold for all
pairs of values the form (2j − 1, 2j).

Upward order. If 2j−1 is before 2j in π, then symbols between them in π are larger.
Downward order. If 2j is before 2j−1 in π, then symbols between them in π are smaller.

In other words, partners in their upward order can only have larger values between them,
while those in their downward order can only have smaller values between them. Note that
we allow n to be odd in Definition 3 (cf. [1]), and in this case n doesn’t have a partner.

The relatively simple conditions in Definition 3 cannot be expressed using standard
concepts from pattern avoidance [2]. However, they forbid pairs of partners from interacting
with each other in particular manner. More specifically, a pair of partners in upward order
can be beside each other, or nested with the larger partnership inside. For example, the
partners (1, 2) and (3, 4) can appear in upward order as −1−2−3−4−, or −3−4−1−2−,
or −1−3−4−2−. However, they cannot be interlaced as in −1−3−2−4− or −3−1−4−2−.
This is formalized for upward and downward orders in the following lemma.

▶ Lemma 4. Let π be a wiggly permutation with distinct partnerships {u, u′} = {2x− 1, 2x}
and {v, v′} = {2y − 1, 2y}. If π = −u−v−u′−v′−, then the partners have opposite order.
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Proof. If u < v then both partners cannot be upward by v−u′−v′, nor downward by u−v−u′.
If u > v then both partners cannot be downward by v−u′−v′, nor upward by u−v−u′. ◀

Let Wn ⊆ Sn be the set of wiggly permutations over [n]. For example, W2 = {12, 21} and
the sets for n = 3, 4 appear below; Table 2 contains W5 and W6 in our wiggly changes order.

W3 = {123, 132, 213, 312, 321}
W4 = {1234, 1243, 1342, 1423, 1432, 2134, 2143, 3412, 3421, 4123, 4132, 4213, 4312, 4321}

The number of wiggly permutations is not yet known in general. However, the counts for
small n have been computed via recurrences on generating functions [1] and the sequence
does not appear in the Online Encyclopedia of Integer Sequences (Oeis) [18].

Table 1 The number of wiggly permutations |Wn| for small n.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 5 14 51 176 807 3232 17449 78384 479897 2366248 16041147 85534176 631596455 3602770400

3.2 Weak Order
An inversion in a permutation π = π1π2 · · ·πn is a pair of values that is out of order relative
to the identity 12 · · ·n. In other words, it is a smaller value that appears to the right of a
larger value. The inversion set of a permutation is its set of inversions.

inv(π1π2 · · ·πn) = {(πi, πj) | πi < πj and i > j} (1)

Each permutation of Sn is uniquely determined by its inversion set.
A swap changes the inversion set by adding or removing one inversion. More specifically, if

the larger value swaps to the left, then an inversion is added, and if it swaps to the right, then
an inversion is removed. For example, inv(524136)∖{(1, 4)} = inv(521436). In this way, plain
changes is a Gray code that changes the inversion set by one inversion per operation. More
broadly, the number of inversions added or removed by a jump is equal to the length of the
jump. For example, inv(524136) ∖ {(1, 4), (3, 4)} = inv(521346). Furthermore, Algorithm J
only makes minimal jumps meaning that the jump is as short as possible to create another
permutation in the underlying language. Thus, Algorithm J also produces Gray codes that
change the inversion set in a minimal way. The same will be true for the wiggly flip operations
that we apply to wiggly permutation. More specifically, it will add or remove a minimal
subset of inversions to create another wiggly permutation. To formalize and contextualize
this idea we will introduce some additional background material. Then we will provide a
direct definition of a wiggly flip in Definition 5. A similar presentation is provided in [1].

The weak order of permutations is a partial order based on setwise inclusion of inversion
sets. In other words, if π, σ ∈ Sn then we consider π < σ if inv(π) ⊊ inv(σ). Similarly, distinct
permutations are incomparable if neither inversion set is a subset of the other. Given a subset
S ⊆ Sn, the Hasse diagram is a graph whose vertices are S and whose edges are the cover
relations, where π is covered by σ if inv(π) ⊊ inv(σ) and ∄τ where inv(π) ⊊ inv(τ) ⊊ inv(σ).
In other words, π < σ and there is no other permutation τ with between them π < τ < σ.
When S = Sn (i.e., all permutations) the cover relations are swaps. Similarly, when S is the
set of 231-avoiding permutations Avn(231), the cover relations are minimal jumps. Likewise,
when S = Wn (i.e., wiggly permutations) the cover relations are wiggly flips. In other words,
our Gray code operations involve adding or removing minimal subsets of inversions. Figure 6
illustrates Hasse diagrams for the three aforementioned subsets of permutations of S4.

WADS 2025
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Figure 6 Hasse diagrams for sets of permutations under the weak order. The cover relations are
(a) swaps, (b) minimal jumps, and (c) wiggly flips. The graphs are isomorphic to those in Figures 2
and 9. The dots indicate which pairs of symbols are inverted in each permutation as per the legend
in (a). For example, the hop between 2134 and 3421 in (c) changes the number of inversions by ±4.

These concepts have lovely generalizations to s-permutations [6], and this paper inspired
a new Hamilton path in the s-permutahedron [3]. Readers may enjoy other classic and new
works on related concepts including the weak order and associahedron [53, 40, 41, 25, 36, 37].

3.3 Wiggly Flips
Wiggly flips are defined in terms of cover relations, but this is somewhat of an indirect
description. We now develop some intuition on our way to a direct definition. As a first step,
note that the graphs in Figure 6 are 3-regular (i.e., each vertex has degree 3). More generally,
all three are (n−1)-regular graphs as vertices have one neighbor associated with each ascent
(i.e., πj−1 < πj) and descent (i.e., πj−1 > πj). We discuss this below; see [1] for proofs.

Note that 12 · · ·n ∈ Wn and n · · · 21 ∈ Wn. In other words, the permutations with no
inversions and all inversions are wiggly. Therefore, if we add one inversion (i.e., swap an
ascent), then we can continue “up” to at least one vertex in the Hasse diagram. Similarly, if
we remove one inversion (i.e., swap a descent), then we can continue “down” to at least one
vertex. Thus, there is at least one cover relation associated with each ascent and descent.

To illustrate this point, the neighborhood of π = 6 4 1 3 5 7 9 10 8 2 ∈W10 is in Figure 7.
Consider its ascent 5 7. By our discussion, π is covered by at least one wiggly permutation
whose inversion set includes inv(π) ∪ {(5, 7)}. Now consider the partners of 5 and 7. Note
that the smaller partners (5, 6) are downward and the larger partners (7, 8) are upward
in π. Thus, the symbols in 6 4 1 3 5 cannot be between 7 and 8, and similarly, the symbols
in 7 9 10 8 cannot be between 6 and 5. So adding inversion (5, 7) forces the run 6 4 1 3 5 to
move left of the run 7 9 10 8. The transposition of these two abutting runs is shown below.

π = 6 4 1 3 5 7 9 10 8 2 6 4 1 3 5 7 9 10 8 2 = 7 9 10 8 6 4 1 3 5 2 = σ. (2)

Note that this change adds a total of 5 · 4 = 20 inversions (i.e., every value in 7 9 10 8 is
inverted with every value in 6 4 1 3 5) without removing any, so inv(π) ⊊ inv(σ) and π < σ.
With some additional reasoning, we can conclude that this is the unique minimal addition in
terms of inversions. In other words, there is no other wiggly τ with inv(π) ⊊ inv(τ) ⊊ inv(σ).
To briefly justify this, note that the internal values in 7 9 10 8 must move left with 8 since
existing inversions (8, 9), (8, 10) ∈ inv(π) cannot be removed. Similarly, the internal values in
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4 1 3 5 must move right with 4 lest additional inversions (1, 4) or (3, 4) be added. Finally,
neither run needs to move past additional values. In particular, the runs cannot improperly
interlace with another partnership otherwise the initial permutation violated Lemma 4.

6 4

6 4 1 3 5 7 9 10 8 2
79

3 5 7 9 10

4 1 3 6 5 7 9 10 8 2 6 1 4 3 5 7 9 10 8 2 6 4 1 3 5 2 7 9 10 86 4 1 3 5 7 8 9 10 2

6 4 3 1 5 7 9 10 8 2 6 5 4 1 3 7 9 10 8 2 7 9 10 8 6 4 1 3 5 2 6 4 1 3 5 9 10 7 8 2 6 4 1 3 5 7 10 9 8 2

Figure 7 Neighbors of wiggly permutation π = 6 4 1 3 5 7 9 10 8 2 ∈W10 in the wiggly flip graph.
The neighbors are drawn above or below to match the Hasse diagram. There are five jump edges
(including one swap edge) where there is one larger value, and two hop edges where there are two
larger values; the other two edges are guaranteed not be used in our Hamilton path (see Theorem 2).
The edges are drawn into π to highlight their associated ascent or descent. However, they are labeled
by the minimum larger value (see Definition 6) for use with Algorithm F. The downward and upward
partners are colored when there is more than one smaller and larger value, respectively.

More generally, if πj−1πj is an ascent and πj begins an upward order partnership, then
the associated edge will move that entire run to the left; otherwise, only πj moves left.
Similarly, if πj−1 ends a downward order partnership, then the associated edge moves the
entire run to the right; otherwise, only πj−1 moves right. This is formalized for the edges
associated with ascents in Definition 5; edges associated with descents are defined in reverse.

▶ Definition 5. Let π = π1π2 · · ·πn ∈Wn be a wiggly permutation with u = πj−1 < πj = v

being one of its ascents3 and let π−1 = q1q2 · · · qn be π’s inverse (i.e., qx = y ⇐⇒ πy = x).
Define two runs α = πiπi+1 · · ·πj−1 and β = πjπj+1 · · ·πk where

i = qu+1 if u is odd and qu+1 < qu; otherwise, i = j − 1.
k = qv+1 if v is odd and qv+1 > qv; otherwise, k = j.

The wiggly (left) flip associated with this ascent moves β to the left over α. That is,
π1π2 · · ·πi−1 α β πk+1πk+2 · · ·πn = π1π2 · · ·πi−1βαπk+1πk+2 · · ·πn. If |β| = 1 (i.e., j = k),
then the flip is a wiggly jump. If |β| = 2 (i.e., j = k − 1), then the flip is a wiggly hop.

Note that wiggly flips are always minimal in the sense that β moves the shortest possible
distance to create a new wiggly permutation. In particular, wiggly jumps are identical to the
notion of minimal jumps in the Permutation Languages series [16].

3.4 Motivation: Why Wiggly Permutations and Wiggly Flips?
Wiggly permutations are a new combinatorial object. However, Lemma 4 is reminiscent of
pairings in certain Catalan objects like well-formed parentheses [50]. This similarity arises in
the context of triangulations. Triangulations of a convex polygon are counted by the Catalan
numbers [50]. Similarly, wiggly numbers |W2n| count wiggly triangulations [1]. See Figure 8.
Many other connections involving wiggly permutations are discussed in [1].

Historically, Gray code research has focused on array operations like swaps and transposi-
tions [34]. This is in large part due to the use of arrays in efficient generation algorithms [42].
For example, the first investigation into efficiently generating pattern avoiding permutation
Gray codes allowed a small number of permutation entries to change (i.e., four for Avn(231)) [9].

3 Note that Lemma 31 in [1] instead indexes ascents as πj < πj+1.
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1234 1243 1324 1423 1432 2134 2143 3124 3214 4123 4132 4213 4312 4321

(a) 231-avoiding permutations and their corresponding triangulations.

2134 32143

(b) A jump edge.

1234 1243 1342 1423 1432 2134 2143 3412 3421 4123 4132 4213 4312 4321

(c) Wiggly permutations and their corresponding wiggly triangulations.

2134 34213

(d) A hop edge.

Figure 8 Permutation languages representing other combinatorial objects. The flips in (b) and (d)
correspond to removing then adding a (wiggly) diagonal in the corresponding (wiggly) triangulation.

Our paper is the first such investigation into wiggly permutations, so it is natural to ask why
we consider wiggly flips (which can change every entry). One response is that wiggly flips
arise in two natural graphs (see Figure 2c and 6c). Another is that wiggly flips flip diagonals
in wiggly triangulations (see Figure 8d). However, the true answer is much deeper.

The Permutation Languages series [16] broadened interest in Gray code operations that
are computationally motivated to those that are mathematically motivated. One pleasant
consequence has been natural Gray codes for related combinatorial objects. Given two
combinatorial objects and a bijection between them, a simultaneous Gray code is a single
order that is a Gray code for both. To make this concrete, consider balanced parenthesis
strings of length 2n and binary trees with n nodes [50]. Making a constant-size change in the
string (e.g., transposing a pair of symbols) can cause a non-constant change (e.g., ω(1) pointer
changes) in the corresponding trees. Thus, Gray codes for the former [44, 4, 56] and the
latter [28] were not simultaneous. A Gray code known as cool-lex order [46] was shown to be
simultaneous [45, 10, 26], however, it doesn’t apply as naturally to other Catalan objects [8].
In contrast, the orders from the Permutation Languages series appear almost universal in
their application. For example, Figure 5 in [16] shows that Algorithm J’s Gray code for
Avn(231) is a simultaneous Gray code for binary trees, triangulations, and Dyck paths.

Wiggly permutations are also an ideal challenge for extending the Permutation Languages
series. It was observed that wiggly permutations do not form a zig-zag language [1]. This
means that wiggly permutations are not closed under inserting a largest value on the left
and the right. In other words, if π ∈Wn−1, then it is not always true that (i) nπ ∈Wn and
(ii) πn ∈Wn. Thus, the results of [16] do not apply to Wn. But (i) is true for even n, and
both (i) and (ii) are true for odd n. Indeed, the n = 5 column of Table 2 uses the same local
recursion as Algorithm J for zig-zag languages. Furthermore, the n = 6 columns illustrate a
similar local recursion except that the value of 5 acts as a right delimiter or sign-post for 6.
We hope that our results will spur a new generalization of the Permutations Languages series.

Finally, our Gray code might be very efficient in terms of array-based generation. It only
uses wiggly jumps and wiggly hops, so its efficiency depends only on the expected lengths of
these operations. Theorem 9 provides a worst-case analysis of our efficient algorithm; further
analysis may reveal that it runs in constant amortized time (i.e., amortized O(1)-time delay).
In this way, wiggly flips may mirror prefix-shifts [59]: the operation is inefficient in general,
but Gray codes may use them efficiently by restricting the average length [57], biasing or
restricting the lengths [7, 52, 48], or using alternate data structures [27].
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4 Wiggly Changes

Now we describe wiggly changes. The Gray code was discovered greedily, and we start by
discussing our experiments with Algorithm F. Then we define the local recursion that arose
from a successful experiment. Finally, we prove that the order only uses jumps and hops.

4.1 Choosing Edge Labels
The wiggly flip graph consists of wiggly permutations under wiggly flips. To apply Al-
gorithm F from Section 2 we must choose an initial node (e.g., 12 · · ·n ∈Wn) and provide an
edge labeling. Wiggly flips correspond to indices (i.e., one edge per ascent or descent πj−1πj)
and the index j would provide natural edge labels. Indeed, this choice works for n ≤ 4

1234, 1243, 1423, 1432, 1342, 3412, 3421, 2134, 2143, 4213, 4321, 4312, 4132, 4123 (3)

and (3) differs from Table 2. However, it stops working for larger n with only 32
51 and 115

176
objects generated for n = 5 and n = 6. This edge labeling also fails on the permutahedron.

Plain changes was previously described greedily as “swap the largest value” while Al-
gorithm J “jumps the largest value”. This is equivalent to using Algorithm F with the larger
relocated value as the edge label. We cannot use this exact labeling as wiggly flips can move
more than one larger value. However, a simple generalization is the minimum larger value.

▶ Definition 6. If π, σ ∈ Sn and inv(π) ⊊ inv(σ), then the minimum larger label of the edge
(π, σ) is the minimum value v ∈ [n] such that there exists u ∈ [n] with (u, v) ∈ inv(σ)∖ inv(π).

Definition 6 is illustrated in Figure 7. We ran Algorithm F with these labels and observed
that it worked! That is, every wiggly permutation is generated starting from 12 · · ·n.
Equivalently, it creates a Hamilton path in the wigglyhedron starting from 12 · · ·n. By the
above discussion, the same edge labeling allows Algorithm F to generate the previously
discovered Hamilton paths in the permutahedron and associahedron. See Figure 9.

4.2 Zig-Zag Local Recursion
Given a permutation π of [n], we let the parent p(π) be the result of removing n from π to
create a permutation of [n− 1]. In the opposite direction, given a permutation π of [n− 1]
and an index i ∈ [n], we let the child ci(π) be the result of inserting n at position i to create
a permutation of [n− 1]. For example, c3(615243) = 6175243 and p(6175243) = 615243.

Now we consider the family or hierarchy of wiggly permutation languages W0, W1, W2, . . ..
It is easy to see that this family has the following properties.
1. If π ∈Wn and n ≥ 1, then p(π) ∈Wn−1.
2. If π ∈Wn−1, then c1(π) = n · π ∈Wn.
In other words, a new wiggly permutation is created by removing the largest value or by
inserting a new largest value on the left. Given a family with property 1, we can construct an
ordering of each language using a zig-zag local recursion. Towards this goal we recall ←−c (π)
(‘zig’) and −→c (π) (‘zag’) from [16]. If π is a permutation of [n − 1], then ←−c (π) is the list
c1(π), c2(π), . . . , cn(π) except that every permutation that is not in the associated language
is skipped over. Similarly, −→c (π) is cn(π), cn−1(π), . . . , c1(π) with invalid entries skipped.
Zig-zag local recursion expands each permutation of [n− 1] alternately using zigs and zags.

▶ Definition 7. The wiggly changes order of Wn uses zig-zag local recursion: wiggly(1) = 1
and if wiggly(n− 1) = π1, π2, π3, π4, . . . then wiggly(n) =←−c (π1),−→c (π2),←−c (π3),−→c (π4), . . ..
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Table 2 Wiggly changes for n = 4, 5, 6 and the edge labels that are greedily selected by Algorithm F
to create the next wiggly permutation. Note that the local recursion from n = 4 to n = 5 is identical
to Algorithm J. That is, the largest value 5 jumps into every valid position from the rightmost to
leftmost, then vice versa, through successive permutations of n = 4. The local recursion from n = 5
to n = 6 is similar, except that the rightmost allowable position of the largest value 6 is constrained
by the position of its partner 5. (This does not interfere with local recursion because if 5 has a
smaller symbol to its left and to its right, then the next transition in the n = 5 order is a jump of 5.
In other words, the larger symbols don’t get in the way of transitions made in the n = 4 order.)
Finally, notice that some jumps of 5 in the n = 5 order become hops of 56 in the n = 6 order.

1234 4 12345 5 123456 6 641325 5 346152 6 213564 6
1243 4 12354 5 123465 6 641352 6 341652 6 213654 6
1423 4 12534 5 123645 6 413652 6 341562 5 216354 6
4123 3 15234 5 126345 6 413562 5 341256 6 621354 5
4132 4 51234 4 162345 6 564132 6 341265 6 621345 6
1432 4 51243 5 612345 5 654132 4 341625 6 216345 6
1342 3 15243 5 612354 6 651432 6 346125 6 213645 6
3412 4 12543 5 162354 6 561432 5 364125 6 213465 6
4312 2 12435 4 126354 6 156432 6 634125 4 213456 4
4321 4 14235 5 123654 6 165432 6 643125 6 214356 6
3421 3 15423 5 123564 5 615432 5 436125 6 214365 6
2134 4 51423 4 125634 6 614352 6 431625 6 216435 6
2143 4 54123 5 126534 6 164352 6 431265 6 621435 5
4213 41235 3 162534 6 143652 6 431256 5 621543 6

41325 5 612534 5 143562 5 431562 6 216543 6
41352 5 615234 6 143256 6 431652 6 215643 5
54132 4 165234 6 143265 6 436152 6 562143 6
51432 5 156234 5 143625 6 643152 5 652143 4
15432 5 561234 6 164325 6 643512 6 654213 6
14352 5 651234 4 614325 4 436512 6 564213 5
14325 4 651243 6 613425 6 435612 5 421356 6
13425 5 561243 5 163425 6 564312 6 421365 6
13452 5 156243 6 136425 6 654312 2 642135
13542 5 165243 6 134625 6 654321 6
15342 5 615243 5 134265 6 564321 5
51342 3 612543 6 134256 5 435621 6
53412 5 162543 6 134562 6 436521 6
35412 5 126543 6 134652 6 643521 5
34512 5 125643 5 136452 6 643215 6
34152 5 124356 6 163452 6 436215 6
34125 4 124365 6 613452 5 432165 6
43125 5 126435 6 613542 6 432156 4
43152 5 162435 6 163542 6 342156 6
43512 5 612435 4 136542 6 342165 6
54312 2 614235 6 135642 5 346215 6
54321 5 164235 6 156342 6 364215 6
43521 5 142365 6 165342 6 634215 5
43215 4 142356 5 615342 5 634521 6
34215 5 156423 6 651342 6 364521 6
34521 5 165423 6 561342 3 346521 6
35421 5 615423 5 563412 6 345621 5
53421 3 651423 6 653412 5 356421 6
52134 5 561423 4 635412 6 365421 6
21534 5 564123 6 365412 6 635421 5
21354 5 654123 5 356412 5 653421 6
21345 4 641235 6 345612 6 563421 3
21435 5 412365 6 346512 6 562134 6
21543 5 412356 3 364512 6 652134 5
52143 4 413256 6 634512 5 621534 6
54213 5 413265 6 634152 6 216534 6
42135 413625 6 364152 6 215634 5
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For example, the order of wiggly permutations is extended from n = 3 to n = 4 as follows.

wiggly(3) = 123, 132, 312, 321, 213
wiggly(4) =←−c (123),−→c (132),←−c (312),−→c (321),←−c (213)

= 1234, 1243, 1423, 4123︸ ︷︷ ︸
←−c (123)

, 4132, 1432, 1342︸ ︷︷ ︸
−→c (132)

, 3412, 4312︸ ︷︷ ︸
←−c (312)

, 4321, 3421︸ ︷︷ ︸
−→c (321)

, 2134, 2143, 4213︸ ︷︷ ︸
←−c (213)

Note that −→c (132) ends with 1342 (and not 1324 as in a zig-zag language) while ←−c (312)
begins with 3412. So the transition between these sublists is the hop 1342 to 3412. The next
lemma describes the beginning and end of each zig and zag and follows from Definition 3.

▶ Lemma 8. Let π = π1π2 · · ·πn−1 ∈ wiggly(n− 1) with πm = n− 1. If n is odd, then
−→c (π) = c1(π), . . . , cn(π) and ←−c (π) = cn(π), . . . , c1(π). (4)

In other words, these zigs and zags result in the largest symbol moving from the first position
to the last position (or vice versa) as in a zig-zag language. However, if n is even, then
−→c (π) = c1(π), . . . , cm+1(π) and ←−c (π) = cm+1(π), . . . , c1(π). (5)

In other words, these zigs and zigs result in the largest symbol moving from the first position
to the position immediately to the right of the next largest symbol (or vice versa).

The flip graph of wiggly permutations and wiggly flips is Wn. We now prove Theorem 2.

Proof. We prove the result by induction on n ≥ 1 with wiggly(1) = 1 as a base case.
Assume that wiggly(n− 1) = π1, π2, . . . is a Hamilton path in Wn−1 and consider

wiggly(n) =←−c (π1),−→c (π2),←−c (π3),−→c (π4), . . . .

It is clear that wiggly(n) is an ordering of Wn. The transitions within each ←−c and −→c sublist
are jumps. So we need only consider the transitions between consecutive sublists. Let σ = πi

and τ = πi+1 so that we can index their entries using subscripts.
We first consider transitions between sublists of the form ←−c (σ) and −→c (τ). By Lemma 8,
←−c (σ), −→c (τ) = . . . , c1(σ), c1(τ), . . . = . . . , nσ, nτ, . . .

By induction, (σ, τ) is a jump/hop edge of Wn−1. Thus, (nσ, nτ) is a jump/hop edge of Wn.
Next consider transitions between sublists of the form −→c (σ) and ←−c (τ). We consider two

cases depending on the parity of n. If n is odd, then by Lemma 8,
−→c (σ), ←−c (τ) = . . . , cn(σ), cn(τ), . . . = . . . , σn, τn, . . .

By induction, (σ, τ) is a jump/hop edge of Wn−1. Thus, (σn, τn) is a jump/hop edge of Wn.
If n is even, then let σm = n− 1 and τm′ = n− 1. In other words, the largest symbol n− 1
is at index m in σ ∈Wn−1, and at index m′ in τ ∈Wn−1. Thus, by Lemma 8,
−→c (σ), ←−c (τ) = . . . , cm+1(σ), cm′+1(τ), . . . .

By induction, (σ, τ) is a jump/hop edge of Wn−1. Since n is even, we know that n− 1 is odd.
Thus, if n− 1 moves between σ and τ , then the change between them is a jump of n− 1.
Therefore, the change between cm(σ) and cm′(τ) is a hop of n− 1. If n− 1 does not move
between σ and τ , then it must be that m = n − 1 and m′ = n − 1 since the unpartnered
odd value n− 1 can always be inserted into the rightmost position. Therefore, the change
between cn(σ) and cn(τ) in Wn is the same as the change between σ and τ in Wn−1. ◀
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(b) Av4(231) with minimal jumps.
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(c) W4 with wiggly flips.

Figure 9 Flip graphs including minimum larger value edge labels (Definition 6). The graphs
with unlabeled edges and the highlighted Hamilton paths are isomorphic to those in Figures 2 and 6.
The paths are generated greedily by Algorithm F . These embeddings show that (b) and (c) are
isomorphic (and the edge labels on the Hamilton paths are identical) but this is not true for n > 4.

5 Efficient Generation

Now we efficiently generate wiggly changes. Our algorithm differs from the greedy construction
as it is history-free (i.e., it doesn’t remember previous objects). It also iterative, so it differs
from a direct translation of the zig-zag local recursion. As is customary in generation
algorithms, we store only one object (i.e., one wiggly permutation) and visit (i.e., yield) it
every time it is modified to be the next object in the order. Each successive wiggly permutation
is generated in worst-case O(n)-time. Appendix A has a complete Python implementation.

We begin by reviewing a well-known loopless algorithm for generating plain changes. This
means that each successive permutation is visited with worst-case O(1)-time delay. The
approach was devised by Ehrlich [11] and a modern treatment appears in Knuth’s Algorithm P
(Plain changes) and Algorithm H (Loopless reflected mixed-radix Gray generation) [20].

5.1 Generating Plain Changes
The main idea is to generate the inversion word that encodes each permutation. Inversion
words are mixed-radix words with bases 1, 2, . . . , n of which there are n!. The ith digit of
such a word encodes the number of values that are smaller than i and which are inverted
with it in its corresponding permutation. The words are generated in standard reflected Gray
code order (i.e., each digit increments from 0 to its maximum, then decrements from its
maximum to 0). Each swap in a permutation changes its inversion word by ±1 in one digit
and vice versa. Pleasingly, this Gray code of inversion words corresponds to plain changes.

To generate the inversion words looplessly we store a direction for each digit, or equi-
valently, a direction in which each value is moving in the permutation. Focus pointers
determine which digit changes (i.e., which value is swapped) in constant time; their name is
somewhat misleading as they are an array of integers. The inverse of the current permutation
is maintained to determine the location of the value to move in worst-case O(1)-time. Our
presentation of this classic algorithm appears in Algorithm 1 and it is organized to highlight
the similarities with our wiggly changes algorithm. In particular, we use swapLeft and
swapRight functions to update the permutation, its inverse, and its inversion word. The basic
approach has previously been modified to generate other permutation Gray codes [17, 13]
and Gray codes for other types of permutations [39].
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Algorithm 1 Plain changes generated in worst-case O(1)-time delay. Each array has length
n (with 1-based indexing) and is traced at the while (line 8) for n = 4 in the table below. The
operations are swaps ···πi−1πi ··· (left) or ···πiπi+1 ··· (right) with edge label v as per Definition 6.
The table highlights edge labels v = fs[4]; see Algorithm 2’s table for more information on each array.

function swapLeft(perm, v, inv, word)
1: i← inv[v] ▷ index of edge label v
2: u← perm[i− 1] ▷ smaller value to swap
3: word[v]← word[v]+1 ▷ new inversion (u, v)
4: perm[i]← u ▷ swap u right
5: perm[i− 1]← v ▷ swap v left
6: inv[u]← i ▷ update u’s index
7: inv[v]← i− 1 ▷ update v’s index

function plain(n)
1: perm← [1, 2, ..., n] ▷ current permutation
2: inv← [1, 2, ..., n] ▷ inverse permutation
3: word← [0, 0, ..., 0] ▷ inversion word
4: fs← [1, 2, ..., n] ▷ focus pointers
5: dirs← [−1,−1, ...,−1] ▷ value directions
6: visit perm ▷ first permutation
7: v← fs[n] ▷ next edge label (swap value)
8: while v > 1 do ▷ no edges labeled 1
9: if dirs[v] = −1 ▷ leftward swap?

10: swapLeft(perm, v, inv, word)
11: else ▷ rightward swap
12: swapRight(perm, v, inv, word)
13: if word[v] = 0 or word[v] = v− 1 ▷ limit?
14: dirs[v]← −dirs[v] ▷ change direction
15: fs[v]← fs[v− 1] ▷ inherit focus pointer
16: fs[v− 1]← v− 1 ▷ reset focus pointer
17: visit perm ▷ current permutation
18: v← fs[n] ▷ next edge label (swap value)
19: fs[n]← n ▷ reset focus pointer

function swapRight(perm, v, inv, word)
1: i← inv[v] ▷ index of edge label v
2: u← perm[i + 1] ▷ smaller value
3: word[v]← word[v]−1 ▷ old (u, v)
4: perm[i]← u ▷ swap u left
5: perm[i + 1]← v ▷ swap v right
6: inv[u]← i ▷ update u’s index
7: inv[v]← i + 1 ▷ update v’s index

perm inv word fs dirs
1234 1234 0000 1234 −−−−
1243 1243 0001 1234 −−−−
1423 1342 0002 1234 −−−−
4123 2341 0003 1233 −−−+
4132 2431 0013 1234 −−−+
1432 1432 0012 1234 −−−+
1342 1423 0011 1234 −−−+
1324 1324 0010 1233 −−−−
3124 2314 0020 1224 −−+−
3142 2413 0021 1224 −−+−
3412 3412 0022 1224 −−+−
4313 3421 0023 1232 −−++
4321 4321 0123 1134 −+++
3421 4312 0122 1134 −+++
3241 4213 0121 1134 −+++
3214 3214 0120 1133 −++−
2314 3124 0110 1134 −++−
2341 4123 0111 1134 −++−
2431 4132 0112 1134 −++−
4231 4231 0113 1133 −+++
4213 3241 0103 1214 −+−+
2413 3142 0102 1214 −+−+
2143 2143 0101 1214 −+−+
2134 2134 0100 1231 −+−−

5.2 Generating Wiggly Changes

Generating wiggly changes is similar to generating plain changes. The same concepts allow
us to determine the value of the operation to apply (i.e., the next edge label to follow) in
worst-case O(1)-time. Moreover, we can update the resulting permutation’s inverse and
inversion word in worst-case O(1)-time. Pseudocode appears in Algorithm 2 with a full
Python implementation in Appendix A. Two specific challenges are highlighted below.

The framework gives us the value and direction of the next operation. But we must
determine if the operation is a jump or a hop. Similarly, we must determine how many
smaller values are jumped or hopped over. Fortunately, the necessary information comes
directly from whether certain partners are in their upward or downward order as per
Definition 3 and Definitions 5–6.

Each even value must change directions whenever it is swapped to be immediately to the
right of its odd partner. This leads to an extra condition in line 17.
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Algorithm 2 Wiggly permutations generated in worst-case O(n)-time delay. Each array has length
n (with 1-based indexing) and is traced for n = 4 below. The operations are wiggly jumps and hops
···πi ···πj−1πj ···πk ··· (left) or ···πi ···πj−1πj ···πk··· (right) with edge label v as per Definitions 5–6.

function wiggleLeft(perm, v, inv, word, hop)
1: h← JhopK ▷ JTrue/FalseK is 1/0
2: j← inv[v] ▷ index of edge label v
3:
4: u← perm[j−1] ▷ last smaller value
5: i← j− 1 ▷ first smaller index?
6: if u is odd and inv[u] ≥ inv[u+1]
7: i← inv[u + 1] ▷ correct i to partner
8: word[v]← word[v]+j−i ▷ +inversions
9: if hop = True ▷ partner inversions?

10: word[v+1]← word[v+1] + j−i

11: while j > i do ▷ shift smaller values
12: perm[j + h]← perm[j− 1] ▷ one or two
13: inv[perm[j− 1]]← j + h ▷ positions
14: j← j− 1 ▷ to the right
15: perm[i]← v ▷ move larger value
16: inv[v]← i ▷ update its inverse
17: if hop = True ▷ another larger value?
18: perm[i+1]← v+1 ▷ move partner
19: inv[v+1]← i+1 ▷ update its inverse

function wiggleRight(perm, v, inv, word, hop)
1: h← JhopK ▷ JTrue/FalseK is 1/0
2: i← inv[v] ▷ index of edge label v
3: j← i + 1 + h ▷ first smaller index
4: u← perm[j] ▷ first smaller value
5: k← j ▷ last smaller index?
6: if u is even and inv[u] ≤ inv[u−1]
7: k← inv[u− 1] ▷ correct k to partner
8: word[v]← word[v]−k+j−1 ▷ −inversions
9: if hop = True ▷ partner inversions?

10: word[v+1]← word[v+1]−k+j−1

11: while i < k−h do ▷ shift smaller values
12: perm[i]← perm[i + 1 + h] ▷ one or two
13: inv[perm[i + 1 + h]]← i ▷ positions
14: i← i + 1 ▷ to the left
15: perm[k− h]← v ▷ move larger value
16: inv[v]← k− h ▷ update its inverse
17: if hop = True ▷ another larger value?
18: perm[k]← v+1 ▷ move partner
19: inv[v+1]← k ▷ update its inverse

function wiggly(n)
1: perm← [1, 2, . . . , n] ▷ current permutation
2: inv← [1, 2, . . . , n] ▷ inverse permutation
3: word← [0, 0, ..., 0] ▷ inversion word
4: fs← [1, 2, . . . , n] ▷ focus pointers
5: dirs← [−1,−1, . . . ,−1] ▷ value directions
6: visit perm ▷ first wiggly permutation
7: v← fs[n] ▷ next edge label (wiggle value)
8: while v > 1 do ▷ no edges labeled 1
9: i← inv[v] ▷ index of v

10: hop← v is even and i < n and perm[i+1] = v+1
11: if dirs[v] = −1 ▷ leftward jump/hop?
12: wiggleLeft(perm, v, inv, word, hop)
13: else ▷ rightward jump/hop
14: wiggleRight(perm, v, inv, word, hop)
15: i← inv[v] ▷ new index of v
16: pair← v is even and perm[i−1] = v−1)
17: if word[v] = 0 or word[v] = v−1 or pair
18: dirs[v]← −dirs[v] ▷ change direction
19: fs[v]← fs[v−1] ▷ inherit focus pointer
20: fs[v−1]← v−1 ▷ reset focus pointer
21: visit perm ▷ current wiggly permutation
22: v← fs[n] ▷ next edge label (wiggle value)
23: fs[n]← n ▷ reset focus pointer

perm inv word fs dirs
1234 1234 0000 1234 −−−−
1243 1243 0001 1234 −−−−
1423 1342 0002 1234 −−−−
4123 2341 0003 1233 −−−+
4132 2431 0013 1234 −−−+
1432 1432 0012 1234 −−−+
1342 1423 0011 1233 −−−−
3412 3412 0022 1224 −−+−
4312 3421 0023 1232 −−++
4321 4321 0123 1134 −+++
3421 4312 0122 1133 −++−
2134 2134 0100 1214 −+−−
2143 2143 0101 1214 −+−−
4213 3241 0103 1231 −+−+
Variable trace at while (line 8)

in wiggly changes wiggly(4).
The edge label of next jump/hop
is v = fs[4] in direction dirs[v].
Indexing and direction changes
in O(1)-time via inv and word.
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The algorithm is loopless except for the time taken to apply each operation. More
specifically, each jump and hop can take up to Θ(n)-time because a linear number of symbols
may need to be relocated in the array. This leads to the following theorem. In future work
we wish to further analyze our Gray code to provide a tighter average or amortized run-time.

▶ Theorem 9. Algorithm 2 generates the wiggly changes Gray code of wiggly permutations
of length n with worst-case O(n)-time delay using O(n) memory.
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A Python Implementation

A full Python implementation appears below. To run it in the terminal copy the top two
columns into wiggly.py, then use python3 with a value of n as shown. (Note that pdf files
omit leading spaces, so indents must be restored to wiggly.py after copy and pasting.)

def wiggleLeft(perm,v,inv,word,hop):
j = inv[v]
u = perm[j-1]
i = j-1
if u%2 == 1 and inv[u] >= inv[u+1]:

i = inv[u+1]
word[v] += j-i
if hop:

word[v+1] += j-i
while j > i:

perm[j+hop] = perm[j-1]
inv[perm[j-1]] = j+hop
j -= 1

perm[i] = v
inv[v] = i
if hop:

perm[i+1] = v+1
inv[v+1] = i+1

def wiggleRight(perm,v,inv,word,hop):
i = inv[v]
j = i + 1 + hop
u = perm[j]
k = j
if u%2 == 0 and inv[u] <= inv[u-1]:

k = inv[u-1]
word[v] -= k-j+1
if hop:

word[v+1] -= k-j+1
while i < k-hop:

perm[i] = perm[i+1+hop]
inv[perm[i+1+hop]] = i
i += 1

perm[k-hop] = v
inv[v] = k-hop
if hop:

perm[k] = v+1
inv[v+1] = k

def wiggly(n):
perm = list(range(n+1))
inv = list(range(n+1))
word = [0] * (n+1)
fs = list(range(n+1))
dirs = [-1]*(n+1)
yield perm
v = fs[n]
while v > 1:

i = inv[v]
hop = v%2==1 and i<n and perm[i+1]==v+1
if dirs[v] == -1:

wiggleLeft(perm, v, inv, word, hop)
else:

wiggleRight(perm, v, inv, word, hop)
i = inv[v]
pair = (v%2 == 0 and perm[i-1] == v-1)
if word[v]==0 or word[v]==v-1 or pair:

dirs[v] *= -1
fs[v] = fs[v-1]
fs[v-1] = v-1

yield perm
v = fs[n]
fs[n] = n

if __name__ == "__main__":
import sys # Handle command-line arguments
ok = len(sys.argv) == 2
ok = sys.argv[1].isdigit() if ok else False
ok = int(sys.argv[1]) > 0 if ok else False
if not ok:

print("usage: %s n" % sys.argv[0])
exit(0)

n = int(sys.argv[1])
total = 0
for perm in wiggly(n):

print(*perm[1:], sep="")
total += 1

print("total: %d" % total)

~$ python3 wiggly.py 6
123456
123465
123645
...
642135
total: 176
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