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—— Abstract

The Hilbert metric, introduced by David Hilbert in 1895, is a projective metric defined on a bounded
convex domain in a Euclidean space. For a convex polygon with m vertices and n point sites lying
inside the polygon in the plane, it is shown that the nearest-point Voronoi diagram in the Hilbert
metric has combinatorial complexity of O(mn) [Gezalyan and Mount, SoCG 2023]. In this paper,
we show that the farthest-point Voronoi diagram in the Hilbert metric has combinatorial complexity
O(m), which is independent of the number of sites. Also, we present an efficient algorithm to
compute the farthest-point Voronoi diagram.
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1 Introduction

The Hilbert metric, introduced by David Hilbert in 1895 [16], defines a distance function
between points in the interior of any convex body in d-dimensional space. Hilbert geometry
provides a generalized framework that applies to any convex body, transcending the limitations
of Euclidean space [21]. The significance of Hilbert metric is highlighted by a critical role
in convex approximation, which is widely used in applications such as approximate nearest
neighbor searches in the Euclidean metric and other metric spaces [1, 8], optimal construction
of e-kernels [6], approximate closest vectors [12, 13, 19, 23], and approximations of polytopes
with low combinatorial complexity [3, 5, 7]. Various elements used in these approximations,
such as Macbeath regions and Dikin ellipsoids, act similarly to Hilbert balls [2].

Despite its potential, not much is known about construction algorithms for structures in
Hilbert geometry. Nielsen and Shao characterized balls in the Hilbert metric [20]. Bumpus
et al. investigated the properties of balls and bisectors in the Hilbert metric [9]. A Voronoi
diagram is one of the most fundamental structures in understanding the underlying geometry.
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Thus, it has been studied under different metrics [10, 17, 18, 22]. Gezalyan and Mount
presented an O(mn logn)-time algorithm for computing the nearest-point Voronoi diagram of
n point sites in the Hilbert metric defined by a convex m-gon [15] and an O(n(log n+log® m))-
time algorithm for computing the Delaunay triangulation [14]. They showed that the diagram
has complexity ©(mn). No previous work, however, is known about the farthest-point
Voronoi diagram in the Hilbert metric. The farthest-point Voronoi diagram may reveal
further characteristics of Hilbert geometry and its potential applications.

1.1 OQur results and outline

We denote by FV(S) the farthest-point Voronoi diagram of n point sites in the Hilbert metric
defined by a convex m-gon . Unlike Voronoi diagrams in the Euclidean metric, FV(S) poses
a few difficulties in the computation. The Hilbert distance between points is defined as the
logarithm of the cross-ratio of them and the intersections of the line through the points with
the domain boundary. It takes O(logm) time to compute the distance between points. The
bisector between any two sites is a piecewise conic curve consisting of O(m) segments. Thus,
a naive divide-and-conquer algorithm using bisectors may take Q(min{nm,m?}) time.

We show that FV(S) has combinatorial complexity ©(m), which is independent of the
number of sites. Moreover, we present an O(n(logn + log? m) + mlogn)-time algorithm for
computing the diagram. This is the first algorithm for computing FV(S5).

In Section 2, we introduce the Hilbert metric, Hilbert balls, Hilbert bisectors, and FV(.5).
In the Euclidean metric, a site of S has a nonempty cell in the farthest-point Voronoi diagram
if and only if it is a vertex of the convex hull of S [11]. This is, however, not always the case
in the Hilbert metric. If a site has a nonempty cell in FV(S), it is a vertex of the convex hull.
But not every vertex of the convex hull always has a nonempty cell in FV(S). In Section 3,
we characterize this phenomenon and show that each cell in FV(S) is connected and incident
to the boundary of Q2. We give an ordering lemma for the sites of S and their Voronoi cells
appearing along the boundary of €.

In Section 4, we analyze the combinatorial complexity of FV(S). We show that FV(S) has
O(m) edges and each Voronoi cell is connected. Using this, we show that the number of sites
with nonempty cells is O(m). By Euler’s formula, we show that FV(S) has O(m) vertices.
We conclude that the combinatorial complexity of FV(S) is O(m). Additionally, since the
complexity of FV(S) is at least the complexity of €2, a lower bound on the combinatorial
complexity of FV(S) is (m). As a result, we give a tight upper bound on the combinatorial
complexity of FV(S), which is ©(m) and independent of the number of the sites of S.

In Section 5, we give an efficient algorithm of O(n(logn + log® m) 4+ mlogn) time for
computing FV(S). Our algorithm consists of three stages. The subsections in Section 5
describe these stages of the algorithm. In the first stage, we compute the convex hull of S and
remove the points contained in the interior of the convex hull of S. In the second stage, we
construct FV(S) restricted to the boundary of  incrementally by adding the sites of S one
by one in clockwise orientation along the convex hull of S. In doing so, we maintain a list £
of sites that have nonempty boundary cell. Initially, £ contains the first two consecutive sites
of S. When the next site s is added, we check whether s is the farthest from an intersection
point of the boundary cells corresponding to the first and the last sites stored in L. If s is
not the farthest one from the point, it has an empty cell so we are done and move on to
the next iteration. If s is the farthest one, it has a nonempty cell so we append s to £. We
compute the boundary cell of s along the boundary of 2 from the intersection point. In this
way, we compute all sites of S whose Voronoi cell is nonempty in O(n(logn + log? m)) time.
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In the third stage, we construct FV(S) by subdividing € into Voronoi cells using FV(.5)
restricted to the boundary of 2. Our algorithm uses a divide-and-conquer technique similar
to the one by Shamos and Hoey [24] that computes the nearest-site Voronoi diagram in
the plane under the Euclidean metric. Roughly speaking, we partition a site sequence
into two subsequences, Sr, and Sg, of roughly equal size, and compute FV(Sy U Sg) by
merging FV(S) and FV(Sg) along their bisector recursively. But the merge step requires a
novel algorithmic idea and an in-depth analysis as each bisector is a piecewise conic curve
consisting of O(m) segments. In each recursive step, we compute approximate bisectors
such that they become the exact bisectors in the last recursive depth. We show that this
can be done in O(mlogmin{m,n}) time in total. Therefore, FV(S) can be computed in
O(n(logn + log? m) + mlogn) time in total.

2 Preliminaries

For any two points p,q € R%, we denote the line segment connecting p and ¢ by pq, and
denote the Euclidean distance between p and ¢ by |pg|. A set X of points is convez if for
any two points p,q € X, every point t € pq is contained in X. The convex hull of X is the
smallest convex set that contains X, which we denote by conv(X). We denote the boundary
of X by 0X and the interior of X by int(X). For any two points p,q € Q, let x(p, q) denote
the intersection of the line through two points p and ¢ with Q.

2.1 The Hilbert metric and Hilbert balls

» Definition 1 (Hilbert metric). Given a convex body Q and two points p,q € int(Q), let p
and q denote the endpoints of x(p,q) such that p,p,q,q appear in order along x(p,q). See
Figure 1(a). The Hilbert distance d(p,q) between p and q is defined as

L. (lap| |pq]
)= 5o .
2 \laql Ipp|
The quantity in the logarithm is the cross-ratio of (p,q;q,p). If p or ¢ lies on 99, d(p, q)
can be formally defined to be +o00. This corresponds to a limiting case that a denominator

approaches zero. The Hilbert distance d is extended to all pairs of points by letting d(p, p) = 0.

It satisfies the axioms of a metric, and in particular, it is symmetric and the triangle inequality
holds. Observe d(p, q) + d(q,r) = d(p,r) if p,q, and r are collinear in Q2 [21].

In the remainder of the paper, we abuse the notation and use €2 to denote a convex
polygon with m vertices in the plane. For any two points p, ¢ € int(£2), a simple binary search

makes it possible to determine the two edges of 92, each containing an endpoint of x(p, q).

Thus, the Hilbert distance between two points can be computed in O(logm) time.

For a point p € int(Q) and p > 0, let Bo(p, p) denote the Hilbert ball of radius p centered
at p. Nielsen and Shao characterized the shape of Hilbert balls and showed how to compute
them [20]. Consider the set of x(p,v)’s for vertices v of 2, which we call the spokes of p. See
Figure 1(a). For each x(p,v), there are exactly two points lying on x(p,v) whose Hilbert
distance from p is p. Those points are all in convex position. Then Bq(p, p) is the convex
polygon with vertices on those 2m points. We say Bq(p, p) is the Hilbert ball centered at p
with radius p. For a point € Bq(p, p), d(p,z) < p; the equality holds for z lying on the
boundary of Bq(p, p). For a point « € Q \ Bq(p, p), d(p,x) > p. See Figure 1(b).
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p

.' BQ(p7 p) g

(a) (b)

Figure 1 (a) The endpoints p and g of x(p, q) and spokes defined by p. (b) For any point = in
the boundary of Ba(p, p), d(p,x) = p. (c) The infinite Hilbert ball Bu(p, q).

We extend the concept of Hilbert balls to ones centered at points in 02, which we call
infinite Hilbert balls. Let p be a point in 92, and let ¢ be a point in int(Q2). For arbitrarily
small § > 0, let ps be the point on pg with |pps| = . As ¢ approaches 0, any sequence of
Hilbert balls in the family {Bq(ps, d(ps,q))} converges to the infinite Hilbert ball centered
at p with radius d(ps, q) = d(p, ¢), which we denote by Boo(p, q). See Figure 1(c).

2.2 Hilbert bisectors

Gezalyan and Mount [15] introduced the Hilbert bisector of two points p, ¢ € int(Q), denoted
by v(p, ¢), which is the set of points x € Q satisfying d(x,p) = d(z,q). For any point z €
v(p,q) Nint(Q), ¢ € dBq(x,d(x,p)) and p € Bq(x,d(zx,q)). For any point 2 € y(p,q) N IQ,
q € 0By (z,p) and p € dB(x,q). For a point x € Q, let p1, p2 be two endpoints of x(z,p),
and let ¢, ¢ be two endpoints of x(x,q). Let ¢1, £, and ¢5 be the lines containing the
segments p1qi1, pq, and paqs, respectively. If x € 99, let £ = py = g2 and let {5 be the line
tangent to  at x. It is shown that two cross ratios, (z,p;p1,p2) and (z,q; q1, q2), are the

same if and only if these three lines meet at a common point. It follows d(x,p) = d(z, q),
and thus z is on the bisector. See Figure 2(a-b).

(c)

Figure 2 v(p, q) for cases (a) z € int(Q2) and (b) z € 99Q. (c) The subdivision of Q (square) by the
spokes of p (red) and ¢ (blue). v(p, q) is a piecewise conic curve with joints on the spokes of p and q.

The Hilbert distances d(p,z) and d(q,z) of a point = € int(€2) are determined by the
boundary edges of  incident to x(p,x) and x(g, x), respectively. Consider the subdivision
of Q2 by all spokes of p and all spokes of q. Observe that for every point z in a subregion,
the set of edges of 92 incident to x(p,z) and x(g, z) remains the same. Thus, d(p,z) and
d(q, z) for points z in a subregion can be formulated in explicit functions, and thus we can
obtain the Hilbert bisector of p and g restricted to the subregion from the functions. It has
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been shown that v(p, ¢) in a subregion is a conic curve. It follows that v(p, q) is a piecewise
conic curve whose joints lie on subregion boundaries [9]. Thus, we say that vy(p, ¢) consists
of bisector segments. See Figure 2(c).

» Lemma 2 (Lemma 2 of [14]). For any three points in int(2) not lying on the same line,
there is at most one Hilbert ball whose boundary contains them.

Lemma 2 naturally extends for infinite Hilbert balls. The lemma implies that v(p, ¢) Ny(g, )
is at most one point for any three points p, g,r € int(€2) not lying on the same line.

» Lemma 3. Two distinct (infinite) Hilbert balls intersect each other along their boundaries
in at most two connected components.

2.3 Farthest-point Voronoi diagram

Let S be a set of n points lying in int(€2) which we call sites. The farthest-point Voronoi
diagram of S in the Hilbert distance on , denoted by FV(.S), is a subdivision of § into cells
in which the same point of S is the farthest point in the Hilbert distance. The farthest-point
Voronoi cell of a site s € S, denoted by V (s), is the set of points whose farthest site is s in the
Hilbert distance. Consider a point p € Q contained in V(s). If p € int(2), d(p, s) > d(p, )
for all sites s’ € S. If p € 9Q, there is a point sequence {¢; };cn contained in int(2) such that
the sequence converges to p and d(g;, s) > d(g;, s’) for all sites s’ € S and for all 7 € N. Not
every point of S has a nonempty cell in FV(S). We will investigate this in Section 3.

General Position Assumption. We assume that no three sites in S are collinear, and in
particular, the line passing through any pair of sites of S and the lines extending any two
edges of ) are not coincident at a common point, including all three being parallel. If this
assumption does not hold, the bisectors separating Voronoi cells can widen into 2-dimensional
regions. These general position conditions were also assumed by Gezalyan and Mount [15].

3 Conditions for valid sites

We study the conditions for a site to have a nonempty cell in FV(S). We say a site s € S
is walid for FV(S) if V(s) # (. As for the farthest-point Voronoi diagram in the Euclidean
metric, a site contained in the interior of conv(S) cannot have a nonempty cell in FV(S).

» Lemma 4. If a site s is contained in int(conv(S)), s is not valid for FV(S).

Proof. Suppose that s € int(conv(S)) is valid for FV(S). Then there is a point p € V(s) such
that d(p,s) > d(p, s’) for all ' € S. This implies that Bq(p,d(p,s)) contains all sites of S.
Since Bq(p, d(p, s)) is convex, conv(S) is contained in Bq(p, d(p, s)). Then s € int(conv(S)) C
int(Bq(p, d(p, s))), contradicting that s lies on the boundary of Bq(p, d(p, s)). <

In the Euclidean metric, every site has a nonempty cell in the farthest-point Voronoi diagram
if it appears as a vertex of the convex hull of the sites. This is not necessarily true for FV(S)
in the Hilbert metric. For two distinct points p, ¢ € int(Q2), let By and By be two infinite
Hilbert balls, each of which contains both p and ¢ on its boundary. Let Z(p,q) = By N Bo.
Gezalyan et al. [14] showed that no Hilbert ball contains p, ¢, and a point r € int(Z(p,q)) on
its boundary. Using Lemma 2, they showed that every Hilbert ball centered at a point in
v(p, ¢) and containing both p and ¢ on its boundary contains Z(p, q). See Figure 3(a).

» Lemma 5. If a site is contained in Z(p,q) for sites p and q, it is not valid for FV(S).
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Figure 3 (a) Z(p,q) = B1N B> for two infinite Hilbert balls By and B2 with p € 9B; and g € 9Bs.
~(p, q) separates v(p,r) from v(q,r). (b) a;, @, aj,a’ appear in clockwise orientation along 9. (c)
Two infinite Hilbert balls, each containing both s; and s; on its boundary. Then s;11 € Z(s;, s;).

Proof. Let r be a site contained in Z(p,q) for some sites p and ¢q. Then no Hilbert ball
contains p, ¢, and r on its boundary [14]. This implies that v(p,r) does not intersect v(gq, 7).
Without loss of generality, we assume that ~(p, q) separates p and r from ¢g. Let = be a
point contained in v(p, ¢). Since the Hilbert ball centered at 2 and containing p and ¢ on
its boundary contains r, d(z,r) < d(z,p) = d(x,q). This means that v(p,r) separates r and
x from p, and (g, r) separates r and x from ¢. Since v(p, ¢) does not intersect v(p,r) and
v(q,7), v(p, q) separates y(p,r) from (g, r). Then the side of y(p,r) containing p does not
intersect the side of v(q, ) containing ¢. Since V(r) = {ax € Q | Ngesd(z,s) < d(x,r)}, we
have V(r) = ), and thus r is not valid for FV(S). See Figure 3(a) for an illustration. <

By Lemma 5, a site 7 € S may be not valid for FV(S) even for r ¢ int(conv(S5)).

3.1 FV(S) restricted to the domain boundary

To find all valid sites of S for FV(S) and compute FV(S) efficiently, we compute FV(S)
restricted to the boundary of 2. We denote it by bFV(S). The Voronoi cell in bFV(S) of a
site s € S, denoted by f(s), is the intersection of V' (s) and 9. We call a site s € S valid for
bFV(S) if 8(s) # 0.

» Lemma 6. Let p be a point in V(s) and p be the endpoint of x(s,p) closer to p than to s.
Then pp C V(s).

Proof. Suppose there is a point » € pp but r € V(s). Let ¢ be a site of S with r € V(). By
definition, d(s,p) > d(t,p) and d(t,r) > d(s,r). Combining these we have d(s,p) + d(¢,r) >
d(t,p) + d(s,r), or equivalently d(t,r) > d(t,p) + d(s,r) — d(s,p) = d(t,p) + d(p,r) as s,p,r
are collinear [21]. But this violates the triangle inequality, yielding a contradiction. |

Since bFV(S) is the restriction of FV(S) on the boundary of Q, a site valid for bFV(S) is
also valid for FV(S). Lemma 6 implies that a site valid for FV(S) is also valid for bFV(S).
Thus, we can identify all valid sites of S for FV(S) from bFV(S).

» Lemma 7. 3(s) is connected for a site s € S.

Proof. If s is not valid for FV(S), 8(s) = ) and we are done. Assume for the contradiction
that s is valid for FV(S) and §(s) is not connected for a site s € S. Let o and o be two
connected components of 3(s). Then there are two sites s;,s; € S\ {s}, not necessarily
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distinct, with connected components «; of 5(s;) and «; of 5(s;) such that a;, o, aj, o appear
in order along 092 in clockwise orientation, as shown in Figure 3(b). Observe that «; and « are
separated by 7(s;, s), and a; and o are separated by ~(s;,s). Since both the side of ¥(s;, s)
containing «; and the side of v(s;, s) containing «; contain s, y(s;,s) and y(s;, s) intersect
at least two times. Since s, s;, and s; are not collinear, this contradicts Lemma 2. <

By Lemmas 6 and 7, 3(s) is nonempty and connected for every valid site s of S. Aronov
et al. [4] gave an Ordering Lemma for the farthest-point geodesic Voronoi diagram for point
sites in a simple polygon. We extend the ordering lemma for FV(S) with respect to 9.

» Lemma 8. The order of valid sites along their convex hull is the same as the order of
their Voronoi cells along the boundary of ).

Proof. For ease of description, we relabel the sites such that (sg, sy ...,8¢—1) is the sequence
of sites valid for FV(S) in clockwise orientation along their convex hull. We use modulo
t for indices. First, we show that 8(s;) and B(s;11) are adjacent to each other for every
i=20,...,t—1. Suppose that 3(s;) and 5(s;11) are not adjacent to each other for some 7. Let
s; be a site such that 5(s;) and [(s;) are adjacent to each other and 3(s;) appears right after
B(s;) in clockwise orientation along 0. Since p = B(s;) N B(s;) is an endpoint of v(s;, s;),
Boo(p, si) and B (p, s;) are the same. Then s;41,5;4+1 € Boo(p, si). See Figure 3(c).
Observe that x(s;,s;) separates s;+1 from s;j41 since all sites (sg,51...,5:—1) appear in
clockwise orientation along their convex hull. Without loss of generality, assume that s;11 is
contained in the side of x(s;,s;) not containing p. Let ¢ be the endpoint of (s;, s;) other
than p. Thus, ¢ is contained in the side of of x(s;, s;) containing s;+1. Then By (g, s;) and
B (g, s;) are the same, and thus By (g, s;) contains both s; and s; on its boundary. By

Lemma 3, By (p, s;) and Boo(q, s;) intersect each other along their boundaries at most twice.

Thus, s;41 is contained in By (g, $;). Since $;11 € Boo(D, $i) N Bxo(q, $i), it follows from
Lemma 5 that s; 41 is not valid for FV(S). This is a contradiction that s;4 is valid. Thus,
B(s;) and B(s;+1) are adjacent to each other.

There are two cases: (5(sg),--.,B(st—1)) appear in order in clockwise orientation along
0f) or they appear in order in counterclockwise orientation along 92. Suppose the latter
case. Then for some i, the side of x(s;_1,s;+1) containing s; contains a point in 5(s;).
Let p and ¢ be the endpoints of v(s;_1, s;+1) such that 8(s;—1),p, 8(si+1), and ¢ appear
in clockwise orientation along 9. By definition, s; is contained in Boo(p, s;+1). Observe
that s; is contained in Boo(q, s;+1) by the argument in the previous paragraph. Thus, s; is
contained in Z(s;—1,8;+1). By Lemma 5, s; is not valid for FV(S), a contradiction. Thus,
B(s1),...,08(sn) appear in order in clockwise orientation along 9€2. <

4  Complexity

We analyze the combinatorial complexity of FV(S) by counting the numbers of vertices,
bisector segments, and edges of FV(S). Let S = {so,s1...,s,_1} denote the set of sites valid
for FV(S) such that sg,s1...,s:—1 appear in clockwise orientation along their convex hull.
We use modulo ¢ for the indices of the sites in S. Obviously, FV(S) and FV(S) are the same.

For two sites s, s’ € S, we call each connected portion of v(s, s') that appears in FV(5’)
a Voronoi edge defined by s and s’. Thus, a Voronoi edge is a curve consisting of bisector
segments of y(s, s’), with the exception that the first and last segments might be truncated.
Each endpoint of a Voronoi edge is a Voronoi vertex, which has degree 3 (if contained in
the interior of Q) or 1 (if contained in 052). Each endpoint of a bisector segment is either

A

a Voronoi vertex or a vertex with degree 2. We show that FV(S) has O(m) Voronoi edges,
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and that FV(S) consists of O(m) Voronoi cells and O(m) Voronoi vertices. This implies that

A N

FV(S) has complexity O(m). Since the complexity of FV(S) is at least the complexity of €,

N A

FV(S) has complexity 2(m). Thus, the combinatorial complexity of FV(S) is ©(m).

4.1 Complexity of FV(S)

Gezalyan and Mount [15] showed that the combinatorial complexity of the nearest-point
Voronoi diagram is O(mn). We show that the combinatorial complexity of the farthest-point
Voronoi diagram is O(m). Recall that every bisector is a piecewise conic with joints lying
on spokes. To analyze the combinatorial complexity of FV(S), we count the number of
Voronoi vertices and the total number of bisector segments in FV(S). Let x(p) denote the
set of farthest sites for a point p in 9. If x(p) consists of a single element, we use k(p) to
denote the element. The following lemma shows an upper bound on the number of bisector
segments.

» Lemma 9. There are O(m) bisector segments in FV(S).

Figure 4 (a) x(s;,v) crosses OV (s;) at most twice. (b) x(s,v) for v € B(s) and x(s,v") for
v & B(s) cross OV (s). (c) A point x € x(s,s’) Nv(s,s’) not contained in ss’.

Proof. We count the number of bisector segments in FV(S) by counting the spokes of s that
cross the boundary of V(s) for each s € S. Consider a bisector segment o of ¥(s;,s;) in
FV(S) for two sites s; and s;. Since y(s;, s;) is a piecewise conic with joints on spokes of s;
and s;, each endpoint of o lies on a spoke of s; or s; unless it is a Voronoi vertex. Let v be a
vertex of {2 such that an endpoint of o lies on x(s;,v). Then x(s;,v) intersects V (s;). By
Lemma 6, x(s;,v) intersects at most two bisector segments in 0V (s;). See Figure 4(a). This
implies that the number of bisector segments in FV(S) can be obtained by counting the total
number of spokes of s that intersect OV (s) for each s € S.

Consider x(s,v) for a site s and a vertex v of  such that x(s,v) NV (s) # 0. Then either
v € B(s) or v & 3(s). See Figure 4(b). If v € 3(s), v is incident to at most two Voronoi cells,
and thus the total number of such spokes is O(m).

Consider the case that v € 3(s). Assume for the contradiction that there is another site
s’ (# s) such that x(s’,v) NV (s") # 0 but v € B(s’). Let p be the intersection of x(s,v) and
B(s), and let p’ be the intersection of x(s’,v) and B(s’). See Figure 4(c). If v, s, and s’ are
collinear, p = p’ and k(p) = k(p’), implying s = 5.

So assume that v, s, and s’ are not collinear. Since (s, s’) separates 5(s) and s’ from
B(s") and s, v(s,s") crosses each of ps, ss’, and s'p’ in an odd number of times. Thus, there
is a point z on x(s,s") Nv(s,s’) that is not contained in ss’. By definition, d(z, s) = d(z, ).
Since x, s, and s’ are all contained in x(s, '), we have d(z,s’) = d(x, s) +d(s,s’) or d(x, s) =
d(z,s’) +d(s,s'), implying that d(s,s’) = 0 and thus s = §'.

Hence, the total number of such spokes is O(m). Since there are O(m) spokes that cross
cell boundaries in FV(S), the total number of bisector segments in FV(S) is O(m). <
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It remains to count the number of Voronoi vertices, which can be done by Euler’s formula.
» Lemma 10. For a site s € S, V(s) is connected.

Proof. Assume for the contradiction that V'(s) is not connected for a site s € S. Let C; and
C5 be two connected components of V(s). For each i = 1,2, let p; be a point lying inside Cj,
and let ¢; be the point closer to p; than s among two endpoints of x(s,p;). By Lemma 6,
piq; C V(s). However, ¢; and ¢o are not connected in 8(s), which contradicts Lemma 7. <«

» Lemma 11. There are O(m) sites in FV(S).

Proof. By Lemmas 6 and 9, there are O(m) sites valid for bFV(S). Thus, there are O(m)
sites in FV(S) by Lemma 8. <

» Theorem 12. The farthest-point Voronoi diagram of n point sites lying inside a convex
m-gon in the Hilbert metric has combinatorial complexity O(m).

Proof. By Lemmas 10 and 11, the number of Voronoi cells is O(m). Since the number of
bisector segments is O(m) by Lemma 9, the number of Voronoi edges is O(m). By Euler’s
formula, the number of Voronoi vertices is O(m). <

5 Algorithm

In this section, we present an algorithm to compute FV(S). Our algorithm computes bFV(S)
and identifies all valid sites. Then it computes FV(S) in a divide-and-conquer manner.

5.1 Computing FV(S) restricted to the domain boundary

By Lemma 4, every site of S contained in int(conv(S)) is not valid for FV(S). Hence, we
compute conv(S) and remove all sites contained in its interior from S. This can be done in
O(nlogn) time. Thus, all remaining sites in S are in convex position. We relabel them such
that (s1,82...,s,) is the sequence of sites in clockwise orientation along their convex hull.

Some sites of S, however, may not be valid for FV(.S). We will identify all valid sites of
S by computing bFV(S). We do this incrementally by inserting sites one by one in order,
checking if the newly inserted one is valid for the Voronoi diagram of the sites inserted so
far, and handling the cases accordingly. We maintain a few structures. Let S; be the subset
of S consisting of the first ¢ sites of S for ¢ = 2,...,n. Let §;(s) denote the Voronoi cell of
s € S; in bFV(S;). Let £; be the list that maintains all valid sites for FV(S;).

Initially, let Sy = {s1,s2} and Lo = [s1,82]. We compute bFV(S3) by computing the
endpoints of y(s1, s2). In the i-th iteration with ¢ > 3, we compute bFV(S;) and maintain
L; as follows. Let s; and s, be the first element and the last element in £; 1, respectively.
Then there is a point p shared by £;-1(s;) and S;—1(s,). By Lemma 8, s; is valid if and
only if p € B;(s;). If d(si,p) < d(si,p), s; is not valid for FV(S;), and thus it is not valid
for FV(S). We set £; = £;_; and move on to the next iteration. If d(s;,p) > d(s;,p), s; is
valid for FV(S;). We set £; = £;_1. Then we update bFV(S;) from bFV(S;_1) by computing
the endpoints of 3;(s;). This can be done by searching them along the boundary of 2 from
p, once in clockwise orientation and once in counterclockwise orientation. In doing so, we
update £; accordingly, and then append s; to L;.

Consider the case that we search for an endpoint of 3;(s;) along the boundary of Q in
counterclockwise orientation from p. Let ¢ be the endpoint of 8;_1(s,) other than p. Observe
that ¢ € 8;—1(s,) for site s, previous to s, in £;_1. If d(s;,q) < d(s,,q), one endpoint of
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Bi(s;) lies on f3;_1(s,). We compute the endpoint of y(s,, s;) on 8;_1(s,). Otherwise, s, is
not valid for FV(S;), and thus it is not valid for FV(S). We remove s, from £; and move on
to s,». We repeat this until one endpoint of §;(s;) is found. See Figure 5.

Biz1(sy) Bi(si)

\si(s1)
Bi(sr) %

(s 0
Pimalr) (b) ©

Figure 5 (a) In the i-th iteration, s; is inserted. (b) If d(s;,p) > d(si,p), si is valid for FV(S;).
We compute the endpoints of 3;_1(s;) along 9 from p in both orientations. (c) bFV(S;).

We find the other endpoint of §;(s;) in clockwise orientation similarly. After computing
both endpoints of 3;(s;), we append s; to L;.

» Lemma 13 (Lemma 7 of [14]). Given an m-sided convez polygon Q) and any two points
p,q € int(Q), the endpoints of y(p,q) on O can be computed in O(log? m) time.

We can compute d(s;,p) and d(s;,p) in O(logm) time. If d(s;,p) < d(s;,p), we are done. If
d(s;,p) > d(si,p), we identify all sites not valid for FV(S;) among sites valid for FV(S;_1),
and remove them from £;. This takes O(nlogm) time in total over all insertion steps. Then
we compute the endpoints of 5;(s;). Observe that one endpoint of 3;(s;) is an endpoint of
v(si, 8) and the other endpoint of 5;(s;) is an endpoint of v(s;, s’), where s and s’ are the
first and the last elements in £;. We can compute the endpoints of 3;(s;) in O(log® m) time
by Lemma 13. Since the number of sites is n, it takes O(n log? m) time in total to compute
bFV(S).

» Lemma 14. bFV(S) can be computed in O(n(logn + log® m)) time.

5.2 Computing FV(S)

We have preprocessed bFV(S) of size O(m) and all O(min{m,n}) sites valid for
FV(S) and bFV(S) by Lemma 14. We give an algorithm for computing FV(S) in
O(min{mlogm, mlogn}) time by subdividing £ into Voronoi cells using bFV(S). Our
algorithm is based on a divide-and-conquer technique similar to the one by Shamos and
Hoey [24] that computes the nearest-site Voronoi diagram in the plane under the Euclidean
metric. But the merge step requires a novel algorithmic idea and an in-depth analysis
to reduce the running time as each bisector is a piecewise conic curve consisting of O(m)
segments.

Let S = (s0,-..,8t—1) denote the sequence of sites valid for FV(S) such that sg, ..., s¢—1
appear in clockwise orientation along conv(S). Observe t = O(min{m,n}). We use modulo
for the indices. For a site s € S, let R(s) denote the region in 2 bounded by sp, sq, 8(s),
where p and ¢ are two endpoints of 3(s). By Lemma 6, V(s) C R(s). Observe that every
spoke of s intersecting R(s) intersects V (s). Let n(s) denote the number of the spokes of s
intersecting R(s). The total number of n(s) for all s € S is O(m) by Lemma 9.

We compute FV(S), which is the same as FV(S). Roughly speaking, we partition a site
sequence into two subsequences, S;, and Sg, of roughly equal size, and compute FV(Sy, U Sg)
by merging FV(S) and FV(Sg) along v(Sr,, Sg) recursively. The bisector v(Sr, Sr) satisfies
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the property that any point of Q lying on one side of v(Sr,, Sg) is farthest from some site
in Sp, and any point of Q lying on the other side of (S, Sg) is farthest from some site in
Sg. Observe that v(Sr,, Sg) is connected in Q with two distinct points on Q. If v(Sg, Sg)
was not connected or it had more than two points on 01, it partitions 92 into four or more
pieces, each belonging to either bFV(Sy) or bFV(Sg). Then the cells of bFV(SL) or bFV(Sg)
are not consecutive along 92, contradicting Lemma 8. Also, v(Sg, Sr) has no closed loop
since no Voronoi cell in the loop is incident to 9f).

Consider the k-th recursive step of the algorithm. Let S; and Sk be two input sequences
of sites in the step. We have FV(Sr) and FV(Sg). For a site s € S U SR, let Vi (s) denote
the cell of s in FV(S U Sg), and let Vi_1(s) denote the cell of s in FV(Sy) for s € Si, and
the cell of s in FV(Sg) for s € Sg. Let B;(s) = Vi(s) N 09 and Ri(s) = R(s) N Vi(s). Let
Ry—1(SL) = Uses, Br-1(s) and Rp_1(Skr) = Uses,, Be-1(s)-

If three consecutive sites s;_1, s;, $;41 are contained in Sp, U Sg for some i, Si(s;) and
B(s;) are the same. Thus, Vj(s;) C R(s;) by Lemma 6, implying that Ry (s;) is Vi (s;).

Lemma 15. The followings hold.

- ¥(SL,Sr) N Rk—1(SL) N Ri_1(SR) is connected.

- Y(SL,Sr) \ (Rk=1(SL) N Rxk—1(SR)) does not appear in FV(S).
. Y(SL,Sr) N Ri_1(s) is connected for any s € Sp, U Sg.

W N =V

Proof. Let v = (S, Sgr). Consider Claim 1. Since v has an endpoint in Rix_1(Sz) N

Ry_1(SR), it suffices to show that v N Ri_1(Sy) is connected and vN Rg_1(Sg) is connected.

Assume for the contradiction that v N Rx_1(SL) is not connected. Then there is a curve C

contained in v\ Rg_1(Sr) which has an endpoint on dRj_1(s;) for some site s; € Sy.

Consider the case {s;_1, $i, $i+1} € Sr, U Sgr. Then there is a point p € Q\ Ri_1(s;) such
that the farthest site in S, U Sk of p is s;, contradicting Vi (s;) C Ri(s;) C Rk—1(s:)-
Thus, s,—1 ¢ Sp U Sk or s;41 ¢ S U Sg. By definition, ORj_1(s;) consists of a line
segment ¢ and a part of y(s;,s;)’s for some s; € S.. If C has an endpoint on (s, s;),
there is a point p € 2\ Ri_1(Sr) such that the farthest site of p is s;. This contradicts

p € Ri(s;1) € Rig—1(s;). Thus, v intersects £ at least three times, contradicting Lemma 6.

Therefore, ¥ N R;—1(SL) is connected. We can show that v N R;_1(Sg) is connected by
exchanging the roles of Sy, and Si. Thus, Claim 1 holds.

Consider Claim 2. Let C be the part of y(s;, s,) for s; € Sp, and s, € Sg that appears in
FV(S). Then C C V(s;) C Vi(s;) and C C V(s,) C Vi(s,). Since V(s) C Rp_1(s) for every
s € SLUSR, C C Ri—1(s1)NRi—1(sr). Thus, C C Ry_1(S)NRk—1(Sr). By contraposition,
Claim 2 holds.

Consider Claim 3. Let s be a site in Sp. Let 4 be the maximal portion of v contained
in Ri—1(S). By Claim 1, it suffices to show that ¥ N Ri_1(s) is connected. Assume for
the contradiction that ¥ N Ri_1(s) is not connected. Then there is a region R bounded by
4 and Ry_1(s) satisfying R Z Ri_1(s). Since 7 is connected, R does not intersect 9. By
Lemma 10, there is a site s’ € S, U Sk with Vi (s’) C R. This contradicts that each Voronoi
cell intersects 0f). Similarly, we can show the case for s € Spg. <

Lemma 15.1 guarantees that once we compute the endpoint of y(Sr, Sg) contained in
Ry_1(SL) N Rk—1(SR), we can compute v(Sr, Sr) within Ri_1(S1) N Rx—1(Sg) by tracing
the bisector from the endpoint. Also, Lemma 15.2 implies that it suffices to trace v(Sr, Sr)
within R;_1(Sr) N Rk—1(Sg) in computing FV(S).
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5.2.1 Divide-and-conquer algorithm

N

Now we are ready to describe our algorithm for computing FV(S) from bFV(S). In the k-th
recursive step, we maintain a region Uy (s) which contains Vj(s) for s € . As the base case,
we initialize Uy(s) to R(s). For the k-th recursive step, we compute Uy (s) from Uy_1(s) for
k > 1 inductively. In the last recursive step, we have Uy(s) = V(s) for every s € S.

Consider the recursive step with Sy = (s;) and Sg = (s;+1). We compute the point
p € B(s;)NPB(six1). Then we trace v(s;, s;+1) starting from p until the bisector meets AUy (s;)
or OUy(s;+1). Consider the case that v(s;, s;41) meets QUp(s;) at ¢ first. We shoot a ray from
q towards s;+1 and find the point 7 of dUy(s;+1) hit by the ray. Let 4 be the curve consisting
of the part of y(s;, $;41) from p to ¢, and gr. Then ¥ partitions Up(s;) and Uy(s;+1) into two
subregions. We set Ui (s;) to the subregion of Uy(s;) containing 3(s;) for each j =,7+ 1.
See Figure 6. We handle the case that v(s;, s;41) meets OUp(s;4+1) first analogously.

(b) (c)

Figure 6 (a) Tracing v(s;, si+1) from p. (b) Ray from ¢ towards s;+1. (¢) Ui(s;) and Ui(siy1).

Consider the k-th recursive step. Let S;, and Sg be the two input sequences of sites.
Without loss of generality, let s; be the last site of S; and s;y1 be the first site of Sg.
Let Ug-1(S1) = Uses, Uk-1(s) and Ux—1(Sr) = U,cs, Ur—1(s). We find the point p €
B(si) N B(si+1). Then we trace v(s;, s;4+1) until it leaves (1) Uk—1(s;), (2) Uk—1(six1), (3)
Uk_1(SL), or (4) Uk—l(SR)-

Consider the case that (1) holds but (3) does not hold. Let ¢ be the point where v(s;, $;+1)
leaves U_1(s;) and ~y(s;i, $i+1) enters Ug_1(s") for s’ € Sp. If Ui_1(s’) has been visited
before, we trace a ray from ¢ towards s’ € Spg satisfying ¢ € Ug_1(s”), until the first
intersection with OUy_1(s”). If Ui_1(s’) has not been visited before, we repeat tracing
Y(8i+1,$") from ¢ inwards Uy_1(s’) as before until it leaves one of those four regions. See
Figure 7(a). We handle the case that (2) holds but (4) does not hold analogously.

Consider the case that (3) holds. Let ¢ be the point where v(s;, s;+1) leaves Ui_1(SL).
We trace a ray from ¢ towards s” € Sg satisfying ¢ € Uy_1(s”) until the first intersection
point with OU,_1(s”). See Figure 7(a). We handle the case that (4) holds analogously.

Let 4 be the resulting curve from the tracing above. Then 4 partitions Uy_1(s) into two
subregions for some s € S, U Sr. We set U(s) to the subregion of Uy_1(s) containing 5(s).

Observe that Ry (s) C Uy(s) for all s € S by the construction of the algorithm. Since
p € Re—1(SL) N Ri—1(SR), the following lemma holds.

» Lemma 16. Let Sp and Sg be two input sequences in the k-th recursive step. Then
v(SL,Sr) and 7 are the same in Ri_1(SL) N Rk—1(SR).

We show how to maintain Uy(s) for all s € S in a map Dy(s). Each region in Dj(s) has
at most four sides. In the base case, we store the subdivision of Uy(s) by the spokes of s in
Do(s) for each s € S. We construct Di(s) from Dg_1(s) by shaving off the edges in Dy_1(s)
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Figure 7 (a) 7 (blue) leaves Uy_1(Sz) or 7 (red) visits Ux—1(s) twice. (b) Edges of type (1) (red),
edges of type (2) (thick black), and edges of type (3) (blue). (c) Ur—1(s:) and Ur—1(sr) for s; € St
and s, € Sg. Updating Ux_1(s;) and Uk—_1(sr) along 7. (d) Uk(s;) and Ug(s,) after update.

along 4 from an endpoint p € 9Q. Each edge of Dy_1(s) belongs to one of three types:
(1) part of a spoke of s, (2) an edge connecting a Voronoi vertex and §(s), and (3) part of
OUk—_1(s) \ B(s). See Figure 7(b). Observe that 4 N Uy_1(s) is connected and it is part of
the boundary of Uy(s). When 4 crosses an edge of type (1), we shave off the part of the
edge not contained in Ug(s). The resulting edge is incident to the intersection point. See
Figure 7(c-d). Then we continue tracing 4. When 4 crosses an edge of type (2), we remove
the edge and continue tracing 4. When ¥ crosses an edge of type (3), we insert a Voronoi
vertex v at the intersection and insert an edge x(s,v) NUg(s) of type (3). If 7 leaves Dy_1(s),
we finish the construction of Dk (s) by removing the boundary curve of Di_1(s) from p to v.

5.2.2 Analysis

We analyze the running time for the k-th recursive step. Since we already have bFV(S),
we can find an endpoint of v(Sr, Sg) in O(1) time. By Lemmas 15.3 and 16, (S, Sgr)
in U-1(51) N Ug-1(Sr) has complexity > g g, O(n(s)). Thus, U,cq, us, Ur—1(s) has
complexity > g, g, O(n(s)). The same Uy_1(s) is visited O(1) times. We can check
whether v meets the same Uj_1(s) for the second time in O(1) additional time. The ray
shooting and partitioning take time linear to the complexity of each cell.

Now we analyze the running time of the algorithm. The recursion depth is O(logt) =
O(logmin{m,n}) and ) .gn(s) = O(m) by Lemma 9. The total complexity of Uy_1(s) for
sites s over all recursive calls at a fixed level k of recursion is O(m). Thus, the algorithm
runs in O(mlogmin{m, n}) time, after computing bFV(S) in O(nlogn + nlog?m) time.

» Theorem 17. The farthest-point Voronoi diagram of n point sites lying inside a convex
m-gon in the Hilbert metric can be computed in O(n(logn + log? m) 4+ mlogn) time.
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