
On the I/O Complexity of the
Cocke-Younger-Kasami Algorithm and of a Family
of Related Dynamic Programming Algorithms
Lorenzo De Stefani1 #

Department of Computer Science, Brown University, Providence, RI, USA

Vedant Gupta #

Department of Computer Science, Brown University, Providence, RI, USA

Abstract
Asymptotically tight lower bounds are derived for the Input/Output (I/O) complexity of a class
of dynamic programming algorithms, including matrix chain multiplication, optimal polygon tri-
angulation, and the construction of optimal binary search trees. Assuming no recomputation of
intermediate values, we establish an Ω

(
n3

√
MB

)
I/O lower bound, where n denotes the size of the

input and M denotes the size of the available fast memory (cache). When recomputation is allowed,
we show that the same bound holds for M < cn, where c is a positive constant. In the case where
M ≥ 2n, we show an Ω (n/B) I/O lower bound. We also discuss algorithms for which the number
of executed I/O operations matches asymptotically each of the presented lower bounds, which are
thus asymptotically tight.

Additionally, we refine our general method to obtain a lower bound for the I/O complexity of
the Cocke-Younger-Kasami algorithm, where the size of the grammar impacts the I/O complexity.
An upper bound with asymptotically matching performance in many cases is also provided.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases I/O complexity, Dynamic Programming Algorithms, Lower Bounds, Recom-
putation, Cocke-Younger-Kasami

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.49

Related Version Full Version: https://arxiv.org/abs/2410.20337 [21]

1 Introduction

The performance of computing systems is significantly influenced by data movement, affecting
both time and energy consumption. This ongoing technological trend [37] is expected to
continue as fundamental limits on minimum device size and maximum message speed lead to
inherent costs associated with data transfer, be it across the levels of a hierarchical memory
system or between processing elements in a parallel system [10]. While the communication
requirements of algorithms have been extensively studied, deriving significant lower bounds
based on these requirements and matching upper bounds remains a critical challenge.

Dynamic Programming (DP) is a classic algorithmic framework introduced by Bellman [4]
that is particularly effective in optimization tasks where problems can be broken down
into overlapping subproblems with optimal substructure and storing the solutions to these
subproblems to prevent redundant work. DP is widely used in computer science and other
important fields such as control theory, operations research, and computational biology.

1 Corresponding author

© Lorenzo De Stefani and Vedant Gupta;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 49; pp. 49:1–49:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lorenzo_destefani@brown.edu
https://orcid.org/0000-0001-9569-2086
mailto:vedant_gupta@brown.edu
https://orcid.org/0009-0002-8565-2034
https://doi.org/10.4230/LIPIcs.WADS.2025.49
https://arxiv.org/abs/2410.20337
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

49:2 On the I/O Complexity of the CYK Algorithm and DP Algorithms

In this work, we analyze the memory access cost (I/O complexity) of a family of DP al-
gorithms when executed in a two-level storage hierarchy with M words of fast memory (cache).
The analyzed algorithms share a similar structure of dependence on the results of subprob-
lems and include, among others, the classic DP algorithms for matrix chain multiplication,
boolean parenthesization, optimal polygon triangulation, and construction of optimal binary
search trees. We obtain asymptotically tight lower bounds for the I/O complexity of these
algorithms both for schedules in which no intermediate values are computed more than once
and for general schedules allowing recomputation. Our analysis reveals that, for a range of
values of the size of the cache, recomputing intermediate values can lead to an asymptotically
lower number of I/O operations. We further refine our analysis to derive an I/O lower bound
for the Cocke-Younger-Kasami (CYK) algorithm [20, 47, 32] and an (almost) asymptotically
matching upper bound.

Previous and related work. I/O complexity was introduced in the seminal work by Hong
and Kung [31]; it denotes the number of data transfers between the two levels of a memory
hierarchy with a cache of M words and a slow memory of unbounded size. Hong and
Kung presented techniques to develop lower bounds for the I/O complexity of computations
modeled by Computational Directed Acyclic Graphs (CDAGs).

While the “edge expansion technique” of [3], the “path routing technique” of [40], and
the “closed dichotomy width” technique of [11] all yield I/O lower bounds that apply only to
computational schedules for which no intermediate result is ever computed more than once
(nr-computations) it is also important to investigate what can be achieved with recomputation.
In fact, for some CDAGs, recomputing intermediate values reduces the space and/or the I/O
complexity of an algorithm [39]. In [8], it is shown that some algorithms admit a portable
schedule (i.e., a schedule that achieves optimal performance across memory hierarchies with
different access costs) only if recomputation is allowed. Recomputation can also enhance
the performance of simulations among networks (see [34] and references therein) and plays
a key role in the design of efficient area-universal VLSI architectures. Several lower-bound
techniques that allow recomputation have been presented in the literature, including the
“S-partition technique” [31], the “S-span technique” [39], the “S-covering technique” [9]
(which merges and extends aspects from both [31] and [39]), the “G-flow technique” [5, 6],
and the “visit partition technique [7]. However, to the best of our knowledge, none of these
have been previously applied to the family of DP algorithms considered in this work.

A systematic study of Dynamic Programming was introduced by Bellman [4], and has
since become a popular problem-solving methodology. Galil and Park [27] produce a survey
and classifications of popular dynamic programming algorithms and optimization methods.
Several results have been presented in the literature aimed at optimizing the running time
of Dynamic Programming algorithms [28, 33, 46, 27]. Notably, Valiant [45] showed that
context-free recognition can be carried out as fast as Boolean matrix multiplication.

Cherng and Ladner [13] provide a cache-oblivious divide-and-conquer algorithm and a
cache-aware blocked algorithm for simple dynamic programs, which includes matrix chain
multiplication and the construction of optimal binary search trees. Their approach is based
on Valiant’s algorithm [45] and incurs O(n3

B
√

M
) cache misses. In [16, 17], Choudhury and

Ramachandran introduce the Gaussian Elimination Paradigm (GEP) that provides cache-
oblivious algorithms for problems including all-pairs shortest path. The authors also provide
a way to transform simple DP problems into GEP problems. A proof of the optimality of
the proposed algorithm for GEP problems is provided based on a similar result given in [31]
for the matrix multiplication problem. As we show, this result does not extend to simple

L. De Stefani and V. Gupta 49:3

DP algorithms, as fewer cache misses can be achieved in some scenarios. Cache-oblivious
DP algorithms for other problems have been explored [36, 19, 22]. There has also been work
on parallelizing cache-efficient DP algorithms [18, 14, 30, 44, 43, 25, 23, 12], experimental
evaluations of the resulting performance improvement [38], and on the automated discovery
of cache-efficient DP algorithms [15, 29].

Dunlop et al. [24] provide an empirical analysis of various strategies to reduce the number
of accesses to the grammar for the CYK algorithm. There have also been other works on
modifying a grammar representation to improve efficiency. Notably, Song et al. [42] provides
an empirical analysis of different grammar binarization approaches to improve efficiency,
while Lange et al. [35] argue for the merits of a modified version of CYK to work with
grammars in binary normal form instead of Chomsky normal form.

Summary of results. In this work, we analyze the I/O complexity of a family of DP
algorithms that follow the general strategy outlined in Prototype Algorithm 1 when executed
in a two-level storage hierarchy with M words of cache. The analyzed algorithms share a
similar structure of dependence on the results of subproblems while allowing for diverse
implementation choices and optimal problem substructure.

We analyze both schedules in which no intermediate values are computed more than
once (no-recomputation schedules) and general ones that allow for recomputation. For both
settings, we derive an Ω

(
n3

√
MB

)
lower bound to the number of I/O operations required

by sequential execution of these algorithms on an input of size n in a two-level storage
hierarchy with a cache of size M ≤ cn, for some positive constant value c and such that B ≥ 1
memory words can be moved between consecutive memory locations of the cache and of the
slow memory with a single I/O operation. However, we show that while no-recomputation
schedules require Ω

(
n3

√
MB

)
I/O operations even when using a cache of size at least 2n and

o
(
n2)

, schedules using recomputation achieve an asymptotic reduction of the number of
required I/O operations by a factor Θ

(
n2/
√

M
)

. This is particularly significant as in many
cases of interest (e.g., Matrix Multiplication [2, 5, 31], Fast Fourier Transform [31], Integer
Multiplication [6]) recomputation has shown to enable a reduction of the I/O cost by at most
a constant multiplicative factor. These results are obtained by analyzing a representation
of the considered algorithms as Computational Directed Acyclic Graphs (CDAGs) whose
structure captures the structure of dependence between subproblems, which is common to
the DP algorithms considered in our work. We provide a general construction of such CDAGs
and analyze their internal connection properties.

We refine our general method to obtain an Ω
(

n3Γ√
MB

)
lower bound for the I/O complexity

of the Cocke-Younger-Kasami algorithm when deciding whether an input string of length
n is a member of the language generated by a given Context-Free Grammar with Γ rules
with distinct right-hand-sides not including terminals. While the CYK algorithm exhibits
a structure of subproblem dependencies similar to that of previously analyzed problems,
it presents several challenging differences which we address by modifying our lower-bound
methods by further refining its CDAG representation. Finally, we present a cache-oblivious
implementation of the CYK algorithm for which, depending on the composition of the rules
of the considered CFG, the number of I/O operations to be executed almost asymptotically
matches the lower bound.

WADS 2025

49:4 On the I/O Complexity of the CYK Algorithm and DP Algorithms

Algorithm 1 Prototype DP algorithm A∗.

1: Input {x0, x1, ..., xn}
2: Output S(1, n)
3: for i = 1 to n do ▷ Initialization of subproblems S(i, i)
4: S(i, i)← initialization_value
5: for l = 2 to n do
6: for i = 1 to n− l + 1 do
7: j ← i + l − 1
8: S(i, j)← least_optimal_value ▷ Initialization of accumulator subproblem S(i, j)
9: for k = i to j − 1 do

10: q ← COMBINE (S(i, k), S(k + 1, j))
11: S(i, j)← AGGREGATE (S(i, j), q)
12: return S(1, n)

2 Preliminaries

We consider a family of Dynamic Programming (DP) algorithms following the general strategy
outlined in Prototype Algorithm 1: Given an input of size n, the solution, denoted as S(1, n) is
computed bottom up. First, the values corresponding to the solution of subproblems of input
size one, S(i, i) for i ∈ {1, 2, . . . , n}, are initialized to some set default value. The results
of subproblems corresponding to parts of the input of growing size ℓ, that is S(i, i + ℓ) for
i ∈ {1, 2, . . . , n} and ℓ ∈ {1, 2, . . . , n− i}, are computed by first evaluating the ℓ compositions
of pairs of subproblems S(i, i + k) and S(i + k + 1, i + ℓ), for k ∈ {0, 1, . . . ℓ− 1} and then
composing them according to the optimal subproblem structure used in the algorithm.

Depending on the specific problems, the default initialization values (INITIALIZATION
_VALUE in the Prototype Algorithm) of S(i, i), the way that the pairs S(i, i + k) and
S(i+k +1, i+ℓ) are combined (COMBINE), and the way these results are composed to evaluate
S(i, i + ℓ) (AGGREGATE) may differ. However, AGGREGATE is assumed to be commutative and
associative. Besides these differences, all the considered subproblems share the subproblem
dependence structure outlined in the Prototype Algorithm, for which a visual representation
is provided in Figure 1a. Examples of algorithms following such a structure include the
classic DP algorithm for the matrix chain multiplication problem, the optimal convex polygon
triangulation, the construction of optimal binary search trees, and the Cocke-Younger-Kasami
algorithm (Algorithm 5).

We provide a general analysis of the I/O complexity of algorithms following the structure
of the Prototype Algorithm A∗, and we then refine our analysis for the mentioned algorithms
of interest.

Computational Directed Acyclic Graphs. Our analysis is based on modeling the execution of
the DP algorithms of interest as a Computational Directed Acyclic Graph (CDAG) G = (V, E).
Each vertex v ∈ V represents either an input value or the result of an operation (i.e., an
intermediate result or one of the output values) which is stored using a single memory word.
The directed edges in E represent data dependencies. That is, vertices u, v ∈ V are connected
by an edge (u, v) directed from u to v if and only if the value corresponding to u is an
operand of the unit time operation computing the value corresponding to v. Vertex u is said
to be a predecessor of v and v is said to be a successor of u. For a given vertex v, the set
of its predecessors (resp., successors) is defined as pre(v) = {u ∈ V s.t.(u, v) ∈ E} (resp.,
suc(v) = {u ∈ V s.t.(v, u) ∈ E}. We refer to vertices with no predecessors (resp., successors)
as the input (resp., output) vertices of a CDAG. We say that G′ = (V ′, E′) is a sub-CDAG of
G = (V, E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). We say that two sub-CDAGs G′ = (V ′, E′)
and G′′ = (V ′′, E′′) of G are vertex-disjoint if V ′ ∩ V ′′ = ∅.

L. De Stefani and V. Gupta 49:5

S(1, 4)

S(1, 3) S(2, 4)

S(1, 2)

S(2, 3)

S(3, 4)

S(1, 1) S(3, 3) S(4, 4)S(2, 2)

(a) Representation of the subproblem depend-
ency structure for the Prototype Algorithm and
other DP algorithms considered in this work for
an input of size n = 4.

S(1, 4)

S(1, 3) S(2, 4)

S(1, 2)

S(2, 3)

S(3, 4)

S(1, 1) S(3, 3) S(4, 4)S(2, 2)

(b) Construction of G from the simplified DAG.
Root vertices are in black and leaves belonging
to subproblem S(1, 4) are in shown in green.

Figure 1 Construction of CDAG in G (n).

I/O model. We assume that sequential computations are executed on a system with a
two-level memory hierarchy, consisting of a cache of size M (measured in memory words)
and a slow memory of unlimited size. An operation can be executed only if all its operands
are in the cache. We assume that the processor is equipped with standard elementary logic
and algebraic operations. Data can be moved from the slow memory to the cache by read
operations, and, in the other direction, by write operations. These operations are called I/O
operations. We assume that the input data is stored in the slow memory at the beginning
of the computation. The evaluation of a CDAG in this model can be analyzed using the
“red-blue pebble game” [31]. The number of I/O operations executed when evaluating a CDAG
depends on the “computational schedule”, that is, on the order in which vertices are evaluated
and on which values are kept in/discarded from the cache. The I/O complexity of a CDAG G

corresponding to the execution of algorithm A for an input of size n, denoted as IOA(M), is
defined as the minimum number of I/O operations over all possible computational schedules.
We further consider a generalization of this model known as the “External Memory Model”
by Aggarwal and Vitter [1] where B ≥ 1 memory words can be moved between consecutive
memory locations of the cache and of the slow memory with a single I/O operation.

3 CDAG construction

In this section, we give the construction for a family of CDAGs representing the execution of
a class of DP algorithms exhibiting a subproblem optimality structure as the one outlined
for the Prototype Algorithm 1.

Given input size n, the CDAG G corresponding to the execution of A∗ is constructed
using the CDAG in Figure 1a as the base structure. The actual CDAG is obtained by refining
the basic structure by replacing each vertex corresponding to a subproblem S(i, j) with a
directed binary tree DAG with j− i leaves with all edges directed towards the root. The root
vertex (R-vertex for short) of the tree DAG, henceforth referred to as vi,j , corresponds to
the computation of the solution of the associated subproblem S(i, j). The k-th “leaf vertex”
(L-vertex for short) of the tree, for k ∈ {0, . . . , j − i − 1} results from the combination of
subproblems S(i, i + k) and S(i + k + 1, j) and has as predecessors the R-vertices of the tree
DAGs corresponding respectively to S(i, i + k) and S(i + k + 1, j) (i.e., vi,i+k and vi+k+1,j)
(a visual representation is provided in Figure 1b). Notice that binary trees corresponding
to different R-vertices are vertex disjoint. For each such tree DAG, we say that its j − i

L-vertices belong to the root vi,j .

WADS 2025

49:6 On the I/O Complexity of the CYK Algorithm and DP Algorithms

v1,4

v1,3

r2 r3r1 r4c1 c2 c3 c4

v1,1

v2,3

v2,2 v3,3 v4,4

v1,2
v3,4

v2,4

(a) Rows and columns.

v1,4

v1,3

W1 W2

v2,4

v3,4v2,3
v1,2

v1,1 v2,2 v3, 3 v4, 4

W3

(b) W -cover.

Figure 2 Representation of rows, columns, and the W -cover for input size n = 4.

Our lower bound results hold for any possible structure of these tree DAGs. This is a
feature of our model meant to accommodate a variety of possible implementations for A∗

and any other DP sharing the same substructure.
As an example, for the classic DP algorithm for the matrix chain multiplication problem

(presented in the appendix of the extended online version [21]), the root vertex of each tree sub-
CDAG S(i, j) corresponds to the computation of the minimum number of operations required
to compute the chain product of the matrices from the i-th to the j-th, and the k-th leaf, for
k ∈ {0, . . . , j−i−1}, corresponds to the computation of S(i, i+k)+S(i+k+1, j)+di−1di+kdj .

We denote the family of CDAGs constructed in such a way with n input vertices and
differing in tree sub-DAGs used to accumulate the values associated to L-vertices into the
values associated with the corresponding R-vertex as G(n). This family of CDAGs captures
the dependence structure between subproblems common to the family of DP algorithms that
are the focus of our analysis.

Analysis of CDAG properties. Given a CDAG G from the family G (n), let R (resp. L)
denote the set its of R-vertices (resp. L-vertices). Then, |R| = n(n+1)

2 and |L| = n3−n
6 .

The “i-th row” (resp., the “j-th column”) of G, written ri (resp., cj), is defined as the
subset of R including all of the R-vertices vi,j each corresponding to the computation of
subproblem S(i, j) for j ∈ {i, . . . , n} (resp., i ∈ {1, . . . , j}). For any v ∈ R, if v ∈ ri and v ∈ cj

then i ≤ j. By construction, the rows (r1, r2, . . . , rn) (resp., the columns (c1, c2, . . . , cn))
partition R, and |ri| = n − i + 1 (resp., |ci| = i) for 1 ≤ i ≤ n. A visual representation of
rows and columns can be found in Figure 2a.

By construction, each L-vertex has a distinct pair of R-vertices as its predecessors. Such
a pair is said to interact in the computation. Given vi,j ∈ R, it interacts with all and only
the vertices vk,i−1 for 1 ≤ k ≤ i − 1, and the vertices vj+1,l for j + 1 ≤ l ≤ n. All such
n + i− j− 1 interactions correspond to the computation of a L-vertex belonging to a distinct
sub-tree corresponding to the subproblem S(k, j) or S(i, l) (i.e., to the R-vertex vk,j or vi,l).
Pairs of vertices in the same row (or column) do not interact.

We define Wi = ri+1 ∪ ci, for 1 ≤ i ≤ n− 1 as the subsets of R such that each vertex in
ci interacts with all the vertices of ri+1 (a visual representation can be found in Figure 2b).
By construction, |Wi| = n. A vertex v1,j ∈ r1 (resp, vi,n ∈ cn) is only a member of Wj

(resp., Wi−1). All remaining vertices vi,j ∈ R are members of both Wj and Wi−1, which are
distinct as, by construction, for any vi,j ∈ R we have i ≤ j. We refer to the collection of sets
(W1, W2, . . . , Wn−1) as the “W -cover” of the R-vertices of CDAG G. By its definition, and
by the properties of the interactions between vertices according to placement in rows and
columns discussed in the previous paragraphs, we have the following property:

L. De Stefani and V. Gupta 49:7

▶ Lemma 1. Given a CDAG G ∈ G (n), let W1, W2, . . . , Wn−1 denote the W -cover of its
R-vertices. For any set X ⊆Wi there are at most |X|2

4 ≤ n2

4 pairs of vertices (u, v), where
u ∈ ri+1 and v ∈ ci, that interact as predecessors of distinct L-vertices each of which belongs
to a distinct R-vertex.

4 I/O analysis for computations of CDAGs in G(n)

We analyze the I/O complexity of CDAGs in the class G(n) according to the Red-Blue Pebble
Game by Hong and Kung [31]. To simplify the presentation, we assume that n and M are
powers of 2, i.e., n = 2i and M = 2j for integers i, j ≥ 3. If that is not the case, our analysis
can be adapted with minor, albeit tedious, modifications resulting in different constant terms.

4.1 I/O lower bound for computations with no recomputation

In this section, we present a lower bound to the I/O complexity of algorithms corresponding
to CDAGs in G (n), assuming that no intermediate value is ever recomputed. (i.e., under
the “no-recomputation assumption”). We first introduce a useful technical Lemma:

▶ Lemma 2. Given n ∈ N+ non-negative real numbers a1, a2, . . . , an such that
∑n

i=1 a2
i ≥ T ,

where T ∈ R+, and maxn
i=1 a2

i ≤ L, where L ∈ R+ and L < T , then,
∑n

i=1 ai ≥ T√
L

.

Proof. The lower bound comes from the intuitive strategy of making each ai as large as
possible, i.e. if q = ⌊T

L ⌋, then assign a1, ..., aq =
√

L and aq+1 =
√

T − qL. In this case,∑q+1
i=1 ai = q

√
L +
√

T − qL = q
√

L +
√

T
L − q

√
L ≥ q

√
L + (T

L − q)
√

L (as T
L − q < 1) = T√

L
.

To show the optimality of this strategy, we show that any other configuration is suboptimal.
Consider any other assignment of a1, ..., an that is not just a permutation of the same

values. By assumption, any such assignment must have at least two non-zero values ai, aj <√
L. Let k = ai + aj . If k ≤

√
L, since k2 > a2

i + a2
j , there exists some c ∈ R+ such that

c2 = a2
i + a2

j and c < ai + aj , showing that our assignment a1, ..., an does not minimize∑n
i=1 ai.
Alternatively, if k >

√
L, then a2

i + a2
j = a2

i + (k− ai)2 <
√

L
2 + (k−

√
L)2 (the last step

follows from the fact that f(x) = x2 + (k − x)2 defines an upwards-facing parabola with an
axis of symmetry about x = k

2). This means that there exists some c < k −
√

L such that
√

L
2 + c2 = a2 + b2 and L + c < a + b, again showing that our assignment a1, ..., an does not

minimize
∑n

i=1 ai. ◀

The following property captures the relation between subsets of L-vertices and their
number of distinct R-vertex predecessors:

▶ Lemma 3. Let L′ ⊂ L such that vertices in L′ belong to the tree sub-CDAGs of at
most 0 < ρ ≤ |L′| distinct R-vertices. The set R′ ⊆ R containing all R-vertices that are
predecessors of at least one vertex in L′ has cardinality at least ⌊|L′|/√ρ⌋.

Proof. Consider the W -cover of G as defined in Section 3. As any R-vertex can be a member
of at most two distinct Wi’s we have:

|R′| ≥ 1
2

n−1∑
i=1
|R′ ∩Wi|. (1)

WADS 2025

49:8 On the I/O Complexity of the CYK Algorithm and DP Algorithms

By definition, each vertex in L has a distinct pair of R-vertex predecessors which, by
construction, are both included in exactly one set Wi. Let ai be the number of vertices from
L′ with both predecessors in Wi. By the assumptions we have:

n−1∑
i=1

ai = |L′| (2)

By Lemma 1, for any Wi, each interacting pair of R-vertices in it are the predecessors
of a distinct L-vertex belonging to the tree sub-CDAG of a distinct R-vertex. From the
assumption that vertices in L′ belong to at most ρ distinct roots, we have:

max
i=1,...,n−1

ai ≤ ρ, (3)

Furthermore, from Lemma 1, we know that vertices in |R′ ∩Wi| can interact to produce at
most |R′ ∩Wi|2/4 vertices in L′. Thus,

n−1∑
i=1

|R′ ∩Wi|2

4 ≥
n−1∑
i=1

ai ⇒
n−1∑
i=1
|R′ ∩Wi| ≥

n−1∑
i=1

2
√

ai (4)

By (1), (4), (2), (3), and Lemma 2 (in this order) we have:

|R′| ≥ 1
2

n−1∑
i=1
|R′ ∩Wi| ≥

n−1∑
i=1

√
ai ≥

|L′|
√

ρ
. ◀

Lemma 3 allows us to claim that to compute a set of L-vertices, it is necessary to access
a minimum number of R vertices, which, due to the non-recomputation assumption, must
either be in the cache or loaded into it using a read I/O operation.

▶ Theorem 4. For any CDAG G = (V, E) ∈ G(n) let A denote an algorithm corresponding
to it. The I/O complexity of an Algorithm A when run without recomputing any intermediate
value using a cache memory of size M and where for each I/O operation it is possible to
move up to B memory words stored in consecutive memory locations from the cache to slow
memory or vice versa, is:

IOG (n, M, B) ≥ max
{(

n3 − n
)

16
√

M
− n (n + 1)

2 − 3M, n

}
1
B

(5)

Proof. We prove the result for B = 1. The result then trivially generalizes for a generic B.
The fact that IOG(n, M, 1) ≥ n follows trivially from our assumption that the input is

initially stored in the slow memory and therefore must be loaded into the cache at least once
using n read I/O operations.

Let C be any computation schedule for the sequential execution of A using a cache of
size M in which no value corresponding to any vertex of G is computed more than once.
We partition C into non-overlapping segments C1, C2, . . . such that during each Ci exactly
8M1.5 values corresponding to distinct L-vertices, denoted as Li, are evaluated. Since
|L| =

(
n3 − n

)
/6 there are

⌊(
n3

6 −
n
6

)
1

8M1.5

⌋
such segments. Given Li, we refer to the set

of R-vertices to whom at least one of the vertices in Li belongs as Ri. These correspond
to vertices which are active during Ci. For each interval, we denote as hi the number of
R-vertices whose value is completely evaluated during Ci. As no value is computed more
than once

∑
i hi = |R| = n (n + 1) /2. Let gi denote the number of I/O operations executed

during Ci. We consider two cases:

L. De Stefani and V. Gupta 49:9

The vertices of Li belong to at least 4M + 1 distinct R-vertices: For each of the 4M +
1− hi values corresponding to R-vertrices that were partially computed in Ci, a partial
accumulator of the values corresponding to their leaves computed during Ci must either
be in the cache at the end of Ci or must be written into slow memory by means of a
write I/O operation. Hence, gi ≥ 4M + 1−M − hi.
The vertices of Li belong to at most 4M distinct R-vertices: By Lemma 3, the vertices
in Li have at least 4M R-vertex predecessors, of whom at most hi are computed during
Ci. As the considered schedule’s values are not computed more than once, each of the
remaining 4M − hi values corresponding to predecessor vertices of Li must either be in
the cache at the beginning of Ci, or read into the cache by means of a read I/O operation.
Hence, gi ≥ 4M −M − hi.

The I/O requirement of the algorithm is obtained by combining the cost of each non-
overlapping segment:

IOG (n, M, 1) ≥

⌊
n3−n

48M1.5

⌋∑
i=1

gi ≥

⌊
n3−n

48M1.5

⌋∑
i=1

(3M − hi) ≥
⌊

n3 − n

48M1.5

⌋
3M −

⌊
n3−n

48M1.5

⌋∑
i=1

hi

≥ (n3 − n)
16
√

M
− 3M − |R|. ◀

By Theorem 4, we have that for M ≤ cn2, for a sufficiently small constant value c > 0,
computations of CDAGs in G (n) in which no value is recomputed require Ω

(
n3

√
MB

)
I/O

operations.

On the tightness of the bound

In [13], Cherng and Ladner presented the Valiant’s DP-Closure Algorithm, henceforth
referred to as VDP, which allows computing algorithms following the general structure
outlined in Prototype Algorithm 1 cache-obliviously and without recomputation. When
M < |R| = n(n+1)

2 , VDP executes O
(

n3
√

MB

)
I/O operations, and for M ≥ |R| it executes

O(n/B) I/O operations. Thus, we can conclude that our I/O lower bound for schedules with
no recomputation provided in Theorem 4 is asymptotically tight.

VDP utilizes a divide and conquer approach, making recursive calls to smaller subproblems.
Here we give a simplified presentation of the Valiant’s DP-Closure Algorithm. Please refer
to Cherng and Ladner [13] for a detailed presentation.

Consider any algorithm following the Prototype Algorithm 1 with input of size n − 1,
where we assume n = 2a for a ∈ N. All subproblems S(i, j) computed by the algorithm are
associated with entries of an n × n matrix X so that S(i, j) is represented at X[i, j + 1].
Initially, the values X[i, i + 1] corresponding to values S(i, i) for 1 ≤ i ≤ n− 1 are computed
from the input while the remaining entries in X are set to the LEAST_OPTIMAL_VALUE (e.g., 0).
To fully compute all the subproblems (i.e., to compute the DP-closure), VDP splits X into 16
equally-sized submatrices of dimension n

4
2 labeled as follows:

X =


X11 X12 X13 X14

X22 X23 X24
X33 X34

X44



2 We assume that n is a power of 2. This can always be made the case by padding X

WADS 2025

49:10 On the I/O Complexity of the CYK Algorithm and DP Algorithms

We omit the representation of the lower-triangular submatrices as these will have all of
their entries set to 0. Valiant’s DP-Closure Algorithm (whose pseudocode is presented in
Algorithm 2) is given the matrix X as input, with the only non-zero values corresponding
to subproblems S(i, i) for 1 ≤ i ≤ n − 1. The values of the S(i, j) (i.e., the R-vertices)
corresponding to the top-left and bottom-right submatrices are computed through recursive
calls, exploiting the fact that these submatrices correspond to a smaller instantiation of the
same DP problem. The remaining values in X are then computed by invoking a subroutine
called “Valiant’s Star Algorithm” (VSTAR).

Algorithm 2 Valiant’s DP-Closure Algorithm (VDP).

1: Input X

2: Output X ▷ DP-Closure of X is computed in-place
3: if dim(X) = 2 then ▷ Input is already computed
4: return
5:

[
X11 X12

X22

]
← VDP

([
X11 X12

X22

])
6:

[
X33 X34

X44

]
← VDP

([
X33 X34

X44

])
7: X← VSTAR (X)

VSTAR is given as input a matrix X where the subproblems in the top-left and bottom-
right quadrants are already computed. The algorithm then recursively computes the values
corresponding to the remaining entries of X (i.e., the values of the R-vertices). The
pseudocode for this function can be found in Algorithm 3. We represent COMBINE with
“·” and AGGREGATE with “+”. Operations involving these operators in Lines 6,8,10, and 11
are computed using a subroute called “Matrix multiply and accumulate” that, given three
equally sized square matrices A, B, and C, computes A + B · C. In the context of VDP, A
contains partially computed values S(i, j)’s (i.e., corresponding to R-vertices), and B ·C
represents the computation of combinations of subproblems contributing to S(i, j) (i.e.,
S(i, k) · S(k + 1, j) for i ≤ k < j), that is, the values corresponding to the L-vertices, which
are then used to update A. A recursive in-place implementation of this function is presented
in detail in [13, 26].

4.2 I/O lower bound for computations with allowed recomputation

We extend our I/O lower bound analysis to general computations in which values may be
recomputed by combining it with the dominator I/O lower bound technique by Hong and
Kung [31].

▶ Definition 5 ([31]). Given G = (V, E), a set D ⊆ V is a dominator set for V ′ ⊆ V if
every path directed from any input vertex of G to a vertex in V ′ contains a vertex of D.

Dominator sets of R-vertices of a CDAG G ∈ G (n) must satisfy the following property:

▶ Lemma 6. Given G = (V, E) ∈ G(n), let A = {vi1,j1 , vi2,j2 , . . .} be a subset of R-vertices
where vik,jk

is the R-vertex corresponding to subproblem S(ik, jk). Any dominator set D of
A has minimum cardinality |D| ≥ min (|A|, min jk − ik)

L. De Stefani and V. Gupta 49:11

Algorithm 3 Valiant’s Star Algorithm (VSTAR).

1: Input X ▷ Top-left and bottom-right are assumed to be fully computed
2: Output X ▷ DP-Closure of X is computed in-place
3: if dim(X) = 2 then ▷ No Computation required
4: return
5:

[
X22 X23

X33

]
← VSTAR

([
X22 X23

X33

])
6: X13 ← X13 + X12 ·X13

7:
[
X11 X13

X33

]
← VSTAR

([
X11 X13

X33

])
8: X24 ← X24 + X23 ·X34

9:
[
X22 X24

X44

]
← VSTAR

([
X22 X24

X44

])
10: X14 ← X14 + X12 ·X24
11: X14 ← X14 + X13 ·X34

12:
[
X11 X14

X44

]
← VSTAR

([
X11 X14

X44

])

Proof. Suppose for every vi,j ∈ A, D contains a vertex internal to the tree-CDAG rooted at
vik,jk

. As the tree-CDAGs of different R-vertices are disjoint, this would imply |D| ≥ |A|.
Otherwise, there must be some vi,j ∈ A, such that D does not contain any of its internal

vertices. Let Li,j = {l0, l1, . . . , lj−i−1} denote the set of L-vertices corresponding to vi,j . It is
sufficient to show that there are j− i vertex disjoint paths from the inputs of G to vertices in
Li,j . By construction, each leaf lk ∈ Li,j has a predecessor belonging to a unique column ci+k.
In turn, each of these predecessors is connected through its internal tree-CDAG to the input
vertex in the same column (vi+k,i+k). In this manner, j − i paths (vi+k,i+k → vi,i+k → lk)
for 0 ≤ k ≤ j − i − 1 are obtained. Since each path contains R-vertices from a different
column, and the tree-CDAGs of different R-vertices are disjoint, the paths outlined above
are vertex-disjoint. ◀

▶ Theorem 7. For any CDAG G = (V, E) ∈ G(n) let A denote an algorithm corresponding
to it. The I/O-complexity of A when run using a cache memory of size M and where for each
I/O operation it is possible to move up to B memory words stored in consecutive memory
locations from cache to slow memory or vice versa, is:

IOG (n, M, B) ≥ max
{

(n− 6M − 1)3

18
√

M
− 2M, n

}
1
B

(6)

Proof. To simplify our analysis, we only consider parsimonious execution schedules such that
each time an intermediate result is computed, the result is then used to compute at least one
of the values of which it is an operand before being removed from the memory (either the
cache or slow memory). Any non-parsimonious schedule C can be reduced to a parsimonious
schedule C′ by removing all the steps that violate the definition of parsimonious computation.
C′ has therefore less computational or I/O operations than C. Hence, restricting the analysis
to parsimonious computations leads to no loss of generality.

We prove the result for the case B = 1. The result then trivially generalizes for a
generic B. The fact that IOA(n, M, 1) ≥ n follows trivially from our assumption that input
is initially stored in slow memory and therefore must be loaded into the cache at least once
using n read I/O operations.

WADS 2025

49:12 On the I/O Complexity of the CYK Algorithm and DP Algorithms

Let L(x) be the set of L-vertices in G whose predecessor R-vertices both correspond to
some subproblems S (i, j) such that x ≤ j − i. By the construction, for each subproblem
S (i, j) the corresponding tree sub-CDAG has max{0, j − i− 2x} such L-vertices. Since the
sub-CDAGs corresponding to each S (i, j) do not share vertices, we have:

|L (x) | =
n−1∑

j−i=1
(n− (j − i)) max{0, j − i− 2x}

=
n−1∑

j−i=2x+1
(n− (j − i)) (j − i− 2x)

=
n−1−2x∑

y=1
(n− 2x− y) y

= (n− 2x− 1) (n− 2x) (n− 2x + 1)
6

>
(n− 2x− 1)3

6 .

Let C be any computation schedule for the sequential execution of A using a cache of
size M . We partition C into segments C1, C2, . . . such that during each Cl exactly 6M1.5 values
corresponding to distinct vertices in L(3M) are computed from their operands (i.e., not read
from the cache). Let Ll denote the set of vertices corresponding to these values. Below we
argue that the number gl of I/O operations executed during each of the

⌊
|L(3M)|/6M1.5⌋

non-overlapping segments Cl is at least 2M , from whence the statement follows.
Let A denote the set of vertices corresponding to the values computed during Cl. Clearly

Ll ⊆ A. Let D denote the set of vertices corresponding to either the at most M values that
are either stored in the cache or the values that are read into the cache during Cl by means
of read I/O operations. Thus gl = |D| −M . In order to be possible to compute the values
corresponding to vertices in A during Cl there must be no paths from input vertices of G to
vertices in A, that is, D must be a dominator set of A.

We refer to the set of R-vertices to whom at least one of the vertices in Ll belongs as Rl.
These correspond to vertices which are active during Cl. We consider three mutually exclusive
cases:
(a) At least one of the values corresponding to a vertex v′ in Rl is entirely computed during
Cl. That is no accumulator of the values corresponding to the leaves of v′ is in the cache
or it is loaded in it by means of an read I/O operation during Cl. Thus, v′ ∈ A and D

do not include any non-leaf vertex internal to the tree-sub-CDAG rooted in v′. Since
Ll ⊆ L (3M), by definition, v corresponds to a subproblem S(i, j) such that j − i ≥ 3M .
From Lemma 6, |D| ≥ 3M which implies gj ≥ 2M .

(b) |Rl| > 4M : As none of the values in Rl is entirely computed during Cl (case (a)), and
as we are considering parsimonious computations, for each value Rl at least one partial
accumulator of its value is either in the cache at the beginning (resp., end) of Cl or
is loaded into the cache during (resp., saved to the slow memory) during it. Hence
gl ≥ 4M − 2M .

(c) |Rl| ≤ 4M : By Lemma 3, the vertices in Ll have at least 3M distinct R-vertices
predecessors. Since Ll ⊆ L (3M) by definition, all such R vertices corresponds to
subproblems S(i, j) where j − i ≥ 3M . As the values of these vertices are either in the
cache at the beginning of Cl, or read to the cache during Cl, or computed during Cl,
D must be dominator set for the corresponding vertices. From Lemma 6, we can thus
conclude |D| ≥ 3M from whence gl ≥ 2M . ◀

L. De Stefani and V. Gupta 49:13

Algorithm 4 Top-Down recursive computation schedule for an algorithm A corresponding to
G ∈ G(n).

1: Input {x0, x1, ..., xn}
2: Output S(1, n)
3: for i = 1 to n do ▷ Initialization of subproblems S(i, i)
4: S(i, i)← read i-th input from slow memory
5: procedure COMPUTE(i, j)
6: if i = j then
7: return S(i, j)
8: else
9: S(i, j)← least_optimal_value ▷ Initialization of accumulator subproblem S(i, j)

10: for k = i to j − 1 do
11: if k − i ≥ j − k − 1 then
12: S(i, k)← COMPUTE (i, k)
13: S(k + 1, j)← COMPUTE (k + 1, j)
14: else
15: S(k + 1, j)← COMPUTE (k + 1, k)
16: S(i, k)← COMPUTE (i, k)
17: S(i, j)← AGGREGATE (S(i, j), COMBINE (S(i, k), S(k + 1, j)))
18: remove from cache all values used by the procedure except for S(i, j)
19: return S(i, j)
20: return COMPUTE (1, n)

By Theorem 7, we have that for M ≤ c1n, where c1 is a sufficiently small positive constant
value, computations of CDAGs in G (n) require Ω

(
n3

√
MB

)
I/O operations. This is in contrast

with the result given in Theorem 4 for schedules with no recomputation that exhibit I/O
complexity Ω

(
n3

√
MB

)
for values of M up to c2n2 for an appropriately chosen constant c2.

On the tightness of the bound. When allowing recomputation, if M < c1n, where c1 is
a sufficiently small positive constant, the number of I/O operations executed by Valiant’s
DP-Closure Algorithm asymptotically matches our lower bound in Theorem 7. Thus, for
M < c1n, allowing recomputation does not asymptotically change the required number of
I/O operations. On the other hand, if M > 2n, our lower bound simplifies to Ω(n/B),
diverging from the complexity of Valiant’s DP-closure Algorithm.

In Theorem 8, we show how for any algorithm corresponding to G = G(n) given a cache
memory of suitable size M ≥ 2n, there exists an execution schedule in which the results
of subproblems are computed according to a recursive top-down order that executes only
⌈n/B⌉+ 1 I/O operations, thus asymptotically matching the general lower bound given in
Theorem 7. Crucially, such a schedule involves the recomputation of intermediate results
in order to reduce the number of I/O operations otherwise necessary, as established in
Theorem 4.

▶ Theorem 8. Using a cache memory of size M ≥ 2n, there exists a computational schedule
executing A∗ incurring ⌈n/B⌉+ 1 I/O operations, where for each I/O operation it is possible
to move up to B memory words stored in consecutive memory locations from the cache to
slow memory or vice versa.

Proof. The proposed schedule follows the steps outlined in Algorithm 4: in the initialization
phase the n I/O values are read into the cache using ⌈n/B⌉ read I/O operations. These
values are held in the cache until the very end of the schedule, occupying n out of the M ≥ 2n

available memory locations. Once the final result S(1, n) is computed, it is written to the
secondary memory by means of a write I/O operation.

WADS 2025

49:14 On the I/O Complexity of the CYK Algorithm and DP Algorithms

We argue that the invocation of the procedure COMPUTE(i, n) uses at most n cache memory
locations, thus not requiring the execution of any additional I/O operation. Let M(j − i)
denote the memory usage of an invocation of COMPUTE(i, j). In the base case M(1) = 1, as
COMPUTE simply combines and returns the values S(i, i) and S(j, j) which are already stored
in the cache after the initialization phase. In the general case, due to the use of accumulators
and to the sequence of recursive calls and the memory management used by the schedule, we
have:

M(j − i) = 1 + max{M (j − i− 1) , 1 +M (j − i− 2))}
= 1 +M(j − i− 1)
= j − i− 1 +M(1)
= j − i.

The lemma follows as M(n− 1) = n− 1. ◀

Interestingly, while the proposed computation schedule allows to achieve an asymptotic
polynomial reduction of the number of I/O operations by a Θ

(
n2

√
M

)
multiplicative factor

using recomputation, this is at the cost of a exponential increase of the number of computation
operations executed (2O(n)), in comparison with Valiant’s DP-Closure Algorithm which
requires only O(n3) computations.

4.3 I/O analysis for notable Dynamic Programming algorithms
The general result in Section 4 can be adapted to derive asymptotically tight bounds on the
I/O complexity of classic Dynamic Programming algorithms for notable problems such as
Matrix Chain Multiplication, Optimal Polygon Triangulation, and the construction of optimal
binary search trees. This is achieved by mapping each of these algorithms onto Prototype
Algorithm 1, defining the COMBINE, AGGREGATE, and LEAST_OPTIMAL_VALUE appropriately.
Due to space limitations, these results are presented in the online full version of this work [21,
Appendix A].

5 I/O analysis for the Cocke-Younger-Kasami algorithm

In this section, we present I/O bounds for the Cocke-Younger-Kasami algorithm (CYK).
First, we provide some background on the algorithm. We then discuss how our lower bound
analysis method must be enhanced to better capture the complexity of this algorithm. Finally,
we present an upper bound.

5.1 Background on the CYK algorithm
▶ Definition 9 ([41]). A Context-Free Grammar is a 4-tuple (V,R, Σ, T) where

V is a finite set called the variables;
Σ is a finite set, disjoint from V , called the terminals;
R is a finite relation in V × (V ∪Σ∪ ϵ)∗, where the ∗ represents the Kleene star operation
and ϵ denotes the empty string;
T ∈ V is the start variable.

Elements of R are referred to as rules and are generally given in the form A→ w, where
A ∈ V , and w ∈ (V ∪Σ∪ ϵ)∗. If u, v, w ∈ (V ∪Σ∪ ϵ)∗ and if A→ w is a rule of the grammar,
we say that uAv yields uwv, written as uAv ⇒ uwv. We say that u derives v, written u⇒∗ v,

L. De Stefani and V. Gupta 49:15

Algorithm 5 Psudocode for the Cocke-Younger-Kasami algorithm.

1: Input {w1, ..., wn}, (V, Σ,R, T)
2: Output parse
3: parse← False
4: S ← False
5: if n = 0 then
6: if (T → ϵ) ∈ R then
7: parse← True
8: return
9: for i = 1 to n do

10: for each unit production (A→ a) ∈ R do
11: if a = wi then
12: S(i, i)[A]← True
13: for l = 2 to n do
14: for i = 1 to n− l + 1 do
15: j ← i + l − 1
16: for k = i to j − 1 do
17: for each binary production (A→ BC) ∈ R do
18: if S(i, k)[B] and S(k + 1, j)[C] then
19: S(i, j)[A]← True
20: if T ∈ S(1, n) then
21: parse← True

if u = v or if there exists a sequence u1, u2, . . . , uk for k ≥ 1 such that ui ∈ (V ∪Σ ∪ ϵ)∗ and
u⇒ u1 ⇒ u2 ⇒ . . .⇒ uk ⇒ v. The language of a CFG is the set of all strings w ∈ Σ∗ that
can be derived from the starting variable T , that is {w ∈ Σ∗ s.t. T ⇒∗ w}. A CFG is in
Chomsky’s Normal Form (CNF) if every rule is in the form: A→ BC, or A→ a, or T → ϵ,
where A is any variable in V , B and C can be any pair in (V \ S)× (V \ S), and a can be
any terminal in Σ. Any CFG can be transformed into an equivalent one in CNF through a
simple iterative algorithm [41]. We refer to the number of rules |R| as the size of a CFG. We
denote the set of binary rules (A→ BC) in a CFG with RB ⊂ R, the set of terminal rules
(A→ a) with RT ⊂ R, and the number of distinct right-hand sides in RB with Γ.

Given a CFG (V,R, Σ, T) in CNF, and a string w = w1w2 . . . wn, the Cocke–Younger–
Kasami (CYK) algorithm, henceforth referred to as ACY K , decides whether w is part of the
language of the CFG. We refer to the standard implementation provided in Algorithm 5.
Let S (i, j) be the set of variables that derive the substring wiwi+1 . . . wj . CYK uses a DP
approach to compute all sets S(i, j) for 1 ≤ i ≤ j ≤ n using an adaptation of prototype
algorithm A∗. ACY K determines whether w is a member of the language generated by the
given CFG by checking whether T ∈ S(1, n) (i.e., whether T derives w).

Memory representation model. We assume that the variables in V can be referenced by
index and that such index can be stored in a single memory word. We represent subsets of
V (the results of subproblems S(i, j)) using a one-hot encoding with ⌈|V |/s⌉ memory words,
where s denotes the number of bits in a memory word. Thus, given the representation of one
such subset in the memory, to check whether a variable Vi is a member of the subset it is
sufficient to access the (i mod s)-th bit of the ⌊i/s⌋-th memory word.

WADS 2025

49:16 On the I/O Complexity of the CYK Algorithm and DP Algorithms

S(i, j)

A B C

A → BD

A → DG C → AB

C → DE

k = i i + 2 j k = i i + 2 j

Figure 3 Each subproblem S(i, j) is represented by multiple variable roots (in black), which is
the result of the composition multiple grammar roots (in purple), which in turn are the composition
of multiple leaves (in green).

We assume that each grammar rule is represented utilizing at most three memory words
each used to represent the index of the left-hand side and at most two to represent the
right-hand side (either the index of the two variables or the code for a terminal symbol).

5.2 I/O lower bound
While the CYK algorithm shares the underlying structure of relations between subproblems
of the prototype algorithm A∗, it presents several non-trivial complications due to the
application of the grammar rules that, in turn, require a refinement of our analysis methods
and, in particular, of the CDAG construction. In this section, we will assume that the set
of grammar rules R are such that no two rules have the same right-hand side. While this
might not always hold in practice, our analysis can still be applied by considering a subset of
rules of the considered grammar which satisfies this condition.

CYK CDAG construction. The construction of the CDAG representing CYK’s execu-
tion for an input string w with n characters and a CFG in CNF (V,R, Σ, T), called
GCY K (n, (V,R, Σ, T)), follows a recursive structure which uses as a basis G = (V, E) ∈ G(n).
We describe the necessary modification focusing on the sub-CDAG for a single S(i, j) sub-
problem. A visual depiction of the ensuing description is provided in Figure 3:

For the base of the construction, for each S(i, i), the CDAG has |V |/s vertices, each
corresponding to the encoding of one of the possible variables of the grammar. These
vertices serve as the input of the CDAG.
Each R-vertex of G, corresponding to the computation of the solution of one of the
subproblems S(i, j), is replaced by |V |/s vertices, each representing a part of the encoding
of the set of variables V . We refer to this set of vertices as “variable roots” VR.
Consider a variable root v corresponding to subproblem S(i, j) and variable A ∈ V . v

forms the root of a binary tree, which has as its leaves vertices for each rule having A as
its left-hand side. We denote the set of these vertices as “grammar roots” GR. Note that
as only one variable can appear on the left-hand side of a rule, the trees composed in this
way are vertex disjoint. Further, for each S(i, j)) there will be at least Γ/s such vertices.
For each subproblem S(i, j), consider one of its grammar roots u corresponding to rule
γ ∈ RB. u forms the root of a binary tree combining the results of j − i “leaf-vertices”.
Each leaf vertex corresponds to a combination of the subproblems S(i, k) and S(k + 1, j),
for i ≤ k < j. Such a vertex has as predecessors the variable root vertices of subproblems
S(i, k) and S(k + 1, j) encoding the variables appearing in the right-hand side of rule γ.

L. De Stefani and V. Gupta 49:17

Given the CDAG GCY K (n, (V,R, Σ, T)), we generalize the notion of rows (resp., columns)
introduced in Section 3 by having row ri (resp. column cj) include all vertices in VR
corresponding to the encoding of the results of subproblems S(i, j) for 1 ≤ j ≤ n (resp., for
1 ≤ i ≤ n).The definition of W -cover generalizes to GCY K (n, (V,R, Σ, T)). We observe that
a property analogous to that outlined in Lemma 1 holds for GCY K (n, (V,R, Σ, T)) as well:

▶ Lemma 10. Given a CDAG GCY K (n, (V,R, Σ, T)), let W1, . . . , Wn−1 denote its W -cover.
Any set of x VR-vertices in Wi contain at most x2/4 interacting pairs, each of which forms
the predecessors of a unique L-vertex belonging to a unique GR-vertex.

Proof. Consider any set of x VR-vertices in Wi containing xc vertices in column i and x−xc

vertices in row i + 1. Since vertices in the same row (or column) don’t interact, there are at
most x (x− xc) ≤ x2/4 interacting pairs.

Consider any two such distinct interacting pairs:
(

vA
k,i, vB

i+1,l

)
and

(
vC

m,i, vD
i+1,n

)
(where

vA
k,i is a VR-vertex corresponding to variable A in row k and column i). Any leaf produced

by
(

vA
k,i, vB

i+1,l

)
must correspond to a rule with right-hand side “AB”. From the assumption

that every rule in R has a unique right-hand side, it follows that there is only one such rule
and therefore

(
vA

k,i, vB
i+1,l

)
must produce a single leaf.

To show that the leaves produced by
(

vA
k,i, vB

i+1,l

)
and

(
vC

m,i, vD
i+1,n

)
belong to distinct

GR-vertices, consider the following two cases:
1. If k ̸= m or l ̸= i, it follows from Lemma 1 that the leaves produced belong to different

roots, and therefore must also belong to different grammar roots.
2. Otherwise, it must be the case that A ̸= C or B ̸= D (since the two interacting pairs are

assumed to be distinct). It follows that the two leaves produced correspond to different
rules in R and therefore belong to distinct grammar roots. ◀

I/O lower bound proof. We analyze the I/O complexity of any sequential computation for
the CYK algorithm by analyzing the CDAG corresponding to the given CFG and the input
string to be considered. We first state two results that correspond each to a modification of
the results in Lemma 3 and, respectively, of Lemma 6 for the family of CDAG corresponding
to execution of the CYK algorithm:

▶ Lemma 11. Given a CDAG GCY K (n, (V,R, Σ, T)), let L′ ⊂ L be such that vertices in
L′ belong to the tree sub-DAGs of at most ρ distinct GR-vertices. The set R′ ⊆ VR that
includes all VR-vertices that are predecessors of at least one vertex in L′ has cardinality at
least |L′|/√ρ.

Proof. Consider the W -cover of GCY K (n, (V,R, Σ, T)) with the adapted definition for the
CYK CDAG discussed in Section 5.2. As any V R-vertex can be a member of at most two
distinct Wi’s we have:

|R′| ≥ 1
2

n−1∑
i=1
|R′ ∩Wi|. (7)

By definition, each vertex in L has a distinct pair of V R-vertex predecessors which, by
construction, are both included in exactly one set Wi. Let ai be the number of vertices from
L′ with both predecessors in Wi. By the assumptions we have:

n−1∑
i=1

ai = |L′| (8)

WADS 2025

49:18 On the I/O Complexity of the CYK Algorithm and DP Algorithms

By Lemma 10, for any Wi, each interacting pair of V R-vertices in it are the predecessors
of a distinct L-vertex belonging to the tree sub-CDAG of a distinct GR-vertex. From the
assumption that vertices in L′ belong to at most ρ distinct roots, we have:

max
i=1,...,n−1

ai ≤ ρ, (9)

Furthermore, from Lemma 10, we know that vertices in |R′ ∩Wi| can interact to produce at
most |R′ ∩Wi|2/4 vertices in L′. Thus,

n−1∑
i=1

|R′ ∩Wi|2

4 ≥
n−1∑
i=1

ai ⇒
n−1∑
i=1
|R′ ∩Wi| ≥

n−1∑
i=1

2
√

ai (10)

By (7), (10), (8), (9), and Lemma 2 (in this order) we have:

|R′| ≥ 1
2

n−1∑
i=1
|R′ ∩Wi| ≥

n−1∑
i=1

√
ai ≥

|L′|
√

ρ
. ◀

The proof follows a reasoning analogous to that used to prove Lemma 3 adapted for the
CDAG GCY K (n, (V,R, Σ, T)) by using the property of L-vertices of the CYK CDAG states
in Lemma 10 in place of Lemma 1.

▶ Lemma 12. Given GCY K (n, (V,R, Σ, T)), let A = {vi1,j1 , vi2,j2 , . . .} be a subset of GR-
vertices where vil,jk

is a GR-vertex corresponding to subproblem S(ik, jk). Any dominator
set D of A has cardinality at least |D| ≥ min (|A|, min jk − ik).

The proof corresponds to the one of Lemma 6 where the tree sub-CDAGs rooted in
GR-vertices are considered instead of the R vertices of G(n).

A lower bound to the I/O complexity of the CYK algorithm can be obtained by following
steps analogous to those used in the proof of Theorem 7 with opportune adjustments matching
the modifications in the enhanced CDAG described in this section.

▶ Theorem 13. Consider a string w of length n and a CFG (V,R, Σ, T) in CNF. The
number of I/O operations executed by ACY K when deciding whether w is a member of the
language of the given grammar using a machine equipped with a cache memory of size M

and such that B contiguous can be moved with each I/O operation is bounded as:

IOGCY K
(n, m, B) ≥ max

{
(n− 6M − 1)3

18
√

M
Γ− 2MΓ, n

}
1
B

where Γ denotes the number of distinct right-hand sides in RB.

By Theorem 13, we have that for M ≤ c1n, where c1 is a sufficiently small positive
constant value, computations of the CYK algorithm require Ω

(
n3Γ√
MB

)
I/O operations. Note

that if the considered CFG is such that Γ = Θ (|RB |) our lower bound shows a direct
dependence of the I/O complexity of execution of the CYK algorithm on the size of the
considered grammar. Indeed there are many possible grammars for which this is the case.
Finally, while the result of Theorem 7 holds for computations with recomputation, it is also
possible to obtain an I/O lower bound for schedules in which recomputation is not allowed
by modifying the analysis given in Theorem 4.

L. De Stefani and V. Gupta 49:19

5.3 On the tightness of the bounds

We refine Valiant’s DP-Closure Algorithm [13] to obtain an I/O efficient recursive divide-
and-conquer implementation of the CYK algorithm, henceforth referred to as ACY K . While
the CYK algorithm follows the general structure of the Prototype Algorithm 1, and is hence
amenable to the approach in [13], the analysis in [13] does not directly apply to the case in
which the size of the given CNF cannot be considered as constant with respect to the size of
the cache. Our algorithm, ACY K , manages I/O efficiently by opportunely iterating over the
grammar rules and by removing redundant computations due to grammar rules with the
same right-hand side.

Given an input string w of length n− 1 and a CFG (V,R, Σ, T) in CNF, we use an n× n

matrix X to represent the the values of the subproblems computed by the CYK algorithm
(corresponding to R-vertices as defined in Section 5.2): X[i, j + 1] corresponds to the solution
of subproblem S(i, j), i.e., a sequence of length |V | with binary values, where the index
corresponding to variable A ∈ V represents whether variable A can derive the substring
wiwi+1 . . . wj of the input.

First, ACY K computes the input values corresponding to subproblems S(i, i) for 1 ≤ i ≤ n

(i.e., the values of X[i, i + 1]): Each character in the input string w is compared with the
right-hand side of each terminal rule in RT , and the appropriate values are stored. The rest
of the computation involves executing Valiant’s DP-Closure Algorithm (Algorithm 2) using a
modified version of Valiant’s Star Algorithm (Algorithm 3, called “Valiant’s Star Algorithm
for CYK” (A∗

CY K) which is presented in Algorithm 6.

Algorithm 6 A∗
CY K , Valiant’s Star Algorithm for CYK.

1: Input X ▷ Top-left and bottom-right are assumed to be fully computed
2: Output X ▷ DP-Closure of X is computed in-place
3: if dim(X) = 2 then ▷ Root has been fully computed. Update all variable roots
4: for A ∈ V matched with placeholder P do
5: XA ← XP

6: return
7:

[X22 X23
X33

]
← ACY K∗

([X22 X23
X33

])
8: for P → BC in RΓ

B do
9: XP

13 ← XP
13 + XB

12 ·XC
13 ▷ Computed using Matrix Multiply and Accumulate

10:
[X11 X13

X33

]
← ACY K∗

([X11 X13
X33

])
11: for P → BC in RΓ

B do
12: XP

24 ← XP
24 + XB

23 ·XC
34

13:
[X22 X24

X44

]
← ACY K∗

([X22 X24
X44

])
14: for P → BC in RΓ

B do
15: XP

14 ← XP
14 + XB

12 ·XC
24

16: XP
14 ← XP

14 + XB
13 ·XC

34

17:
[X11 X14

X44

]
← ACY K∗

([X11 X14
X44

])

A∗
CY K introduces two modifications over Valiant’s Star Algorithm: First, the algorithm

iterates over the rules of the grammar with distinct right-hand-sides in lines 8, 11, and 14,
calling the subroutine Matrix Multiply and Accumulate with the variable roots corresponding
to each rule in the grammar. Second, to avoid computing rules with identical right-hand
sides more than once, let RΓ

B denote a set of binary rules each having a unique right-hand
side from RB of maximum cardinality. In this set, the corresponding left-hand sides are
replaced with placeholder variables. For any subproblem, once the value corresponding to a

WADS 2025

49:20 On the I/O Complexity of the CYK Algorithm and DP Algorithms

rule in RΓ
B is fully computed, it can be used to update the value corresponding to all variable

roots producing the same right-hand side through a rule in RB . This is done in lines 4 and 5
as the base case implies that all leaves for the subproblem have been computed.

▶ Theorem 14. Given an input string w of length n and a CFG (V,R, Σ, T) in CNF,
algorithm ACY K decides whether w is a member of the language of the given grammar. When
run on a machine equipped with a cache of size M , the number of I/O operations executed by
ACY K can be bound as:

IOACY K
(n, M) ≤ O

((
n3Γ√

M
+ n2Γ log M + n2|RB |+ n|RT |

)
1
B

)
.

Proof. When computing S(i, i) for 1 ≤ i ≤ n, ACY K compares each character of input string
w with the right-hand side of each terminal rule in RT . Doing so incurs at most O(n|R|T /B)
I/O operations.

In the following, we use n to denote the dimension of the input (i.e., n = dim(X)). The
number of I/O operations executed by Valiant’s Star Algorithm for CYK is at most:

IOACY K∗ (n) ≤

O
(

|RB |
B

)
if n ≤ 2,

4IOACY K∗

(
n
2

)
+ 4Γ(IOMMA

(
n
4

)
+ O(1)) otherwise

(11)

By [13, Lemma 2.1], the number of I/O operations executed by Matrix Multiply and
Accumulate is:

IOMMA (n) ≤
{
O(n2

B) if n2 ≤M,

O(n3

B
√

M
) otherwise

(12)

Solving the recursion in (11) using (12) yields:

IOACY K∗ (n) ≤ O
(

n3Γ
B
√

M

)
+ 4log (n/

√
M)O

(
MΓ
B

log M + M |RB |
B

)
≤ O

(
n3Γ

B
√

M
+ n2Γ

B
log M + n2|RB |

B

)
(13)

Finally, by adapting that analysis in [13] we can bound the number of I/O operations executed
by the proposed algorithm ACY K as:

IOACY K
(n) ≤

{
O(1) if n ≤ 2,

2IOACY K
(n/2) + IOA∗

CY K
(n) +O(1) otherwise

Expanding the recurrence, by (13), and adding the cost of processing the input, we have:

IOACY K
(n) ≤ O

(
n3Γ

B
√

M
+ n2Γ

B
log M + n2|RB |

B
+ n|RT |

B

)
◀

When M < c1n, where c1 is a sufficiently small positive constant, the lower bound
in Theorem 13 simplifies to Ω

(
n3Γ

B
√

M

)
, while the upper bound in Theorem 14 becomes

O(n3Γ
B

√
M

+ n2|RB |
B + n|RT |

B). Hence, if (n|RB | + |RT |)/Γ ∈ O(n2/
√

M), the lower-bound
asymptotically matches the upper-bound. When disallowing recomputation, a similar analysis
shows our upper and lower bounds match under the same condition for M < c2n, where c2
is a sufficiently small positive constant.

L. De Stefani and V. Gupta 49:21

6 Conclusion

This work contributed to the characterization of the I/O complexity of Dynamic Programming
algorithms by establishing asymptotically tight lower bounds for a general class of DP
algorithms sharing a common structure of sub-problem dependence. Our technique exploits
common properties of the CDAGs corresponding to said algorithms, which makes it promising
for the analysis of other families of recursive algorithms, in particular other families of DP
algorithms of interest. The generality of our technique is further showcased by the ability
to extend it to more complex algorithms, such as the Cocke-Younger-Kasami, for which we
provide an (almost) asymptotically tight I/O lower bound and a matching algorithm.

Our analysis yields lower bounds both for computations in which no intermediate value is
computed more than once and for general computations allowing recomputation. By doing
so we reveal how when the size of the available cache is greater than 2n and o

(
n2)

, schedules
using recomputation can achieve an asymptotic reduction of the number of required I/O
operations by a factor Θ

(
n2/
√

M
)

. This is particularly significant as in many cases of
interest (e.g., Matrix Multiplication, Fast Fourier Transform) recomputation has been shown
to enable a reduction of the I/O cost by at most a constant multiplicative factor.

Although it is known that recomputation can decrease the space and I/O complexity of
certain CDAGs, we are still far from characterizing those CDAGs for which recomputation
proves effective. This overarching objective remains a challenge for any efforts aimed at
developing a general theory of the communication requirements of computations.

References
1 Alok Aggarwal and S Vitter, Jeffrey. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.
2 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Communication-optimal

parallel and sequential Cholesky decomposition. In Proceedings of the twenty-first annual
symposium on Parallelism in algorithms and architectures, pages 245–252, 2009.

3 Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. Graph expansion and
communication costs of fast matrix multiplication. Journal of the ACM (JACM), 59(6):1–23,
2013. doi:10.1145/2395116.2395121.

4 Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60(6):503–515, 1954.

5 Gianfranco Bilardi and Lorenzo De Stefani. The I/O complexity of Strassen’s matrix multiplic-
ation with recomputation. In Workshop on Algorithms and Data Structures, pages 181–192.
Springer, 2017. doi:10.1007/978-3-319-62127-2_16.

6 Gianfranco Bilardi and Lorenzo De Stefani. The I/O complexity of Toom-Cook integer
multiplication. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2034–2052. SIAM, 2019. doi:10.1137/1.9781611975482.123.

7 Gianfranco Bilardi and Lorenzo De Stefani. The DAG Visit Approach for Pebbling and I/O
Lower Bounds. In In Proc. FSTTCS 2022, volume 250, pages 7:1–7:23, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSTTCS.2022.
7.

8 Gianfranco Bilardi and Enoch Peserico. A characterization of temporal locality and its
portability across memory hierarchies. In International Colloquium on Automata, Languages,
and Programming, pages 128–139. Springer, 2001. doi:10.1007/3-540-48224-5_11.

9 Gianfranco Bilardi, Andrea Pietracaprina, and Paolo D’Alberto. On the space and access
complexity of computation DAGs. In Graph-Theoretic Concepts in Computer Science: 26th
International Workshop, WG 2000 Konstanz, Germany, June 15–17, 2000 Proceedings 26,
pages 47–58. Springer, 2000. doi:10.1007/3-540-40064-8_6.

WADS 2025

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/2395116.2395121
https://doi.org/10.1007/978-3-319-62127-2_16
https://doi.org/10.1137/1.9781611975482.123
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.7
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.7
https://doi.org/10.1007/3-540-48224-5_11
https://doi.org/10.1007/3-540-40064-8_6

49:22 On the I/O Complexity of the CYK Algorithm and DP Algorithms

10 Gianfranco Bilardi and Franco P Preparata. Horizons of parallel computation. Journal of
Parallel and Distributed Computing, 27(2):172–182, 1995. doi:10.1006/JPDC.1995.1080.

11 Gianfranco Bilardi and Franco P Preparata. Processor—time tradeoffs under bounded-speed
message propagation: Part II, lower bounds. Theory of Computing Systems, 32(5):531–559,
1999. doi:10.1007/S002240000131.

12 Guy E Blleloch and Yan Gu. Improved parallel cache-oblivious algorithms for dynamic
programming and linear algebra. arXiv preprint, 2018. arXiv:1809.09330.

13 Cary Cherng and Richard E Ladner. Cache efficient simple dynamic programming. Discrete
Mathematics & Theoretical Computer Science, 2005.

14 Rezaul Chowdhury, Pramod Ganapathi, Yuan Tang, and Jesmin Jahan Tithi. Provably
efficient scheduling of cache-oblivious wavefront algorithms. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 339–350, 2017. doi:10.
1145/3087556.3087586.

15 Rezaul Chowdhury, Pramod Ganapathi, Stephen Tschudi, Jesmin Jahan Tithi, Charles
Bachmeier, Charles E Leiserson, Armando Solar-Lezama, Bradley C Kuszmaul, and Yuan
Tang. Autogen: Automatic discovery of efficient recursive divide-8-conquer algorithms for
solving dynamic programming problems. ACM Transactions on Parallel Computing (TOPC),
4(1):1–30, 2017. doi:10.1145/3125632.

16 Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-oblivious dynamic programming.
In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
591–600. Citeseer, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109622.

17 Rezaul Alam Chowdhury and Vijaya Ramachandran. The cache-oblivious gaussian elimination
paradigm: theoretical framework, parallelization and experimental evaluation. In Proceedings
of the nineteenth annual ACM Symposium on Parallel Algorithms and Architectures, pages
71–80, 2007. doi:10.1145/1248377.1248392.

18 Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-efficient dynamic programming
algorithms for multicores. In Proceedings of the twentieth annual symposium on Parallelism in
algorithms and architectures, pages 207–216, 2008. doi:10.1145/1378533.1378574.

19 Rezaul Alan Chowdhury, Hai-Son Le, and Vijaya Ramachandran. Cache-oblivious dynamic
programming for bioinformatics. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 7(3):495–510, 2008.

20 John Cocke. Programming languages and their compilers: Preliminary notes. New York
University, 1969.

21 Lorenzo De Stefani and Vedant Gupta. On the I/O complexity of the CYK algorithm
and of a family of related DP algorithms. arXiv preprint arXiv:2410.20337, 2024. doi:
10.48550/arXiv.2410.20337.

22 Erik D Demaine, Andrea Lincoln, Quanquan C Liu, Jayson Lynch, and Virginia Vassilevska
Williams. Fine-grained I/O complexity via reductions: New lower bounds, faster algorithms,
and a time hierarchy. arXiv preprint arXiv:1711.07960, 2017. arXiv:1711.07960.

23 Xiangyun Ding, Yan Gu, and Yihan Sun. Parallel and (nearly) work-efficient dynamic
programming. In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 219–232, 2024. doi:10.1145/3626183.3659958.

24 Aaron Dunlop, Nathan Bodenstab, and Brian Roark. Reducing the grammar constant: an
analysis of CYK parsing efficiency. Technical report, Technical report CSLU-2010-02, OHSU,
2010.

25 Reza Farivar, Harshit Kharbanda, Shivaram Venkataraman, and Roy H Campbell. An
algorithm for fast edit distance computation on GPUs. In 2012 Innovative Parallel Computing
(InPar), pages 1–9. IEEE, 2012.

26 Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Computer Science (Cat.
No. 99CB37039), pages 285–297. IEEE, 1999. doi:10.1109/SFFCS.1999.814600.

https://doi.org/10.1006/JPDC.1995.1080
https://doi.org/10.1007/S002240000131
https://arxiv.org/abs/1809.09330
https://doi.org/10.1145/3087556.3087586
https://doi.org/10.1145/3087556.3087586
https://doi.org/10.1145/3125632
http://dl.acm.org/citation.cfm?id=1109557.1109622
https://doi.org/10.1145/1248377.1248392
https://doi.org/10.1145/1378533.1378574
https://doi.org/10.48550/arXiv.2410.20337
https://doi.org/10.48550/arXiv.2410.20337
https://arxiv.org/abs/1711.07960
https://doi.org/10.1145/3626183.3659958
https://doi.org/10.1109/SFFCS.1999.814600

L. De Stefani and V. Gupta 49:23

27 Zvi Galil and Kunsoo Park. Dynamic programming with convexity, concavity and sparsity.
Theoretical Computer Science, 92(1):49–76, 1992. doi:10.1016/0304-3975(92)90135-3.

28 Te Chiang Hu and Man Tak Shing. Computation of matrix chain products. Part I. SIAM
Journal on Computing, 11(2):362–373, 1982. doi:10.1137/0211028.

29 Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov, Yongquan Lu, Charles
Leiserson, and Rezaul Chowdhury. Deriving divide-and-conquer dynamic programming al-
gorithms using solver-aided transformations. ACM SIGPLAN Notices, 51(10):145–164, 2016.

30 Mohammad Mahdi Javanmard, Pramod Ganapathi, Rathish Das, Zafar Ahmad, Stephen
Tschudi, and Rezaul Chowdhury. Toward efficient architecture-independent algorithms for
dynamic programs. In High Performance Computing: 34th International Conference, ISC
High Performance 2019, Frankfurt/Main, Germany, June 16–20, 2019, Proceedings 34, pages
143–164. Springer, 2019. doi:10.1007/978-3-030-20656-7_8.

31 Hong Jia-Wei. I/O complexity: The red-blue pebble game. In Proceedings of the thirteenth
annual ACM symposium on Theory of computing, pages 326–333, 1981.

32 Tadao Kasami. An efficient recognition and syntax-analysis algorithm for context-free languages.
Coordinated Science Laboratory Report no. R-257, 1966.

33 Donald E. Knuth. Optimum binary search trees. Acta informatica, 1:14–25, 1971. doi:
10.1007/BF00264289.

34 Richard Koch, Tom Leighton, Bruce Maggs, and Satish Rao. Work-preserving emulations
of fixed-connection networks. In Proceedings of the twenty-first annual ACM symposium on
Theory of computing, pages 227–240, 1989.

35 Martin Lange and Hans Leiß. To CNF or not to CNF? an efficient yet presentable
version of the cyk algorithm. Informatica Didactica, 8(2009):1–21, 2009. URL: http:
//www.informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009.

36 J-S Park, Michael Penner, and Viktor K Prasanna. Optimizing graph algorithms for improved
cache performance. IEEE Transactions on parallel and distributed systems, 15(9):769–782,
2004. doi:10.1109/TPDS.2004.44.

37 Cynthia A Patterson, Marc Snir, and Susan L Graham. Getting up to speed: The future of
supercomputing. National Academies Press, 2005.

38 Vijaya Ramachandran. Cache-oblivious computation: Algorithms and experimental evaluation.
In 2007 International Conference on Computing: Theory and Applications (ICCTA’07), pages
20–26. IEEE, 2007. doi:10.1109/ICCTA.2007.34.

39 John E Savage. Extending the Hong-Kung model to memory hierarchies. In International
Computing and Combinatorics Conference, pages 270–281. Springer, 1995. doi:10.1007/
BFB0030842.

40 Jacob Scott, Olga Holtz, and Oded Schwartz. Matrix multiplication I/O-complexity by
path routing. In Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures, pages 35–45, 2015. doi:10.1145/2755573.2755594.

41 Michael Sipser. Introduction to the Theory of Computation. ACM Sigact News, 27(1):27–29,
1996. doi:10.1145/230514.571645.

42 Xinying Song, Shilin Ding, and Chin-Yew Lin. Better binarization for the CYK parsing. In
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing,
pages 167–176, 2008. URL: https://aclanthology.org/D08-1018/.

43 Shanjiang Tang, Ce Yu, Jizhou Sun, Bu-Sung Lee, Tao Zhang, Zhen Xu, and Huabei Wu.
Easypdp: An efficient parallel dynamic programming runtime system for computational
biology. IEEE Transactions on Parallel and Distributed Systems, 23(5):862–872, 2011. doi:
10.1109/TPDS.2011.218.

44 Yuan Tang, Ronghui You, Haibin Kan, Jesmin Jahan Tithi, Pramod Ganapathi, and Rezaul A
Chowdhury. Cache-oblivious wavefront: Improving parallelism of recursive dynamic program-
ming algorithms without losing cache-efficiency. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 205–214, 2015.

WADS 2025

https://doi.org/10.1016/0304-3975(92)90135-3
https://doi.org/10.1137/0211028
https://doi.org/10.1007/978-3-030-20656-7_8
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/BF00264289
http://www.informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009
http://www.informatica-didactica.de/cmsmadesimple/index.php?page=LangeLeiss2009
https://doi.org/10.1109/TPDS.2004.44
https://doi.org/10.1109/ICCTA.2007.34
https://doi.org/10.1007/BFB0030842
https://doi.org/10.1007/BFB0030842
https://doi.org/10.1145/2755573.2755594
https://doi.org/10.1145/230514.571645
https://aclanthology.org/D08-1018/
https://doi.org/10.1109/TPDS.2011.218
https://doi.org/10.1109/TPDS.2011.218

49:24 On the I/O Complexity of the CYK Algorithm and DP Algorithms

45 Leslie Valiant. General context-free recognition in less than cubic time. J. Comput. Syst. Sci.,
1974.

46 F Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proceedings
of the twelfth annual ACM symposium on Theory of computing, pages 429–435, 1980. doi:
10.1145/800141.804691.

47 Daniel H Younger. Recognition and parsing of context-free languages in time n3. Information
and control, 10(2):189–208, 1967. doi:10.1016/S0019-9958(67)80007-X.

https://doi.org/10.1145/800141.804691
https://doi.org/10.1145/800141.804691
https://doi.org/10.1016/S0019-9958(67)80007-X

	1 Introduction
	2 Preliminaries
	3 CDAG construction
	4 I/O analysis for computations of CDAGs in G(n)
	4.1 I/O lower bound for computations with no recomputation
	4.2 I/O lower bound for computations with allowed recomputation
	4.3 I/O analysis for notable Dynamic Programming algorithms

	5 I/O analysis for the Cocke-Younger-Kasami algorithm
	5.1 Background on the CYK algorithm
	5.2 I/O lower bound
	5.3 On the tightness of the bounds

	6 Conclusion

