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Abstract
We study the following question, which has been considered since the 90’s: Does every st-planar
graph admit a planar straight-line dominance drawing? We show concrete evidence for the difficulty
of this question, by proving that, unlike upward planar straight-line drawings, planar straight-line
dominance drawings with prescribed y-coordinates do not always exist and planar straight-line
dominance drawings cannot always be constructed via a contract-draw-expand inductive approach.
We also show several classes of st-planar graphs that always admit a planar straight-line dominance
drawing. These include st-planar 3-trees in which every stacking operation introduces two edges
incoming into the new vertex, st-planar graphs in which every vertex is adjacent to the sink, and
st-planar graphs in which no face has the left boundary that is a single edge.
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1 Introduction

Drawings of directed graphs are an evergreen research topic in the graph drawing literature.
Early papers on the subject go back to the 80’s [13, 14, 34] and the number of papers on the
topic published since 2023 is in double digits [1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 16, 20, 22, 23, 24,
25, 28, 30]. From an applicative perspective, many domains require techniques for visualizing

© Patrizio Angelini, Michael A. Bekos, Giuseppe Di Battista, Fabrizio Frati, Luca Grilli, and
Giacomo Ortali;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pangelini@johncabot.edu
https://orcid.org/0000-0002-7602-1524
mailto:bekos@uoi.gr
https://orcid.org/0000-0002-3414-7444
mailto:giuseppe.dibattista@uniroma3.it
https://orcid.org/0000-0003-4224-1550
mailto:fabrizio.frati@uniroma3.it
https://orcid.org/0000-0001-5987-8713
mailto:luca.grilli@unipg.it
https://orcid.org/0000-0002-2463-3772
mailto:giacomo.ortali@unipg.it
https://orcid.org/0000-0002-4481-698X
https://doi.org/10.4230/LIPIcs.WADS.2025.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


5:2 On Planar Straight-Line Dominance Drawings

directed graphs, such as visualization tools for biological networks and SIEM systems for
cyber threat intelligence. Many standards for drawing directed graphs have been defined,
and in most of them the drawing is upward, i.e., each edge is represented by a Jordan arc
whose y-coordinates monotonically increase from the tail to the head of the edge. Di Battista
and Tamassia [14] proved that every upward planar graph (that is, a directed graph that
admits an upward planar drawing) admits an upward planar straight-line drawing, a result
analogous to Fary’s celebrated result about the geometric realizability of planar graphs [19].
In order to prove the geometric realizability of upward planar graphs, it suffices to look at
upward planar graphs whose faces are delimited by 3-cycles. Indeed, every upward planar
graph is a subgraph of an st-planar graph [14] (that is, an upward planar graph with a single
source s and a single sink t), which in turn is a subgraph of a maximal st-planar graph [14]
(that is, an st-planar graph to which no edge can be added without losing simplicity or
upward planarity).

One of the easiest algorithms, if not the easiest algorithm, for constructing upward
planar straight-line drawings is due to Di Battista, Tamassia and Tollis [15]. This algorithm
assigns x- and y-coordinates to the vertices simply by performing two pre-order traversals of
the input st-planar graph. Moreover, the algorithm constructs upward planar straight-line
drawings that are actually dominance drawings. These are xy-monotone drawings (that is,
each edge is represented by a Jordan arc whose x- and y-coordinates monotonically increase
from the tail to the head of the edge) such that, for any pair of vertices u, v, there exists
a directed path from u to v in the graph if and only if x(u) ≤ x(v) and y(u) ≤ y(v) hold
in the drawing. Dominance drawings constitute an interesting graph drawing style because
they express the reachability between vertices by their dominance relationship, i.e., by the
coordinates assigned to them; this allows one to answer reachability queries in constant time,
see, e.g, [27, 35]. For more about dominance drawings, see, e.g., [5, 8, 18, 26, 31, 32, 34].
Figure 1 shows planar straight-line drawings of an st-planar graph that are non-upward,
upward (and not xy-monotone), xy-monotone (and not dominance), and dominance.
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Figure 1 Four planar straight-line drawings of an st-planar graph G. (a) A non-upward drawing.
(b) An upward drawing. (c) An xy-monotone drawing. (d) A dominance drawing.

Di Battista, Tamassia and Tollis’s algorithm [15] does not actually construct an upward
planar straight-line drawing of every st-planar graph. Indeed, it may construct a non-planar
drawing if the input st-planar graph contains transitive edges, where an edge is transitive if
the graph contains a directed path from the tail to the head of the edge. By subdividing each
transitive edge with a new vertex, their algorithm constructs a planar dominance drawing of
any st-planar graph in which each edge is either a straight-line segment (if it is non-transitive)
or a 1-bend polyline (if it is transitive). Whether this bend per edge can be eliminated by
designing an algorithm different from the one in [15] is the question we study in this paper.
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Formally, we ask: Does every st-planar graph admit a planar straight-line dominance
drawing? Apart from the st-planar graphs without transitive edges, the question is known
to have a positive answer for series-parallel digraphs [8]. We prove the following results.

In Section 3, we prove a remarkable difference between dominance and upward drawings.
We revisit the two main approaches for the construction of upward planar straight-line
drawings of st-planar graphs and prove that they cannot be successfully applied to
construct planar straight-line dominance drawings. The first approach [14] contracts
an internal edge of the graph, constructs a drawing inductively, and then expands the
previously contracted edge to be a “short” segment. We show that there exist st-planar
graphs in which no edge can be used in the contract-draw-expand approach so to get a
planar straight-line dominance drawing. The second method [17, 21, 33] prescribes the
y-coordinates of the vertices, so that the tail of any edge is assigned a smaller y-coordinate
than its head. This additional constraint on the drawing allows for easier recursive
schemes for its construction. We prove that planar straight-line dominance drawings with
prescribed y-coordinates do not always exist. We believe that these results provide solid
evidence for the difficulty of constructing planar straight-line dominance drawings.
In Section 4, we study st-planar graphs whose underlying graph is a planar 3-tree. Planar
3-trees, also known as stacked triangulations and Apollonian networks, constitute a
common benchmark for planar graph drawing problems, as they allow for easy inductive
constructions; for example, every planar 3-tree with at least four vertices can be construc-
ted by “stacking” a vertex inside a face of a smaller planar 3-tree. For our question, the
study of st-planar 3-trees turns out to be complicated, as inductive drawing constructions
do not cope well with the dominance relationship that needs to be ensured between
vertices that are “far away” in the graph. We show how to construct planar straight-line
dominance drawings for two classes of st-planar 3-trees, the first one with a constraint
on the orientation (every stacking operation introduces two edges incoming into the new
vertex) and the second one with a constraint on the graph structure (every stacking
operation happens in a face incident to the sink). The latter graph class coincides with
the maximal st-planar graphs in which the sink is adjacent to every vertex.
In Section 5, we improve the mentioned result by Di Battista, Tamassia and Tollis [15],
by proving that a planar straight-line dominance drawing always exists for any st-planar
graph in which every transitive edge is to the right of every directed path from the tail to
the head of the edge. This result is obtained via an ear decomposition of the graph. This
shows that the problem of constructing planar straight-line dominance drawings is made
difficult by the interaction between “left transitive edges” and “right transitive edges”.

All our algorithms construct drawings whose resolution is exponentially small (or worse).
This drawback is sometimes necessary for upward planar straight-line drawings [15], and
hence also for planar straight-line dominance drawings. However, for the graph classes we
considered, we do not know whether an exponentially-small resolution is actually required in
order to construct planar straight-line dominance drawings.

2 Preliminaries

A drawing of a graph maps each vertex to a distinct point in the plane and each edge to a
Jordan arc between its endpoints. A drawing is straight-line if each edge is represented by a
straight-line segment and planar if no two edges intersect, except at common endpoints. Two
planar drawings of a connected graph are plane-equivalent if they define the same clockwise
order of the edges incident to each vertex and the same clockwise order of the vertices and
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5:4 On Planar Straight-Line Dominance Drawings

edges along the boundary of the outer face. A plane embedding is an equivalence class of
planar drawings and a plane graph is a graph with a plane embedding. Whenever we talk
about planar drawings of a plane graph, we always assume that they are in the equivalence
class associated with the plane graph. An st-plane graph is an st-planar graph with a plane
embedding (for its underlying graph) in which s and t are incident to the outer face. An
st-plane graph is maximal if no edge can be added to it while maintaining it an st-plane
graph. Since every st-planar graph can be augmented (by adding vertices and edges) to
maximal without altering the reachability between vertices [14], the existence of a planar
straight-line dominance drawing for all st-planar graphs can be decided by only looking
at maximal st-planar graphs. Note that, in any planar straight-line dominance drawing of
an st-planar graph, the vertex placements can be perturbed so that no two vertices share
the same x- or the same y-coordinate and so that the drawing remains planar, straight-line
and dominance. Hence, throughout the paper, every considered dominance drawing has
distinct x- and distinct y-coordinates for its vertices. Two vertices in a directed graph are
incomparable if no directed path goes from any of the vertices to the other one.

As a warm-up result, we prove that every Hamiltonian st-planar graph has a planar
straight-line dominance drawing. A directed graph is Hamiltonian if it contains a directed
path (v1 = s, v2, . . . , vn = t), where {v1, v2, . . . , vn} is the vertex set of the graph.

▶ Theorem 1. Hamiltonian st-planar graphs admit planar straight-line dominance drawings.

Proof. Consider a Hamiltonian st-planar graph G. Construct an upward planar straight-line
drawing Γ of G; this always exists [14]. Stretch Γ vertically, so that the slope of every edge is
in the range (45◦, 135◦). Now rotate Γ in clockwise direction by 45◦. Since the slope of every
edge is now in the range (0◦, 90◦), we have that Γ is xy-monotone. Since vertical stretch
and rotation are affine transformations, Γ is planar, as well. Finally, since G contains a
Hamiltonian path (v1, . . . , vn), vertex vj is reachable from vertex vi, for every 1 ≤ i < j ≤ n.
Since the slope of the edge (vk, vk+1) is in the range (0◦, 90◦), for k = i, . . . , j − 1, vertex vj

is in the first quadrant of vertex vi, hence Γ is a dominance drawing. ◀

3 Planar Straight-line Dominance Drawings are Difficult to Get

In this section, we revisit the two main approaches for the construction of upward planar
straight-line drawings of st-planar graphs and prove that they cannot be enhanced (or at
least not in a direct way) to construct planar straight-line dominance drawings.

3.1 Constructing Drawings via Contractions and Expansions
Di Battista and Tamassia [14] first proved that every st-plane graph admits an upward
planar straight-line drawing. Their proof extends to directed graphs a well-known proof by
Fáry [19], showing that every (undirected) plane graph admits a planar straight-line drawing.
We briefly describe the algorithm by Di Battista and Tamassia [14].

An internal edge (u, v) of a maximal st-plane graph G is contractible if it satisfies the
following conditions: (1) The vertices u and v have exactly two common neighbors, denoted
by z1 and z2; note that the cycles (u, v, z1) and (u, v, z2) delimit internal faces of G. (2) For
i = 1, 2, the edges connecting u and v with zi are both incoming or both outgoing at zi.

The contraction of a contractible edge (u, v) constructs a graph G′ by identifying u

and v into a vertex w with the following adjacencies (see Fig 2a). For every neighbor
z /∈ {u, v, z1, z2} of u (of v), we have that G′ contains an edge between w and z, which is
outgoing at z if and only if the edge between u and z (resp. between v and z) is outgoing
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at z. Also, for i = 1, 2, we have that G′ contains an edge between w and zi, which is outgoing
at zi if and only if the edges connecting u and v with zi are both outgoing at zi. It is easy
to see that G′ is a maximal st-plane graph.

The core of Di Battista and Tamassia’s algorithm lies in the following two statements1:
(i) every maximal st-plane graph G has a contractible edge (u, v), whose contraction results
in a maximal st-plane graph G′; and (ii) an upward planar straight-line drawing Γ of G can
be obtained from an upward planar straight-line drawing Γ′ of G′ by expanding w, that is,
by replacing w with a sufficiently small segment (with a suitable slope) representing (u, v).
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Figure 2 (a) The contraction of an edge (u, v) in a maximal st-plane graph. (b) A maximal
st-plane graph with no dominance-expandable edge. Thin edges are not contractible, while fat edges
are contractible but not dominance-expandable; for example, (1, 3) is not dominance-expandable,
because vertex 2 is a predecessor of vertex 3 but not a predecessor of vertex 1.

Since, depending on the geometric placement of the neighbors of w in Γ′, the edge (u, v)
might need to be an arbitrarily small segment in Γ, in order for Γ to be a dominance drawing
we need u and v to have the same successors and predecessors. That is, let S(z) be the set of
successors of a vertex z, that is, the set of all vertices z′ such that there exists a directed path
from z to z′. Analogously, let P(z) be the sets of predecessors of a vertex z. A contractible
edge (u, v) is dominance-expandable if S(u) = S(v) ∪{v} and P(v) = P(u) ∪{u}. Di Battista
and Tamassia’s approach could be enhanced to construct planar straight-line dominance
drawings if every maximal st-plane graph contained a dominance-expandable edge. However,
we can prove that there exist maximal st-plane graphs with no dominance-expandable edge,
as the one in Fig 2b, which constitutes a barrier for this approach we cannot overcome.

We remark that, for every graph class for which we can prove the existence of planar
straight-line dominance drawings in the upcoming sections, there exist graphs in the class
that do not have a dominance-expandable edge or such that the contraction of any dominance-
expandable edge would result in a graph not in the same class.

3.2 Constructing Drawings by Prescribing the y-Coordinates
Eades, Feg, Lin, and Nagamochi [17] and, independently, Pach and Tóth [33] proved that
every upward planar drawing can be straightened while preserving the y-coordinates of
the vertices. This implies that every st-plane graph admits an upward planar straight-line
drawing with prescribed y-coordinates (as long as these respect the reachability between

1 Di Battista and Tamassia’s proof actually distinguishes the case in which G contains a separating
triangle (a 3-cycle with vertices in its interior) from the case in which it does not, performing different
constructions in the two cases. However, the first case is unnecessary, as a contractible edge in an
st-planar graph can always be found, similarly to what was noted by Wood [36] for undirected graphs.
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5:6 On Planar Straight-Line Dominance Drawings

vertices). This result was strengthened by Hong and Nagamochi [21], who proved that every
internally-triconnected st-plane graph admits an upward planar straight-line convex drawing
with prescribed y-coordinates and prescribed outer face. It is interesting that, while more
constrained, drawings with prescribed y-coordinates (and a prescribed outer face) allow for
an easier recursive construction.

We now show that, unlike upward planar straight-line drawings, planar straight-line
dominance drawings with given y-coordinates do not always exist.

▶ Theorem 2. For every n ≥ 7, there exists an st-planar graph Gn with vertex set
{v1, v2, . . . , vn} such that:

there exists a planar dominance drawing of Gn such that y(vi) = i, for i = 1, . . . , n; and
there exists no planar straight-line dominance drawing of Gn such that y(vi) = i, for
i = 1, . . . , n.

v6

t=vn

s=v1

v2

v4
v5

v7

v3

(a)

v6

t=vn

s=v1

v2

v4
v5

v7

v3 ℓ1,2

ℓ3,4

(b)

Figure 3 (a) The graph for the proof of Theorem 2. (b) The rays ℓ1,2 and ℓ3,4 diverge.

Proof. The st-planar graph Gn consists of the directed paths (s = v1, v2, v5), (v1, v3, v4, v5),
(v5, v6, . . . , vn = t), and of the edges (v1, v6), (v3, v6), (v3, v7), and (v1, vn). Fig 3a shows a
planar dominance drawing of Gn with y(vi) = i, for i = 1, . . . , n. Suppose, for a contradiction,
that a planar straight-line dominance drawing Γ of Gn exists with y(vi) = i, for i = 1, . . . , n.
We prove that the plane embedding in Γ of the underlying graph of Gn is the one in Fig 3a,
except, possibly, for the position of the edge (s, t). Obviously, the path (v1, v2, v5, v6, . . . , vn)
has a unique plane embedding. Since v2 and v4 are incomparable and y(v2) < y(v4), we have
x(v4) ≤ x(v2), hence the clockwise order of the vertices along the cycle C := (v1, v3, v4, v5, v2)
is v1, v3, v4, v5, v2. From that, we get that the edges (v3, v6) and (v3, v7) lie above the path
(v3, v4, v5, v6, v7), and finally that the edge (v1, v6) lies below the path (v1, v2, v5, v6). For
any distinct i, j ∈ {1, . . . , n}, let ℓi,j be the ray starting at vi and passing through vj . Since
x(v1) < x(v3) < x(v4) ≤ x(v2), we have x(v2) − x(v1) > x(v4) − x(v3). Also, we have
y(v2) − y(v1) = y(v4) − y(v3) = 1. Hence, the ray ℓ1,2 has smaller slope than the ray ℓ3,4;
that is, such rays diverge, see Fig 3b. Since the ray ℓ1,6 has smaller slope than ℓ1,2, and since
the ray ℓ3,6 has larger slope than ℓ3,4, it follows that ℓ1,6 and ℓ3,6 also diverge, while they
meet at v6, a contradiction which proves the theorem. Note that vertices v8, . . . , vn only
serve the purpose of creating an infinite graph family. ◀

We can similarly show that one cannot, in general, prescribe the x-coordinates of a planar
straight-line dominance drawing.

Also, we can strengthen Theorem 2 by proving that, for every n ≥ 10 and for every
sequence y1 < · · · < yn of y-coordinates, there exists an st-planar graph G′

n with vertex
set {v1, . . . , vn} such that there exists a planar dominance drawing of G′

n with y(vi) = yi,



P. Angelini, M. A. Bekos, G. Di Battista, F. Frati, L. Grilli, and G. Ortali 5:7

for i = 1, . . . , n, and there exists no planar straight-line dominance drawing of G′
n with

y(vi) = yi, for i = 1, . . . , n. That is, the y-coordinates prescribed by Theorem 2 do not need
to be uniformly distributed.

The key point for this is the observation that the proof of Theorem 2 works as long as
y(v2) − y(v1) ≤ y(v4) − y(v3). Hence, we can consider the four lines y = yi, with i = 4, 5, 6, 7,
and then distinguish two cases. If y5 − y4 ≤ y7 − y6, we let our st-planar graph G′

n contain
the graph G7 from the proof of Theorem 2 and we set y(vi) = yi+3, for i = 1, . . . , 7, where
v1, . . . , v7 is the vertex set of G7. Otherwise, that is, if y7 − y6 < y5 − y4, we let our st-planar
graph G′

n contain the graph obtained by reversing the edge directions of the graph G7 and
we set y(vi) = y8−i, for i = 1, . . . , 7, where v1, . . . , v7 is the vertex set of G7.

4 st-plane 3-trees

A plane 3-tree is a plane graph recursively defined as follows. A 3-cycle embedded in the
plane is a plane 3-tree. Any plane 3-tree with n ≥ 4 vertices can be obtained from a plane
3-tree with n−1 vertices by stacking a new vertex into an internal face, that is, by connecting
the new vertex to the three vertices incident to the face. An st-plane 3-tree is an st-plane
graph whose underlying graph is a plane 3-tree. In our opinion, st-plane 3-trees constitute a
very challenging class of st-plane graphs for our problem. Indeed, the “natural” strategies
for drawing the graphs in this class are to either recursively construct and then combine the
drawings of three smaller st-plane 3-trees, or to iteratively add a single vertex to a previously
constructed drawing of a smaller st-plane 3-tree; both these strategies do not cope well with
the geometric relationship that has to be ensured for incomparable vertices. Nevertheless, in
this section we show how to obtain planar straight-line dominance drawings of two classes of
st-plane 3-trees.

4.1 Upper st-plane 3-trees
Consider the construction of an st-plane 3-tree G via repeated stacking operations. If a
vertex u is stacked into a face delimited by a cycle (a, b, c), where a and c are the source and
the sink of the cycle, respectively, then the edge (a, u) is directed from a to u, the edge (u, c)
is directed from u to c, while the edge (b, u) might be directed either way. We say that G is
an upper st-plane 3-tree if, at every stacking operation, the edge that can be directed either
way is always directed towards the newly inserted vertex. We have the following.

▶ Theorem 3. Upper st-plane 3-trees admit planar straight-line dominance drawings.

Proof. Let G be an n-vertex upper st-plane 3-tree whose outer face is delimited by the cycle
(s, m, t). Let ∆ be any triangle with vertices ps, pm, pt, where x(ps) < x(pm) < x(pt) and
y(ps) < y(pm) < y(pt). Also, let D be a closed disk in the interior of ∆ such that, for any
point p in D, we have x(pm) < x(p) < x(pt) and y(pm) < y(p) < y(pt); see Figs 4a and 4c.
We prove by induction that G admits a planar straight-line dominance drawing such that:

s lies at ps, m lies at pm, and t lies at pt; and
every internal vertex of G lies in the interior of D.

The statement clearly implies the theorem. In the base case, in which n = 3, the triangle
∆ is the required drawing of G and the statement is trivially true.

Suppose now that n > 3. Let r be the first stacked vertex in the construction of G; that
is, r is the unique vertex of G adjacent to s, m, and t. Note that the edge (m, r) is directed
away from m, given that G is an upper st-plane 3-tree. Let G1, G2, and G3 be the subgraphs

WADS 2025
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Figure 4 (a) and (c) Triangle ∆ and disk D for the input to the induction. (b) and (d) Placing
point pr (white) and disks D1, D2, and D3 (gray) inside D; an enlarged view of the placement of r

and of disks D1, D2, and D3 inside D is also shown.

of G inside the cycles (s, m, r), (s, r, t), and (m, r, t), respectively. Note that G1 is an upper
sr-plane 3-tree, G2 is an upper st-plane 3-tree, and G3 is an upper mt-plane 3-tree. Also,
each of G1, G2, and G3 has less than n vertices. Let pr be any point inside D and let ∆1,
∆2, and ∆3 be the triangles (ps, pm, pr), (ps, pr, pt), and (pm, pr, pt), respectively. Place r at
pr; by the properties of D, we have x(pm) < x(pr) and y(pm) < y(pr), which complies with
the orientation of (m, r). Let D1, D2, and D3 be closed disks such that (see Figs 4b and 4d):

disk D1 lies in the interior of ∆1 ∩ D, disk D2 lies in the interior of ∆2 ∩ D, and disk D3
lies in the interior of ∆3 ∩ D;
for any point p ∈ D2 ∪ D3, we have x(pr) < x(p) and y(pr) < y(p); and
for any point p2 ∈ D2 and any point p3 ∈ D3, if the clockwise order of the vertices of ∆ is
ps, pt, pm, then we have x(p2) < x(p3) and y(p3) < y(p2), otherwise we have y(p2) < y(p3)
and x(p3) < x(p2).

Clearly, disks D1, D2, and D3 with the above properties always exist. By induction, G1,
G2, and G3 have planar straight-line dominance drawings Γ1, Γ2, and Γ3 with s, m, r, and t

drawn at ps, pm, pr, and pt, respectively, so that the internal vertices of G1, G2, and G3 lie
in the interior of D1, D2, and D3, respectively. This results in a straight-line drawing Γ of G.

Since pr, D1, D2, and D3 lie in the interior of D, all the internal vertices of G lie in the
interior of D, as required. The upward planarity of Γ follows from the ones of Γ1, Γ2, and
Γ3. In order to prove that Γ is a dominance drawing, consider any pair of vertices u and v.

If u and v belong to the same graph Gi, for some i ∈ {1, 2, 3}, then their placement
complies with their dominance relationship, by induction.
If one of u and v is s, say u = s, then u is a predecessor of v, and indeed we have
x(u) < x(v) and y(u) < y(v). The case u = t can be discussed similarly.
If neither of u and v is s or t, and one of u and v is m, say u = m, then u is a predecessor
of v, since G is an upper st-plane 3-tree. Since x(pm) < x(p) and y(pm) < y(p), for any
point p ∈ D, we have x(u) < x(v) and y(u) < y(v).
If u is an internal vertex of G1 and v is an internal vertex of G2 or G3, then u is a
predecessor of v, since G is an upper st-plane 3-tree. Since, for any point p ∈ D1 and any
point q ∈ D2 ∪ D3, we have x(p) < x(pr) < x(q) and y(p) < x(yr) < y(q), the placement
of u and v complies with their dominance relationship.
Finally, if u is an internal vertex of G2 and v is an internal vertex of G3, then u and
v are incomparable, since G is an upper st-plane 3-tree. Since, for any point p2 ∈ D2
and any point p3 ∈ D3, we have x(p2) < x(p3) and y(p3) < y(p2), or y(p2) < y(p3) and
x(p3) < x(p2), the placement of u and v complies with their dominance relationship.

This completes the induction and the proof of the theorem. ◀
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An analogous result holds true for st-plane 3-trees such that, at every stacking operation,
the edge that can be directed either way is always directed out of the newly inserted vertex.

Trying to use a similar strategy in order to construct a planar straight-line dominance
drawing of every st-plane 3-tree might be tempting. However, the “types” of internal vertices
in a general st-plane 3-tree are more than three. Namely, referring to the notation introduced
in the proof of the theorem, the internal vertices of G2 and G3 are not all successors of r, but
rather some are predecessors, some are successors, and some are incomparable to r. Hence,
the “three-disks schema” fails, and more complex geometric invariants seem to be needed.

4.2 Sink-dominant st-plane 3-trees
We next look at the st-plane 3-trees in which every stacking operation happens in a face
incident to the sink t of the graph. This results in an st-plane 3-tree in which the sink
is adjacent to every vertex. We call this a sink-dominant st-plane 3-tree. It is easy to
observe that every n-vertex maximal st-plane graph in which the sink has degree n − 1 is a
sink-dominant st-plane 3-tree (and vice versa). We have the following.

▶ Theorem 4. Sink-dominant st-plane 3-trees admit planar straight-line dominance drawings.

Proof. Let G be an n-vertex sink-dominant st-plane 3-tree whose outer face is delimited by
the cycle (s, m, t).

Assumption. If n > 3, then let r be the internal vertex of G adjacent to s, m and t. If r is
a predecessor of m, as in Fig 5a, we add a new source s′ adjacent to s, m and t in the outer
face of G, so that the outer face of the resulting graph G′ is delimited by the 3-cycle (s′, s, t).
Now m is the internal vertex of G′ adjacent to s′, s and t; furthermore, m is a successor of s.
Hence, by possibly adding a vertex and three edges to G and changing some labels, we can
assume w.l.o.g. that the internal vertex r that is adjacent to the three vertices s, m and t

incident to the outer face of our input st-plane 3-tree G is a successor of m.

Inductive hypothesis. The proof is similar in spirit to, however more involved than, the proof
of Theorem 3. Let ∆ be any triangle with vertices ps, pm and pt, where x(ps) < x(pm) < x(pt)
and y(ps) < y(pm) < y(pt). If pm lies above the line through ps and pt, we say that ∆ is
of type A (see Fig 5b), otherwise it is of type B (see Fig 5c). Let D and E be closed disks
contained in the interior of ∆ such that:

if ∆ is of type A, then D and E are horizontally aligned, that is, they have the same two
vertical tangents, while if ∆ is of type B, then D and E are vertically aligned;
if ∆ is of type A, then D is strictly below and to the right of pm, while if ∆ is of type B,
then D is strictly above and to the left of pm; and
E is strictly above and to the right of pm.

We prove, by induction on n, that G admits a planar straight-line dominance drawing
such that:

s lies at ps, m lies at pm, and t lies at pt;
every internal vertex of G that is a successor of m lies in the interior of E; and
every internal vertex of G that is incomparable to m lies in the interior of D.

Note that, because of the assumption that r is a successor of m, no internal vertex of G

is a predecessor of m.
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t

m

s

r

s′

(a)

pt

ps

pm D

E

(b)

pm

pt

ps

D

E

(c)

Figure 5 (a) Augmenting G so that the vertex adjacent to the three vertices on the outer face is
a successor of two of them. (b) and (c) Triangle ∆ and disks D and E for the input to the induction.
In (b) ∆ is of type A, while in (c) it is of type B.

The statement clearly implies the theorem. In the base case, in which n = 3, the triangle
∆ is the required drawing of G and the statement is true. Suppose now that n > 3. We only
show the construction for the case in which ∆ is of Type B, as the other case is analogous.

Graph structure. Recall that r is the unique vertex of G adjacent to s, m and t, and that
the edge (m, r) is directed towards r; refer to Fig 6.

Let Pm := (v0 = m, v1, . . . , vℓ = r) be the longest directed path from m to r. Since
every vertex is adjacent to t and since r is a successor of m, we have that Pm exists and
is unique. For j = 1, . . . , ℓ, let Mj be the subgraph of G induced by the vertices inside or
on the boundary of the 3-cycle (vj−1, vj , t) and note that Mj is a sink-dominant st-plane
3-tree. By the fact that Pm is the longest directed path from m to r, we have that, if Mj

contains internal vertices, then the internal vertex of Mj that is adjacent to vj−1, vj and t is
a successor of vj . This implies that Mj can be drawn recursively.

Also, let Ps := (u0 = s, u1, . . . , uk = r) be the longest directed path from s to r in
G that does not pass through m. For i = 1, . . . , k, the subgraph Si of G induced by the
vertices inside or on the boundary of the 3-cycle (ui−1, ui, t) is a sink-dominant st-plane
3-tree. Further, if Si contains internal vertices, then the internal vertex of Si that is adjacent
to ui−1, ui and t is a successor of ui, hence Si can be drawn recursively.

Since every vertex of G is adjacent to t, the interior of the cycle Csm := Ps ∪ Pm ∪ (s, m)
does not contain any vertices, while it might contain some edges (and in fact it does, unless
Csm = (s, m, r)). We are going to draw Csm as a convex curve (hence the edges in its interior
will not cause crossings).

t

r

m=v0

s=u0

Sk Mℓ

u1

v1

M1
S1

Figure 6 Paths Pm and Ps (as thick lines) and graphs M1, . . . , Mℓ, S1, . . . , Sk (with gray interior).

Construction. We now draw Ps and Pm. We also draw disks inside the triangles representing
the cycles (ui−1, ui, t), for i = 1, . . . , k, and (vj−1, vj , t), for j = 1, . . . , ℓ, so that induction
can be applied in order to draw the subgraphs Si and Mj recursively. Refer to Fig 7 for an
illustration of the relative placement of the vertices of Ps and Pm and of the desired disks.
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t

s
m

u1
v1

r

D

E

S1 Sk

Mℓ

M1

Figure 7 Drawing paths Ps and Pm, disks Du
1 , Eu

1 , . . . , Du
k , Eu

k , and disks Dv
1 , Ev

1 , . . . , Dv
ℓ , Ev

ℓ .
For the sake of readability, some edges are drawn as curves, as the illustration is mainly meant to
represent the relative placement of the vertices of the paths Ps and Pm and of the listed disks.

d1 d2 ℓrpi

to
t

qi

ui−2

ui−1

D

ei
Eu

i−1
Du

i Eu
i

to
t

p̃
ui

Figure 8 Drawing vertex ui.

We start by placing r at the center of the disk E. Next, we draw the vertices u1, . . . , uk−1
in this order inside D. Let σr be the intersection of the horizontal line ℓr through r

with D, and let d1 and d2 be the leftmost and rightmost endpoints of σr, respectively. For
i = 1, . . . , k − 1, by drawing ui, we complete the drawing of the triangle ∆u

i representing
cycle (ui−1, ui, t). Then we also place suitable disks Du

i and Eu
i inside ∆u

i so that Si can be
drawn recursively.

When we have to draw ui, for some i ∈ {1, . . . , k − 1}, we assume that (see Fig 8):
(C1) the polygonal line (u0, . . . , ui−1, r) is convex and lies below ℓr;
(C2) if i > 1, the line through ui−2 and ui−1 cuts σr in its interior, at a point pi;
(C3) if i > 1, the segment between ui−1 and t cuts σr in its interior, at a point qi; and
(C4) if i > 1, the disks Du

i−1 and Eu
i−1 lie inside D and above ℓr.

We denote by ei be the rightmost point of Eu
i−1. Note that conditions (C1)–(C4) are

vacuous if i = 1 (i.e., before drawing u1). In that case, for the sake of simplicity of the
description, we let pi, qi, and ei coincide with d1.

We now explain how to draw ui. Let x = max{x(pi), x(qi), x(ei)}, let x̃ = (x(d2) + x)/2,
where x < x̃ < x(d2), and let p̃ be the point of σr with x(p̃) = x̃. We place ui at (x̃, y(r) − ϵ),
where ϵ > 0 is sufficiently small so that conditions (C1)–(C3) are satisfied when we have
to draw ui+1. Indeed, if ϵ = 0, then ui would be placed at p̃ and conditions (C1)–(C3)
would be trivially satisfied when we have to draw ui+1, hence they are also satisfied for some
sufficiently small ϵ > 0, by continuity.
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u1

D

uk−1

to
t

r

Du
k

Eu
k

to
t

Dv
ℓ

Eu
k−1

Ev
ℓ−1

σr

vℓ−1
σ′
r

Ev
ℓ

to
tE

Figure 9 Illustration for the placement of the disks Du
k , Eu

k , Dv
ℓ , and Ev

ℓ . White circles represent
initial or intermediate placements for such disks.

We now place the disks Du
i and Eu

i so that they have radius δ and centers at (x̃±ϵ′, y(r)+
ϵ′), where ϵ′ > δ > 0 are sufficiently small so that:

Du
i and Eu

i lie inside the triangle ∆u
i = (ui−1, ui, t);

Du
i and Eu

i are lower than Du
i−1 and Eu

i−1; and
condition (C4) is satisfied when we have to draw ui+1.

Indeed, if ϵ′ = δ = 0 such disks would degenerate and coincide with p̃, which is inside D and
also inside ∆u

i , as the segment ui−1t cuts σr at a point qi to the left of p̃ and the segment uit

cuts σr at a point to the right of p̃. Hence, such disks remain inside D and ∆u
i if ϵ′ > δ > 0

is sufficiently small, by continuity. Since ϵ′ > δ, disks Du
i and Eu

i lie above ℓr, hence ensuring
condition (C4). Finally, choosing δ + ϵ′ smaller than the distance between Eu

i−1 and ℓr

ensures that Du
i and Eu

i are lower than Du
i−1 and Eu

i−1.
We now draw the vertices v1, . . . , vℓ−1 in this order. For j = 1, . . . , ℓ − 1, when we draw

vj , we have drawn the triangle ∆v
j representing cycle (vj−1, vj , t). Then we also show how

to place suitable disks Dv
j and Ev

j inside ∆v
j so that Mj can be drawn recursively. This is

done very similarly to the way vertices u1, . . . , uk−1 and disks Du
1 , Eu

1 , . . . , Du
k−1, Eu

k−1 were
drawn (see again Fig 7), so we only highlight the differences here.

First, all such vertices and disks lie inside E, rather than inside D.
Second, the role previously played by σr is now played by a segment σ′

r along the vertical
line ℓ′

r through r. The endpoints of σ′
r are the lowest intersection point e1 of ℓ′

r with
the boundary of E and the intersection point of ℓ′

r with the horizontal line through u1.
This is because the vertices v1, . . . , vℓ−1 and the disks Dv

1 , Ev
1 , . . . , Dv

ℓ−1, Ev
ℓ−1, Dv

ℓ have
to be placed below (and to the right of) u1, . . . , uk−1, so to satisfy the constraints of a
dominance drawing. When a vertex vj is drawn, the segment vjt crosses the interior of σ′

r.
Third, the triangles ∆v

j are of Type A, unlike the triangles ∆u
i which are of Type B.

Hence, the disks Dv
j and Ev

j are horizontally aligned, to the right of σ′
r. The disks Dv

j

and Ev
j are above and to the left of the disks Dv

j−1 and Ev
j−1.

After the vertices v1, . . . , vℓ−1 and the disks Dv
1 , Ev

1 , . . . , Dv
ℓ−1, Ev

ℓ−1 have been drawn, it
only remains to draw the disks Du

k and Eu
k inside ∆u

k = (uk−1, uk, t) and the disks Dv
ℓ and

Ev
ℓ inside ∆v

ℓ = (vℓ−1, vℓ, t). See Fig 9. We have to place Du
k and Eu

k above σr and below
Eu

k−1, with Du
k in D and Eu

k in E; also, Eu
k has to be to the right of r. Analogously, we have

to place Dv
ℓ and Ev

ℓ in E, to the right of σ′
r and to the left of Ev

ℓ−1, with Ev
ℓ above r. Finally,

Eu
k has to be above and to the left of Ev

ℓ .
We can again use continuity arguments to prove that such disk placements exist. Indeed,

uk−1t cuts the interior of σr, hence Du
k can be initially set to be a point in the interior of σr,

to the right of uk−1t. Analogously, Dv
ℓ can be initially set to be a point in the interior of σ′

r

above vℓ−1t. Disks Eu
k and Ev

ℓ are initially set to coincide with r. Now Du
k and Eu

k can be
moved upward of a sufficiently small distance so that Du

k does not collide with uk−1t and
remains below Eu

k−1; note that now Du
k and Eu

k are in the interior of ∆u
k . Analogously, disks
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Dv
ℓ and Ev

ℓ can be moved rightward, of a sufficiently small distance so that they still are to
the left of Ev

ℓ−1 and they now both lie in the interior of ∆v
ℓ . Next, we move Eu

k rightward
and Ev

ℓ upward so that they are to the right and above r, respectively. This movement is
sufficiently small so that Eu

k remains in ∆u
k and Ev

ℓ in ∆v
ℓ , and so that Eu

k remains above
and to the left of Ev

ℓ . Finally, we enlarge the disks so that they have a positive radius. Such
a radius can be set to be sufficiently small so that all the above listed properties, which were
satisfied before such an enlargement, are still maintained.

The drawing Γ of G is completed by drawing the subgraphs M1, . . . , Mℓ, S1, . . . , Sk

recursively, with triangles ∆v
1, . . . , ∆v

ℓ , ∆u
1 , . . . , ∆u

k representing their outer faces, and with
disks Dv

1 , Ev
1 , . . . , Dv

ℓ , Ev
ℓ , . . . , Du

1 , Eu
1 , . . . , Du

k , Eu
k inside such triangles.

Correctness. The drawing Γ is straight-line by construction.
The drawings of the subgraphs M1, . . . , Mℓ, S1, . . . , Sk are planar by induction. Moreover,

the construction guarantees that the cycle Csm is represented by a convex curve which keeps
in its exterior every edge from a vertex of Csm to t. It follows that distinct subgraphs among
M1, . . . , Mℓ, S1, . . . , Sk do not cross each other, that the edges inside or on the boundary of
Csm do not cross the subgraphs M1, . . . , Mℓ, S1, . . . , Sk, and that the edges inside or on the
boundary of Csm do not cross each other. Hence, Γ is planar.

Finally, we prove that Γ is a dominance drawing.
Vertices that are internal to the same subgraph among M1, . . . , Mℓ, S1, . . . , Sk are in the
correct dominance relationship, by induction.
Vertices that are internal to distinct subgraphs among M1, . . . , Mℓ, S1, . . . , Sk are incom-
parable. This is because, for any internal vertex v of a subgraph Mj or Si, we have
that t is the only vertex incident to the outer face of Mj or Si, respectively, that is a
successor of v, as a consequence of the fact that Ps and Pm are the longest paths between
their end-vertices. By induction, vertices that are internal to distinct subgraphs among
M1, . . . , Mℓ, S1, . . . , Sk are placed into disks among Dv

1 , Ev
1 , . . . , Dv

ℓ , Ev
ℓ , Du

1 , Eu
1 , . . . , Du

k ,

Eu
k . Also, any two disks associated to distinct subgraphs among M1, . . . , Mℓ, S1, . . . , Sk

are one to the left and above the other one, hence such vertices are in the correct
dominance relationship.
By construction, v1, . . . , vℓ−1 are to the right and below u1, . . . , uk−1, which is the correct
dominance relationship as any vertex among v1, . . . , vℓ−1 is incomparable with any vertex
among u1, . . . , uk−1.
Also by construction, we have that vj is above and to the right of vj−1, for j = 1, . . . , ℓ,
and that ui is above and to the right of ui−1, for i = 1, . . . , ℓ, which is the correct
dominance relationship because of the existence of the directed paths Ps and Pm.
Each vertex ui with i = 1, . . . , k is below and to the right of every disk among
Du

1 , Eu
1 , . . . , Du

i and is below and to the left of every disk among Eu
i , Du

i+1, . . . , Du
k , Eu

k ;
this is indeed the correct dominance relationship, as all the vertices in the former sequence
of disks are incomparable to ui, while all the vertices in the latter sequence of disks are suc-
cessors of ui. That the vertices among v1, . . . , vℓ are in the correct dominance relationship
with respect to vertices inside disks Dv

1 , Ev
1 , . . . , Dv

ℓ , Ev
ℓ can be argued similarly.

Each vertex ui with i = 1, . . . , k − 1 is above and to the left of every disk among
Dv

1 , Ev
1 , . . . , Dv

ℓ ; this is indeed the correct dominance relationship, as ui is incomparable
to every vertex internal to a subgraph Mj with j = 1, . . . , ℓ, with the exception of the
successors of r in Mℓ, which are also successors of ui; these vertices are in Ev

ℓ , which is
indeed above and to the right of ui. Similarly, each vertex vj with j = 1, . . . , ℓ − 1 is in
the correct dominance relationship with respect to every vertex internal to a subgraph Si

with i = 1, . . . , k. ◀
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Clearly, an analogous result holds true for st-plane 3-trees in which the source is adjacent
to every vertex.

5 Left-non-transitive st-plane graphs

We now consider left-non-transitive st-plane graphs. These are the st-plane graphs such that
the left boundary of every face is not a single edge. We show the following.

▶ Theorem 5. Left-non-transitive st-plane graphs admit planar straight-line dominance
drawings.

Proof. Consider a left-non-transitive st-plane graph G. We are going to use a right-to-left
path decomposition of G. This consists of a sequence of directed paths P1, P2, . . . , Pk such
that the following properties are satisfied.

P1 is the right boundary of the outer face of G;
for i = 1, . . . , k, the graph Gi := P1 ∪ P2 ∪ · · · ∪ Pi is an st-plane graph;
for i = 2, . . . , k, the path Pi is the left boundary of a face of G whose right boundary
belongs to the left boundary of the outer face of Gi−1; the internal vertices of Pi do not
belong to Gi−1; and
Gk = G.

This decomposition can be found by ordering the faces of G as in a DFS of the dual of G;
for a formal proof see, e.g., [29].

We are going to construct a planar straight-line dominance drawing Γi of Gi, for i =
2, . . . , k. Then Γk is the desired drawing of G.

s

t

ui
1

vmin

vmax

ui
ni

ui
2

ui
3

Figure 10 Constructing Γi from Γi−1. The interior of Γi−1 is not shown and shaded gray.

For i = 1, . . . , k, let Pi = (ui
1, ui

2, . . . , ui
ni

). Since G is left-non-transitive, ni ≥ 3
holds. The drawing Γ1 of G1 = P1 is constructed as any straight-line drawing such that
x(u1

1) < x(u1
2) < · · · < x(u1

n1
) and y(u1

1) < y(u1
2) < · · · < y(u1

n1
). Clearly, Γ1 is a planar

dominance drawing. Now suppose that a planar straight-line dominance drawing Γi−1 of
Gi−1 has been constructed, for some i ∈ {2, . . . , k}, so that no two vertices have the same x-
or y-coordinate. We construct a planar straight-line dominance drawing Γi of Gi from Γi−1
as follows; refer to Fig 10. Recall that ui

1 and ui
ni

are vertices on the left boundary of Gi−1,
while the internal vertices of Pi need to be inserted into Γi−1 in order to define Γi. Among
all the vertices of Gi−1 that lie to the right of ui

1 in Γi−1, let vmin be the one with smallest
x-coordinate. Also, among all the vertices of Gi−1 that lie below ui

ni
in Γi−1, let vmax be the

one with largest y-coordinate. Note that x(vmin) ≤ x(ui
ni

) and y(ui
1) ≤ y(vmax). We assign

coordinates to the internal vertices of Pi so that x(ui
1) < x(ui

2) < · · · < x(ui
ni−1) < x(vmin)

and y(vmax) < y(ui
2) < · · · < y(ui

ni−1) < y(ui
ni

). This completes the construction of Γi.
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We prove the planarity of Γi. Since the drawing of Gi−1 in Γi coincides with Γi−1 and since
Γi−1 is planar, it suffices to prove that the edges of Pi do not cross each other and do not cross
Γi−1. The former follows directly from the fact that x(ui

1) < x(ui
2) < · · · < x(ui

ni−1) < x(ui
ni

)
and y(ui

1) < y(ui
2) < · · · < y(ui

ni−1) < y(ui
ni

), by construction. We now deal with the latter.
First, we prove that the edge (ui

1, ui
2) does not cross Γi−1. Let (ui

1, w) be the edge of
Gi−1 outgoing from ui

1 and incident to the left boundary of Gi−1. Such an edge has the
outer face of Γi−1 to its left, when traversed from ui

1 to w. By construction, we have
x(ui

2) < x(vmin) ≤ x(w) and y(w) ≤ y(vmax) < y(ui
2), hence the interval of x-coordinates

spanned by the edge (ui
1, ui

2) is a subset of the one spanned by the edge (ui
1, w) and the

slope of the edge (ui
1, ui

2) is larger than the one of the edge (ui
1, w). It follows that (ui

1, ui
2)

lies in the outer face of Γi−1, and hence does not cross Γi−1.
The proof that the edge (ui

ni−1, ui
ni

) does not cross Γi−1 is analogous.
Finally, consider any edge (ui

j , ui
j+1) with 2 ≤ j ≤ ni − 2. By construction, the interval

of x-coordinates spanned by (ui
j , ui

j+1) is a subset of the interval (x(ui
1), x(w)), where

w is defined as above. Also by construction, we have that y(ui
1) < y(w) ≤ y(vmax) <

y(ui
j) < y(ui

j+1). Hence, the edge lies above the edge (ui
1, w), thus in the outer face of

Γi−1, which is not crossed by it.

We now prove that Γi is a dominance drawing. Since the drawing of Gi−1 in Γi coincides
with Γi−1 and since Γi−1 is a dominance drawing, it suffices to prove that the placement
of the internal vertices of Pi complies with the dominance relationships they are involved
in. Consider any internal vertex ui

j of Pi. For h = 1, . . . , j − 1, vertex ui
h is a predecessor

of ui
j and indeed we have x(ui

h) < x(ui
j) and y(ui

h) < y(ui
j), by construction. Analogously,

for h = j + 1, . . . , ni, vertex ui
h is a successor of ui

j and indeed we have x(ui
j) < x(ui

h) and
y(ui

j) < y(ui
h), by construction. Consider any vertex w of Gi−1 different from ui

1 and ui
ni

.
First, if w is a predecessor of ui

1, then it is also a predecessor of ui
j and indeed we have

x(w) < x(ui
j) and y(w) < y(ui

j), given that x(w) < x(ui
1) and y(w) < y(ui

1) (since Γi−1
is a dominance drawing) and that x(ui

1) < x(ui
j) and y(ui

1) < y(ui
j) (as proved above).

Second, if w is a successor of ui
ni

, then it is also a successor of ui
j and indeed we have

x(ui
j) < x(w) and y(ui

j) < y(w) given that x(ui
ni

) < x(w) and y(ui
ni

) < y(w) (since Γi−1
is a dominance drawing) and that x(ui

j) < x(ui
ni

) and y(ui
j) < y(ui

ni
) (as proved above).

Finally, if w is neither a predecessor of ui
1 nor a successor of ui

ni
, then it is incomparable

with ui
j . Note that x(w) > x(ui

1), as x(w) < x(ui
1) would imply y(w) < y(ui

1) (given that
ui

1 is on the left boundary of Gi−1), which is not possible since w is incomparable with ui
1

and Γi−1 is a dominance drawing. Analogously, we have y(w) < y(ui
ni

). By construction,
we have x(ui

j) < x(vmin) ≤ x(w) and y(ui
j) > y(vmax) ≥ y(w), hence the placement of w

and ui
j complies with their dominance relationship.

This concludes the proof that Γi is a planar straight-line dominance drawing, hence the
induction and the proof of the theorem. ◀

Clearly, an analogous result holds true for right-non-transitive st-plane graphs, which are
st-plane graphs such that the right boundary of every face is not a single edge.

6 Conclusions and Open Problems

In this paper, we tackled the following problem: Does every st-plane graph admit a planar
straight-line dominance drawing? While we were not able to solve this question in its
generality, our research advanced the state of the art in many directions.
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First, we have provided concrete evidence for the difficulty in constructing planar straight-
line dominance drawings. Most notably, we proved that planar straight-line dominance
drawings with prescribed y-coordinates do not always exist. Our research in this direction
indicates that, if an algorithm that constructs a planar straight-line dominance drawing
of every st-plane graph exists, then it should use substantially different ideas than known
algorithms for the construction of upward planar straight-line drawings.

Second, we have described several classes of st-plane graphs that admit a planar straight-
line dominance drawing. A difficult benchmark here is, in our opinion, provided by the
st-plane 3-trees. Hence, we believe it would be a major milestone to understand whether
these graphs always admit planar straight-line dominance drawings.

We conclude with one more open problem. Does every (undirected) maximal planar graph
admit a planar straight-line dominance drawing? That is, does it admit an st-orientation
such that the resulting st-plane graph has a planar straight-line dominance drawing?
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