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Abstract
Motivated by the problem of estimating bottleneck capacities on the Internet, we formulate and
study the problem of vantage point selection. We are given a graph G = (V, E) whose edges E have
unknown capacity values that are to be discovered. Probes from a vantage point, i.e, a vertex v ∈ V ,
along shortest paths from v to all other vertices, reveal bottleneck edge capacities along each path.
Our goal is to select k vantage points from V that reveal the maximum number of bottleneck edge
capacities.

We consider both a non-adaptive setting where all k vantage points are selected before any
bottleneck capacity is revealed, and an adaptive setting where each vantage point selection instantly
reveals bottleneck capacities along all shortest paths starting from that point. In the non-adaptive
setting, by considering a relaxed model where edge capacities are drawn from a random permutation
(which still leaves the problem of maximizing the expected number of revealed edges NP-hard), we
are able to give a 1− 1/e approximate algorithm. In the adaptive setting we work with the least
permissive model where edge capacities are arbitrarily fixed but unknown. We compare with the
best solution for the particular input instance (i.e. by enumerating all choices of k tuples), and
provide both lower bounds on instance optimal approximation algorithms and upper bounds for
trees and planar graphs.
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6:2 Vantage Point Selection Algorithms for Bottleneck Capacity Estimation

1 Introduction

Network tomography [31, 9, 10] concerns the problem of inferring the internal topology and
parameters of a network based on end-to-end measurements. For example, collecting IP,
router, and provider-level network topologies has been an active research topic for more than
20 years. Long-term continuous measurement efforts such as CAIDA’s Ark infrastructure [21]
provide important information useful to many longitudinal analyses and network events of
interest. One of the basic measurement tools is TraceRoute, which obtains the sequence of
router interface IP addresses along the forward path to a destination by sending probe packets
with varying time to live (TTL) values and examining the Internet Control Message Protocol
(ICMP) responses. By using the transmission timestamp of each probe, TraceRoute can
report the round trip time from the source to each node on the forward path. Although
TraceRoute was initially designed for network administrators to make diagnoses on a
small scale, recent efforts applied TraceRoute for Internet scale topology probing [20, 6].

Beyond network topology, estimating network bottleneck capacity is a classical research
topic [1, 16, 5, 17]. The capacity of a link (edge) is the highest bit rate possible to transmit
over the edge. The capacity of a path is determined by the bottleneck edge, the one on the
path with the lowest capacity [28]. Estimating the bottleneck or available capacity between
a pair of vertices is useful for many applications, such as routing management, intrusion
detection and improving performance of transport protocols. In particular, knowledge of
network bandwidth can be instrumental to client-side optimization in real-time throughput
sensitive applications, such as video conferencing. A list of existing measurement tools for
available bandwidth estimation is summarized in [29]. Existing techniques mostly focus on
end-to-end capacity, using tools such as variable packet size, packet pair/train dispersion, or
periodic streams. Common to these different implementations is the central idea of examining
the jumps in round trip time (RTT) from the source to each hop of a path. Since the
bottleneck edge determines the available capacity of the entire path, the bottleneck capacity
can be discovered by examining packet latency in probes.

The common practice in large scale measurements of the Internet issues probes from a
narrow range of vantage points (VPs), typically cloud systems or research universities, due to
cost, convenience, accessibility and scalability [22]. For example, RIPE Atlas [3], a platform
that supports user specified measurement requests, has over 9600 active measurement vantage
points. But a user is limited to the total number of vantage points used in a measurement.
Therefore, a user would naturally seek to maximize the amount of information one could
obtain by optimizing the choice of vantage points [19].

In this paper we formulate mathematically the problem of choosing vantage points for
network probing. Our goal is to use probing tools for network-wide capacity discovery. We
consider a network with publicly known topology, where each edge/link has an unknown
capacity. We would like to select (possibly from a given set of vertices) a set of k vantage
points from which probing messages are sent out to other vertices in the network. We use a
model of probing in which probing from a source s along a path to a destination t reveals
the bottleneck capacity of the sub-path from s to v, for every intermediate vertex v on the
path. In this model, if the bottleneck capacity drops from C1 to C2, in comparing paths
P (s, v) and P (s, v′) with v′ being the immediate downstream vertex after v, then the edge
(v, v′) has capacity C2. Our objective is to reveal the link capacity for as many edges in the
network as possible.

In this paper we assume that the network topology is known, e.g., learned using the
relatively mature methods for topology discovery. We also work mainly with an assumption
that all paths along the probings are unique shortest paths. Thus the set of shortest paths
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from one vertex to all other vertices in the network forms a shortest path tree. To examine
the connection to reality, we first remark that modern Internet uses multi-path routing, where
traffic to a destination can be spread on multiple paths for throughput and redundancy [4, 32].
On the other hand, the assumption that routes originating from a vantage point to the
Internet form a tree-like structure is heavily exploited to reduce probing redundancy in
modern TraceRoute tools, e.g., Doubletree [12] and its variants [11, 24]. Therefore it is
reasonable to assume that using existing tools the routes probed starting from a vantage
point indeed form a tree.

There has been a number of empirical work understanding vantage points on the Internet in
terms of their characteristics and influence on data collected for network probing [8, 7, 25, 30].
None of the prior work is directly related to our problem formulation.

The problem of vantage point selection is not limited to the Internet domain. There are a
number of other network scenarios where estimating bottleneck on the network is important.
This problem is natural for transportation network for estimating traffic bottleneck although
probing on the transportation network may have to rely on opportunistic inputs. In the traffic
engineering literature, the traffic sensor location problem (TSLP) [27] is to determine how
many sensors are required and where should they be deployed in order to best understand
the traffic bottlenecks in road and transportation networks. For a blood vessel network, a
medical procedure known as angiography considers probing of the blood vessel network of a
patient by a dye injected into the bloodstream through a catheter, in order to determine the
blocked vessel (the bottleneck). On an abstract level, determining the site for the injection(s)
is similar to the bottleneck discovery problem in this paper.

1.1 Problem Definition
Here we formulate the problem of vantage point selection for bottleneck capacity discovery.
We are given an undirected graph G = (V, E) with each edge associated with an unknown
positive capacity c(·). The goal is to discover these unknown capacities by using bottleneck
queries from vantage points u, which reveals bottlenecks on the shortest path between u and
v for all v ∈ V . The shortest path may be defined by the path of minimum number of hops
or by another weight metric which is known (the only unknown is the capacities). Unless
mentioned otherwise, we will assume (perhaps with slight perturbation of the edge weights)
that all shortest paths are unique. The problem is then to select a set of k vertices S as
vantage points such that when we issue queries from each vantage point, we can reveal a
maximum number of the unknown edge capacity values.

We first discuss what edges are revealed from selecting S as a set of vantage points.

▶ Definition 1 (Bottleneck Edges). Denote by P (s, t) the shortest path from s to t, and let
e1, e2, . . . eℓ be the edges along this path. We say that, for i ∈ [ℓ], ei is a bottleneck edge
along P (s, t) if c(ei) < c(ej) for all j ∈ [ℓ] \ {i}, and c(ei) is a bottleneck capacity. The
bottleneck edges from a set S to V are edges that are bottleneck along P (s, t) for some s ∈ S

and some t ∈ V .

Note that while we state the definition of a bottleneck edge with respect to a path P (s, t),
in accord with the standard definition of a bottleneck edge, we extend the definition to a set
S to match our query model: for every s ∈ S, a single query comprises of n − 1 subqueries
finding the bottleneck edge in P (s, t) for all t ∈ V \ {s}. For example, on the path graph
v0, v1, . . . , vn where edges have monotone increasing capacities, querying v0 results in the
revelation of all capacities whereas querying only reveals the capacities of the last edge.

With this background, we can loosely define the problem of bottleneck discovery.
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▶ Problem 1 (BottleneckDiscovery). Given a non-negatively weighted (weights w) undirected
graph G = (V, E, w), and a positive integer k, find a subset of vertices S ⊆ V with |S| = k

such that the number of revealed bottleneck edges is maximized.

Non-Adaptive Setting. In this setting, we work with the assumption that the ordering of
the edge capacities is uniformly randomly chosen from a permutation of 1, 2, . . . , m = |E|.
Thus, each edge has equal chance of being the one with the smallest capacity among all edges
in the network. Here we consider algorithms in a non-adaptive manner, where the k vantage
points are selected all at once and probes are issued afterwards. We seek to maximize the
expected number of edges revealed.

Adaptive Setting. In the adaptive setting, we work in the worst-case model where we
assume the edge capacities to be arbitrarily fixed distinct real numbers, unknown to the
algorithm. We also allow algorithms that run in an adaptive manner, where the vantage
points are selected one by one, with probes from a vantage point issued immediately upon
selection, before we select the next vantage point.

Here we aim to perform well on any specific input. In other words, we study the instance-
optimal setting. Traditionally, instance optimality is studied by comparing the output of
an algorithm to the optimal solution for the input instance. In this spirit, we assume an
algorithm OPT that is already aware of all the capacities, and for a specific input instance I,
let OPT (I) denote the maximum number of edges revealed by k vantage points on instance I,
i.e., obtained by enumerating all subsets of k vantage points and keeping the best choice. In
contrast, a capacity-unaware algorithm will be called (α, β)-instance optimal if after selecting
at most αk vantage points (possibly in an adaptive manner) on the input instance I, it can
reveal at least OPT (I)/β many edge capacities. We can think of α ≥ 1 as the resource
augmentation factor and β ≥ 1 as the approximation factor for the objective function.

We close this subsection with the following observations on the problem.

▶ Observation 2. Let Ts be the shortest path tree rooted at a vantage point s ∈ S.
The capacities of all edges in Ts that are incident to s are revealed.
In any root to leaf path from s to t on Ts, the capacities of the edges revealed form a
record setting decreasing subsequence, where the capacity of the ith revealed edge is strictly
smaller than all edges earlier on the path (and of course smaller than that of the (i − 1)st
revealed edge).
If u is on the shortest path from s to w, all edges that s can reveal along the path from u

to w can instead be revealed if u is selected as a vantage point.

1.2 Overview of Results
Non-Adaptive Setting (with Stochastic Capacities). We start with the nonadaptive
setting with stochastic capacity assumption, where k vantage points are selected before any
information on the bottleneck capacities is revealed. Here, the ordering of the capacities c is
assumed to be a random permutation of [m], and we look for an algorithm that maximizes
the expected performance. This problem is NP-hard, since the vertex cover problem is a
special case. We therefore aim for approximation algorithms and compare with the optimal
algorithm which works under the same assumption.

A first observation is that the expected number of revealed edges obtained using a subset S

of vantage points is a monotone and submodular function with respect to S. That is, adding
a new vantage point w is always beneficial and adding w to a set Y rather than X, with
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X ⊆ Y , has a diminishing return. This observation allows us to use a greedy algorithm to
select the next vantage point that maximizes the expected marginal increase of the objective
function, which yields a (1 − 1/e)-approximation algorithm, by known results for maximizing
coverage for submodular functions [26]. To obtain our approximation result, then, we must
address the non-trivial calculation of the expected marginal increase of adding a vantage
point to the set being constructed greedily. A crucial step here is to efficiently count the
number of capacity assignments to the graph such that an edge e is revealed as the result of
a new vantage point. We show that the algorithm can be implemented in time Õ(kmn3),
with n as the number of vertices, m as the number of edges and k as the total number of
vantage points selected.

We remark that one can also resort to a sampling-based approach (e.g., see Proposition 3
in [23]), which does not provide better running time in general and can only provide an
approximate solution which leads to a 1 − 1/e − ε approximation factor. Our deterministic
algorithm provides more insight into the structure of the problem.

Adaptive Setting (with Worst-Case Capacities). In the adaptive setting, we prove the
following results. First, we show interesting lower bounds for the tradeoffs of parameters
α, β and k for (α, β)-instance optimal algorithms, where OPT selects k vantage points (with
the full knowledge of capacities). One trivial algorithm is to select all n vertices as vantage
points, as opposed to the k vertices selected by OPT , obtaining α = n/k and β = 1. We thus
ask if we can lower α with respect to the other parameters. Our lower bounds suggest that
α cannot be too small. For deterministic adaptive algorithms, we show that α2β = Ω(n/k);
for randomized adaptive ones, αβ = Ω̃(

√
n/k). These lower bounds apply for algorithms

that can perform any finite computation between the selection of the k vintage points.
We then show that both bounds are tight when the underlying graph is a tree, i.e., we

give vantage point selection algorithm achieving the same tradeoffs. For planar graphs, we
give a deterministic algorithm that achieves a tradeoff of αβ = O((n/k)2/3). Finally, while
we leave open the question of existence of an αβ = o(n) algorithm for general graphs, we
show that if the shortest path trees are not unique, and each shortest path tree may break
ties independent from others, there is a stronger lower bound of αβ = Ω(n1−ε), for all ε > 0.

We present the algorithmic results in the main body of the paper. We postpone the
hardness proof for both settings and some proof details to the Appendix.

2 BottleneckDiscovery in the Non-Adaptive Setting (with Stochastic
Capacities)

In this section we show a constant approximation to BottleneckDiscovery in the non-adaptive
setting with stochastic capacities, which is NP-hard (Appendix A).

▶ Theorem 3. There is an algorithm that gives a (1 − 1/e) approximation to
BottleneckDiscovery in time Õ(kmn3), where e is the base of the natural logarithm.

Define R(S) to be the set of edges that are revealed with vertices S selected, and let
f(S) = E [|R(S)|]. We prove Theorem 3 in two parts. First, we show that f is monotone
submodular, and hence a greedy algorithm for selection into S yields a (1−1/e) approximation
by the result of [26]. This is the less interesting part and so the details are defered to
Section B.1. We then design a value oracle for each iteration of the greedy algorithm, which
is implemented by using polynomial multiplications.

WADS 2025



6:6 Vantage Point Selection Algorithms for Bottleneck Capacity Estimation

Setup. Recall that R(S) is the set of edges whose capacities are revealed from selecting
vantage points S, and we would like to select vertex w to maximize f(S ∪ {w}). By linearity
of expectation, f(S ∪ {w}) =

∑
e Pr [e ∈ R(S ∪ {w})]. It is thus enough to show how to

compute Pr [e ∈ R(S ∪ {w})] for an arbitrary subset S ⊆ V , after which we can sum over all
the edges at the expense of a multiplicative m factor blowup in the running time.

(Overview) Computing Pr [e ∈ R(S)]. For the remainder of this section, let us fix an
edge e = (u, v) for which we want to compute p = Pr [e ∈ R(S)], and let us also have S fixed.
First, we show what vertices s ∈ S contribute to p.

▶ Definition 4 ((Non-)essential vantage points). A vantage point s ∈ S is said to be non-
essential if at least one of the following holds:

P (s, u) does not go through (v, u) and P (s, v) does not go through (u, v).
If P (s, u) goes through (v, u), there is some s′ ̸= s where s′ ∈ P (s, u) ∩ S.
If P (s, v) goes through (u, v), there is some s′ ̸= s where s′ ∈ P (s, v) ∩ S.

If none of the above hold, we say that s ∈ S is essential.

It is reasonably clear that non-essential vantage points do not have any bearing on the
value of p. We now state a few observations with proofs in Appendix B.

▶ Observation 5. Let S′ ⊆ S be the set of all essential vantage points. Then Pr [e ∈ R(S)] =
Pr [e ∈ R(S′)].

Now we define the minimal subgraph required to compute Pr [e ∈ R(S)].

▶ Definition 6 (Te, the tree rooted at e). Let S′ ⊆ S be the set of all essential vantage points.
We define Te =

⋃
s′∈S′ P (s′, u) + e with (edge-)root e (see Figure 1a).

e

Te

(vantage points)

(a) Te, whose edges are solid. Vantage points are in
magenta.

e

T ′
e

(vantage points)

(b) T ′
e, whose vertices (squares) and edges (thick

lines) are dark red.

Figure 1 Depictions of Te and T ′
e, the latter of which is convenient to use for CountGoodLabellings.

▶ Observation 7. Te is a tree, with all its leaves belonging to S. Moreover, Te can be
computed in Õ(m) time.

▶ Observation 8. e is a bottleneck edge for S if and only if c(e) is the smallest capacity on
some (edge-)root to (vertex-)leaf path on Te.

Put otherwise, using Observation 8, we have reduced the problem of computing
Pr [e ∈ R(S)] to that of counting labellings of the edges of Te with [|V (Te)| − 1] such that no
two edges receive the same label, and e has the smallest label on some root to leaf path of
Te (recall that Te is an edge-rooted tree). These labellings can be thought of as the order
statistic of edge capacities in Te.
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Counting Te Labellings. For convenience, we work on the “edge-tree” T ′
e rooted at e

T ′
e = (E(Te),

{
(f, parent-edgeTe

(f)) | f ∈ E(Te)
}

),

which allows us to think in the parlance of labelling vertices instead of edges (see Figure 1b).
One can see that counting vertex-labellings on T ′

e such that there is some root to leaf path
where the label of e is smallest is the same as counting similarly constrained edge-labellings
on Te. This leaves us with the following problem.

▶ Problem 2 (CountGoodLabellings). Given a rooted tree T = (V, E) with root v1, how many
bijective labellings of V with [|V |] result in the label of v1 being the minimum label of some
root-to-leaf path?

To solve CountGoodLabellings, however, we first consider a more constrained auxiliary
problem.

▶ Problem 3 (CountBlackWhiteColorings). Given a rooted tree T = (V, E) with root v1,
compute, for each t ∈ [|V |], how many black-white colorings of V there are such that:

Exactly t vertices are colored black;
There is no root-to-leaf path comprising of only vertices colored white.

Conceptually, we can think of vertices colored black as those whose labels are smaller
than the root’s, and vertices colored white as those whose labels are no smaller than the
root’s. A solution to CountBlackWhiteColorings counts bad events, since, under this viewpoint
we want some root-to-leaf path with all vertices colored white.

▶ Observation 9. Let B[0 . . . t] be a solution to CountBlackWhiteColorings on T = (V, E).
Then ∑

0≤t≤|V |

((
|V |
t

)
− B[t]

)
(|V | − 1 − t)!t!

gives a solution to CountGoodLabellings.

Proof. There are
(|V |

t

)
− B[t] colorings such that exactly t vertices are colored black and

there is some white root-to-leaf path. For each such coloring, there are exactly (|V | − 1 − t)!t!
labellings of the vertices such that white vertices have larger labels than the root’s label;
black vertices have smaller labels than the root’s label; and there is some root-to-leaf path
where the root has the smallest label. The result then follows from adding up good labellings
where exactly t vertices have a smaller label than that of the root. ◀

We now supply a polynomial time algorithm for CountBlackWhiteColorings, which returns
a polynomial

∑
t B[t]xt.

CountBlackWhiteColorings (T = (V, E), v ∈ V )
if v is leaf

return x

for u ∈ children(v)
Pu(x)←CountBlackWhiteColorings(T, u)

T ′ ← subtree rooted at v

return ΠuPu(x) + x(1 + x)|V (T ′)|−1

▷ Claim 10. CountBlackWhiteColorings returns a polynomial such that the coefficient
of xt is the number of colorings of V there are such that exactly t vertices are colored black
and there is no white root-to-leaf path.

WADS 2025
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Proof. The claim is certainly true for trees with one vertex. More generally, consider any
vertex v. If v is colored black, we can color its descendants in any way and there would be
no white root-to-leaf path. The coefficient of xt in x(1 + x)|V (T ′)|−1 counts the number of
ways to color t vertices black, with v being colored black. If, on the other hand, v is colored
white, there must be no root-to-leaf path in all of the subtrees rooted at all of its children.
We can recursively compute the polynomials Pu(x) with respect to each of v’s children u,
and multiply them to get the polynomial which counts colorings in this case. ◁

▷ Claim 11. CountBlackWhiteColorings runs in time Õ(|V (T )|2).

Proof. There are |V (T )| polynomial multiplications involved in the total computation, where
each polynomial has degree at most |V (T )|. Using [18] to bound the running time of
polynomial multiplication completes the proof. ◁

CountGoodLabellings (T = (V, E), v ∈ V )
P (x)← CountBlackWhiteColorings (T, v)
return

∑
0≤t≤|V (T )|

((|V (T )|
t

)
− [xt]P (x)

)
(|V (T )| − 1− t)!t!

Armed with CountBlackWhiteColorings, we may now proceed to state complete
the algorithm CountGoodLabellings. By Observation 9 and Claim 10, CountGoodLa-
bellings solves CountGoodLabellings and has running time Õ(|V (T )|2).

Back to Computing Pr [e ∈ R(S)]. We are finally ready to compute the desired quantity,
Pr [e ∈ R(S)]:

(i) Compute T ′
e;

(ii) Return CountGoodLabellings(T ′
e, e)/ (|V (T ′

e)|!(m − |V (T ′e)|)!).
Finishing up the proof of Theorem 3 is straightforward and deferred to Appendix B.

3 Adaptive Setting (with Worst-Case Capacities)

We use notation developed in Section 1.1. We want to select k vantage points from V in a
given graph G = (V, E, w) with unknown, but fixed, worst-case capacities c. Recall that an
algorithm is called (α, β)-instance optimal if it selects at most αk vantage points and reveals
at least OPT/β many bottleneck edges, where OPT is the number of edges revealed (after
selecting k vantage points) by an algorithm that is also given all the capacities as input.
Here, α ≥ 1 and β ≥ 1.

3.1 Lower bounds
In the following lower bounds, we do not limit the computation time of an algorithm – it can
be adaptive, and can do any finite computation between rounds.

▶ Theorem 12 (Deterministic Algorithm Tradeoff). For any 1 ≤ k ≤ n, there exists a graph
G = (V, E, w, c) for which any deterministic, adaptive, (α, β)-instance optimal algorithm
must satisfy α2β ≥ Ω(n/k).

Proof. We will assume k divides n for simplicity. Let G be the graph with k connected
components Pi, 1 ≤ i ≤ k, where each Pi is a path on n/k vertices. Let A be a deterministic
and adaptive algorithm. Consider the following adversarial strategy. For any Pi, whenever A
selects a vantage point vi

0 that is the first vantage point on Pi, the adversary reveals only the
two neighboring edges on v, giving them the lowest two capacities out of the n/k − 1 edges



V. Ashvinkumar et al. 6:9

in Pi. At any point in the execution of A, let {vi
0, · · · , vi

j−1} be the vantage points selected
on Pi so far, and assume A selects a new vantage point vi

j on Pi. If vi
j is not a neighbor of

vi
k for any 1 ≤ k ≤ j − 1, the adversary reveals the two edges incident to vi

j , giving them the
next lowest capacities of all the edges revealed in Pi so far. Otherwise, the adversary reveals
either one or zero edges (depending on whether one or both neighbors of vi

j was already
selected). We observe that the adversary’s strategy is consistent: for any Pi, all edges yet to
be revealed have a higher capacity than those revealed.

Let λi be the number of vantage points selected on Pi at the end of A. We have that∑k
i=1 λi = αk, where α is the resource augmentation factor. The adversary now reveals the

remaining edges in the following way. Fix a path Pi. If λi = 0, the adversary gives all edges
in Pi decreasing capacities from the first vertex in Pi (and therefore selecting that vertex
would have revealed all n/k − 1 edges). Otherwise, if λi > 0, there is a contiguous set of
ℓi = (n/k − 1)/(λi + 1) − 2 edges such that none of the endpoints have been selected by A
as vantage points. The adversary gives them decreasing weights, starting from, say, the first
vertex in this set of edges. Selecting this first vertex would have revealed not only the ℓi

edges with decreasing capacities, but also the two “outer edges”, since their capacities are
lower. Thus selecting this vertex reveals ℓi + 2 = (n/k − 1)/(λi + 1) edge capacities. We now
have that OPT ≥

∑k
i=1(ℓi + 2).

Clearly A reveals at most 2αk edges, at most two per vantage point selected. Thus

β ≥
∑k

i=1
(n/k−1)

λi+1
2αk

, and αk =
k∑

i=1
λi.

The second equation implies that there exists a set S ⊂ {1, · · · , k} such that |S| = k/2 and
λj ≤ 2α for all j ∈ S. We will use S to lower bound the sum in the first inequality. We have

αβ ≥
∑k

i=1
(n/k−1)

λi+1
2k

≥
∑

i∈S
(n/k−1)

λi+1
2k

≥
|S| n/k−1

2α+1
2k

= k/2
2k

.
n/k − 1
2α + 1 ≥ 1

4 .
n/2k

3α
,

and thus α2β ≥ n/24k, proving the theorem. ◀

▶ Remark. Note that the above theorem is vacuous when α >
√

n/k, as β is always at least
1. We leave open the existence of a lower bound that implies β = ω(1) when α >

√
n/k. As

we will see, the trade off in Theorem 12 is tight for trees, so such a lower bound (if it exists)
would involve an instance with cycles.

Next, we consider a randomized algorithm A that selects at most αk vantage points.
Given an instance G = (V, E, w, c), different runs of A may reveal different numbers of edge
capacities. We define β for a randomized algorithm to be OPT divided by the expected
number of edge capacities revealed by A over all runs of A on G (expectation over random
coins of A). The proof of the following theorem can be found in Appendix C.

▶ Theorem 13 (Randomized Algorithm Tradeoff). For any 1 ≤ k ≤ n, there exists a graph
G = (V, E, w, c) for which any randomized, adaptive, (α, β)-instance optimal algorithm must
satisfy αβ ≥ Ω

(√
n
k

1
(1+log(n/k))

)
= Ω̃(

√
n/k).

▶ Remark.
1. As with Theorem 12, note that Theorem 13 is vacuous when α >

√
n/k, as β is always

at least 1. We leave open the existence of a lower bound that implies β = ω(1) when
α >

√
n/k. As we will see, the tradeoff in Theorem 13 is tight (upto the log factor) for

trees, so such a lower bound (if it exists) would involve an instance with cycles.
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2. A comparison of the tradeoffs in Theorems 12 and 13 reveals that the tradeoff in
Theorem 12 is larger than that in Theorem 13 as long α <

√
n/k which by the above

remark is the setting for Theorem 13. For example, when α = k = O(1), the first
tradeoff gives β = Ω(n) whereas the second tradeoff gives β = Ω(

√
n). This indicates

that randomization may help. Indeed, it does, as we show next.

3.2 Upper bounds
For general graphs, observe that there is always an algorithm that achieves the tradeoff of
αβ = O(n), simply because OPT ≤ k(n − 1) (each vantage point reveals at most n − 1 edge
capacities in its shortest path tree), and the trivial algorithm that selects any set of αk

vantage points reveals Ω(αk) many capacities. Obviously, αβ = O(n) is much worse than the
tradeoffs in Theorems 12 and 13. We first show that Theorems 12 and 13 are tight for trees,
thus implying that strengthening Theorems 12 and 13 will require instances with cycles.

▶ Theorem 14 (Tight tradeoffs for trees). Let T = (V, E, w) be a weighted tree on n vertices
with fixed, unknown capacities c on edges.
1. For any 1 ≤ k ≤ n, there exists a deterministic algorithm Adet that for any given

1 ≤ α ≤
√

n/k, selects αk vantage points in T such that Adet is (α, β)-instance optimal
achieving the exact tradeoff in Theorem 12, α2β = O(n/k).

2. For any 1 ≤ k ≤ n, there exists a randomized algorithm Arand that for any given
1 ≤ α ≤

√
n/k, selects αk vantage points in T such that Arand is (α, β)-instance

optimal with αβ = O(
√

n/k). This tradeoff is only a factor log(n/k) worse than that in
Theorem 13.

Proof. Both claims will require the notion of a “cover” S, which we describe first. We take
the tree T (r) rooted at an arbitrary vertex r. Take the lowest vertex v with at least

√
n

descendants with v inclusive (i.e., any child of v has fewer than
√

n descendants). We put
v in set S. We remove v and its descendants and repeat until we are left with at most

√
n

vertices. Clearly there are at most
√

n vertices in S. We call this set S a cover of the tree.
Sometimes we will need to vary the number of descendants: we will denote by S(γ) the cover
of size at most n/γ, generated in the same way as above starting with the lowest vertex v

with at least γ descendants. The covers satisfy the following lemma.

▶ Lemma 15. For any vertex r′ taken as the root of the tree, all but γ vertices are descendants
of vertices in S(γ).

Proof. S(γ) satisfies the requirement for the root r chosen during the construction of S(γ)
by design. Now suppose we have a different root r′ ≠ r. We argue that S(γ) again covers
all but γ vertices in the descendants of S(γ) for T (r′) rooted at r′. Consider the tree T (r)
rooted at r. We run a case study.

If r′ is not a descendant of any vertex v in S(γ), then all descendants of S(γ) in T (r)
remain to be descendants of S(γ) in tree T (r′). Thus we are done.

If r′ is a descendant of a vertex v in S(γ). Wlog we take v as the lowest such ancestor
of r′. We take the child v′ of v who is the ancestor of r′ (or r′ itself). All vertices that are
not in the subtree of v′ are now descendants of v in T (r′). Thus they are “covered”. Now
we focus on the vertices in the subtree of v′ in T (r). Among these vertices, those that are
descendants of some other vertex w of S(γ) in this subtree will continue to be descendant of
w in T (r′) – since r′ is not in the subtree with root w. Thus the only vertices left would
be those that are not in subtree of other vertices in S(γ). There can only be at most γ − 1
vertices – otherwise v′ would have been selected to S(γ) in the computation of S(γ). ◀
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Proof of Theorem 14 Claim 1. The algorithm A selects a cover, with any r ∈ T as the root
in the above cover-selection procedure and γ = n/(αk). Thus the size of the cover is at most
αk. If the size of the cover is strictly smaller than αk, we select some arbitrary vantage
points to make the total number of selected vantage points equal to αk.

Let m be the total number of edge capacities revealed by OPT . Consider a vertex r′

chosen by the OPT solution. By Lemma 15, in the tree rooted at r′, all but γ vertices of
T are descendants of S(γ). Thus all the edges that are revealed by r′ in the OPT solution,
except those that are not descendants of S(γ), will be revealed as well by our algorithm A.
Since OPT chooses k vantage points, algorithm A would only miss at most kγ edges and
thus reveal at least m − kγ edges.

Now we do a case analysis. If m ≥ 2kγ, m − kγ ≥ m/2. Thus β ≤ m/(m − kγ) ≤ 2.
α2β ≤ n/k, since 1 ≤ α ≤

√
n/k. On the other hand, if m ≤ 2kγ, algorithm A selects αk

vantage points, just the edges incident to these points reveal at least αk/2 many edge capacities
(in the worst case, these vertices form a matching). Therefore β ≤ m

αk/2 ≤ 2kγ
αk/2 = 4n

α2k . This
immediately gives α2β ≤ 4n/k. Thus the exact tradeoff in Theorem 12 is achieved, and this
finishes the proof of Claim 1. ◁

Proof of Theorem 14 Claim 2. The randomized algorithm is very simple: it selects a set of
αk vantage points uniformly at random (without repetition) from S(

√
n/k). The proof

is similar to the deterministic case. Let m be the number of edge capacities revealed in
OPT . Let us consider the expected number of edges covered by the αk vantage points.
Note that S(

√
n/k) has

√
nk vertices; if all selected as vantage points, would reveal at least

m−k
√

n/k = m−
√

nk many edges revealed by OPT. By linearity of expectation the expected
number of edges that are revealed by a random choice of αk vantage points from S(

√
n/k)

is at least αk√
nk

(m −
√

nk). Again we consider two cases. If m ≥ 2
√

nk, m −
√

nk ≥ m/2.
Thus β ≤ 2

√
nk/(αk), or, equivalently, αβ ≤ 2

√
n/k. If m ≤ 2

√
nk, our algorithm reveals

at least αk/2 edges since we select αk vantage points. Thus β ≤ 2m/(αk) ≤ 4
√

(n/k)/α.
Or, αβ ≤ 4

√
(n/k). This finishes the proof. ◁

◀

We remark that all algorithms are non-adaptive with polynomial run time. This is
slightly surprising, since the lower bounds were on algorithms not limited by computation.
We conjecture that while for trees such non-adaptive algorithms suffice, adaptivity may be
needed to achieve the tradeoffs (if it is possible at all) for general graphs.

Planar Graphs. We observed in the beginning of this section that for general graphs, the
trivial algorithm achieves αβ = O(n), and if this is tight, a matching lower bound would
involve instances with cycles. However, we show next that such an instance cannot be planar.
We leave as an interesting open question whether one can design a deterministic algorithm
for general graph with αβ = o(n).

▶ Theorem 16. Given a weighted planar graph G = (V, E) with fixed unknown capacities,
and a 1 ≤ k ≤ n, there exists a deterministic (α, β)-instance optimal algorithm with α =
O((n/k)2/3) and β = O(1), and hence αβ = O((n/k)2/3).

WADS 2025



6:12 Vantage Point Selection Algorithms for Bottleneck Capacity Estimation

3.3 Stronger lower bound on general graph: Multiple shortest paths
In all of the discussion so far, we have assumed that shortest paths are unique. If there are
ties and each shortest path tree may break ties independently of other trees, we can have a
stronger lower bound of β ≥ Ω(n1−ε) when α = k = 1, for any ε > 0, between the instance
optimal solution and the best solution by any (possibly randomized, adaptive) algorithm.

We first consider a grid graph of
√

n ×
√

n vertices. We wrap it around to be a torus –
the top boundary is identified as the bottom boundary and the left boundary is identified as
the right boundary. The shortest path trees at all vertices, topologically, are identical – each
tree includes the horizontal edges on the row containing the root v, and for each vertex with
the same y-coordinate with v, there are two chains of length

√
n/2 each. See Figure 2 (left).

v

w
v

Figure 2 (Left) The shortest path tree rooted at v is shown by edges in black. The edges in red
have lower capacity than edges in black. (Right) A 3D grid graph.

Consider one specific vertex v (in blue) and the shortest path tree rooted at v. We take
the n − 1 largest capacity values and assign them on the tree rooted at v, sorted in decreasing
capacities in a round robin manner moving away from v. Specifically, the immediate neighbors
of v are given the highest capacities, those two hops away from v in the tree are given the
next highest capacities, and so on. This way, all edges in the tree rooted at v (called T (v))
can be revealed if the optimal solution chooses v. For all other edges we assign the remaining
capacity values randomly.

Now consider another vertex w. If w does not have the same y-coordinate as v (not
on the same row as y), the shortest path rooted at w has all edges on the same row as w

(shown as edges in red in Figure 2 (left)), which have lower capacity than the edges on tree
T (v). Therefore, all edges other than the vertical edges on the same column as w cannot be
revealed. Thus, w reveals at most

√
n edges. If w stays on the same row of v, w may be

able to reveal up to order n edges but there are only
√

n such vertices. Since all shortest
paths look exactly the same topologically, any algorithm trying to guess the optimal tree
T (v) reveals in expectation O(

√
n) edges1.

This example can be generalized to a d-dimensional cube of n1/d vertices in each dimension.
See Figure 2 (right) for an example for d = 3. The tree rooted at a vertex v takes all edges
with the same coordinate of x1 as v. For each vertex u of the same x1 coordinate as v,
take the chain of vertices that share the same x2 coordinate as u, and so on. Use the
same allocation of capacities, the optimal tree can reveal n − 1 edges while any algorithm
without the knowledge of capacity distribution reveals O(n1/d) edges. This leaves a gap of
O(n1−1/d) = O(n1−ε), for any ε = 1/d > 0, between the instance optimal solution and the
best oblivious algorithm.

1 Specifically, suppose an algorithm chooses a vertex v with probability p(v). An adversary would place
the vertex on the row with the minimum total probability (which is no greater than 1/

√
n) among all

possible rows.
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4 Open Problems

We conclude the paper with a couple of open problems.

The Adaptive Setting (with Stochastic Capacities). There is an intermediate model that
is not addressed in this paper, which is the adaptive setting with stochastic capacities, where
the ordering of capacities are a random permutation. There are various notions of stochastic
submodularity (e.g. [2, 14]) for adaptive algorithms that admit good approximations via
myopic algorithms. Unfortunately, they do not seem to hold for this problem.

Adaptive Setting with Worst-Case Capacities. A notable open problem is to find algorithms
that achieve the lower bounds (Theorems 12 and 13) for a general graph. One special
parameter range is when β = 1, i.e., there are k vertices that, if chosen as vantage points,
can reveal OPT number of edges. The lower bounds for both deterministic and randomized
algorithms suggest that α = Ω(

√
n/k). Now, can we find o(n/k) vertices as vantage points

that reveal at least OPT edge capacities? Our results show that for a tree graph our
algorithm with O(

√
n/k) vantage points suffice, and for a planar graph our algorithm with

O((n/k)2/3) vantage points suffice. We do not know any non-trivial bound of o(n/k) (and
Ω(

√
n/k)) for a general graph nor a lower bound example that requires ω(

√
n/k) vantage

points.
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A Proof of hardness

▶ Theorem 17. The decision version of BottleneckDiscovery is NP-hard.

Proof. We give a reduction from VertexCover to BottleneckDiscovery. Let G = (V, E), k be
an instance of VertexCover. We transform it to the following instance of BottleneckDiscovery:
G = (V, E, w), k where the weights w are of the form 1 + 2−i for edge ei so as to ensure
unique shortest paths. We claim that G has a vertex cover of size at most k if, and only if,
there exists a set of at most k vantage points that reveal |E| edges in expectation (and hence
|E| edges no matter what the capacities are).
( =⇒ ) If G does indeed have a vertex cover C of size k, then setting S = C reveals every

edge as a bottleneck (since edges incident to any s ∈ S are assured to be revealed) no
matter what the edge capacities are.

( ⇐= ) If, conversely, G has no vertex cover of size k, then consider any S of size k. Since
S is not a vertex cover, there is at least one edge e whose endpoints are not in S. With
probability at least 1/m, c(e) is the highest capacity among all the edges, and e cannot
be revealed unless one of its endpoints was selected. The expected number of revealed
bottlenecks for S is thus strictly less than |E|. ◀

Next, we prove hardness for the adaptive setting with worst-case capacities.

▶ Theorem 18. There does not exist a deterministic adaptive polynomial time algorithm A
satisfying A(G, c) = OPT (G, c) for all graphs G and all capacities c, unless P = NP .

Proof. In the following, we show that if such an A exists, then we can solve vertex-cover in
polynomial time. Assume we are given a connected graph G on n vertices and m edges, and
a number k, and asked if G has a vertex cover of size exactly k.

The idea is to run A on G, starting from unknown capacities, but reveal the capacities
adaptively to A in such a fashion that A is left with no choice but to solve the decision version
of vertex cover. Let the current set of vantage points selected by A be Vi = {v1, · · · , vi}. Say
in the next round A selects a vantage point v. For all the dv,Vi

edges between v and a vertex
not in Vi, we assign them the next highest dv,V̄i

many capacities (from some arbitrarily
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selected alphabet) arbitrarily. This results in a consistent set of capacities: any edge capacities
not yet revealed must be higher than those already revealed, and our strategy satisfies this
invariant.

At the end of the execution of A, we check if the set of vantage points S selected by A is
a vertex cover. If so, we answer YES to the decision version of vertex-cover; otherwise, we
answer NO.

Let k∗ be the size of a minimum vertex cover in G. If k ≥ k∗, then OPT (G, c) = m

for any permutation of the capacities, in particular the capacities arrived at the end of A’s
execution, cend. Therefore, in this case, A(G, cend) = m also, and that the set S of vantage
points selected must be a vertex cover, for if an edge e is not covered by S, then its capacity
is larger than all revealed edges, and could not have been revealed to A.

On the other hand if k < k∗, then the set of vantage points selected by A cannot be a
vertex-cover by definition of k∗, and so we answer correctly. Hence, the theorem is proved. ◀

B Omitted Proofs: BottleneckDiscovery in the Stochastic,
Non-Adaptive Setting

B.1 Submodularity of f

▶ Lemma 19. f(X) is monotone and submodular as a function of X:
1. Monotonicity: f(X ∪ {w}) ≥ f(X);
2. Submodularity: If X ⊆ Y , then f(X ∪ {w}) − f(X) ≥ f(Y ∪ {w}) − f(Y ).

Proof. We prove each claim separately.
1. Let Xe (resp. Xw

e ) be the indicator for e being revealed from selecting X (resp. X ∪ {w}).
Then, by linearity, f(X) =

∑
e E(Xe) =

∑
e Pr[Xe = 1]. It is clear that Pr[Xw

e = 1] ≥
Pr[Xe = 1], and so f is monotone.

2. Let Xe (resp. Xw
e , Ye, Y w

e , (Y \X)e, we) be the indicator for e being revealed from selecting
X (resp. X ∪ {w} , Y, Y ∪ {w} , Y \ X, {w}). Then

f(X ∪ {w}) − f(X) =
∑

e

Pr [Xw
e = 1] − Pr [Xe = 1] (Linearity of expectation)

=
∑

e

Pr [Xe = 0 ∧ we = 1] (Law of total probability)

=
∑

e

Pr [Xe = 0 | we = 1] Pr [we = 1]

≥
∑

e

Pr [Xe = 0 ∧ (Y \ X)e = 0 | we = 1] Pr [we = 1]

=
∑

e

Pr [Ye = 0 | we = 1] Pr [we = 1] = f(Y ∪ {w}) − f(Y ),

and so f is submodular. ◀

By the results on maximizing submodular functions [26], incrementally building up a
set S by adding the vantage point maximizing f(S ∪ {w}) until |S| = k yields a (1 − 1/e)
approximation algorithm.

▶ Observation 5. Let S′ ⊆ S be the set of all essential vantage points. Then Pr [e ∈ R(S)] =
Pr [e ∈ R(S′)].
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Proof. In short, this follows from Observation 2.
Let s′ ∈ S′.
Querying s′ can only reveal bottleneck edges in Ts′ , the shortest path tree rooted at s′.

Consequently, if P (s′, u) does not go through (v, u) and P (s′, v) does not go through (u, v),
then Pr [e ∈ R(S)] = Pr [e ∈ R(S − s′)].

On the other hand, note that at most one of P (s′, u) goes through (v, u) and P (s′v) goes
through (u, v). Without loss of generality, say P (s′, u) goes through (v, u). Since s′ ∈ S′,
there must be a vertex s ∈ S where s ̸= s′ such that s ∈ P (s′, u). The event that querying
s′ reveals (v, u) as a bottleneck is a subset of the event that querying s reveals (v, u) hence
Pr [e ∈ R(S)] = Pr [e ∈ R(S − s′)].

Finally, observe that a vertex being non-essential only depends on G and e, and since s′

was chosen arbitrarily, Pr [e ∈ R(S)] = Pr [e ∈ R(S \ S′)]. ◀

▶ Observation 7. Te is a tree, with all its leaves belonging to S. Moreover, Te can be
computed in Õ(m) time.

Proof. Te being a tree follows immediately since, in our model, shortest paths are unique.
That all its leaves are in S follows from Definition 4, the definition of essential vantage points.

To compute Te, we need only find Tu (resp. Tv), the shortest path tree rooted at u

(resp. v), which we can compute in Õ(m) time using Dijkstra’s algorithm. We can then find
Te by running a breadth first search in Tu and Tv, truncating at

Subtrees which do not have (u, v) as an ancestor;
Vertices s ∈ S;

and finally iteratively removing leaves that are not in S. Since P (s, u) = P (u, s), this
produces

⋃
s′∈S′ P (s′, u) + e. The running time follows. ◀

▶ Observation 8. e is a bottleneck edge for S if and only if c(e) is the smallest capacity on
some (edge-)root to (vertex-)leaf path on Te.

Proof. This follows, in short, from Observation 2.
( =⇒ ) Suppose e is a bottleneck edge for S. Let s ∈ S be the vantage point that is closest

to e, for which e is a bottleneck edge on, say, P (s, v). Since s is the closest vantage point,
it is essential and so P (s, v) ⊆ Te. In particular, s is a leaf with c(e) being the smallest
capacity on P (v, s).

( ⇐= ) The converse is proved similarly. Suppose for a leaf s ∈ S, the capacity c(e) is
smallest in say PTe

(s, v). Then e is a bottleneck edge of P (s, v) = PTe
(s, v). ◀

Proof of Theorem 3. The correctness and approximation factor of GreedyNonAdaptive
have been established earlier. For running time, GreedyNonAdaptive takes k rounds, and
computing each step takes nm inner-iterations, with each iteration computing Pr [e ∈ R(S)]
for some e ∈ E and S ⊆ S′. Each such computation takes Õ(m) time to compute T ′

e

(Observation 7) and Õ(n2) time to run CountGoodLabellings. ◀

C Omitted Proofs: Adaptive setting with worst-case capacities

C.1 Lower Bound Proofs in Section 3.1
Proof of Theorem 13. We will first invoke Yao’s principle [33], and try to lower bound the
performance of a deterministic algorithm on the following distribution of inputs. In fact, our
distribution inputs will all have the same underlying graph, but different set of capacities.
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We will assume k divides
√

n for simplicity. Let G be the disconnected graph with√
kn components Pi, 1 ≤ i ≤

√
kn, where each Pi is a path on

√
n/k vertices. Consider

assigning capacities in the following randomized procedure. First, select a random set
S ⊂ {1, · · · ,

√
kn}, |S| = k. For any i ∈ S, assign the edges in Pi decreasing capacities,

starting from the leftmost vertex. We will call these the “good” paths. For any i /∈ S, assign
the edges in Pi a random permutation of integers in the range [(i − 1)

√
n/k, i

√
n/k)]. We

will call these the “bad” paths. The optimal adaptive algorithm will select the left endpoints
of all k good paths and thus reveal roughly k ·

√
n/k =

√
kn edges.

Our hard distribution D will be the uniform distribution over all capacities obtained
following the above procedure on G. We now upper bound the expected number of edges
revealed by any deterministic algorithm A over the distribution of inputs D. Recall that A
is allowed to select αk many vantage points. First, observe that if α ≥

√
n/k, the theorem

is trivially true since β ≥ 1. So we will assume α <
√

n/k, which means that αk <
√

kn, the
total number of paths. Thus, A does not have enough vantage points to cover all paths.

We can assume that A does not select two vantage points on the same bad path, as this will
only boost the chance of A hitting the good paths. To argue this assumption, first, we boost A
by giving it for free all edge capacities if it selects any (not necessarily the first) vantage point
on a good path, so there is never a need to select another vantage point on a good path. If A
selects a vantage point on a bad path, in expectation it reveals O(log(

√
n/k)) = O(log(n/k))

many edge capacities. This is because on a random permutation of length n there is a
decreasing sequence of O(log n) record-setting edge capacities, in expectation. This follows
from Lemma 2: the probability that the ith edge has a capacity lower than the previous i − 1
edges is at most 1/(i − 1), and the expected number of edges revealed can be shown to be
upper bounded by 2(1 + 1/2 + · · · + 1/(n/2)) = O(log n). A does not have enough vantage
points to cover all paths, and therefore it is always optimal to not place another vantage
point on a bad path, and instead place it on an uncovered path.

We have that the expected number of good paths revealed by A is αk(k/
√

kn) = αk
√

k/n,
and thus the expected number of good edges revealed is (αk

√
k/n)(

√
n/k) = αk.

Now observe that the expected number of bad edges revealed is O(αk log(n/k)), at most
O(log(n/k)) per vantage point on bad path. Thus the expected number of total edges
revealed is still O(αk log(n/k)), whereas OPT ≥

√
kn. Thus β = Ω(

√
kn/(αk log(n/k))),

proving the theorem. ◀

C.2 Upper Bound Proofs in Section 3.2
Proof of Theorem 16. We use the r-division of a planar graph [15, 13]. Specifically, an
r-division is a subdivision of G into O(n/r) pieces satisfying three conditions: Each piece
has O(r) vertices; Each piece has O(

√
r) boundary vertices (i.e., vertices shared with other

pieces); Each piece has O(1) holes (faces of the piece that are not faces of G. Such a r-division
can be computed in O(n) time [15].

Suppose the optimal solution chooses k vertices S, our algorithm basically chooses all
vertices on the boundary of all pieces in an r-division, for a value r to be decided later. There
are O(n/r) · O(

√
r) = O(n/

√
r) boundary vertices. α = O(n/(k

√
r)).

For any vertex v in a piece R without any vantage point from the optimal solution S,
the shortest path from any vantage point u ∈ S (which is outside the piece) to v has to go
through one of the boundary vertices of the piece R, say w. Thus, all edges that are revealed
along the path P (w, v), which is a subpath of P (u, v), are also revealed by our algorithm
(by w in particular). Therefore the only edges our algorithm may have missed would be the
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edges of the shortest path tree rooted at u that stay inside R, for each u ∈ S. There are at
most O(r) such edges for each vantage point u ∈ S and a total of O(rk) such edges for all
vertices in S.

Suppose that the optimal solution reveals m edges. We will reveal at least m − crk edges,
for some constant c. If m ≥ 2crk, m−crk ≥ m/2. Thus β ≤ 2 and αβ ≤ O(n/(k

√
r)). If m ≤

2crk, we reveal at least Ω(αk) edges since we select αk vertices. Thus β ≤ O((2crk)/(αk)).
Or, αβ ≤ O(r). Now we take r = (n/k)2/3 to balance the two terms. This gives an upper
bound for αβ = O((n/k)2/3). ◀
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