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—— Abstract

We study the Discrete Covering with Two Types of Radii problem motivated by its application
in wireless networks. In this problem, the goal is to assign either small-range high frequency or
large-range low frequency to each access point, maximizing the number of users in high-frequency
regions while ensuring that each user is in the range of an access point. Unlike other weighted
covering problems, our problem requires satisfying two simultaneous objectives, which calls for
novel approaches that leverage the underlying geometry of the problem. In our work, we present
two new algorithms: the first is a polynomial-time (2.5 4 €)-approximation, and the second is an
exact algorithm for sparse instances, which is fixed-parameter tractable (FPT) in the number of
large-radius disks. We also prove that such an FPT algorithm is impossible for general instances
lacking sparsity, assuming the Exponential Time Hypothesis. Before our work, the best-known
polynomial-time approximation factor was 4 for the problem.

Our approximation algorithm results from a fine-grained classification of points that can con-
tribute to the gain of a solution. Based on this classification, we design two sub-algorithms with
interdependent guarantees to recover the respective class of points as gain. Our algorithm exploits
further properties of Delaunay triangulations to achieve the improved bound. The FPT algorithm is
based on branching that utilizes the sparsity of the instances to limit the overall search space.
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1 Introduction

Set cover is among the most popular optimization problems, where given a ground set of
elements and a family of subsets of the ground set, the goal is to find a minimum-sized
subfamily of those subsets whose union contains all elements of the ground set. The problem
admits a polynomial-time (poly-time) O(logn)-approximation, and this bound is known to
be tight [16, 14]. Set cover has been studied in various restricted settings with the goal of
achieving better approximation factors. One such interesting setting is geometric covering,
where elements are points in a geometric space, and subsets are induced by geometric objects
such as disks and squares. Such restricted covering problems can admit poly-time constant-
approximations [11, 9] or even approximation schemes [17, 27, 10], as one can exploit the
natural constraints imposed by geometric spaces and objects. Indeed, this turned out to be
a very popular area of research, as many practical problems can be described in geometric
terms, e.g., in areas such as sensor networks, computational biology, image processing, and
VLSI design [29, 6, 15, 13, 17].
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Covering with Disks of Two Types of Radii

While several formulations of geometric set cover are now well-studied, their real ap-
plications are sometimes hindered by practical constraints. There exist well-established
techniques like local search [27, 19, 7, 1] to compute near-optimal solutions to fundamental
geometric problems, but real-life constraints can invalidate the assumptions needed by these
approaches. In this work, we study one such problem motivated by applications in wireless
and sensor networks, which was introduced by Maheshwari et al. [22]. Informally, given a set
of access points and users, the goal is to assign either low-range high frequency (i.e., high
speed) or large-range low frequency to each access point, maximizing the number of users
in high-frequency range while ensuring that each user is in the range of at least one access
point of either kind.

We use the following notation to define the problem. For any point x and a real p > 0, let
D(z, p) denote the closed disk with center 2 and radius p. In Discrete Covering with Two Types
of Radii (DC-2), we are given two point sets P (of n “users”) and A = {a1,az,...,amm} (of m
“access points”) in the plane, and two real numbers p; and po, such that 0 < p; < ps and
P C U~ D(ai, p2). The goal is to select for each i = 1,2,...,m, a value r; € {p1, p2} such
that P C |J;~, D(a;,r;) and the gain, i.e., the size of the set {p € P : there is an index 1 <
i < m such that r; = p; and p € D(a;,r;)} is maximized. Thus, we want to select for each
1 <4 < m, either the small disk (of radius p;) centered at a; or the large disk (of radius p2)
centered at a;, such that the set P is covered by the chosen disks and the number of points
in P each of which is contained in at least one chosen small disk is maximized.

The problem is known to be NP-hard [22] similar to most of the covering problems
with disks. Bandyapadhyay et al. [2] designed a poly-time 4-approximation for DC-2. In
their approach, they converted the problem to a weighted covering problem with one type
of radii (large) by assigning unit weight for each user point contained in a small disk, to
a representative large disk. To solve this covering problem, they compute the Delaunay
triangulation of the large disk centers. In particular, this triangulation is a planar graph, and
hence can be colored by 4 colors. Consequently, a vertex cover of weight at most % of the total
weight can be computed, and the corresponding large disks are shown to cover all user points.
Thus, at least i of the total weight of the large disks remains unused while constructing the
cover, which leads to the 4-approximation. Obtaining an improved approximation factor
remained an interesting open question, as many covering problems involving unit disks admit
PTASes [27, 21, 10].

As mentioned in [2], DC-2 can be interpreted as a combination of two problems: Minimum
Weight Unit Disk Cover (WUDC) and Maximum Coverage with Unit Disks (MCUD). In WUDC,
the goal is to select a subset of unit disks that cover all input points such that the sum of
the weights of the selected disks is minimized. In MCUD, for a given k, the goal is to select
a subset of k£ unit disks that cover the maximum number of points possible. Both of these
problems are well-studied in computational geometry.

Mustafa and Ray [27] developed a PTAS for WUDC when all weights are equal, i.e., for
the unweighted version. Their approach, which relies on a local search scheme, is inadequate
for addressing weighted instances. Finding the optimal cover even for weighted unit disks has
long been known to be strongly NP-hard [18]. Regardless, approaches have been developed
in the last two decades for computing approximate solutions for weighted covering problems
for broad classes of objects, such as those with low union complexity [8, 11, 30, 4]. Chan et
al. [9] designed constant approximations for covering with weighted disks. Subsequently, Li
and Jin [21] designed a PTAS for WUDC, utilizing a shifting strategy [18] that partitions the
plane into squares and addresses a restricted version of the problem within each square. We
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note that this approach cannot be used directly for DC-2 when users are covered by multiple
small disks, because the assignment of user weights to small disks cannot be done arbitrarily,
and so the weight of a small disk in the optimal solution is an unknown in DC-2.

Chaplick et al. [10] designed a local search PTAS for the MCUD problem. It follows that
for some k, there are k small disks in any optimal solution to DC-2 such that they cover
the points that contribute to the optimal gain. However, the best set of k£ small disks that
maximizes the coverage might not lead to a feasible solution, as the remaining n — k large
disks might not cover the points not in the union of the chosen small disks. Dealing with two
different but dependent tasks is the main challenge in tackling DC-2. The need to satisfy
one objective while optimizing another necessarily means that any decision made at the local
scope can have global consequences. For example, selecting one access point for a small
disk may force a neighbor to be selected as a large disk to maintain coverage, and such a
dependency may further propagate to disks that are far away. As such, any solution for this
kind of constrained problem must take into account its global properties while making any
decision to achieve good approximation.

We also study DC-2 from the perspective of parameterized complexity. Designing
parameterized algorithms for geometric problems is an active area of research that is becoming
increasingly popular. A problem is called fixed-parameter tractable (FPT) in a parameter
k if it can be solved in time f(k)-n°M for a computable function f, where n is the input
size. A known fact is that if a problem with parameter k is W[1]-hard, then it cannot be
FPT in k [12]. Marx [23] considered the problem of covering with unit squares. Here the
size of a cover is a natural parameter. He proved that the problem is W[l]-hard. One
consequence of this is that the optimization version does not admit an Efficient PTAS
or EPTAS [23], i.e., the n°1/<)_time PTAS due to Hochbaum and Maass [17] cannot be
improved to an EPTAS. In a different work, Marx [24] studied the parameterized complexity
of common optimization problems in geometric intersection graphs and obtained a mixed set
of algorithmic and hardness results. In a follow-up work, Marx and Pilipczuk [26] designed
a framework for designing sub-exponential (no(‘/E)) time algorithms for a wide range of
geometric facility location problems. Applying this framework, they designed an nOWk)
algorithm for covering with unit disks. This result is also tight, assuming ETH [24] (also see
this survey [25]). The framework is based on Voronoi diagram separators. We note that this

-time

framework is not useful for DC-2, again due to the mixed nature of the problem. Kowalska
and Pilipczuk [20] recently studied parameterized approximation algorithms for covering with
line segments. Lastly, Banik et al. [3] studied the parameterized complexity of a conflict-free
version of geometric covering.

1.1 OQur results and contributions

In our work, we design for any € > 0, an (n +m)°1/ <)_time approximation algorithm for
DC-2 with the improved approximation factor of (2.5 + €). The algorithm is based on a
fine-grained classification of user points that may contribute to the gain of a solution. As
mentioned before, the best-known i factor for DC-2 is based on a weight assignment scheme
that assigns 1 weight for each user point contained in a small disk, to a large disk. Then
using the Delaunay triangulation of the large disk centers, a cover by large disks can be
computed where at least i of the total weight remains unused. In our work, we identify a
subset of user points for which % of the total weight can be saved by using the same Delaunay
triangulation based algorithm, but along with a new weight assignment scheme that exploits
further properties of the triangulation. Specifically, this is the subset of user points that
are contained in 2 or more small disks. Unfortunately, the % weight saving in this way is
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not possible for the other user points contained in exactly 1 small disk and we still gain i
of the total weight for them. However, in a separate approach, we show that the points of
the latter type that contribute to an optimal solution can be recovered almost exactly by
treating them as the weights on the large disks and solving an instance of WUDC. Hence,
our main algorithm runs two subalgorithms and returns the larger gain. Our analysis shows
that this is at least ﬁ times the optimal gain, which improves on the previous factor of i.

We also study the parameterized complexity of the problem, with k being the number of
large disks to be selected. This is a natural choice of parameter, as in practice, one would
like to open as few large disks as possible to increase the overall quality of the coverage. In
particular, the large disks correspond to low-speed antennas, and hence, the selection of
too many such disks might slow down the data transfer, leading to a subpar experience for
customers. We first show that the problem is W[1]-hard when k is the number of large disks
to be selected. In fact, we prove that assuming ETH, there is no f(k) - (n +m)°V® time
algorithm for the problem for any computable function f. In stark contrast, we show that
the problem is fixed-parameter tractable (FPT) in k if each point is contained in, at most, a
constant number of large disks. We define the notion of s-sparse instances (see Section 3 for
a formal definition) and show that the problem can be solved in s9®)(m 4+ )™M time on
any such instance, where s < m. This result indicates that the W[1]-hardness arises solely
from the absence of sparsity in the instances. We note that the problem remains NP-hard
for O(1)-sparse instances [22].

While the (2.5 + €)-approximation works for any instance of DC-2, in practice, the
FPT algorithm may yield vastly better run time when points are low-depth. DC-2 is
directly motivated by wireless networks, where low-depth points frequently occur in certain
environments like sparsely-populated cities. As such, we chose to describe both algorithms
with the hope of improving the variety of results available for practical applications.

Organization. The approximation algorithm is described in Section 2. In Section 3, we
describe the FPT algorithm for sparse instances. The hardness result appears in Section 4.

2  An Approximation Algorithm for DC-2

Our main algorithm is an aggregate of two separate algorithms. The first is based on the
Delaunay triangulation of large disk centers. The second algorithm is based on a reduction
to the Minimum Weight Unit Disk Cover problem. Thereafter, we combine the two algorithms
to obtain our main algorithm which has the desired approximation guarantee.

A set of disks D’ is said to cover a set of points P’ if the union of the disks in D’ contains
the points in P’. Let S (resp. L) be the set of small (resp. large) disks centered at the access
points in A. Let V' C P such that each point in V' does not lie in any (small) disks of S.
Wlog, we assume that each point of V is in at least two disks of L. It must be in at least
one disk, otherwise there is no feasible cover. Also, if it is in exactly one disk, this disk will
always be part of the solution. Let N C P such that each point in IV lies in at least one
(small) disk of S. Thus, (V, N) is a partition of P. Let N; C N such that each point in N;
lies in exactly one disk of S. Similarly, let Ny C N such that each point in N lies in at least
two disks of S. Thus, (N1, N3) is a partition of N. Let ny = |N1| and ng = |N3|. Fix an
optimal solution of DC-2; i.e., the selected subset of disks of S U L. Let OPT be the set of
points in N covered by the optimal solution. Let OPT; = N; N OPT and OPTy; = Ny N
OPT. Also, fix an error parameter € > 0.

» Observation 1. The gain of any solution is at most ny + no.
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Figure 1 Figure illustrating the proof of Lemma 3.

As each point in N is contained in a small disk D(a;, p1) and also in the corresponding
large disk D(a;, p2), the following observation holds.

» Observation 2. Consider any subset D' € SU L where for each a; € A, either D(a;, p1)
or D(a;, p2) is in D'. Then D' is a cover for N.

2.1 The first algorithm

Let 7 be the Delaunay triangulation of the points in A. In particular, 7 is a connected
planar graph where the vertices are the points in A and each edge is a segment connecting
two points of A. We prove the following lemma.

» Lemma 3. For any disk D(c,r) in the plane that contains at least two points of A, there
exist two points a;,a; in AN D(c,r) and a path ™ in T between a; and a; such that m is
contained in D(c,T).

Proof. Continuously decrease the radius of D(c,r) until it contains a point, say a;, of A on
its boundary. This process gives us a disk D(c,r’) C D(c,r) that contains all the points in
D(c,r7) N A. If there is no other point a; € A than a; on the boundary of D(c,r’), shrink
D(c,r’) along ca, keeping the point a; fixed on its boundary until it contains another point
on its boundary and denote it as a;. The resulting disk D(c’,r”) C D(c,r’) contains all the
points in D(c,r) N A and has a; and a; both on its boundary (Figure 1). We prove that
there is a path 7 in 7 between a,; and a; such that 7 is contained in D(¢/,r"), proving the
lemma. The proof is similar to that of Theorem 1 [5], adapted in our context.

The proof is by induction on the number of points in D(c¢/,r"") N A. If there is no point
of A in the interior of D(¢/,r"), then {a;,a;} is an edge of 7 and we are done. Otherwise,
suppose there is a point ¢; in the interior of D(¢/,r"). Shrink D(c’,r") along c’.az, keeping
the point a; fixed on its boundary until it contains a; on its boundary. This process gives us
a disk D(c1,7m1) € D(c,r") that contains a; and a; on its boundary and does not contain
a;. Similarly, shrink D(c’, ") along ¢’a;, keeping the point a; fixed on its boundary until it
contains a; on its boundary. This process gives us a disk D(ca,72) C D(¢/, ") that contains
a; and g; on its boundary and does not contain a;. By induction, there is a path m; in
T between a; and a; such that 71 is contained in D(c1,71) € D(c,r) and a path 7o in T
between a; and a; such that 7y is contained in D(cg,r2) € D(c, 7). Merging the two paths
w1 and 7o, we obtain the desired path 7. |
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» Corollary 4. For any point p € V, there exist two points a;,a; € A such that the edge
{ai,a;} is in T and p is in both large disks D(a;, p2) and D(aj, p2).

Proof. Consider the disk D(p, p2). As p is in at least two large disks, there must be at least
two points of A in this disk. Then by Lemma 3, there are two points a;,a; in AN D(p, p2)
and a path 7 in 7 between a; and a; such that 7 is contained in D(p, p2). Consider any
edge {a;,a;} on m. Then as a;,a; are in D(p, p2), p is in both large disks D(a;, p2) and
D(aj, pg) <

» Corollary 5. For any point p € Na, there exist two points a;,a; € A such that the edge
{ai,a;} is in T and p is in both small disks D(a;, p1) and D(a;, p1).

Proof. Consider the disk D(p, p1). As p is in at least two small disks, there must be at least
two points of A in this disk. Then by Lemma 3, there are two points a;,a; in AN D(p, p1)
and a path 7 in 7 between a; and a; such that 7 is contained in D(p, p1). Consider any
edge {a;,a;} on m. Then as a;,a; are in D(p, p1), p is in both small disks D(a;, p1) and
D(aj, pl) <

Now, we describe the pseudocode of the algorithm, which is self-explanatory.

Algorithm 1 Weighted-Extraction.

Input: The sets A, P, N1, No, small radius p; and large radius ps.

Output: A set sol of large and small disks covering P.
1: Compute the Delaunay triangulation 7 of the points in A.
2: Compute a valid four coloring of the vertices of T .
3: for a; € A do
4 w; <+ 0 > Intialize the weights
5: for p1 € Ny do
6 if p1 € D(a;, p1) then w; + w; + 1
7. for p, € Ny do

8 Compute two points a;, a; with the properties described in Corollary 5.

9: w; — w; + 1

10: Wy < Wj +1

11: Compute the color class C of vertices (access points) of 7 with maximum weight (w.r.t.

w; :a; € A)

12: sol < 0

13: for a; € A do

14: if a; € C then

15: sol + sol U D(a;, p1)

16: else

17: sol + sol U D(a;, p2)
return sol

The four coloring of a planar graph can be computed in polynomial time, for example
using the algorithm in [28]. Hence, the algorithm runs in polynomial time.

» Lemma 6. The solution sol computed by Weighted-Extraction covers all points of P.

Proof. Note that we pick either D(a;, p1) or D(a;, p2) in the solution for each access point a;.
Thus, by Observation 2, the points in N are covered by the selected disks. Now, consider any
point p € V. We prove that p is covered in the solution. By Corollary 4, we know that there
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exist two points a;,a; € A such that the edge {a;,a;} is in 7 and p is in both large disks
D(a;, p2) and D(aj, p2). Note that the points in C form an independent set of the graph
T by all sharing the same color. Hence, the set of points A\ C is a vertex cover of T. It
follows that at least one of a; and a; is in A\ C. As we pick large disks for all access points
in A\ C, p must be covered by D(a;, p2) or D(aj, p2) in the solution. <

We need the following lemma to analyze the gain of the solution.

» Lemma 7. Let W be the total weight of the points in C. Then the set of small disks
centered at the access points in C' contains at least W points of N.

Proof. First, note that the points in C' form an independent set of the graph 7. Now,
consider any point p € N. We claim that it contributes 1 unit of weight to at most one point
of C. If p is in N7, by our construction, it contributes either 1 or 0 depending on whether
the center of the unique small disk that contains p is in C or not. If p is in Na, then by our
construction it contributes 1 unit each to two access points a; and a;. However, the edge
{ai,a;} is contained in 7. As C'is an independent set, it can contain at most one of a; and
a;. Hence, in this case, p contributes at most 1 unit as well. It follows that each 1 unit of
weight of C' comes from a unique point of N. Now, by our construction, 1 unit of weight for
a point p of N is assigned to an access point a; only if p is in the small disk D(a;, p1). Hence,
for each unit of weight of the points in C, there is a unique point in N that is contained in a
small disk centered at a point of C'. So, the number of points contained in the set of small
disks centered at the access points in C' is at least W. |

We note that in the above, the number of points covered by small disks may be more
than W, as the weight of each point contained in a small disk centered at a point of C' might
not be assigned to the points of C. Hence, W is only a lower bound.

» Corollary 8. The solution computed by Weighted-Extraction has a gain of at least OPTy /4+
OPT,/2.

Proof. First, note that by our construction, the sum of the weights of all points in A is
n1 + 2ny. Now, as we pick C' to be the maximum weight color class, the total weight of the
points in C must be at least the average weight, which is (n1 + 2ng)/4 = n1/4 4+ ny/2. By
Lemma 7, the gain of the solution, that is the number of points of IV covered by the small
disks with centers at points in C, is at least n1/4 + na/2. As OPT; < n; and OPTy < ng,
the gain is at least OPT; /4 + OPT3/2. <

2.2 The second algorithm

This algorithm has three steps. In the first step, we construct an instance of the Minimum
Weight Unit Disk Cover problem from the given instance of DC-2.

In Minimum Weight Unit Disk Cover (WUDC), given a set D of unit disks along with a
weight function w : D — RT and a set T of points in the plane, the goal is to find a subset
D’ C D, such that D’ covers T and the sum of the weights of the disks in D’ is minimized.
We refer to this sum of weights as the cost of the solution D’'.

The construction of the instance Z of WUDC is as follows. T is set to be V. D is the set
of all large disks in L. The weight of each large disk D(a;, p2) is the number of points of Ny
in the corresponding small disk D(a;, p1), i.e., w(D(a;, p2)) = |N1 N D(a;, p1)|-

77
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In the second step of the algorithm, a (1 4 €)-approximate solution D’ to WUDC on 7 is
computed using the PTAS in [21], which runs in time [D|2(/€") In the third step, a solution
to DC-2 is computed as follows. First, add all the large disks in D’ to the solution set. Next,
for each large disk D(a;, p2) in D\ D', add the corresponding small disk D(a;, p1) to the
solution set.

The above algorithm runs in (n 4+ m)°(/<") time. Next, we analyze this algorithm. Let
OPT' be the optimal cost of Z.

» Observation 9. The solution computed by the above algorithm covers all points of P.

Proof. We pick either D(a;, p1) or D(a;, p2) in the solution for each access point a;. Thus,
by Observation 2, the points in IV are covered by the selected disks. We also see that the
solution D’ to WUDC covers the points in 7. As we include the (large) disks of D’ in the
DC-2 solution and T' =V, the points of V' are also covered. <

» Lemma 10. OPT’ is at most ny— OPT;.

Proof. Consider the optimal solution of DC-2. The solution covers all points of P and in
particular the points of V. As each point of V is not in any small disk of S, it must be
covered by a selected large disk. Thus, the set of selected large disks, say L', is a valid cover
for the points of V', and so is a feasible solution to Z. We show that the cost of this solution
is ny— OPTy, proving the lemma.

Now, the gain of the DC-2 solution from the points in N7 is OPT;. Thus the union of
small disks that are not selected (corresponding to the large disks in L) contains ny— OPTy
points of N;. By construction of Z, these points are the only points that are assigned to the
large disks in L’. Hence, the cost of L', that is the sum of the weights of the large disks in
L is ny— OPTl <

By the above lemma and the fact that D’ is a (1 + €)-approximate solution, we have the
following observation.

» Observation 11. The cost of D’ is at most (1 +¢) OPT’ < (14 ¢)(n;— OPTy).

» Lemma 12. The gain of the DC-2 solution computed by the second algorithm is at least
(14+¢€)OPT; — 4e- OPT.

Proof. Note that the gain is at least the number of points of IV; in the small disks that are
not selected in the DC-2 solution. Equivalently, the gain is at least the sum of the weights of
the large disks that are in D\ D’. By Observation 11, it follows that the gain is at least
ny — (1+€)(ny — OPTy) =ny —ng + OPTy — eng + - OPTy
> OPT; — 4¢- OPT 4+ ¢- OPT
= (14 ¢)OPT; —4e- OPT

The inequality follows, as by Corollary 8, OPT > ny/4 + ny/2 > ny /4. Hence, we obtain the
desired lemma. <

2.3 Combining the two algorithms

Our main algorithm is a combination of the two above-mentioned algorithms. We invoke
both on the DC-2 instance and return the solution with the larger gain.

» Lemma 13. The gain of the larger-gain solution is at least OPT/(2.5 + €).
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Proof. Let 0 < a < 1 be such that OPT; = a- OPT. By Lemma 8 and 12, the gain of the
larger solution is at least

max{a-OPT/4+ (1 — a)OPT/2,(1+ €)a - OPT — 4e - OPT}
=max{OPT/2 — a-OPT/4,(1 4+ €)ac - OPT — 4¢ - OPT}

This function of o is minimized when

OPT/2 — a-OPT/4 = (1 + €)a- OPT — de - OPT
Or, (5/4+¢)a=1/2+ 4e
Or, a = (24 16€)/(5 + 4e)

Thus, the gain is at least ((1 + €)(2 + 16¢€)/(5 + 4¢) — 4¢)OPT = OPT/(5/2 + O(e)). By
scaling € by a constant, we obtain the desired bound. |

We state our main result of this section in the following theorem.

» Theorem 14. There is an (n+m)°/<*) time (2.5 + €)-approzimation algorithm for DC-2.

3 An FPT Algorithm for Sparse Instances

The parameterized version of DC-2 includes a fixed parameter k, where in addition to the
original goal, we are assured that r; = ps for at most k access points a;. We refer to this
problem as Par-DC-2. Here, we reuse the notation from the previous section. Let OPT be
the gain of any optimal solution. Recall the sets of small disks S and large disks L, and the
sets of vulnerable points V' and non-vulnerable points N. An instance of Par-DC-2 is called
s-sparse for an integer s > 2 if each point of V' is in at most s large disks of L. We note that
in such an instance, a point of N can lie in more than s large (or small) disks. We prove
that Par-DC-2 is fixed-parameter tractable in k + s.

For a set S’ C S, let the gain of S’ be the number of points of N contained in the disks
of S’. For a subset of large disks L’ C L, let sm(L’) be the set of corresponding small disks.

Next, we describe our algorithm. Our algorithm is based on a recursive branching strategy.
Algorithm 2 shows the pseudo-code of a recursive subroutine that is the main procedure
used by our algorithm. The subroutine Recursive-Branching(V”, L’ 1) takes as input a subset
of points V' C V that are yet to be covered, a subset L’ C L of disks already chosen to
cover, and an integer [ > 0 that denotes the depth of recursion. The subroutine returns
a True/False flag. If the flag is True, it also outputs a set of k large disks L} D L’ such
that L] \ L’ covers V', and the gain g corresponding to the solution L], i.e., the gain of
sm(L \ L}). Inside the subroutine, we first check if V' is empty, and if that is the case, L’
itself is returned as the solution along with its gain. If the depth [ = kK + 1, but V'’ # ), the
False flag is returned, indicating there is no feasible solution along this branch, so it should
be pruned here. Otherwise, I < k and V' # (). In that case, we consider any arbitrary point
p € V'. There are at most s large disks in L that cover p. We branch on each such large disk
D. In each branch, we remove the points of V' that are covered by D and recurse on the set
of remaining points with L’ U {D} being the new set of selected disks and [ 4 1 as the new
depth. We also keep track of the largest gain solution returned by these calls and return it if
the flag counter b is set to True. If b is False, we return the False flag.

The main algorithm makes a call to Recursive-Branching(V, 0, 1). If the call returns True,
it outputs the solution where the large disks of L} are selected. Since there are no remaining
points in V' to cover, the remaining small disks sm(L\ L}) may be selected to cover a number
of points in N equal to the gain of L}. Otherwise, it concludes that there is no feasible
solution with k large disks.
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Algorithm 2 Recursive-Branching(V', L', 1).

Input: A set of points V' C V, a subset L' C L, and an integer [ > 0.

Output: A flag True/False, and if the flag is True, a set of k large disks L} D L’ such that

L} \ L' covers V' and the gain g corresponding to L}; otherwise, §) and 0.

1. if V/ =0 then
Let g1 be the gain of the small disks in S\ sm(L’)
return True, L', g
: if Il =k + 1 then

return False, 0,0 > Executing this line implies V' # 0.

: Let L, be the set of large disks in L that contain p.

: b+ False

:g+0
10: L)« 0
11: for each disk D € L, do
12: Let Vp C V' be the subset of points of V/ not in D
13: bp,Lp,gp + Recursive-Branching(Vp, L' U{D},l + 1)
14: if bp = True then

2
3
4
5
6: Let p € V'’ be any arbitrary point.
7
8
9

15: b < True

16: if g < gp then
17: g < 3dp

18: L)+ Lp
19: if b = False then

20: return False, 0,0
21: else

22: return True, L], g

Next, we analyze the algorithm. Consider the recursion tree R corresponding to Recursive-
Branching(V,0,1). We define the level of the nodes in R as follows. The level of the root is 1.
The level of any other node is 1 plus the level of its parent. Let L* denote the large disks
selected in the optimal solution. In our analysis, we assume that L* does not contain any
redundant disk, i.e., removing any disk from L* leaves V' uncovered. If it contains such a
redundant disk, then we can try our algorithm with a smaller value k&’ < k.

We prove the correctness of Recursive-Branching with the following lemma.

» Lemma 15. For each 1 <1 <k, there is a node u in R of level | with the property that a
call is made at u to Recursive-Branching(Vp, L’ U{D},l + 1) such that V' \ Vp is the subset
of points of V' covered by the disks of L' U{D}, and L' U{D} is a subset of L* with | disks.

Proof. We use induction on the level [ > 1. In the base case, consider [ = 1. The root node
at level 1 selects a point p € V and recurses for each disk D € L,,. Now, p must be covered
by a large disk D* € L* that is in L,. Consider the call Recursive-Branching(Vp+, {D*},2)
made at the root. By definition, V' \ Vp« is the set of points in V' that are covered by D*.
Hence, the statement is true in the base case. Now, suppose the statement is true for any
level | < k. We prove that the statement is true for level [ 4+ 1 as well.

By induction argument, there is a node u’ of level | < k that makes a call to Recursive-
Branching(Vp, L’ U{D},l + 1) such that V' \ Vp is the subset of points of V' covered by the
disks of L’ U {D}, and L' U {D} is a subset of L* with | < k disks. Denote the child of «’ in
R by u that corresponds to this call and thus receives the set of large disks L' U {D} C L*.
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Now, L' U {D} does not cover V, as otherwise, L* contains a redundant disk. Thus, we
have that Vp # 0. Suppose p’ is the point of Vp arbitrarily chosen during the execution
of the call corresponding to w'. Then a recursive call is made for each D’ € L,,. Now,
by our assumption, p’ is not covered by the disks in L' U {D} C L*. Hence, there must
be a disk D* € L* \ (L’ U {D}) that covers p’ and is contained in L,. Consider the call
Recursive-Branching(Vp-, L' U{D} U {D*},l + 2) made at u. By definition, Vp \ Vp- is the
subset of points of Vp contained in D*. As any point in V' \ Vp is in a disk of L' U {D},
V' \ Vp~ is the exact subset of points of V' covered by the disks of L' U{D} U {D*}. Also,
L’ U{D} U{D*}| =1+ 1. Hence, the statement is also true for . <

The next lemma shows that the algorithm returns a solution with optimal gain.

» Lemma 16. Recursive-Branching(V, 0, 1) always returns the True flag and the corresponding
solution has the gain value OPT.

Proof. Consider the node in R of level k that makes a call to Recursive-Branching(Vp, L' U

{D},k + 1) where L’ U{D} = L*. The existence of such a node follows due to Lemma 15.

Now, note that L* covers V, and thus Vp = 0. Hence, this call returns True, L*, OPT to its
parent node. Now, inside each call, we keep track of the maximum gain solution returned by
all recursive calls and return it to the parent. Hence, the root node always returns True and
the gain of the solution returned must be at least OPT. <

We will show that the total number of nodes of R is bounded by s°(*). As the algorithm
spends only a polynomial time at each node, the desired result follows. Now, note that at
each node, the algorithm can make at most s calls, as each point of V' is in at most s disks
of L. Moreover, as we prune any branch at level k£ + 1, the maximum level is k£ + 1. Thus,

the total number of nodes is s©*). We state our result in the following theorem.

» Theorem 17. Par-DC-2 can be solved in time s (m +n)°M) on any s-sparse instance.

4 Parameterized Hardness of DC-2

We give a reduction from Dominating set for unit disks. In this problem, we are given a set of
n unit disks (radius 1) D in the plane and a parameter &, and the goal is to select a subset
D’ C D of k disks such that for each disk D in D, D € D’ or there is a disk D’ in D’ such
that DN D' # (.

Marx [24] proved that Dominating set for unit disks is W[1]-hard. In fact, he proved
that assuming ETH, the problem cannot be solved in f(k) - n°(V®) time for any computable
function f. Next, we describe our reduction.

Let Z be the given instance of Dominating set for unit disks. Let C' be the set of
centers of the disks in Z. The distance between a point p and a set S is defined as
mingeg |[p — ¢||. For any point ¢ € C, let 6, be the minimum distance between ¢ and the
disks in {D(c/,2) | ¢ € C and ¢ ¢ D(c/,2)} (see Figure 2). Let 6; = min.cc d.. Also, let
do = ming vec ||c — || with ¢ # ¢/. Denote 6 = min{d;,d2}. Also, let e = §/6. We set
A=C,P={(z+¢y) | (z,y) € C}, p1 = €/2, and ps = 2 + €. Also, we use the same
parameter k. Let Z’ be the constructed instance of Par-DC-2. The construction takes |D|©(*)
time.
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Figure 2 Figure showing the calculation of d.: D(c1,2) is not considered here, as ¢ € D(c1, 2).

» Observation 18. For any ¢ € C, the small disk D(c,p1) NP = 0.

Proof. Let ¢ = (x,y). Consider any p = (z1,y1) € P. First, consider the case when
x1 =z +eand y; =y, then ||c — p|| =€ > p1. Thus, p ¢ D(c, p1). Next, consider the case
when z; # @ + € or y; # y. This implies that there is another point ¢/ = (2/,y’) # ¢ such
that p was constructed from ¢/, i.e., 1 = 2’ + € and y; = y'. Now, suppose ||c — p|| < p1.
Then, ||[c — || < |le=p|| +|lp — || £ p1 +€ < < s In particular, ||c — || < §2. But, by
the definition of d9, this is a contradiction. So, ||c — p|| > p1 in this case, and so p ¢ D(c, p1).
As the two cases are exhaustive, the observation follows. <

The above observation implies that the gain of any solution is 0. Thus, the hardness comes
from the ability to cover the points of P using k large disks.

» Lemma 19. 7 has a dominating set of size k if and only if there is a feasible solution
for I'.

Proof. First, suppose Z has a dominating set of size k. Let C’ be the set of centers of the
k disks in the dominating set. We claim that the k large disks at the centers in C’ cover
the points in P. Consider a point p = (z1,y1) € P and let ¢ = (z,y) € C be such that
x1 =2 + € and y; = y. We know that there is ¢/ € C’ such that D(c/,1) intersects D(c,1).
Thus ||c— || < 2. So, || —p|| < || —¢||+||c—p|| <2+ €. Hence, the large disk at ¢ € C”
covers p.

Next, suppose there is a feasible solution for Z’. Thus, there is a size k subset C/ C A such
that the large disks at C” cover the points in P. We claim that the set of disks D’ C D at the
centers in C’ form a dominating set. Consider any disk D(c,1) € D. Suppose D(c,1) ¢ D'.
Consider the point p = (x1,y1) € P such that ¢ = (z,y), x1 = 2 + € and y; = y. Then
there is ¢/ € C’ such that D(c, p2) covers p. We claim that ¢ € D(¢/,2). Suppose that is not
true. Then as per the definition of d., ¢ is at least §. distance away from D(c’,2). Thus,
lle=d1|| >24d. >24 8 =2+ 6e. However, |[c—C|| < |le—p||+]|lp—=C|] < e+ p2 =2+ 2.
We obtain a contradiction, and hence ¢ € D(¢,2). Equivalently, D(c,1) N D(c/,1) # 0, and
so D(c’,1) dominates D(c,1). Hence, D’ is a dominating set of size k. <

Based on the above discussion, we have the following theorem.

» Theorem 20. Par-DC-2 is W[1]-hard. Moreover, assuming ETH, Par-DC-2 cannot be
solved in f(k)- (n+ m)"(‘/z) time for any computable function f.
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