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Abstract
Let S be a set of n points in Rd, where d ≥ 2 is a constant, and let H1, H2, . . . , Hm+1 be a sequence
of vertical hyperplanes that are sorted by their first coordinates, such that exactly n/m points of S

are between any two successive hyperplanes. Let |A(S, m)| be the number of different closest pairs
in the

(
m+1

2

)
vertical slabs that are bounded by Hi and Hj , over all 1 ≤ i < j ≤ m + 1. We prove

tight bounds for the largest possible value of |A(S, m)|, over all point sets of size n, and for all values
of 1 ≤ m ≤ n.

As a result of these bounds, we obtain, for any constant ε > 0, a data structure of size O(n),
such that for any vertical query slab Q, the closest pair in the set Q ∩ S can be reported in O(n1/2+ε)
time. Prior to this work, no linear space data structure with sublinear query time was known.
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1 Introduction

Throughout this paper, we consider point sets in Rd, where the dimension d is an integer
constant. For any real number a, we define the vertical hyperplane Ha to be the set

Ha = {(x1, x2, . . . , xd) ∈ Rd : x1 = a}.

Note that this is a hyperplane with normal vector (1, 0, 0, . . . , 0). For any two real numbers
a and b with a < b, we define the vertical slab JHa, HbK to be the set

JHa, HbK = {(x1, x2, . . . , xd) ∈ Rd : a ≤ x1 ≤ b}.

Let S be a set of n points in Rd, in which no two points have the same first coordinate and
all

(
n
2
)

pairwise Euclidean distances are distinct.
For any two real numbers a and b with a < b, we define CP(S, Ha, Hb) to be the closest-

pair among all points in the set JHa, HbK ∩ S, i.e., all points of S that are in the vertical slab
JHa, HbK. If JHa, HbK ∩ S has size at most one, then CP(S, Ha, Hb) = ∞.

Clearly, there are Θ(n2) combinatorially different1 sets of the form JHa, HbK ∩ S.
Sharathkumar and Gupta [5] have shown that, for d = 2, the size of the set

{CP(S, Ha, Hb) : a < b}

is only O(n log n). That is, even though there are Θ(n2) combinatorially different vertical
slabs with respect to S, the number of different closest pairs in these slabs is only O(n log n).

In this paper, we generalize this result to the case when the dimension d can be any
constant and the slabs JHa, HbK come from a restricted set.

Let m be an integer with 1 ≤ m ≤ n, and let a1 < a2 < · · · < am+1 be real numbers
such that for each i = 1, 2, . . . , m, there are exactly2 n/m points of S in the interior of the
vertical slab JHai

, Hai+1K. Observe that this implies that all points in S are in the interior of
the vertical slab JHa1 , Ham+1K.

We define

A(S, m) = {CP(S, Hai , Haj ) : 1 ≤ i < j ≤ m + 1}.

That is, |A(S, m)| is the number of different closest pairs over all
(

m+1
2

)
slabs bounded by

vertical hyperplanes whose first coordinates belong to {a1, a2, . . . , am+1}. Finally, we define

fd(n, m) = max{|A(S, m)| : |S| = n}.

Using this notation, Sharathkumar and Gupta [5] have shown that f2(n, n) = O(n log n).
In dimension d = 1, it is easy to see that f1(n, m) = Θ(m). Our main results are the

following tight bounds on fd(n, m), for any constant d ≥ 2 and any m with 1 ≤ m ≤ n:

▶ Theorem 1. Let d ≥ 2 be a constant, and let m and n be integers such that 1 ≤ m ≤ n.
1. If m = O(

√
n), then fd(n, m) = Θ(m2).

2. If m = ω(
√

n), then fd(n, m) = Θ(n log(m2/n)).
3. In particular, if m = n, then fd(n, m) = Θ(n log n).

1 The slabs JHa, HbK and JHa′ , Hb′ K are combinatorially different if their intersections with S are different.
2 In order to avoid floors and ceilings, we assume for simplicity that n is a multiple of m.
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1.1 Motivation
In the range closest pair problem, we have to store a given set S of n points in Rd in a data
structure such that queries of the following type can be answered: Given a query range R in
Rd, report the closest pair among all points in the set R ∩ S.

Many results are known for different classes of query ranges. We mention some of the
currently best data structures. Xue et al. [9] present data structures for the case when d = 2
and the query ranges are quadrants, halfplanes, or axes-parallel rectangles. Again for the case
when d = 2, data structures for query regions that are translates of a fixed shape are given
by Xue et al. [8]. Some results in any constant dimension d ≥ 3 are given by Chan et al. [3].
Xue [7] considers colored point sets, where the goal is to report the closest pair of points
with different colors that are inside a query range. For constant dimension d ≥ 2, [7] presents
data structures for different types of query regions that report (1 + ε)-approximations for
the closest pair with different colors. References to many other data structures can be found
in [3, 8, 9].

Most of the currently known data structures use super-linear space. To the best of our
knowledge, linear-sized data structures are known only for the following classes of regions, all
in dimension d = 2: Quadrants and halfplanes [9], and translates of a fixed polygon (possibly
with holes) [8]. In all these three cases, the query time is O(log n).

If each query range R is a vertical slab JHa, HbK, we refer to the problem as the vertical
slab closest pair problem. In dimension d = 1, it is easy to obtain a data structure of size
O(n) such that the closest pair in any “vertical slab” (i.e., interval on the real line) can be
computed in O(log n) time. In dimension d = 2, Sharathkumar and Gupta [5] gave a data
structure of size O(n log2 n) that allows queries to be answered in O(log n) time. Xue et
al. [9] improved the space bound to O(n log n), while keeping a query time of O(log n). Both
these results use the fact that f2(n, n) = O(n log n). In fact, both data structures explicitly
store the set {CP(S, Ha, Hb) : a < b}, whose size is equal to f2(n, n) in the worst case.

The starting point of our work was to design a data structure of size O(n) for vertical
slab closest pair queries. This led us to the problem of determining the asymptotic value of
the function fd(n, m). Using our bounds in Theorem 1, we will obtain the following result.

▶ Theorem 2. Let d ≥ 2 be an integer constant and let ε > 0 be a real constant. For every
set S of n points in Rd, there exists a data structure of size O(n) that allows vertical slab
closest pair queries to be answered in O(n1/2+ε) time.

Note that, prior to our work, no O(n)-space data structure with a query time of o(n) was
known for d ≥ 2.

Organization. In Section 2, we will present the upper bounds in Theorem 1 on fd(n, m).
The corresponding lower bounds will be given in Section 3. The data structure in Theorem 2
will be presented in Section 4. We conclude in Section 5 with some open problems.

Notation and Terminology. Throughout the rest of this paper, the notions of left and right
in Rd will always refer to the ordering in the first coordinate. That is, if p = (p1, p2, . . . , pd)
and q = (q1, q2, . . . , qd) are two points in Rd with p1 < q1, then we say that p is to the left of
q, and q is to the right of p. For a vertical hyperplane Ha, we say that p is to the left of Ha

if p1 < a. If p1 > a, then p is to the right of Ha.
The Euclidean distance between any two points p and q in Rd will be denoted by ||p − q||.

The length, or norm, of any vector v will be denoted by ||v||.

WADS 2025
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Figure 1 The pairs in A(S, n) with positive slope that cross ℓ do not contain a cycle.

2 Upper bounds on fd(n, m)

Let d ≥ 2 be a constant, let m and n be integers with 1 ≤ m ≤ n, and let S be a set of n

points in Rd. Let a1 < a2 < · · · < am+1 be real numbers such that for each i = 1, 2, . . . , m,
there are exactly n/m points in S between the vertical hyperplanes Hai

and Hai+1 .
For any m, it is clear that fd(n, m) = O(m2), because there are

(
m+1

2
)

vertical slabs of
the form JHai

, Haj
K. Thus, the upper bound in Theorem 1 holds when m = O(

√
n). In the

rest of this section, we assume that m = ω(
√

n).
The following lemma was proved by Sharathkumar and Gupta [5] for the case when d = 2.

This lemma will be the key tool to prove our upper bound on fd(n, m).

▶ Lemma 3. Let S be a set of n points in Rd and let CP be the set of segments corresponding
to the elements of A(S, n). That is, for each pair in A(S, n), the set CP contains the line
segment connecting the two points in this pair. For any vertical hyperplane H, the number of
elements of CP that cross H is O(n).

We first present a proof of this lemma for the case when d = 2. We believe that our proof
is simpler than the one in [5]. Afterwards, we present a proof for any dimension d ≥ 2.

Proof of Lemma 3 when d = 2. We write ℓ for the vertical line. We define a graph, G+,
with vertex set S. Each segment of CP with a positive slope represents an edge in the graph
G+. Let F be the subgraph of G+ induced by the segments of CP that cross ℓ. We will show
that F does not contain a cycle.

Suppose, to the contrary, that there is a cycle C in F . Let a and b be the endpoints
of the shortest edge in C such that a is to the left of ℓ and b is to the right of ℓ. Let ac

and bd be the other edges of the cycle that are incident to a and b, respectively. Since both
ab and ac represent pairs in CP and both have a positive slope, we have ax < cx < bx and
ay < by < cy. Similarly, we have ax < dx < bx and dy < ay < by; see Figure 1.

Let c′ be the reflection of the point c with respect to the horizontal line through b. Note
that ||b − c′|| = ||b − c|| > ||b − d||, because bd represents a pair in A(S, n) and the vertical
slab Jbx, dxK contains the point c. Since ||b − c′|| > ||b − d||, we have c′

y < dy. We also have
dy < ay and ax < dx < cx = c′

x. It follows that ||a − d|| < ||a − c′||.



A. Biniaz et al. 8:5

Consider the bisector of the segment cc′ (which is the horizontal line through b). Observe
that the point a is located on the same side as c′ with respect to this bisector. Therefore,
||a − c′|| < ||a − c||. Combined with ||a − d|| < ||a − c′||, this implies that ||a − d|| < ||a − c||.
This contradicts the facts that ac represents a pair in A(S, n) and the point d is in the slab
Jax, cxK.

A similar argument shows that the segments in CP that cross ℓ and have negative slopes
do not contain a cycle. Therefore, the total number of segments in CP that cross the line ℓ

is O(n). ◀

To prove Lemma 3 for dimensions d ≥ 2, we will use the Well-Separated Pair Decomposition
(WSPD), as introduced by Callahan and Kosaraju [2]. Let S be a set of n points in Rd and
let s > 1 be a real number, called the separation ratio. A WSPD for S is a set of pairs
{Ai, Bi}, for i = 1, 2, . . . , k, for some positive integer k, such that
1. for each i, Ai ⊆ S and Bi ⊆ S,
2. for each i, there exist two balls D and D′ of the same radius, say ρ, such that Ai ⊆ D,

Bi ⊆ D′, and the distance between D and D′ is at least s · ρ, i.e., the distance between
their centers is at least (s + 2) · ρ,

3. for any two distinct points p and q in S, there is a unique index i such that p ∈ Ai and
q ∈ Bi or vice-versa.
Consider a pair {Ai, Bi} in a WSPD. If p and p′ are two points in Ai and q is a point in

Bi, then it is easy to see that

||p − p′|| ≤ (2/s) · ||p − q||. (1)

▶ Lemma 4 (Callahan and Kosaraju [2]). Let S be a set of n points in Rd, and let s > 1 be a
real number. A well-separated pair decomposition for S, with separation ratio s, consisting of
O(sdn) pairs, can be computed in O(n log n + sdn) time.

Proof of Lemma 3. Let s > 2 be a constant and consider a WSPD {Ai, Bi}, i = 1, 2, . . . , k,
for the point set S with separation ratio s, where k = O(n); see Lemma 4. We define the
following geometric graph G on the point set S. For each i with 1 ≤ i ≤ k, let

ai be the rightmost point in Ai that is to the left of H,
bi be the leftmost point in Bi that is to the right of H,
a′

i be the leftmost point in Ai that is to the right of H, and
b′

i be the rightmost point in Bi that is to the left of H.
We add the edges aibi and a′

ib
′
i to the graph G. Note that some of these points may not

exist, in which case we ignore the corresponding edge. It is clear that G has O(n) edges. The
lemma will follow from the fact that every segment in CP that crosses H is an edge in G.

Let pq be a pair in CP that crosses H, and let Q be a vertical slab such that pq is the
closest pair in Q ∩ S. We may assume, without loss of generality, that p is to the left of H

and q is to the right of H. Let i be the index such that (i) p ∈ Ai and q ∈ Bi or (ii) p ∈ Bi

and q ∈ Ai. We may assume, without loss of generality, that (i) holds.
We claim that p = ai. To prove this, suppose that p ̸= ai. Then, since p is to the left

of ai, ai is in the slab Q. Since s > 2, Equation (1) yields ||p − ai|| < ||p − q||, which is a
contradiction. By a symmetric argument, we have q = bi. Thus, pq is an edge in G. ◀

Lemma 3 gives us a divide-and-conquer approach to prove an upper bound on fd(n, m):

▶ Theorem 5. Let d ≥ 2 be a constant, and let m and n be integers with m = ω(
√

n) and
m ≤ n. Then fd(n, m) = O(n log (m2/n)).

WADS 2025
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Proof. Let S be a set of n points in Rd for which fd(n, m) = |A(S, m)|. Let a1 < a2 < · · · <

am+1 be real numbers such that for each i = 1, 2, . . . , m, there are exactly n/m points in S

that are strictly inside the vertical slab JHai
, Hai+1K.

Let H = Ha1+m/2 . Observe that n/2 points of S are to the left of H and n/2 points of
S are to the right of H. Denote these two subsets by S− and S+, respectively. Each pair
in A(S, m) is either a pair in A(S−, m/2) or a pair in A(S+, m/2) or it crosses H. Using
Lemma 3, it follows that

fd(n, m) = |A(S, m)| = |A(S−, m/2)| + |A(S+, m/2)| + O(n) ≤ 2 · fd(n/2, m/2) + O(n).

If we apply this recurrence k times, we get

fd(n, m) ≤ 2k · fd(n/2k, m/2k) + O(kn).

For k = log(m2/n), we have n/2k = n2/m2 and m/2k = n/m. Thus,

fd(n, m) ≤ m2

n
· fd

(
n2/m2, n/m

)
+ O(n log(m2/n)).

Since fd

(
n2/m2, n/m

)
= O(n2/m2), we conclude that

fd(n, m) = O(n + n log(m2/n)) = O(n log(m2/n)). ◀

3 Lower bounds on fd(n, m)

In this section, we prove the lower bounds on fd(n, m) as stated in Theorem 1. We will prove
these lower bounds for the case when d = 2. It is clear that this will imply the same lower
bound for any constant dimension d ≥ 2.

▶ Theorem 6. Let n and m be positive integers with n ≥ m(m + 1). Then f2(n, m) =
(

m+1
2

)
.

Proof. It is clear that f2(n, m) ≤
(

m+1
2

)
. To prove the lower bound, we will construct a set

S of n points in R2 such that the
(

m+1
2

)
vertical slabs have distinct closest pairs.

For i = 1, 2, . . . , m + 1, we take ai = i and consider the corresponding hyperplane Hi.
Let Q = {JHi, HjK : 1 ≤ i < j ≤ m + 1} be the set of all possible vertical slabs. We define
the size of a slab JHi, HjK to be the difference j − i of their indices.

We start by constructing a set P of m(m + 1) points such that the slabs in Q contain
distinct closest pairs in P , and for each i = 1, 2, . . . , m, the slab JHi, Hi+1K contains exactly
m + 1 points of P .

Note that the slab JH1, Hm+1K has the largest size. Let p be an arbitrary point in JH1, H2K
and let q be an arbitrary point in JHm, Hm+1K. We initialize P = {p, q}, D = ||p − q||, and
delete the slab JH1, Hm+1K from Q.

As long as Q is non-empty, we do the following:
Take a slab JHi, HjK of largest size in Q.
Let p be an arbitrary point in JHi, Hi+1K such that p is above the bounding box of P ,
and the distance between p and any point in P is more than D + 2.
Let q be an arbitrary point in JHj−1, HjK such that q is above the bounding box of P ,
the distance between q and any point in P is more than D + 2, and ||p − q|| = D + 1.
Add p and q to P .
Set D = ||p − q||.
Delete the slab JHi, HjK from Q.
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It is not difficult to see that the final point set P has the properties stated above.
To obtain the final point set S, of size n, we define a set P ′ of n − m(m + 1) points, such

that each point in P ′ has distance more than D to all points of P , the closest pair distance in
P ′ is more than D, and for each i = 1, 2, . . . , m, the slab JHi, Hi+1K contains n/m − (m − 1)
points of P ′. The point set S = P ∪ P ′ has the property that |A(S, m)| =

(
m+1

2
)
. ◀

▶ Corollary 7. Let n and m be sufficiently large positive integers with n < m(m + 1) and
m ≤ 3

√
n. Then f2(n, m) = Ω(m2).

Proof. For i = 1, 2, . . . , m + 1, we take ai = i and consider the corresponding hyperplane Hi.
Let m′ =

√
n/4 and n′ = m′(m′ + 1). We apply Theorem 6, where we replace n by n′

and m by m′. This gives us a set S′ of n′ points with |A(S′, m′)| = f2(n′, m′). The points of
S′ are between the hyperplanes H1 and Hm′+1; for each i = 1, 2, . . . , m′, the vertical slab
JHi, Hi+1K contains n′/m′ points of S′. Note that

|A(S′, m′)| =
(

m′ + 1
2

)
= Ω

(
(m′)2)

.

Let D be the diameter of S′. Let S be the union of S′ and a set of n − n′ additional points
that have pairwise distances more than D, whose distances to the points in S′ are more
than D, and such that for each i = 1, 2, . . . , m, the vertical slab JHi, Hi+1K contains n/m

points of S. It is clear that

f2(n, m) ≥ |A(S′, m′)| = Ω((m′)2).

Note that this construction is possible, because (i) n′ < n, (ii) m′ < m, and (iii) n′/m′ < n/m;
these inequalities follow by straightforward algebraic manipulations, using the assumptions on
n and m in the statement of the corollary. Finally, these assumptions imply that m′ ≥ m/12.
We conclude that f2(n, m) = Ω(m2). ◀

Before we prove the lower bound for the remaining case, i.e., m > 3
√

n, we consider the
case when m = n, which will serve as a warm up.

▶ Theorem 8. We have f2(n, n) = Ω(n log n).

Proof. We assume for simplicity that n is a sufficiently large power of two. We will construct
a point set S of size n for which |A(S, n)| = Ω(n log n).

Let k = log n. For i = 0, 1, . . . , k − 1, let xi = 2i and let vi = (xi, yi) be a vector,
where the value of yi is inductively defined as follows: We set yk−1 = 0. Assuming that
yk−1, yk−2, . . . , yi+1 have been defined, we set yi to an integer such that

||vi|| > 2
k−1∑

j=i+1
||vj ||. (2)

We define

S =
{

k−1∑
i=0

βivi : (β0, β1, · · · , βk−1) ∈ {0, 1}k

}
.

Note that each binary sequence of length k represents a unique point in S. Using this
representation, each point of S corresponds to a vertex of a k-dimensional hypercube Qk.
We will prove below that each edge of Qk corresponds to a closest pair in a unique vertical
slab. Since Qk has k · 2k−1 = Ω(n log n) edges, this will complete the proof.

WADS 2025



8:8 Tight Bounds on the Number of Closest Pairs in Vertical Slabs

Consider an arbitrary edge of Qk. The two vertices of this edge are binary sequences of
length k that have Hamming distance one, i.e., they differ in exactly one bit. Let t be the
position at which they differ. Observe that 0 ≤ t ≤ k − 1. Let r and s be the points of S

that correspond to the two vertices of this edge. Then vt is either r − s or s − r. We will
prove that r and s form the closest pair in the vertical slab JHr1 , Hs1K, where r1 and s1 are
the first coordinates of r and s, respectively (assuming that r1 < s1). Note that r1 and s1
are integers.

Let p and q be two points in JHr1 , Hs1K ∩ S such that {p, q} ≠ {r, s}. We have to show
that ||r − s|| < ||p − q||. Since p and q are points in S, we can write them as

p =
k−1∑
i=0

βp,ivi and q =
k−1∑
i=0

βq,ivi.

Let ℓ be the smallest index for which βp,ℓ ̸= βq,ℓ. Then

||p − q|| =

∣∣∣∣∣
∣∣∣∣∣
k−1∑
i=ℓ

(βp,i − βq,i)vi

∣∣∣∣∣
∣∣∣∣∣ .

By the triangle inequality, we have ||a + b|| ≤ ||a|| + ||b|| and ||a + b|| ≥ ||a|| − ||b|| for any
two vectors a and b. These two inequalities, together with (2), imply that

||p − q|| ≥ ||vℓ|| −
k−1∑

i=ℓ+1
||vi|| >

1
2 · ||vℓ||.

Thus, it suffices to show that ||vℓ|| ≥ 2 · ||r − s|| = 2 · ||vt||. If we can show that ℓ < t, then,
using (2),

||vℓ|| > 2
k−1∑

i=ℓ+1
||vi|| ≥ 2 · ||vt||

and the proof is complete.
The horizontal distance between p and q (i.e., |p1 − q1|) is smaller than the horizontal

distance between r and s. Recall that vt is either r − s or s − r. Thus, the horizontal distance
between r and s is equal to the first coordinate of the vector vt, which is xt.

Let ℓ′ be the largest index for which βp,ℓ′ ̸= βq,ℓ′ . Note that ℓ ≤ ℓ′. If ℓ = ℓ′, then

p − q = (βp,ℓ − βq,ℓ) vℓ

and

|p1 − q1| = |βp,ℓ − βq,ℓ|xℓ = xℓ.

Now assume that ℓ < ℓ′. We may assume, without loss of generality, that βp,ℓ′ = 1 and
βq,ℓ′ = 0. Then (recall that xi = 2i),

|p1 − q1| =

∣∣∣∣∣xℓ′ +
ℓ′−1∑
i=ℓ

(βp,i − βq,i)xi

∣∣∣∣∣ =

∣∣∣∣∣2ℓ′
+

ℓ′−1∑
i=ℓ

(βp,i − βq,i)2i

∣∣∣∣∣ ≥ 2ℓ′
−

ℓ′−1∑
i=ℓ

2i = 2ℓ = xℓ.

We conclude that xℓ ≤ |p1 − q1| < xt, which is equivalent to ℓ < t. ◀

▶ Theorem 9. Let n and m be positive integers with 3
√

n < m ≤ n. Then f2(n, m) =
Ω(n log (m2/n)).
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Proof. Our approach will be to use multiple scaled and shifted copies of the construction in
Theorem 8 to define a set S of n points in R2 for which |A(S, m)| = Ω(n log (m2/n)).

For i = 1, 2, . . . , m + 1, we take ai = i and consider the corresponding vertical hyperplane
Hi. For each i = 1, 2, . . . , m, the point set S will contain exactly n/m points in the vertical
slab JHi, Hi+1K.

Throughout the proof, we will use the following notation. Let v0, v1, . . . , vk−1 be a
sequence of pairwise distinct vectors in the plane. The hypercube-set defined by these vectors
is the point set

Q(v0, v1, . . . , vk−1) =
{

k−1∑
i=0

βivi : (β0, β1, · · · , βk−1) ∈ {0, 1}k

}
.

For each g = 1, 2, . . . , n/m, we define a hypercube-set Qg:
Let kg = ⌊log(m/(2g − 1))⌋.
For each i = 0, 1, . . . , kg − 1, let xg,i = (2g − 1) · 2i and let vg,i = (xg,i, yg,i) be a vector,
whose second coordinate yg,i will be defined later.
Let Qg = Q(vg,0, vg,1, . . . , vg,kg−1).

Since, for integers g, g′, i, and i′, (2g − 1) · 2i = (2g′ − 1) · 2i′ if and only if g = g′ and i = i′,
then all values xg,i are pairwise distinct.

To define the values yg,i, we sort all vectors vg,i by their first coordinates. We go through
the sorted sequence in decreasing order:

For the vector with the largest first coordinate, we set its y-value to zero.
For each subsequent vector vg,i, we set yg,i to be an integer such that

||vg,i|| > 2
∑
g′,i′

||vg′,i′ ||, (3)

where the summation is over all pairs g′, i′ for which yg′,i′ has already been defined (i.e.,
xg,i < xg′,i′).

We choose pairwise distinct real numbers 0 < εg < 1, for g = 1, 2, . . . , n/m, and set

∆ = 1 + max{diam(Qg) : 1 ≤ g ≤ n/m},

where diam(Qg) denotes the diameter of the point set Qg.
For each g = 1, 2, . . . , n/m and i = 1, 2, . . . , 2g − 1, let

Sg,i = Qg + (i + εg, 2((g − 1)2 + i − 1)∆),

that is, Sg,i is the translate of Qg by the vector (i + εg, 2((g − 1)2 + i − 1)∆). We define S′

to be the union of all these sets Sg,i, i.e.,

S′ =
n/m⋃
g=1

2g−1⋃
i=1

Sg,i.

Note that the sets Sg,i are pairwise disjoint: Indeed if g ̸= g′ or i ̸= i′, then the y-projections of
Sg,i and Sg′,i′ (i.e., the sets of second coordinates) are disjoint by construction. Consequently,
the size of the union of these point sets satisfies

|S′| =
n/m∑
g=1

2g−1∑
i=1

|Sg,i| =
n/m∑
g=1

2g−1∑
i=1

2kg ≤
n/m∑
g=1

(2g − 1) · m

2g − 1 = n.
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For each 1 ≤ g ≤ n/m, by construction of Qg and the fact that the sets Sg,i are disjoint
translations of Qg, each slab JHj , Hj+1K contains at most one point of

⋃2g−1
i=1 Sg,i. Therefore,

each slab JHj , Hj+1K contains at most n/m points of S′.
To obtain the final point set S of size n, we add n − |S′| points to S′ such that each slab

JHj , Hj+1K contains exactly n/m points of S, and the added points are sufficiently far from
each other and from all points of S′.

In the rest of this proof, we will prove the following claim: For each g = 1, 2, . . . , n/m,
consider two binary strings of length kg that differ in exactly one position (recall that the
number of such pairs of strings is equal to kg · 2kg−1). These strings correspond to two
points of the hypercube-set Qg. Thus, for any i = 1, 2, . . . , 2g − 1, they correspond to two
points, say r and s, in the set Sg,i. We claim that r and s form the closest pair in the set
JH⌊r1⌋, H⌈s1⌉K∩S, where r1 and s1 are the first coordinates of r and s, respectively (assuming
that r1 < s1). Note that we take the floor and the ceiling, because r1 and s1 are not integers.
This claim will imply that

f2(n, m) ≥ |A(S, m)| ≥
n/m∑
g=1

2g−1∑
i=1

kg · 2kg−1.

Since kg > log
(

m
2g−1

)
− 1, we get

f2(n, m) ≥
n/m∑
g=1

(2g − 1)
(

log
(

m

2g − 1

)
− 1

)
· m

4(2g − 1)

=
n/m∑
g=1

m

4 log
(

m

2g − 1

)
−

n/m∑
g=1

m

4 .

Since each term in the first summation is larger than the last term, which is larger than
(m/4) log(m2/(2n)), we get

f2(n, m) ≥ n

m
· m

4 log(m2/(2n)) − n

4 = n

4
(
log(m2/(2n)) − 1

)
.

Since m > 3
√

n,

log(m2/(2n)) − 1 = Ω(log(m2/n)).

We conclude that

f2(n, m) = Ω(n log(m2/n)).

It remains to prove the above claim. Let g and i be integers with 1 ≤ g ≤ n/m and
1 ≤ i ≤ 2g − 1. Consider two binary strings of length kg that differ in exactly one position;
denote this position by t. Let r and s be the two corresponding points of Sg,i. Note that the
vector vg,t is equal to either r − s or s − r.

We may assume, without loss of generality, that r1 < s1. To prove that r and s form the
closest pair in the set JH⌊r1⌋, H⌈s1⌉K ∩ S, we consider an arbitrary pair p and q of points in
JH⌊r1⌋, H⌈s1⌉K ∩ S such that {p, q} ≠ {r, s}. We will show that ||r − s|| < ||p − q||.

Let g′, g′′, i′, and i′′ be such that p ∈ Sg′,i′ and q ∈ Sg′′,i′′ . If g′ ̸= g′′ or i′ ̸= i′′, then

∥p − q∥ ≥ |p2 − q2| ≥ ∆ > diam(Qg) ≥ ∥r − s∥.
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In the rest of the proof, we assume that g′ = g′′ and i′ = i′′. Since both p and q are in Sg′,i′ ,
we can write them as

p =
kg′ −1∑
j=0

βp,jvg′,j + (i′ + εg′ , 2((g′ − 1)2 + i′ − 1)∆) and

q =
kg′ −1∑
j=0

βq,jvg′,j + (i′ + εg′ , 2((g′ − 1)2 + i′ − 1)∆).

Let ℓ be the smallest index such that 0 ≤ ℓ ≤ kg′ − 1 and βp,ℓ ̸= βq,ℓ. Using the triangle
inequality and (3), we have

||p − q|| =

∣∣∣∣∣∣
∣∣∣∣∣∣
kg′ −1∑

j=ℓ

(βp,j − βq,j)vg′,j

∣∣∣∣∣∣
∣∣∣∣∣∣ ≥ ||vg′,ℓ|| −

kg′ −1∑
j=ℓ+1

||vg′,j || >
1
2 · ||vg′,ℓ||.

Thus, it suffices to show that

||vg′,ℓ|| ≥ 2 · ||r − s|| = 2 · ||vg,t||.

Since both p and q are in Sg′,i′ , we have |p1 − q1| ≤ |r1 − s1| (where r and s are each at
distance εg from the left boundary of their corresponding slabs, and p and q are at distance
εg′ from the left boundary of their corresponding slabs). Let ℓ′ be the largest index such
that 0 ≤ ℓ′ ≤ kg′ − 1 and βp,ℓ′ ̸= βq,ℓ′ . We have

xg,t = |r1 − s1| ≥ |p1 − q1| =

∣∣∣∣∣∣
ℓ′∑

j=ℓ

(βp,j − βq,j)xg′,j

∣∣∣∣∣∣ ≥ xg′,ℓ′ −
ℓ′−1∑
j=ℓ

xg′,j

= (2g′ − 1)

2ℓ′
−

ℓ′−1∑
j=ℓ

2j

 = (2g′ − 1) · 2ℓ = xg′,ℓ.

Since {p, q} ̸= {r, s}, then xg,t cannot be equal to xg′,ℓ. Therefore, xg,t > xg′,ℓ. Using (3), it
then follows that ||vg′,ℓ|| ≥ 2 · ||vg,t||. ◀

4 The Data Structure

In this section, we will present a data structure for vertical closest pair queries. Our data
structure will use the results in the following three lemmas.

▶ Lemma 10. Let S be a set of n points in Rd and let L be a set of k line segments such that
the endpoints of each segment belongs to S. There exists a data structure of size O(n + k),
such that for any two real numbers a and b with a < b, the shortest segment in L that is
completely inside the vertical slab JHa, HbK can be reported in O(log n) time.

Proof. Xue et al. [9, Section 3] proved the claim in the case where d = 2. A careful analysis
of their construction shows that the claim in fact holds for any constant dimension d ≥ 2. ◀

The next lemma is due to Mehlhorn [4, page 44]; see Smid [6] for a complete analysis of
this data structure.

▶ Lemma 11. Let S be a set of n points in Rd and let ε > 0 be a real constant. There exists
a data structure of size O(n), such that for any axis-parallel rectangular box B, all points in
B ∩ S can be reported in O(nε + |B ∩ S|) time.

WADS 2025



8:12 Tight Bounds on the Number of Closest Pairs in Vertical Slabs

δ

δ

δ

(A) (B) (C)

p

Ha Hb

Hai Haj

Figure 2 (A), (B), and (C) are the three regions created by a query JHa, HbK. The rectangle Rp

is the range query for the point p with respect to the query JHa, HbK.

The last tool that we need is a standard sparsity property.

▶ Lemma 12. Let r > 0 be a real number, and let X be a set of points in Rd that are
contained in an r × 2r × 2r × · · · × 2r rectangular box B. If the distance of the closest pair
of points in X is at least r, then |X| ≤ 2d−1 · cd, where c = 1 + ⌈

√
d⌉.

In the rest of this section, we will prove the following result.

▶ Theorem 13. Let S be a set of n points in Rd, let m be an integer with 1 ≤ m ≤ n, and
let ε > 0 be a real constant. There exists a data structure of size O(n + fd(n, m)) such that
for any two real numbers a and b with a < b, the closest pair in the vertical slab JHa, HbK
can be reported in O(n1+ε/m) time.

Proof. Let a1 < a2 < · · · < am+1 be real numbers such that for each i = 1, 2, . . . , m,
the vertical slab JHai , Hai+1K contains n/m points of S. Let k = |A(S, m)|. Note that
k ≤ fd(n, m). Our data structure consists of the following components:

An array storing the numbers a1, a2, . . . , am+1. For each i = 1, 2, . . . , m, the i-th entry
stores, besides the number ai, a list of all points in JHai , Hai+1K ∩ S.
The data structure of Lemma 10, where L is the set of line segments corresponding to
the pairs in {CP(S, Hai

, Haj
) : 1 ≤ i < j ≤ m + 1}.

The data structure of Lemma 11.
The size of the entire data structure is O(m + n + k), which is O(n + fd(n, m)).

We next describe the query algorithm. Let a and b be real numbers with a < b. Using
binary search, we compute, in O(log m) = O(n1+ε/m) time, the indices i and j such that
Ha is in the slab JHai−1 , Hai

K and Hb is in the slab JHaj
, Haj+1K.

If i = j, then the slab JHa, HbK contains O(n/m) points of S. In this case, we use
the algorithm of Bentley and Shamos [1] to compute the closest pair in JHa, HbK in
O((n/m) log(n/m)) = O(n1+ε/m) time.

Assume that i < j. The two hyperplanes Hai
and Haj

split the query slab JHa, HbK into
three parts (A), (B), and (C), where (A) is the slab JHa, Hai

K, (B) is the slab JHai
, Haj

K,
and (C) is the slab JHaj

, HbK; refer to Figure 2.
Let SAC be the set of points in S that are in the union of (A) and (C), and let SB be

the set of points in S that are in (B). There are three possibilities for the closest pair in
JHa, HbK: Both endpoints are in SAC , both endpoints are in SB , or one endpoint is in SAC

and the other endpoint is in SB .
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Using the algorithm of Bentley and Shamos [1], we compute the closest pair distance δ1
in SAC , in O((n/m) log(n/m)) = O(n1+ε/m) time. Using the data structure of Lemma 10,
we compute the closest pair distance δ2 in SB in O(log n) = O(n1+ε/m) time.

Let δ = min(δ1, δ2). In the final part of the query algorithm, we use the data structure of
Lemma 11:

For each point p in the region (A), we compute the set of all points in S that are in the
part, say Pp, of the axes-parallel box

[p1, p1 + δ] × [p2 − δ, p2 + δ] × · · · × [pd − δ, pd + δ]

that is to the left of Haj
. Then we compute δp, which is the minimum distance between

p and any point inside S ∩ Pp.
For each point p in the region (C), we compute the set of all points in S that are in the
part, say P ′

p, of the axes-parallel box

[p1 − δ, p1] × [p2 − δ, p2 + δ] × · · · × [pd − δ, pd + δ]

that is to the right of Hai
. Then we compute δp, which is the minimum distance between

p and any point inside S ∩ P ′
p.

At the end , we return the minimum of δ and min{δp : p ∈ SAC}.
By Lemma 12, the boxes Pp and P ′

p each contain O(1) points of S. In total, there are O(n/m)
queries to the data structure of Lemma 11, and each one takes O(nε) time. Thus, this final
part of the query algorithm takes O((n/m) · nε) = O(n1+ε/m) time. ◀

The proof of Theorem 2 follows by taking m =
√

n in Theorem 13 and using Theorem 1.

5 Future Work

The point sets that we constructed for the lower bounds on fd(n, m) have coordinates that
are at least exponential in the number of points. Recall that the spread (also known as
aspect ratio) of a point set is the ratio of the diameter and the closest pair distance. It is
well-known that the spread of any set of n points in Rd is Ω(n1−1/d). It is natural to define
fd(n, m, Φ) as the quantity analogous to fd(n, m), where we only consider sets of n points in
Rd having spread at most Φ.

▶ Problem 14. Determine the value of fd(n, m, Φ).

For any set S of n points in Rd, where d = 2, Xue et al. [9] have presented a data structure
of size O(n log n) that can be used to answer vertical slab closest pair queries in O(log n)
time. Our data structure uses only O(n) space and works in any constant dimension d ≥ 2.
However, its query time is O(n1/2+ε).

▶ Problem 15. Is there a linear space data structure that supports vertical slab closest pair
queries in o(

√
n) time, or even in O(polylog (n)) time?

Another interesting research direction is to design linear space data structures for closest
pair queries with other types of ranges, such as axes-parallel 3-sided ranges and general
axes-parallel rectangular ranges.
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