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Abstract
The ⃗Yao∞

4 and ⃗Yao4 graphs are two families of directed geometric graphs whose vertices are points
in the plane, and each vertex has up to four outgoing edges. Consider a horizontal and a vertical
line through each vertex v, defining four quadrants around v. Then v has an outgoing edge to the
closest vertex in each of its four quadrants. When the distance is measured using the Euclidean
norm, the resulting graph is the ⃗Yao4 graph, whereas with the L∞-norm, we obtain the ⃗Yao∞

4 graph,
which is a sub-graph of the well-known L∞-Delaunay graph.

In this paper, we provide a local routing algorithm with routing ratio at most 85.22 for ⃗Yao∞
4

graphs. Prior to this work, no constant spanning or routing ratios for ⃗Yao∞
4 graphs were previously

known. Now, ⃗Yao∞
4 graphs are the sparsest family of directed planar graphs supporting a competitive

local routing strategy. Furthermore, we show that no local routing algorithm for ⃗Yao∞
4 graphs can

have a routing ratio lower than 7 +
√

2 ≈ 8.41. Moreover, we prove that the spanning ratio is at
least 5 +

√
2 ≈ 6.41 in the worst case. The techniques we develop in this paper also allow us to

prove lower bounds of 7 −
√

3 +
√

5 − 2
√

3 ≈ 6.51 and 7 +
√

2 for the spanning and routing ratios
of ⃗Yao4, respectively.
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1 Introduction

A fundamental problem in geometric routing is to construct a directed planar graph on a
given set of points that supports competitive local routing, using the fewest number of edges.
A routing algorithm is competitive if the length of the path that it finds is at most a constant
times the length of the shortest path, however a local algorithm does not have access to the
full graph. This problem has applications in wireless sensor networks, robotic navigation, and
distributed computing. Routing is inherently directional, and in many real-world settings,
signals are sent from a transmitter to an antenna. This directional nature is particularly
relevant in wireless communication, where signal transmission can be costly. Wide-angle
broadcasting consumes excessive power, and long-distance transmission is expensive, with
energy consumption proportional to the distance squared. As a result, nodes should send
signals in restricted directions, ensuring that each transmitted signal has a unique receiver.
To reduce the effects of interference, we desire planarity, meaning that signals do not cross.
However, we allow bidirectional edges, which count as two directed edges, since otherwise,
not all point sets admit strongly-connected directed planar graphs. Disallowing bidirectional
edges presents different challenges and has led to the study of oriented spanners [12]. Note
that every undirected graph can be converted into a directed graph by replacing every
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undirected edge with two directed edges. This implies that every routing result on undirected
graphs can also be viewed as a routing result on directed graphs with twice as many edges.
Thus, the challenge is to construct directed planar graphs that support local routing while
minimizing the number of directed edges.

Routing on graphs in an online fashion, without relying on precomputed routing tables is
a compelling motivation for studying routing on geometric embeddings of graphs. The use of
routing tables can be circumvented by exploiting geometric properties of the graph, such
as empty proximity regions, to guide path-finding. Routing tables are often inefficient to
compute and difficult to maintain in a dynamic setting, compared to maintaining a geometric
embedding of a graph. Embeddings like Yao and Theta graphs provide a framework for
leveraging these empty proximity regions to facilitate efficient routing. Our focus on the
⃗Yao∞

4 graph stems from its unique combination of properties: it is planar, has a bounded
out-degree of 4, and supports a novel competitive local routing algorithm.

For decades, researchers have been studying the distance-preserving properties of geometric
graphs, such as the Delaunay triangulation [17]. The vertex set of a geometric graph is a
finite set of points in the plane and the edges are weighted by the L2-norm. The Delaunay
triangulation has an edge between two vertices exactly when they lie on the boundary of a
disk which contains no other vertex in its interior [15]. When the disk is replaced with a
square, then we obtain an L∞-Delaunay graph. Also a geometric graph of interest is the
Yao graph. For any k > 2, a Yaok graph is constructed by considering k equal-sized cones
around each vertex and connecting each vertex to the nearest point in each cone [18]. In
this way, a graph on n points has at most nk edges. Normally, nearest is defined using the
L2-norm, however in the case of k = 4, replacing L2 with L∞ is a natural choice because
the resulting graph, denoted Yao∞

4 , is a subgraph of the well-known L∞-Delaunay graph. In
other words, the Yao∞

4 graph has an edge between two vertices when there exists an empty
square with one endpoint on a corner and the other endpoint on an opposing side. If the
graph is defined using the L1-norm, then we obtain the well-studied Θ4-graph.

Given a geometric graph G, the spanning ratio of a subgraph H is a measure of how
well distances of G are preserved. A subgraph H is called a c-spanner of G if for every edge
uv ∈ G, the shortest path in H from u to v is at most c times the length of the edge uv
in G [17]. The smallest such c is referred to as the spanning ratio of H. Throughout this
paper, we consider G to be the complete graph with edges weighted by Euclidean distance.
The undirected Yao4 graph was first proved to be a spanner by Bose et al. [9] with a stretch
factor of approximately 662. As part of the proof, the authors established that the undirected
Yao∞

4 graph is an 8-spanner. Then, Bonichon et al. [6] proved that the Yao∞
4 graph has

spanning ratio at most 6.31. Later, Damian and Nelavalli [14] improved both results by
showing that the Yao4 and Yao∞

4 graphs have spanning ratios of at most 54.62 and 4.93,
respectively. We will denote the directed versions of these graphs using an arrow: for example,
the directed version of Yao∞

4 is denoted ⃗Yao∞
4 . Despite being a natural construction, the

⃗Yao∞
4 graph previously had no known upper bound on the spanning ratio. The spanning

ratio of the L∞-Delaunay graph was originally shown to be at most
√

10 ≈ 3.16 by Chew [13].
Then, Bonichon et al. [5] improved the spanning ratio of the L∞-Delaunay triangulation to√

4 + 2
√

2 ≈ 2.61, which is tight. Their lower bound construction also shows that Yao∞
4 has

a spanning ratio of at least 2.61.
While spanning ratios deal with the existence of short paths, routing ratios are based

on finding short directed paths with only local information. Roughly speaking, a path-
finding algorithm has routing ratio c if the paths produced have length at most c times the
straight-line distance from source to destination. In the context of planar graphs, Chew gave
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a local routing algorithm for L∞-Delaunay graphs in 1986 [13]. An L∞-Delaunay graph
can contain nearly 6|V | directed edges in the worst case. Since then, Bonichon et al. [4]
defined a number of bounded-degree planar spanners, including G9 and G12. In [10], local
routing algorithms were provided for these graphs. A parametrized construction, denoted
MBDG, was used in [2] to attain several lightness properties. In all of these planar graphs,
the number of directed edges required is still on the order of 6|V |. In this paper, we define
a local routing algorithm for the ⃗Yao∞

4 graph, which contains at most 4|V | directed edges,
which is the fewest number of edges among all planar directed graphs that admit a local
routing algorithm.

In any bounded out-degree graph, each vertex only needs to store a constant amount of
information to fully describe its outgoing neighbourhood. As a result, bounded out-degree
directed graphs are a natural setting for local routing. For example, when k is larger than 6,
the optimal local routing algorithm for ⃗Yaok graphs is simply cone routing, where each
decision is to move to the neighbour in the same cone as the destination. For smaller
values of k, the ⃗Yaok graph is less dense and cone routing can fail to produce short paths.
However, [16] provides a local routing algorithm for the ⃗Yao6 graph with routing ratio at
most 22.94. The smallest possible k for which the ⃗Yaok graph is strongly connected is k = 4,
and Bose et al. [11] recently provided a local routing algorithm achieving a routing ratio
of at most 23.36 for ⃗Yao4 graphs. Furthermore, they show how to modify the path output
by their local routing algorithm to upper bound the spanning ratio by 16.54 for undirected
Yao4 graphs. Interestingly, their algorithm is based on the Greedy/Sweep algorithm from [7]
which has a routing ratio of 17 in the directed Θ⃗4 graph.

Our local routing algorithm extends the Greedy/Sweep approach from Θ⃗4 graphs to
⃗Yao∞

4 graphs. The original Greedy/Sweep algorithm is quite simple. If the current vertex is
u and the target vertex is t, then we consider the right triangle T bounded by vertical and
horizontal lines through u and a diagonal line through t with slope −1. If no vertices are in
T , we say that T is clean and we take a greedy step in the cone containing t. Otherwise, if
T is not clean, then we take a sweeping step in the cone of T . The authors of [11] adapted
the Greedy/Sweep approach to ⃗Yao4 graphs by replacing the right triangle with a wedge.
However, in the case of ⃗Yao∞

4 graphs, a direct application of the Greedy/Sweep approach
fails miserably, resulting in long paths. The main challenge is that sweeping steps can cross
the diagonal while making negligible progress towards the destination. To overcome this,
we modify the definition of clean to penalize such diagonal crossings and force provable
progress toward the target. Given our redefinition of cleanliness, we refer to our local routing
algorithm as the DIRTY Algorithm (Directed Infinity Routing Through Yao). Our analysis
yields an upper bound of 85.22 on the routing ratio of our local routing algorithm.

Notice that our routing ratio of 85.22 is also the best known upper bound on the spanning
ratio for ⃗Yao∞

4 graphs. Next, we give a lower bound of 5 +
√

2 ≈ 6.41 on the spanning ratio
of ⃗Yao∞

4 graphs in the worst case, highlighting a clear gap compared to the upper bound of
4.93 for Yao∞

4 graphs. Finally, we prove that no local routing algorithm for ⃗Yao∞
4 graphs

can achieve a routing ratio below 7 +
√

2 ≈ 8.41. Additionally, we use a similar technique to
provide lower bounds of 7 −

√
3 +

√
5 − 2

√
3 ≈ 6.51 and 7 +

√
2 for the spanning and routing

ratios of ⃗Yao4, respectively.

2 Preliminaries

For any point u ∈ R2, we let x(u) and y(u) denote the x- and y-coordinates of u, respectively.
We denote the line segment between points u, v as uv, and define ∥uv∥x := |x(u) − x(v)|
and ∥uv∥y := |y(u) − y(v)|. For p ∈ [1,∞), the Lp-length of uv is denoted ∥uv∥p :=

WADS 2025
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Table 1 Comparison of upper bounds on the routing ratio of geometric graphs with bounded
out-degree. Routing in MBDG and G9 requires extra information to be stored at each vertex.

Reference Graph Planar Max out-degree Routing Ratio

[11] ⃗Yao4 No 4 23.36
[16] ⃗Yao6 No 6 22.94
[3] ⃗Yaok (k ≥ 7) No k ≤ 1/(1 − 2 sin(π/k))
[7] Θ⃗4 No 4 17
[1] Θ⃗6 No 6 8
[8] Θ⃗k (k ≥ 7) No k ≤ 1/(1 − 2 sin(π/k))
[2] MBDG Yes ≥ 20 ≥ 9.27
[10] G12 Yes 12 54.85
[10] G9 Yes 9 8.66

This paper ⃗Yao∞
4 Yes 4 85.22

(∥uv∥px + ∥uv∥py)
1
p . We also define ∥uv∥∞ := max(∥uv∥x, ∥uv∥y). A geometric graph is a

graph whose vertex set contains points in the plane and whose edge weights are the L2
(Euclidean) lengths of the corresponding line segments. In a geometric graph, each vertex
is identified with its coordinates. Throughout the paper, we make the general position
assumption that no two vertices have the same x- or y-coordinates and all distances between
pairs of vertices are unique in the L∞-norm. On such a point set, the edges of the ⃗Yao∞

4
graph are well-defined. For two vertices u, v in a geometric graph G, the length of the shortest
path from u to v in G is denoted dG(u, v). Then for a constant c ≥ 1, G is said to be a
c-spanner if for all points u, v in G, we have dG(u, v) ≤ c∥uv∥2. The spanning ratio of G is
the least c for which G is a c-spanner. The spanning ratio of a class of graphs G is the least
c for which all graphs in G are c-spanners.

We make the assumption that the graph is embedded on a polynomial-sized grid and
therefore the coordinates of the points require O(log(n)) bits. Formally, an m-memory local
routing algorithm is a function that takes as input (s,N(s), t,M), and outputs some memory
M ′ and a vertex p ∈ N(s) where s is the current vertex, N(s) is the outgoing neighbourhood
of s, t is the destination, and both M,M ′ are bit-strings of length m. An algorithm is said
to be c-competitive for a family of geometric graphs G if the path output by the algorithm
for any pair of vertices s, t ∈ V (G) for G ∈ G has length at most c∥st∥2. The routing ratio
of an algorithm is the least c for which the algorithm is c-competitive for G. Note that the
routing ratio is an upper bound on the spanning ratio.

3 A Local Routing Algorithm for ⃗Yao∞
4 Graphs

We will now describe our local routing algorithm for ⃗Yao∞
4 graphs. Without loss of generality,

assume the coordinates of t are (0, 0) and ∥st∥∞ = 1. Let 0 < δ < 0.5, and define the green
square to be the set of points p ∈ R2 such that ∥pt∥∞ ≤ 2δ. In addition, we define the
diagonal lines ℓ−

t , ℓ
+
t with slope ±1 passing through t. Define the north, east, south and

western quadrants as the cones delimited by ℓ+
t and ℓ−

t . Refer to the four cones as , ,

, , respectively.
Next, for a point p ∈ R2, we define its height, h(p), as the L1 distance from p to the

nearest diagonal through t. Notice that h(p) = ||x(p)| − |y(p)||. The bands, denoted by ,
are the regions close to the diagonals, excluding the green square. More precisely, let
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refer to the set of points p ∈ R2 such that p /∈ and h(p) ≤ δ. Refer to Figure 1. Note
that ⊂ R2 and is composed of four regions, which we label , , , clockwise from
the north-eastern region. Then define the truncated wedges as those points p ∈ R2 such
that p /∈ ∪ . We have ⊂ R2 and since is composed of four regions, we label them
, , , clockwise from the northern region.
Next we describe the terminology used in our local routing algorithm, which we will refer

to as DIRTY Algorithm 1 (Directed Infinity Routing Through Yao). For any vertex u ∈ ,
a band step from u follows the edge in the cone of u containing t. For any vertex u ∈ , u
is clean if the quadrant of u facing the closest diagonal ℓt ∈ {ℓ−

t , ℓ
+
t } does not contain any

vertex v such that ∥uv∥∞ + δ ≤ h(u). Intuitively, u is clean if there are no points between u
and the nearest diagonal. For example, see Figure 1. A sweep step from u follows the edge
in the cone towards the closest diagonal to u. We denote the vertex resulting from a sweep
step from u as Sweep(u, t,N(u), δ). A greedy step from u follows the edge in the cone of u
containing t. The vertex resulting from a greedy step from u is denoted Greedy(u, t,N(u)).
Note that a band step is technically a greedy step, however we will distinguish band steps
from greedy steps in the analysis. Now we will present the local routing algorithm. In short,
if there is a neighbour in the green square, then we choose it and rescale δ. On the other
hand, we take a greedy edge if the current vertex is in or is clean. When the current
vertex is not clean, we take a sweep edge. A partial trace of Algorithm 1 is shown in Figure 1.
The constant 0 < c < 1 in step 1 of Algorithm 1 will be set to 0.08, however the analysis
holds for a general c. Furthermore, δ should be set to c∥st∥∞ for the first call of Algorithm 1.

Algorithm 1 DIRTY (Directed Infinity Routing Through Yao)
Local routing decision in ⃗Yao∞

4 graph.

Data:
Current vertex u ∈ S

Destination vertex t ∈ S

Neighbourhood N(u) of u
Parameter δ ∈ R≥0

Result: A neighbour v ∈ N(u) and a parameter δ′ ∈ R≥0
1. If N(u) ∩ ̸= ∅, select an arbitrary v ∈ N(u) ∩ and set δ′ := c∥vt∥∞. END
2. Set δ′ := δ. If u ∈ or u is clean, then v := Greedy(u, t,N(u)). Else,

v := Sweep(u, t,N(u), δ).

3.1 Analysis of DIRTY Algorithm 1
If edge uv is chosen by Algorithm 1, then notice that ∥ut∥∞ ≥ ∥vt∥∞ regardless of whether
uv is a sweep, a greedy, or a band edge. In fact, by the general position assumption that all
vertices have distinct x- and y-coordinates, we have ∥ut∥∞ > ∥vt∥∞.
▶ Remark 1. If uv is an edge chosen by Algorithm 1, then ∥ut∥∞ > ∥vt∥∞. That is, the
vertex v is inside the square centered at t with u on the boundary.
The vertex set being finite means that choosing each successive edge according to Algorithm 1
will output a path from s to t, which we will denote P. For any two vertices u, v on path P
with v occurring after u, we let Pu,v denote the sub-path of P from u to v.

We define t′ to be the first vertex of P chosen by step 1 of Algorithm 1. In other words,
t′ is the first vertex of P such that ∥t′t∥∞ ≤ 2c∥st∥∞ because δ is initially set to c∥st∥∞
and t′ ∈ . We will focus on upper bounding the length of Ps,t′ , which is a path such that

WADS 2025



9:6 Online Routing in Directed Yao∞
4 Graphs

δ

t

s

t′

u

v

w

Figure 1 We show the partial trace of DIRTY Algorithm 1 until we reach a vertex in the green
square, . The grey regions are the bands, denoted as , and the white regions are the truncated
wedges, denoted . The sweep edges are blue, the band edges are red, and the greedy edges are
gold. For example, su is a sweep step since s is not clean. Next, uv is a band step as u ∈ . Then
v is clean, hence vw is a greedy edge.

each edge is chosen according to step 2 except the last edge. As such, we will only refer to
edges of Ps,t′ . In particular, define the set S as the sweep edges of Ps,t′ and define the set G
as the greedy edges uv of Ps,t′ , where u ∈ . Next we define the set of band edges, B, as
the greedy edges uv of Ps,t′ , where u ∈ . These definitions allow us to partition the edges:
{uv | uv is an edge on Ps,t′} = S ∪ G ∪ B.

▶ Lemma 2. If uv ∈ S and uv does not cross a diagonal, then ∥uv∥2 ≤ h(u) − h(v).

Proof. Since u, v both lie in the same cone among , , , , then ∥uv∥2 ≤ ∥uv∥1 =
h(u) − h(v). ◀

▶ Lemma 3. If uv ∈ S and uv crosses a diagonal of t, then h(u) − h(v) ≥ 2δ, and
max(∥uv∥∞, ∥vt∥∞) ≤ ∥ut∥∞ − δ.

Proof. Assume without loss of generality that u ∈ and uv crosses ℓ+
t . This means that

v ∈ , as in Figure 2. Since u is not clean, we have ∥uv∥∞ + δ ≤ h(u) ≤ ∥ut∥∞. Also
since v is above ℓ+

t we have h(v) + δ ≤ ∥uv∥∞. Combining these two inequalities yields
h(u) − h(v) ≥ 2δ. Next, u ∈ and v ∈ together imply h(u) = x(u) − y(u), so we have
∥ut∥∞ − ∥vt∥∞ = x(u) − y(v) = h(u) + y(u) − y(v) ≥ ∥uv∥∞ + δ + y(u) − y(v) ≥ δ. ◀

▶ Lemma 4. If uv ∈ G, then h(v) − h(u) ≤ ∥uv∥∞.
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h(u)

h(v)

‖uv‖∞

δ

u

v

Figure 2 Lemma 3: An example of a sweep edge uv that crosses the diagonal ℓ+
t of t.

Proof. Suppose without loss of generality that u ∈ with y(u) > 0. Then since uv is
greedy, we have x(v) < x(u) ≤ x(v) + ∥uv∥∞ and y(v) < y(u) ≤ y(v) + ∥uv∥∞. Combining
these inequalities yields

x(v) − y(v) ≤ x(u) − y(u) + ∥uv∥∞ and y(v) − x(v) ≤ y(u) − x(u) + ∥uv∥∞.

Since 0 ≤ h(u) = |x(u) − y(u)|, then we have shown |x(v) − y(v)| ≤ ∥uv∥∞ + h(u). The
result follows from the reverse triangle inequality h(v) = ||x(v)| − |y(v)|| ≤ |x(v) − y(v)|. ◀

Next we will characterize the behaviour of band edges.

▶ Lemma 5. If uv ∈ B, then max
ψ∈{x,y}

(∥uv∥ψ + ∥vt∥ψ − ∥ut∥ψ) ≤ 2δ.

Proof. Assume without loss of generality that u ∈ . Notice that ∥uv∥y + ∥vt∥y − ∥ut∥y =
(y(u) − y(v)) + |y(v)| − y(u) = |y(v)| − y(v), which is at most 2δ when y(v) ≥ −δ. Assume
towards a contradiction that y(v) < −δ. When u is above ℓ+

t , then ∥uv∥∞ ≥ y(u) −
y(v) > y(u) + δ > y(u) = ∥ut∥∞. Otherwise when u is below the diagonal ℓ+

t , we have
∥uv∥∞ ≥ y(u) − y(v) > y(u) + δ ≥ x(u) = ∥ut∥∞. Either way is a contradiction since t and
v are in the same cone of u, so ∥uv∥∞ ≤ ∥ut∥∞. A symmetric argument completes the proof
when ψ = x. ◀

Lemma 5 tells us that when uv is a band edge with u ∈ , then v ∈ ∪ ∪ ∪ . Indeed,
the proof describes why y(v) ≥ −δ and x(v) ≥ −δ, and the region {p ∈ R2 | min(x(p), y(p)) ≥
−δ} is a subset of ∪ ∪ ∪ . In other words, a sequence of consecutive band edges
remains in the same region of until it ends in a neighbouring truncated wedge, or in
the green square. To formalize this, we will define a set B′ containing pairs of vertices that
correspond to maximal sub-paths of band edges.

WADS 2025
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▶ Definition 6 (Maximal sYaoub-paths of band edges). Define the set B′ as follows. Let u, v
be vertices of Ps,t′ such that Pu,v is a sequence of band edges. We let the pair (u, v) ∈ B′ if
and only if u ∈ , v ∈ , and u is not the tip of a band edge.

Notice that if (u, v) ∈ B′, then Pu,v must be x- and y-monotone since all edges between u

and v are band edges in the same cone.

▶ Lemma 7. For all (u, v) ∈ B′, we have h(v) − h(u) ≤ ∥uv∥∞.

Proof. Suppose without loss of generality that u ∈ and v ∈ . Then we have x(v) <
x(u) ≤ x(v) + ∥uv∥∞ and y(v) < y(u) ≤ y(v) + ∥uv∥∞. The rest of the proof is identical to
that of Lemma 4. ◀

To better understand which band edges are accounted for by paths in B′, we provide the
following definition.

▶ Definition 8 (Vertices v′ and u′). Let v′ be the last vertex of Ps,t′ in . If no such v′

exists, v′ := s. Then, let u′ be the vertex directly after v′ on Ps,t′ .

Notice that all band edges of Ps,v′ are contained in a sub-path Pu,v for some (u, v) ∈ B′. In
addition, the path Pu′,t′ consists entirely of band edges.

▶ Lemma 9. We have
∑
uv∈G

(∥ut∥∞ − ∥vt∥∞) +
∑

(u,v)∈B′
(∥ut∥∞ − ∥vt∥∞) ≤ 1.

Proof. Each difference ∥ut∥∞ − ∥vt∥∞ in the following telescoping sum corresponds to a
sub-path of Ps,u′ and is therefore positive by Remark 1.∑

uv∈G∪S
(∥ut∥∞ − ∥vt∥∞) +

∑
(u,v)∈B′

(∥ut∥∞ − ∥vt∥∞) = ∥st∥∞ − ∥u′t∥∞ ≤ 1.

Dropping the terms corresponding to sweep edges yields the desired inequality. ◀

Now we can establish a bound on the sweep edges that depends on the greedy edges and
B′ paths.

▶ Lemma 10. Let k := ⌊ 1−2δ
δ ⌋ + 1. We have∑

uv∈S
∥uv∥2 ≤ 1 +

√
2(k − δ

k(k + 1)
2 ) − 2δk +

∑
uv∈G

∥uv∥∞ +
∑

(u,v)∈B′

∥uv∥∞.

Proof. First, we split the sum based on whether the sweeping edge crosses a diagonal. Let
X ⊆ S denote the set of sweep edges that cross a diagonal ℓ+

t or ℓ−
t .∑

uv∈S
∥uv∥2 =

∑
uv∈S\X

∥uv∥2 +
∑
uv∈X

∥uv∥2

≤
∑

uv∈S\X

(h(u) − h(v)) +
∑
uv∈X

∥uv∥2 By Lemma 2

=
∑
uv∈S

(h(u) − h(v)) +
∑
uv∈X

(∥uv∥2 − h(u) + h(v))

Next, by Definition 8, the path Ps,u′ is precisely all the greedy edges, sweep edges, and
sub-paths of band edges {Pu,v | (u, v) ∈ B′}. This means that∑

uv∈S∪G
(h(u) − h(v)) +

∑
(u,v)∈B′

(h(u) − h(v)) = h(s) − h(u′) (1)
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Next we rearrange (1) and use Lemmas 4 and 7:∑
uv∈S

(h(u) − h(v)) = h(s) − h(u′) +
∑
uv∈G

(h(v) − h(u)) +
∑

(u,v)∈B′

(h(v) − h(u))

≤ 1 +
∑
uv∈G

∥uv∥∞ +
∑

(u,v)∈B′

∥uv∥∞

Now, let m := |X |−1, and label the edges of X as u0v0, ..., umvm in the order they appear on
the path Ps,t′ . By Lemma 3, we have ∥uit∥∞ −∥vit∥∞ ≥ δ for all i ∈ {0, ...,m}. Additionally,
ui+1 appears after vi on the path Ps,t′ , then by Remark 1 we have ∥ui+1t∥∞ ≤ ∥vit∥∞
for i ∈ {0, ...,m − 1}. Since ∥u0t∥∞ ≤ ∥st∥∞ = 1, the above inequalities imply that
∥uit∥∞ ≤ 1 − iδ for i ∈ {0, ...,m}. Next, vertex t′ was defined to be the first vertex on the
path P such that ∥t′t∥∞ ≤ 2δ, therefore we must have ∥umt∥∞ > 2δ since umvm is an edge in
Ps,t′ . Combining inequalities yields 1 −mδ > 2δ, and isolating m yields m ≤ ⌊ 1−2δ

δ ⌋ = k− 1.
Also, Lemma 3 gives us ∥uivi∥∞ + δ ≤ ∥uit∥∞ ≤ 1 − iδ and h(ui) − h(vi) ≥ 2δ. The result
follows:∑

uv∈X
(∥uv∥2 − h(u) + h(v)) ≤

m∑
i=0

(
√

2∥uivi∥∞ − h(ui) + h(vi)) By ∥uv∥2 ≤
√

2∥uv∥∞

≤
k−1∑
i=0

(
√

2(1 − iδ − δ) − 2δ)

=
√

2(k − δ
k(k + 1)

2 ) − 2δk. ◀

From Lemma 10, we can see that the total L2 distance of sweep edges can be upper bounded
if we upper bound the total L∞ distance of greedy edges and pairs in B′.

▶ Lemma 11. We have
∑
uv∈G

∥uv∥∞ ≤ 16 − 8δ.

Proof. Consider the set G′ ⊆ G of greedy edges uv where u ∈ and y(u) > 0. We will show
that

∑
uv∈G′

∥uv∥∞ ≤ 2 − δ using a disjoint projection argument illustrated in Figure 3.

Firstly, label the edges of G′ as u1v1, ..., umvm. Note that the edges are labelled in
the order they appear, and not necessarily consecutive. For i ∈ {1, ..,m}, define the
point pi := ui − (0, ∥uivi∥∞). Note that ∥uivi∥∞ = ∥uipi∥y. Next, define the projection
F : R2 → R2 as F (x, y) := (0, x+ y). Notice that for a point p ∈ R2, the point F (P ) lies on
the vertical line through t with the segment pF (p) having slope −1. We will show that the
segments {F (ui)F (pi) | 1 ≤ i ≤ m} are disjoint.

Let i ∈ {1, ...,m−1}. Firstly, since uivi is greedy, we have y(vi) < y(ui), hence y(F (pi)) <
y(F (ui)). Next, we have x(ui+1) < x(ui) by Remark 1 and y(ui+1) < y(ui) since ui is clean.
Combining these coordinate restrictions with the fact that pi lies on the southeast corner
of the empty square corresponding to uivi, we obtain y(F (ui+1)) < y(F (pi)) < y(F (ui)).
This means that the projections are disjoint and their y-coordinates range from y(F (pm)) to
y(F (u1)). Since pm ∈ , then y(F (pm)) ≥ 0. Also, we have y(F (u1)) ≤ 2 − δ given that
u1 ∈ .

The proof is completed after multiplication by 8 to account for the greedy edges of G
originating in the seven other regions symmetric to G′. ◀

At this stage, we could multiply the bound from Lemma 11 by
√

2 in order to bound the
total L2 length of the greedy edges. However, we can do better with a more careful analysis
described in Lemma 12.
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δ

ui

vi
pi

F (ui)

F (pi)

t

F (ui+1)

F (pi+1)

ui+1

pi+1

vi+1

Figure 3 Lemma 11: The vertical components of the edges uivi and ui+1vi+1 can be projected
onto the y-axis using the projection F . Furthermore, the projections are disjoint.

▶ Lemma 12. We have
∑
uv∈G

∥uv∥2 ≤ 12 + 4
√

2 − 8δ +
∑
uv∈G

(∥ut∥∞ − ∥vt∥∞).

Proof. We start by partitioning G into three parts that correspond to the following three
types of greedy edges, illustrated in Figure 4. Suppose without loss of generality that uv ∈ G
and u ∈ with y(u) > 0. Then the edge uv is Type A if v ∈ , Type B if v ∈ , and
Type C if v ∈ . Now we extend the definition of Types A, B, and C to all edges in G by
symmetry. For example, an edge uv ∈ G with u ∈ , 0 < x(u) and v ∈ would be Type C.
Define the sets A,B,C of Type A, B, and C greedy edges, respectively. This means that we
have partitioned the greedy edges as follows: G = A ∪ B ∪ C. We proceed with the following
claim for Type A and B edges.

▷ Claim. If uv ∈ A ∪ B then ∥uv∥1 ≤ ∥uv∥∞ + ∥ut∥∞ − ∥vt∥∞.

Proof. Suppose without loss of generality that u ∈ and y(u) > 0. If uv ∈ A then v ∈ ,
so ∥uv∥x ≤ ∥ut∥∞ −∥vt∥∞. Combining this with ∥uv∥y ≤ ∥uv∥∞ yields the result. If instead
uv ∈ B, then v ∈ , giving us ∥uv∥y ≤ ∥ut∥∞ − ∥vt∥∞. Adding this to ∥uv∥x ≤ ∥uv∥∞
completes the claim. ◁

Next, we prove that for Type C edges,
∑
uv∈C ∥uv∥∞ ≤ 4. Consider the greedy edges

u1v1, ..., umvm ∈ C with ui ∈ labelled in the order they appear in Ps,t′ . Then by the two
empty squares (one from ui being clean and one from uivi), we have ∥ui+1t∥∞ ≤ ∥uit∥∞ −
∥uivi∥∞ for i ∈ {1, ...,m − 1} and ∥umvm∥∞ ≤ ∥umt∥∞. Then we have

∑m
i=1 ∥uivi∥∞ ≤

∥umt∥∞ +
∑m−1
i=1 ∥uit∥∞ − ∥ui+1t∥∞ = ∥u1t∥∞ ≤ 1. The final step is multiplication by 4 to

account for the four connected components of .
Now we combine the above claim with Lemma 11 to complete the proof.
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δ

uC

vB

vC

uB

vA

uA

ttt

Figure 4 Lemma 12: Edges uAvA, uBvB , uCvC are examples of Type A, B and C greedy edges,
respectively. Notice that uA, uB , uC are all clean with respect to ℓ+

t , meaning that the dark grey
regions are empty.

∑
uv∈G

∥uv∥2 ≤
∑

uv∈A∪B

∥uv∥1 +
∑
uv∈C

∥uv∥2

≤
∑

uv∈A∪B

(∥uv∥∞ + ∥ut∥∞ − ∥vt∥∞) +
∑
uv∈C

(∥uv∥∞ + (
√

2 − 1)∥uv∥∞)

≤
∑
uv∈G

(∥uv∥∞ + ∥ut∥∞ − ∥vt∥∞) +
∑
uv∈C

(
√

2 − 1)∥uv∥∞

≤
∑
uv∈G

(∥ut∥∞ − ∥vt∥∞) + 16 − 8δ + 4(
√

2 − 1) ◀

Next, a similar projection argument can be used to bound the total the length of band
edges. First, we provide the following definition.

▶ Definition 13. For 2δ ≤ r ≤ 1, define the eastern hexagon r to be the set of points
p ∈ such that 2δ < x(p) < r and |y(p)| < (r − δ). Define the north, west and south
hexagons of radius r similarly.

Next, we present a lemma that formalizes the idea that when the path P exits r, either
P becomes significantly closer to t, or P never revisits the region .

▶ Lemma 14. Suppose vertex w ∈ , and let v be the next vertex of P outside of ∥wt∥∞ .
Then at least one of the following must be true:
1. v ∈ ,
2. ∥vt∥∞ ≤ ∥wt∥∞ − δ,
3. Pv,t′ ∩ = ∅

Proof. Throughout the proof, let u denote the vertex before v in P, meaning u ∈ ∥wt∥∞ .
Since u ∈ ∥wt∥∞ ⊂ , then we must have v ∈ ∪ ∪ . Without loss of generality,
assume v ∈ \ , implying that y(v) = ∥vt∥∞. Since we have assumed Item 1 to be false,
we will show that in each of the following three cases, Item 2 or Item 3 is true. The cases are
shown in Figure 5.
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δ

t

uS

vS

w

t

uB
vB

w

t

b

uG

vG

w

a

Figure 5 Lemma 14: Edges uSvS , uBvB , uGvG are examples of sweep, band, and greedy edges,
respectively. The turquoise region is ∥wt∥∞ . The labels a and b refer to the southwest and
northeast corners of the gold square corresponding to edge uGvG.

Case: uv is a sweep edge. Then we must have u ∈ and y(u) > 0, therefore y(v)−y(u) ≤
∥uv∥∞ ≤ h(u) − δ = x(u) − y(u) − δ. Item (2) follows from x(u) = ∥ut∥∞ ≤ ∥wt∥∞.

Case: uv is a band edge. Since v ∈ \ , we must have u ∈ , meaning y(v) < y(u).
By definition of u ∈ ∥wt∥∞ , we have y(u) < ∥wt∥∞ − δ, which again satisfies Item (2).

Case: uv is a greedy edge. Assume ∥vt∥∞ > ∥wt∥∞ − δ. We will show that the region
{p ∈ | ∥pt∥∞ < ∥ut∥∞} contains no vertices, implying Item (3). Since v ∈ , then the
closest diagonal to u must be ℓ−

t . Let points a, b be the southwest and northeast corners of
the empty square corresponding to uv. Then y(a) = y(u) < 0 and 0 < x(a) since the square
bounding a, b is empty. Furthermore, since x(u) − δ ≤ ∥wt∥∞ − δ ≤ y(v) ≤ y(b), we must
have b ∈ . This leads to d1(a, ℓ+

t ) < δ, so a ∈ . Then since u is clean with respect to ℓ−
t ,

and also a ∈ and b ∈ then the region {p ∈ | ∥pt∥∞ < ∥ut∥∞} contains no vertices.
Item (3) follows since ∥vt∥∞ < ∥ut∥∞ by Remark 1. ◀

We will also make use of the following remark:
▶ Remark 15. If (u, v) ∈ B′, then v is clean with respect to the closest diagonal to u. Indeed,
v is the tip of a band edge from the connected component of containing u by Lemma 5.

Now we have the tools to prove Lemma 16.

▶ Lemma 16. We have
∑

(u,v)∈B′
∥uv∥∞ ≤ 16 − 20δ.

Proof. We will first focus on paths Pu,v where (u, v) ∈ B′ and v ∈ . Let
(u1, v1), ..., (um, vm) ∈ B′ be labelled according to their order on P, where vi ∈ . Re-
call that all edges between ui and vi are band edges, so by Lemma 5, we have ui ∈ ∪ .
Then ∥uivi∥∞ = ∥uivi∥y. Consider the point pi := (x(ui), y(vi)) and the resulting segment
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uipi with length ∥uivi∥y. We will show how to project uipi onto the line x = 2δ such that
when i ̸= j, the projections of uipi and ujpj are disjoint, illustrated in Figure 6. Furthermore,
we will show that all projections lie on a sub-segment of length 4 − 5δ.

δ

u1

v1
p1

F (u1)

F (p1)

t

F (u3)

F (p3)

u3

p3
v2

v3

p2

u2

G(u2)

G(p2)

Figure 6 Lemma 16: We project the vertical components of banded sequences onto the dotted
line, and prove that the projections are disjoint.

Define the projections F,G : R2 → R2 as F (x, y) := (2δ, x + y − 2δ) and G(x, y) :=
(2δ, y − x+ 2δ). Note that for p ∈ R2, both F and G project p onto the vertical line x = 2δ,
and the slope of the segments pF (p) and pG(p) are −1 and 1, respectively. For 1 ≤ i ≤ m,
we define the projection

proj(i) :=
{
F (ui)F (pi) if ui ∈
G(ui)G(pi) if ui ∈

Let 1 ≤ i < j ≤ m. Now we show that that proj(i) and proj(j) are disjoint by cases. Assume
without loss of generality that ui ∈ , so by Remark 15, vi is clean with respect to ℓ+

t . We
will show that proj(j) is entirely below proj(i) in both cases.

Case: uj ∈ . By Lemma 14, we have y(uj) < x(vi) − δ. Indeed, vi ∈ , therefore
either Pvi,uj

⊂ ∥vit∥∞ , or ∥ujt∥∞ ≤ ∥vit∥∞ − δ since uj /∈ and vj ∈ . Furthermore,
x(uj) ≤ ∥ujt∥∞ < ∥vit∥∞ = x(vi). Combining x(uj) < x(vi) with y(uj) < x(vi) − δ and the
fact that vi is clean with respect to ℓ+

t , we have that y(F (uj)) < y(F (vi)). Lastly, since
Pui,vi

is x-monotone, then x(ui) > x(vi), so y(F (vi)) < y(F (pi)). By transitivity, we have
y(F (uj)) < y(F (pi)) completing this case.
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Case: uj ∈ . Assume towards a contradiction that y(F (pi)) ≤ y(G(pj)). Then since
2δ < x(pj) < x(pi) we must have y(pi) < y(pj). However, this implies that vi is not clean
with respect to ℓ+

t since vj ∈ with y(vi) = y(pi) < y(pj) = y(vj) and x(vj) < x(vi).
Now that we have proven that the projections proj(i) are disjoint on the vertical line

x = 2δ, we can proceed to showing that the projections lie on a sub-segment of the line with
length at most 4 − 5δ. Assume without loss of generality that u1 ∈ . Then all projections
lie below y(F (u1)) ≤ y(F (1, 1)) = 2 − 2δ. Furthermore, we will show that all projections lie
above y(G(1, δ − 1)) = 3δ − 2. Indeed, if ui ∈ for all 1 ≤ i ≤ m, then the projections are
all above y(F (pm)) ≥ y(F (1, δ − 1)) = −δ. Otherwise, let j be the least index in {2, ..,m}
such that uj ∈ . Then all projections are above y(G(uj)), and by Lemma 14 we have
|y(uj)| ≤ x(v1) − δ ≤ 1 − δ. This means that y(G(uj)) ≥ y(G(1, δ − 1)) = 3δ − 2. Therefore
all projections proj(i) have y-coordinates between 3δ − 2 and 2 − 2δ. Summarizing, we have
shown∑

(u,v)∈B′

v∈

∥uv∥∞ =
∑

(u,v)∈B′

v∈

∥uv∥y ≤ (2 − 2δ) − (3δ − 2) = 4 − 5δ

Multiplying by 4 for the four connected components of concludes the proof. ◀

Now we can use Lemma 16 to bound the length of all band edges.

▶ Lemma 17. We have
∑
uv∈B

∥uv∥2 ≤ 18 − 19δ +
∑

(u,v)∈B′
(∥ut∥∞ − ∥vt∥∞).

Proof. By Definition 8, we can rewrite
∑
uv∈B

∥uv∥2 = ∥Pu′,t′∥2 +
∑

(u,v)∈B′
∥Pu,v∥2. For now

we focus on ∥Pu′,t′∥2. If u′ = t′, then ∥Pu′,t′∥2 = 0. Otherwise, assume without loss of
generality that u′ ∈ and t′ ∈ ∩ . Then 0 ≤ x(t′) < x(u′) and by Lemma 5, −δ < y(t′)
since t′ is the tip of a band edge. Since Pu′,t′ is x- and y-monotone, we have

∥Pu′,t′∥2 ≤ ∥u′t′∥x + ∥u′t′∥y ≤ 1 + (1 + δ)

Next, for (u, v) ∈ B′, we have ∥Pu,v∥2 ≤ ∥uv∥x + ∥uv∥y since Pu,v is x- and y- monotone.
Also, min(∥uv∥x, ∥uv∥y) = ∥ut∥∞ − ∥vt∥∞ since uv crosses a diagonal boundary of by
Lemma 5, yielding∑

(u,v)∈B′

∥Pu,v∥2 ≤
∑

(u,v)∈B′

(
min(∥uv∥x, ∥uv∥y) + max(∥uv∥x, ∥uv∥y)

)
≤

∑
(u,v)∈B′

(∥ut∥∞ − ∥vt∥∞ + ∥uv∥∞)

≤ 16 − 20δ +
∑

(u,v)∈B′

(∥ut∥∞ − ∥vt∥∞) by Lemma 16.

◀

The bounds we have proved for sweep, greedy and band edges can now be combined to prove
Theorem 18.

▶ Theorem 18. DIRTY Algorithm 1 is an O(log(n))-memory local routing algorithm with
routing ratio of at most 85.22 for ⃗Yao∞

4 graphs.
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Proof. We bound the total L2 distance of sweep edges by combining Lemmas 10, 11 and 16:∑
uv∈S

∥uv∥2 ≤ 33 − 28δ +
√

2(k − δ
k(k + 1)

2 ) − 2δk (2)

Finally, we can bound the length of the path from s to t′.

∥Ps,t′∥2 =
∑
uv∈S

∥uv∥2 +
∑
uv∈G

∥uv∥2 +
∑
uv∈B

∥uv∥2

≤ (33 − 28δ +
√

2(k − δ
k(k + 1)

2 ) − 2δk) by (2)

+ (12 + 4
√

2 − 8δ +
∑
uv∈G

(∥ut∥∞ − ∥vt∥∞)) by Lemma 12

+ (18 − 19δ +
∑

(u,v)∈B′

(∥ut∥∞ − ∥vt∥∞)) by Lemma 17

≤ 64 − 55δ +
√

2(k − δ
k(k + 1)

2 + 4) − 2δk =: f(δ) by Lemma 9.

Notice that by the definition of step 1 of Algorithm 1, the path Pt′,t is identical to the path
that Algorithm 1 would output if the first vertex s was chosen to be t′. This means that
the entire path from s to t has length at most f(c)

1−2c because δ is initially set to c∥st∥∞
until an edge is chosen in step 1. The ratio evaluates to 85.22 when c = 0.08. Furthermore,
∥st∥2 ≥ ∥st∥∞ = 1 by assumption. The only memory required to construct the path locally
is to store δ for each successive iteration. Hence we have given a local routing algorithm with
routing ratio at most 85.22 for ⃗Yao∞

4 using at most O(log(n)) bits of memory. ◀

4 Lower Bounds

▶ Lemma 19. Let ϵ > 0. There exists a Y⃗ao
∞
4 graph with spanning ratio at least 5 +

√
2 − ϵ.

Proof. Let ϵ > 0 be arbitrarily small. We will create a graph with spanning ratio at
least 5 +

√
2 − ϵ, shown in Figure 7. We let δ > 0 and choose its exact value later in

the proof. Let s := (0,−1) + δ(3, 1), a := (−1,−1) + δ(6, 3), b := (−1, 0) + δ(7,−1),
c := (−1, 1) + δ(8,−10), d := (0, 1) + δ(−1,−11), e := (1, 1) + δ(−13,−12), f := (2, 1) +
δ(−13,−13), g := (2,−1) + δ(−12,+2), and t = (0, 0). Let G be the Y⃗ao

∞
4 graph with

vertices {s, a, b, c, d, e, f, g, t}. Then excluding the outgoing edges from t, G contains the
following edges: sa, sg, as, ab, ba, bs, bc, cb, cd, db, dc, de, ed, et, ef, fe, fs, fg, gf, gs. Since the
only incoming edge to t is et, then the shortest path from s to t must pass by e. The shortest
path from s to e is (s, a, b, c, d, e) since

∥sg∥2 + ∥gf∥2 + ∥fe∥2

≥ ∥sg∥∞ + ∥gf∥∞ + ∥fe∥∞

= (2 − 15δ) + (2 − 15δ) + 1
≥ (1 − 1δ) + (1 − 3δ) + (1 − 8δ) + (1 − 8δ) + (1 − 11δ)
= ∥sa∥1 + ∥ab∥1 + ∥bc∥1 + ∥cd∥1 + ∥de∥1

≥ ∥sa∥2 + ∥ab∥2 + ∥bc∥2 + ∥cd∥2 + ∥de∥2

≥ ∥sa∥∞ + ∥ab∥∞ + ∥bc∥∞ + ∥cd∥∞ + ∥de∥∞

= (1 − 3δ) + (1 − 4δ) + (1 − 9δ) + (1 − 9δ) + (1 − 12δ) = 5 − 37δ

WADS 2025



9:16 Online Routing in Directed Yao∞
4 Graphs

t

(0,−1)

b

c d e
f

a s g
(−1,−1)

(−1, 0)

(−1, 1) (0, 1) (1, 1) (2, 1)

(2,−1)

= (0, 0)

Figure 7 Pictured is the Y⃗ao
∞
4 graph with vertices {s, a, b, c, d, e, f, g, t}. The shortest path from

s to t is (s, a, b, c, d, e, t) and its length can be made arbitrarily close to 5 +
√

2. The outgoing edges
from t are omitted.

Next, we have ∥et∥2 ≥
√

2 min(∥et∥x, ∥et∥y) =
√

2(1 − 13δ), therefore the shortest path from
s to t in G has length at least 5 +

√
2 − δ(37 + 13

√
2). Finally, ∥st∥2 ≤

√
(1 − δ)2 + (3δ)2 ≤ 1

when δ ≤ 1
5 . Therefore choosing δ < ϵ

37+13
√

2 means that the spanning ratio of G is at least
5 +

√
2 − ϵ. ◀

▶ Lemma 20. Let ϵ > 0. Then any local routing algorithm for Y⃗ao
∞
4 graphs has routing

ratio at least 7 +
√

2 − ϵ in the worst case.

Proof. Let ϵ > 0 be arbitrarily small and let A be a local routing algorithm. We will
construct three graphs GW , GN , GE such that A has a routing ratio of at least 7 +

√
2 − ϵ

in at least one of {GW , GN , GE} when routing from s to t := (0, 0). The three graphs are
shown in Figure 9. Let δ > 0 be arbitrarily small.

We will start by defining the zip-zag paths, illustrated in Figure 8, which will act as sub-
graphs. Define the two segments s1 := (15δ−1, δ)(0, δ−δ2) and s2 := (15δ−1,−δ)(0, δ2 −δ).
Let p1 := (15δ − 1, δ), and p2 ∈ s1 such that x(p2) = 13δ − 1. Let q1 ∈ s2 such that p2q1
has slope 1. Then for i ≥ 3 define pi ∈ s1 and qi−1 ∈ s2 such that triangle pi−1piqi−1 is
similar to triangle pi−2pi−1qi−2. Let k be the greatest index such that x(pk) < 0. Then
define WestZag := {p1, p2, ..., pk, q1, q2, ..., qk−1, t}.

The shortest path from p1 to t in the ⃗Yao∞
4 graph of WestZag is p1, q1, p2, q2, ..., qk−1, pk, t,

and it is x-monotone. We will now express the length of this path in terms of δ. Firstly, we
have ∥p1q1∥2 ≥ ∥p1q1∥y ≥ 2(δ − δ2) and ∥q1p2∥2 =

√
2∥q1p2∥y ≥ 2

√
2(δ − δ2). By similar

triangles, for all 1 < i < k we have

∥p1q1∥2 + ∥q1p2∥2

x(p2) − x(p1) = ∥piqi∥2 + ∥qipi+1∥2

x(pi+1) − x(pi)
.
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t

p1 p2 p3 p4 p5

q1 q2 q3 q4

Figure 8 The shortest path from p1 to t in the ⃗Yao∞
4 graph of WestZag has length arbitrarily

close to 1 +
√

2. Note, all p1, p2, ..., pk lie on segment s1, and all q1, q2, ..., qk−1 lie on segment s2.

Combining this with the observation that −2δ < x(pk), then the shortest path from p1 to t
in WestZag has length at least

k−1∑
i=1

(∥piqi∥2 + ∥qipi+1∥2) = ∥p1q1∥2 + ∥q1p2∥2

x(p2) − x(p1)

k−1∑
i=1

(x(pi+1) − x(pi))

≥ 2(δ − δ2)(1 +
√

2)
2δ (x(pk) − x(p1))

≥ 2(δ − δ2)(1 +
√

2)
2δ (−2δ − (15δ − 1))

= (1 +
√

2)(1 − δ)(1 − 17δ)

≥ 1 +
√

2 − 44δ

Additionally, the shortest path from q1 to t in WestZag has length at least 1 +
√

2 − 47δ
since ∥p1q1∥2 ≤

√
2∥p1q1∥∞ ≤ 3δ. Analogously, we define NorthZag to be WestZag reflected

about the line y = −x. Similarly, define EastZag to be WestZag reflected about the vertical
line through t.

Now, define the points s := (0,−1)+δ(1, 1), a := (−1,−1)+δ(5, 2), b := (−1, 0)+δ(6,−2),
c := (−1, 1)+δ(7,−10), d := (0, 1)+δ(−1,−11), e := (1, 1)+δ(−4,−6), f := (1, 0)+δ(−3,−1),
g := (1,−1) + δ(−2, 3), c′ := (−1, 1) + δ(10,−8), d′ := (0, 1) + δ(1,−7), e′ := (1, 1) +
δ(−14,−12). Note that ∥st∥2 =

√
(1 − δ)2 + δ2 ≤ 1 since 0 < δ < 1. We define vertex

sets V (GW ) := WestZag ∪ {s, a, b, c′, d′, e, f, g}, V (GN ) := NorthZag ∪ {s, a, b, c, d′, e, f, g},
V (GE) := EastZag ∪ {s, a, b, c, d, e′, f, g}.

This construction guarantees that the shortest path from any vertex not in a zip-zag path
to t must pass through a zip-zag path. The decision tree for which graph to provide to A is
illustrated in Figure 10. One can verify that the decision tree represents a valid adversarial
strategy since the collections of graphs at each node contain identical neighbourhoods at
all previously visited vertices. Finally, if we exclude the zig-zag paths, then each vertex is
within a distance of 20δ from its nearest integer coordinate. Since the shortest path to t in
each case uses at least six edges with length at least 1 − 2(20δ) before passing through q1,
then the total path length in any case is at least 6(1 − 40δ) + 1 +

√
2 − 47δ = 7 +

√
2 − 287δ.

Setting δ < ϵ
287 completes the proof. ◀

▶ Lemma 21. Let ϵ > 0. There exists a Y⃗ao4 graph with spanning ratio at least 7 −
√

3 +√
5 − 2

√
3 − ϵ.

Proof. Let ϵ > 0 be arbitrarily small. We will create a graph with spanning ratio at least
7 −

√
3 +

√
5 − 2

√
3 − ϵ, shown in Figure 11.

WADS 2025



9:18 Online Routing in Directed Yao∞
4 Graphs

t t t

s s sa a a

b b b

c c

gg g

fff

e
e e′dd′c′

d′

GNGW GE

Figure 9 The graphs are GW , GN , GE from left to right. When routing from s to t, the routing
ratio of A is at least 7 +

√
2 − ϵ in one of the graphs. The dotted lines represent the zig-zag paths to

t. All outgoing edges from the zig-zag paths are omitted.

GE

GN

GW

GE, GN

GN , GW

GE, GN

GN , GW

GE, GN , GW
s

g

a

b

f

s

s

a, c

s

g, e

s

Figure 10 The decision tree describing the adversarial strategy for which graph to provide to
A. For example, suppose A first visits the vertices s, a, b. Notice that the neighbourhoods around
vertices s, a, b are all identical between graphs GE , GN . Then if A chooses c for the next vertex,
then A would have a routing ratio of at least 7 +

√
2 − ϵ in GE .

c

a s

b

d e f

t

g

h

(−1,−1) (0,−1) (2,−1)

(2, 1)(1, 1)(0, 1)

(−1, 0)

(−1, 1)

(1,
√
3− 1)

= (0, 0)

Figure 11 Pictured is the Y⃗ao4 graph with vertices {s, a, b, c, d, e, f, g, h, t}. The shortest path
from s to t must pass by h, and its length can be made arbitrarily close to 7−

√
3+

√
5 − 2

√
3 ≈ 6.51.

Several edges are omitted for clarity.
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Let δ > 0 be arbitrarily small. Define s := (0,−1) + δ(1, 1), a := (−1,−1) + δ(3, 3),
b := (−1, 0)+ δ(4,−1), c := (−1, 1)+ δ(5,−6), d := (0, 1)+ δ(−1,−7), e := (1, 1)+ δ(−9,−8),
f := (2, 1) + δ(−7,−7.5), g := (2,−1) + δ(−6, 2), and t = (0, 0).

Next, we define a point in the region below and to the left of e. More precisely, start by
defining p1 to be the north-most point satisfying x(p1) = x(e) and ∥sp1∥2 = ∥sg∥2. Next, let
p2 be the east-most point such that ∥dp2∥2 = ∥de∥2 and p1p2 is orthogonal to sp1. Finally let
p3 := (x(p1), y(p2)). Define the convex combination h := (1 − 2δ)p1 + δp2 + δp3. Note that
this construction guarantees that h is in the triangle p1p2p3. Let G be the Y⃗ao4 graph with
vertices {s, a, b, c, d, e, f, g, h, t}. By construction, ignoring outgoing edges from t, the edges
of G are sa, sg, as, ab, bs, ba, bc, cb, cd, db, dc, de, ed, eh, ef, eg, fe, fd, fg, gs, gf, ht, hd, he, hg.
Note that the only incoming edge to t is ht, and that the only incoming edge to h is eh. Also,
for any distinct u, v ∈ {s, a, b, c, d, e, f, g}, the coordinates of u and v differ by at most 9δ
from their nearest integer grid points, so the edge uv has length at least 1−18δ. Furthermore,
sg and gf both have length at least 2 − 18δ. It remains to bound the lengths ∥eh∥2 and
∥ht∥2. We have

∥sp1∥2 = ∥sg∥2 =⇒ (1 − 10δ)2 + (y(p1) − δ + 1)2 = (2 − 7δ)2 + δ2

=⇒ y(p1) =
√

3 + 6δ − 50δ2 − 1 + δ

=⇒ y(p1) ≤
√

3 − 1 + 4
√
δ and y(p1) ≥

√
3 − 1 − 8δ

=⇒ |y(p1) − (
√

3 − 1)| ≤ 8
√
δ

Next, the x− and y− coordinates of p1, p2 and p3 are in [0, 1], so by definition, we have

∥h− p1∥∞ = ∥ − 2δy(p1) + δy(p2) + δy(p3)∥∞ ≤ 2δ

This allows us to bound the distance from h to (1,
√

3 − 1):

∥h− (1,
√

3 − 1)∥∞ ≤ ∥h− p1∥∞ + ∥p1 − (1,
√

3 − 1)∥∞ ≤ 2δ + max(9δ, 8
√
δ) ≤ 11

√
δ

Now we can lower bound the edge length ∥ht∥2 and ∥eh∥∞ as follows:

∥ht∥2 ≥ ∥(1,
√

3 − 1)t∥2 − ∥h(1,
√

3 − 1)∥2 ≥
√

5 − 2
√

3 − 11
√

2δ

∥eh∥∞ ≥ ∥(1, 1) − (1,
√

3 − 1)∥∞ − ∥e − (1, 1)∥∞ − ∥h − (1,
√

3 − 1)∥∞ ≥ 2 −
√

3 − 9δ − 11
√

δ

The shortest path from s to t in G will follow either path P1 := (s, a, b, c, d, e) or P2 =
(s, g, f, e), followed by the edges eh and ht. We have

dG(s, t) ≥ min(∥P1∥2, ∥P1∥2) + ∥eh∥2 + ∥ht∥2

≥ 5(1 − 18δ) + (2 −
√

3 − 9δ − 11
√
δ) + (

√
5 − 2

√
3 − 11

√
2δ)

≥ 7 −
√

3 +
√

5 − 2
√

3 − 126
√
δ.

Setting δ < (ϵ/126)2 completes the proof since ∥st∥2 =
√

(1 − δ)2 + δ2 ≤ 1. ◀

▶ Lemma 22. Let ϵ > 0. Then any local routing algorithm for Y⃗ao4 graphs has routing ratio
at least 7 +

√
2 − ϵ in the worst case.

Proof. Let ϵ > 0 be arbitrarily small. We will construct five Y⃗ao4 graphs G1, G2, G3, G4, G5
such that any local routing algorithm has a routing ratio of at least 7+

√
2−ϵ in at least one of

the five graphs. The five graphs are shown in Figure 12. Let δ < 0 be arbitrarily small. Define
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Figure 12 Any local routing algorithm for Y⃗ao4 has a routing ratio of at least 7 +
√

2 − ϵ in one
of the five graphs. The outgoing edges from t are omitted.

the points t := (0, 0), s := (0,−1) + δ(1, 1), a := (−1,−1) + δ(3, 2), b := (−1, 0) + δ(4,−1),
c := (−1, 1) + δ(5,−6), d := (0, 1) + δ(−1,−7), e := (1, 1) + δ(−9,−8), f := (1, 0) + δ(−10, 1),
g := (1 − 11δ,

√
22δ + 2δ − 1), a′ := (8δ − 1,

√
10δ + 2δ − 1), b′ := (−1, 0) + δ(7, 1), c′ :=

(−1, 1)+δ(6,−5), d′ := (0, 1)+δ(1,−4), e′ := (1, 1)+δ(−2,−3), f ′ := (1, 0)+δ(−1,−1), g′ :=
(1,−1)+δ(0, 3). We have ∥st∥2 =

√
(1 − δ)2 + δ2 ≤ 1 since 0 < δ < 1. Then define the graphs

by their point sets: V (G1) := {s, t, a, b, c, d, e, f, g, g′}, V (G2) := {s, t, a, b, c, d, e, f, f ′, g′},
V (G3) := {s, t, a, b, c, d, d′, e′, f ′, g′}, V (G4) := {s, t, a, b, b′, c′, d′, e′, f ′, g′}, V (G5) :=
{s, t, a, a′, b′, c′, d′, e′, f ′, g′}. Notice that the only incoming edges to t in the five graphs are
gt, ft, dt, b′t, a′t, respectively. The decision tree for which graph to provide to any algorithm
is illustrated in Figure 13.

{1, 2, 3, 4, 5}s

{1, 2, 3, 4}
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{2, 3, 4, 5}

{1, 2, 3}
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s
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c {1, 2}
a
{2, 3}s

{3}s

{2}

{1}d

b
b

g′ {3, 4}
s

f ′
{4}
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{3, 4, 5}

{2, 3} {2}
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s
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a

s
b

f ′

f ′

g′

a

Figure 13 The adversarial decision tree for which graph to provide to any algorithm.



P. Bose, J.-L. De Carufel, and J. Stuart 9:21

By construction, each coordinate of each vertex differs by at most 11
√
δ from its nearest

integer grid point. This implies that any edge connecting two different letters must have
length of at least 1−22

√
δ. Moreover, eg and c′a have length at least 2−22

√
δ. Furthermore,

the nearly diagonal edges, bs, f ′s, a′t, gt, have length at least
√

2(1 − 22
√
δ). In any case, we

append the shortest path to t from a leaf of the decision tree to get a routing ratio of at
least 7(1 − 22

√
δ) +

√
2(1 − 22

√
δ) ≥ 7 +

√
2 − 186

√
δ in the worst case. Setting δ < (ϵ/186)2

guarantees that the routing ratio is at least 7 +
√

2 − ϵ. ◀
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