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Abstract
The (tolerant) Hamiltonian locality testing problem, introduced in [Bluhm, Caro, Oufkir ‘24], is to
determine whether a Hamiltonian H is ε1-close to being k-local (i.e. can be written as the sum of
weight-k Pauli operators) or ε2-far from any k-local Hamiltonian, given access to its time evolution
operator and using as little total evolution time as possible, with distance typically defined by
the normalized Frobenius norm. We give the tightest known bounds for this problem, proving an
O
(√

ε2
(ε2−ε1)5

)
evolution time upper bound and an Ω(1/(ε2 − ε1)) lower bound. Our algorithm

does not require reverse time evolution or controlled application of the time evolution operator,
although our lower bound applies to algorithms using either tool.

Furthermore, we show that if we are allowed reverse time evolution, this lower bound is tight,
giving a matching O(1/(ε2 − ε1)) evolution time algorithm.
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1 Introduction

When dealing with large or expensive-to-measure objects, learning the entire object may be
too costly. Property testing algorithms instead attempt to distinguish between the object
having a given property, or being far from any object with the property. More generally, one
can consider tolerant testing, where one attempts to distinguish between the object being
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10:2 Hamiltonian Locality Testing via Trotterized Postselection

within ε1-close to having a property, or being at least ε2-far from any object with the property.
Such algorithms have been extensively studied in quantum and classical settings (see [18]
for an overview of the quantum case), but [6] was the first to consider it for Hamiltonians
accessed via their time evolution operator e−iHt. In this setting the natural measure of cost
is total evolution time,

∑
j tj where the jth application of the time evolution operator is

e−iHtj .1
The property they considered was k-locality, a problem initially raised (but not studied)

in [18, Section 7] as well [19]. A Hamiltonian H is k-local if and only if it can be written
as
∑
j Hj , where each Hj operates on only k qubits. Such locality constraints (perhaps

even geometrically locality constraints) are considered to be physically relevant. Local
Hamiltonians also appear to be theoretically relevant, as nearly all general learning algorithms
for Hamiltonians assume that the Hamiltonian is local, whether they use the time evolution
operator [15, 14, 5], or copies of the Gibbs state [2, 4]. Local Hamiltonians are also conducive
to efficient simulation on quantum computers, using the technique of Trotterization to break
up the Hamiltonian into local quantum gate operations [16]. Finally, local Hamiltonians
play an important role in quantum complexity theory, such as QMA-completeness and the
Quantum PCP conjecture [1].

The initial version of [6] gave an O
(
nk+1/(ε2)3) evolution time algorithm when distance

is measured by the normalized (divided by 2n/2 for a Hamiltonian acting on n qubits)
Frobenius norm, improved in [12] to O

(
(ε2 − ε1)−7) and then in a later version of [6] to

O
(
(ε2 − ε1)−2.5ε−0.5

2
)
.23 This left open the question: how hard is locality testing? Is it

possible to achieve linear (a.k.a. Heisenberg) scaling in 1/ε for evolution time, and is such
a scaling optimal in all error regimes? In this work we make progress towards resolving
the complexity of this problem, improving the best known upper and lower bounds. Our
algorithm is based on a technique we refer to as Trotterized post-selection, in which we
suppress the effect of local terms in the Hamiltonian evolution by repeatedly evolving for a
short time period and post-selecting on the non-local part of the time evolution operator.

1.1 Our Results
Our main result is a improved upper bound for the Hamiltonian locality testing problem.
As with past works, our algorithm is also time-efficient and non-adaptive, though it does
requires n qubits of quantum memory, like [12, 3].

▶ Theorem 1. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm
that distinguishes whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local
Hamiltonian or (2) ε2-far from all k-local Hamiltonians, with probability 1 − δ. The al-

gorithm uses O
(√

ε2
(ε2−ε1)7 log(1/δ)

)
non-adaptive queries to the time evolution operator

with O
(√

ε2
(ε2−ε1)5 log(1/δ)

)
total evolution time.

We pair it with the first lower bound in the tolerant testing setting. While our upper bound
uses only forward time evolution and does not require controlled application of e−itH , our
lower bound also applies to algorithms using either of these tools.

1 Another cost measure that can be considered is total query count, the number of individual applications
of the time evolution operator. Our algorithm also uses the fewest number of queries of any known
algorithm.

2 The original [6] algorithm only worked in the intolerant setting of ε1 = 0.
3 [12] was later subsumed by [3], which gives an O

(
(ε2 − ε1)−3

)
analysis.
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▶ Theorem 2. Let 0 ≤ ε1 < ε2 ≤ 1 and k ∈ N. Then any algorithm that can distinguish
whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local Hamiltonian or (2) ε2-far
from all k-local Hamiltonians, must use Ω

(
1

ε2−ε1

)
evolution time in expectation to achieve

constant success probability.

▶ Remark 3. [6, Theorem 3.6] gives a hardness result for the unnormalized Frobenius norm
(as well as other Schatten norms) in the non-tolerant setting that scales as Ω

(
2n/2

ε

)
. Once

normalized, this also gives a Ω
( 1
ε

)
lower bound. However, this hardness result only holds

for exponentially small ε, due to the fact that the “hard” Hamiltonian in [6, Lemma 3.2] no
longer has ∥H∥∞ ≤ 1 when the unnormalized Frobenius distance to k-local is super-constant.
Therefore Theorem 2 is, to the authors’ knowledge, the first lower bound that works for
arbitrary values of ε, in addition to being the first for the tolerant setting. Our proof is also
considerably simpler, and still extends to all of the distance measures considered in [6] and
more.

Finally, we show that, when reverse time evolution and controlled operations are allowed,
it is possible to saturate this lower bound even in the tolerant case (proof in the appendix).

▶ Theorem 4. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm that
tests whether an n-qubit Hamiltonian H is (1) ε1-close to some k-local Hamiltonian or (2)
ε2-far from all k-local Hamiltonians, with probability 1 − δ. The algorithm uses O

(
log(1/δ)
(ε2−ε1)2

)
non-adaptive queries to the time evolution operator and its inverse, with O

(
log(1/δ)
ε2−ε1

)
total

evolution time.

2 Proof Overview

2.1 Upper Bound
For simplicity, we will consider the intolerant case (ε1 = 0, ε2 = ε) for this proof overview;
the same techniques apply in the tolerant case but require somewhat more care. First we
start with the intuition behind the algorithm of [12, 3].

We will need the fact that the space of 2n qubit states C22n has the Bell basis (|σP ⟩)P ,
where P spans the n-fold Paulis, |σI⊗n⟩ is the maximally entangled state 1√

2n

∑
x∈{0,1}n |x⟩⊗

|x⟩, and |σP ⟩ = (I⊗n ⊗ P )|σI⊗n⟩. Therefore, for any unitary U , if we apply I⊗n ⊗ U to
|σI⊗n⟩ and then measure in the Bell basis, we are able to sample from the (squared) Pauli
spectrum4 of U (the squares of the Pauli decomposition coefficients always sum to 1 for a
unitary [17]).

For any Hamiltonian H, the closest k-local Hamiltonian is given by dropping all of the
non-local Paulis from its Pauli decomposition. Therefore, as by the first-order Taylor series
expansion,

e−iHt ≈ I⊗n − iHt

for small enough t, we can set U = e−iH·t in the aforementioned procedure, and if H is ε-far
from local we will sample a non-local Pauli term with ≈ (t · ε)2 probability. Conversely, if
H is local we should sample no non-local terms, giving us a distinguishing algorithm if the
process is repeated O

(
(t · ε)−2) times, for a total time evolution of O

(
t−1 · ε−2).

4 That is, α2
P when U is written as

∑
P

αpP .

TQC 2025



10:4 Hamiltonian Locality Testing via Trotterized Postselection

So ideally we would like t to be Θ(1/ε) and only repeat a constant number of times,
leading to a total time evolution of O

(
ε−1), which would be optimal by Theorem 2.

Unfortunately, these higher-order terms in the Taylor series cannot be ignored at larger
values of t. As we have ∥H∥∞ ≤ 1, we can bound the kth order term of the Taylor series
expansion of H by O

(
tk
)
, and so we must set t to be at most Θ(ε), resulting in the total

time evolution of O
(
ε3) obtained in previous work [12, 3].

To evade this barrier, we will instead show that it is possible to (approximately) simulate
evolving by H>k, which is composed of only the non-local terms of the Pauli decomposition
of H. Note that if H is k-local, this is 0, while if it is not, H>k is the difference between H

and the closest k-local Hamiltonian. Suppose we could evolve by the time evolution operator
of this Hamiltonian. Then performing the Bell sampling procedure from before would return
|σI⊗n⟩ with probability∣∣⟨σI⊗n |

(
I⊗n ⊗ e−iH>kt

)
|σI⊗n⟩

∣∣2
=

∣∣∣∣∣⟨σI⊗n |

(
I⊗n ⊗

( ∞∑
ℓ=0

(H>k)ℓ (it)ℓ

ℓ!

))
|σI⊗n⟩

∣∣∣∣∣
2

=

∣∣∣∣∣1 + ⟨σI⊗n |

(
I⊗n ⊗

( ∞∑
ℓ=2

(H>k)ℓ (it)ℓ

ℓ!

))
|σI⊗n⟩

∣∣∣∣∣
2

= 1 − ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2

)
|σI⊗n⟩ +

∞∑
ℓ=3

O
(
tℓ ·
∣∣∣⟨σI⊗n |

(
I⊗n ⊗ (H>k)ℓ

)
|σI⊗n⟩

∣∣∣)
as H contains no identity term.

To tame this infinite series, imagine that ∥H>k∥∞ ≤ 1 (we will eventually evolve by a
related operator A that does satisfy ∥A∥∞ ≤ 1). Then we have∣∣∣⟨σI⊗n |

(
I⊗n ⊗ (H>k)ℓ

)
|σI⊗n⟩

∣∣∣ ≤ ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2

)
|σI⊗n⟩

for all integers ℓ ≥ 2, so as long as t is a sufficiently small constant, we have that∣∣⟨σI⊗n |
(
I⊗n ⊗ e−iH>kt

)
|σI⊗n⟩

∣∣2 is at least

1 − 0.99 · ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2

)
|σI⊗n⟩ = 1 − 0.99 · Tr

(
(H>k)2) /2n,

where Tr
(
(H>k)2) /2n = ε2 is exactly the squared normalized Frobenius distance of H from

being k-local. So if we apply e−iH>kt with t = Θ(1), we are left with a ≈ ε2 probability of
sampling a non-local Pauli term if H is non-local, and are guaranteed to measure identity if
H is local (as then e−iH>k·t is the identity). This means we can distinguish locality from
non-locality with O

(
ε−2) repetitions, requiring O

(
ε−2) total evolution time.5

Now, we cannot actually apply e−iH>kt. However, when starting at |σI⊗n⟩, we can
approximate it up to t = Θ(1) by the use of a process reminiscent of the Elitzur-Vaidman
bomb-tester [9] and Quantum Zeno effect [10], which we refer to as Trotterized post-selection.

Let D be the subspace of Bell states corresponding to non-local Paulis or identity and
let ΠD be the projector onto that subspace. Starting with |σI⊗n⟩ once again, we apply
I⊗n ⊗ e−iHt′ for t′ = O(ε), measure with {ΠD, I

⊗2n − ΠD}, and then post-select on the
measurement result ΠD. We then repeat our application of I⊗n ⊗ e−iHt′ and post-selection,
for O(1/t′) iterations, provided our post-selection succeeds each time.

5 Unfortunately, even with access to the time evolution operator of H>k we cannot set t to the optimal
Θ(1/ε), as we lose control of the higher-order terms of the Taylor expansion.
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As we start with |σI⊗n⟩, then make small adjustments (i.e., e−iHt ≈ I⊗2n for small t),
the chance of failing the post-selection is small: only O

(
ε2) at each iteration, and so as long

as we only use O(1/ε) iterations, we will succeed with probability 1 − O(ε). Now, as we are
taking small steps, we can approximate each iteration of ΠD

(
I⊗n ⊗ e−iH·O(ε))ΠD as

ΠD

(
I⊗n ⊗ e−iH·O(ε)

)
ΠD = ΠD

(
I⊗n ⊗

∞∑
ℓ=0

Hℓ (−i)ℓ O
(
εℓ
)

ℓ!

)
ΠD = e−iA·O(ε) +R

where we define A := ΠD(I⊗n ⊗H)ΠD and choose some ∥R∥∞ ≤ O
(
ε2).6

Now, in general, A ̸= I⊗n ⊗ H>k, but as long as H has no identity term in its Pauli
decomposition7, by construction A|σI⊗n⟩ = (I⊗n ⊗H>k) |σI⊗n⟩, and so ⟨σI⊗n |A2|σI⊗n⟩ =
⟨σI⊗n |I ⊗ (H>k)2 |σI⊗n⟩. Combined with the fact that ∥A∥∞ = ∥ΠD (I⊗n ⊗H) ΠD∥∞ ≤
∥H∥∞ ≤ 1, we can argue that, if we iterate t/t′ times

⟨σI⊗n |
t/t′∏
i=1

e−iA·t′ |σI⊗n⟩ = ⟨σI⊗n |e−iA·t|σI⊗n⟩

= ⟨σI⊗n |

( ∞∑
ℓ=0

Aℓ
(−it)ℓ

ℓ!

)
|σI⊗n⟩

= 1 − t2⟨σI⊗n |H2
>k|σI⊗n⟩ + O

(
t3 · ε2)

where the final inequality follows from the fact that for all k > 2,∣∣⟨σI⊗n |Ak|σI⊗n⟩
∣∣ ≤ ∥A∥k−2

∞ ⟨σI⊗n |A2|σI⊗n⟩ ≤ ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2) |σI⊗n⟩ = ε2.

So as our method based on access to the time evolution operator of H>k only required
distinguishing between ⟨σI⊗n |H>k|σI⊗n⟩ being Θ

(
ε2) and 0 we can emulate it with access to

e−iAt without losing too much accuracy, as long as we take t to be a small enough constant.
We can therefore test locality with a total time evolution of O

(
ε−2).

2.2 Lower Bound

To prove the lower bound, it suffices to show that for any k there exists Hamiltonians H1
and H2 such that a query to the time t evolution of H1 and H2 differ in diamond distance by
at most O((ε2 − ε1)t), with H1 ε1-close to being k-local and H2 ε2-far from being k-local.

We achieve this by considering the weight-k Pauli Z1:k that is Z on the first k qubits,
and identity on the last n− k qubits. We then set H1 := ε1Z1:k and H2 := ε2Z1:k. Because
Z1:k is diagonal, so is e−iεZ1:k·t, making it straightforward to bound the diamond distance
of the two time evolution operators by O(t(ε2 − ε1)). By the sub-additivity of diamond
distance, the total time evolution required to distinguish the two Hamiltonians with constant
probability is therefore at least Ω

(
(ε2 − ε1)−1).

6 Note that the ΠD on the right does nothing besides make A obviously Hermitian, assuming our invariant
of our post-selection succeeding.

7 We can assume this without loss of generality, as our algorithm never uses controlled application of
e−iH·t, and so any identity term would manifest as an undetectable global phase.

TQC 2025
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3 Preliminaries

3.1 Quantum Information
A Hamiltonian on n-qubits is a 2n × 2n Hermitian matrix. The time evolution operator of a
Hamiltonian H for time t ≥ 0 is the unitary matrix

e−iHt :=
∞∑
k=0

Hk(−i)k t
k

k! .

We define the n-qubit Pauli matrices to be P⊗n := {I,X, Y, Z}⊗n, where X =
(

0 1
1 0

)
,

Y =
(

0 −i

i 0

)
, Z =

(
1 0
0 −1

)
. For any Pauli P , we denote the locality |P | to be

the number of non-identity terms in the tensor product. Let the Frobenius inner product
between matrices A and B be ⟨A,B⟩ := Tr(A†B). The orthogonality of Pauli matrices under
the Frobenius inner product is implied by the fact that any product of Paulis is another
Pauli (up to sign) and the fact that among them only the identity has non-zero trace. Given
a matrix A =

∑
P∈P⊗n αPP , the locality of A is the largest |P | such that αP ̸= 0. If A is a

Hamiltonian (i.e., Hermitian) then all αP are real-valued. The normalized Frobenius norm is
given by

∥A∥2 =
√

⟨A,A⟩
2n =

√
Tr(A†A)

2n =
√ ∑
P∈P⊗n

|αP |2,

and will be used as our distance to k-locality, in keeping with the previous literature [6, 12, 3].
The other important norm will be the (unnormalized) spectral norm ∥A∥∞, which is the
largest singular value of A. For any matrix A, ∥A∥2 ≤ ∥A∥∞, recalling that ∥·∥2 is the
normalized Frobenius norm. As a form of normalization and to be consistent with the
literature, we will assume that ∥H∥∞ ≤ 1 for any Hamiltonian referenced. We will also
WLOG assume that Tr(H) = 0 for any Hamiltonian, since it does not affect the time
evolution unitary beyond a global phase, and so as our algorithms do not use controlled
application of the unitary, they cannot be affected by it.

We define A>k :=
∑

|P |>k αPP and subsequently A≤k :=
∑

|P |≤k αPP . By the orthogon-
ality of the Pauli matrices under the Frobenius inner product, A≤k is the k-local Hamiltonian
that is closest to A with distance ∥A−A≤k∥2 = ∥A>k∥2.

Let B = {|Φ+⟩, |Φ−⟩, |Ψ+⟩, |Ψ−⟩} denote the set containing the four Bell states. We will
view B⊗n as a basis of C2n ⊗ C2n , in which for each copy of B, one qubit is assigned to the
left register and one to the right. Note that, up to phase, every state in B⊗n is equal to
(I⊗n ⊗ P )|Φ+⟩⊗n for a unique P ∈ P⊗n. We will write |σP ⟩ for this basis element. As an
example,

|Φ+⟩⊗n = |σI⊗n⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ ⊗ |x⟩.

If U =
∑
P∈P⊗n αPP is a unitary matrix, then by Parseval’s identity,

∑
P∈P⊗n |αP |2 = 1,

i.e. |αP |2 gives a probability distribution over the Paulis. Applying I⊗n ⊗ U to the state
|σI⊗n⟩ = |Φ+⟩⊗n and measuring in the Bell basis B⊗n allows one to sample from this
distribution [17].

For a quantum channel that takes as input an n-qubit state, we will let the diamond norm
refer to ∥Λ∥⋄ := maxρ∥(I⊗n ⊗ Λ)(ρ)∥1 where the maximization is over all 2n-qubit states ρ.
The diamond distance famously characterizes the maximum statistical distinguishability (i.e.,
induced trace distance) between quantum channels [21, Section 9.1.6], even with ancillas.
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3.2 Probability
▶ Fact 5 (Multiplicative Chernoff Bound). Suppose X1, . . . , Xm are independent Bernoulli
random variables. Let X denote their sum and let µ := E[X]. Then for any t > 0

Pr [X ≤ (1 − t)µ] ≤ e−t2µ/2.

We will not need a particularly tight form of this bound, so for ease of analysis we state the
following (loose) corollary.

▶ Corollary 6. Suppose X1, . . . , Xm are i.i.d. Bernoulli random variables with probability p,
and

m = 2
p

(d+ log(1/δ)) .

Then

Pr
[
m∑
i=1

Xi < d

]
≤ δ.

Proof. Let µ := E[
∑m
i=1 Xi] = mp and let γ := 1− d

µ . By the Multiplicative Chernoff Bound,

Pr
[
m∑
i=1

Xi < d

]
= Pr

[
m∑
i=1

Xi < (1 − γ)µ
]

≤ exp
(

−µ

2 γ
2
)

= exp
(

−µ

2 − d2

2µ + d

)
≤ exp

(
−mp

2 + d
)
.

Hence, as long as

m ≥ 2 log(1/δ) + 2d
p

,

then
∑m
i=1 Xi ≤ d with probability at most δ. ◀

▶ Fact 7 (Bernstein’s inequality). Suppose X1, . . . , Xn are independent Bernoulli random
variables. Let X denote their sum and let µ and σ2 be the expectation and variance of X
respectively. Then for t ∈ (0, n)

Pr [X − µ ≥ t] ≤ e
−

t2
2

σ2+ t
3 and Pr [X − µ ≤ −t] ≤ e

−
t2
2

σ2+ t
3 .

4 Upper Bound

We will frequently use the truncation of the Taylor series of the matrix exponential to analyze
our algorithm. The following will allow us to then bound the error of the truncation.

▶ Fact 8 ([8, Lemma F.2]). If λ ∈ C then
∣∣∣∑∞

k=ℓ
λk

k!

∣∣∣ ≤ |λ|ℓ

ℓ! e
|λ|.

▶ Corollary 9. For n-qubit Hamiltonian H with ∥H∥∞ ≤ 1, the first order Taylor series
expansion of the matrix exponential gives

e−iHt = I⊗n − iHt+ et · t2

2 R

for ∥R∥∞ ≤ 1.

TQC 2025
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Proof. By the triangle inequality and the fact that ∥Hk∥∞ ≤ ∥H∥∞ ≤ 1 for k ≥ 1:

∥e−iHt − (I⊗n − iHt)∥∞ =

∥∥∥∥∥
∞∑
k=2

(−i)kH
ktk

k!

∥∥∥∥∥
∞

≤
∞∑
k=2

∥Hk∥∞t
k

k! ≤
∞∑
k=2

tk

k! ≤ et · t2

2 ,

using Fact 8 at the end. Setting R := 2
et·t2

(
e−iHt − (I⊗n − iHt)

)
completes the proof. ◀

We also prove the related fact to bound the real and imaginary terms.

▶ Fact 10. If λ ∈ C then∣∣∣∣∣
∞∑
k=ℓ

λ2k

(2k)!

∣∣∣∣∣ ≤ |λ|2ℓ

(2ℓ)! cosh(|λ|)

and∣∣∣∣∣
∞∑
k=ℓ

λ2k+1

(2k + 1)!

∣∣∣∣∣ ≤ |λ|2ℓ+1

(2ℓ+ 1)! cosh(|λ|).

Proof.∣∣∣∣∣
∞∑
k=ℓ

λ2k

(2k)!

∣∣∣∣∣ ≤
∞∑
k=ℓ

|λ2k|
(2k)! = |λ|2ℓ

∞∑
k=0

|λ|2k

(2k + 2ℓ)! ≤ |λ|2ℓ

(2ℓ)!

∞∑
k=0

|λ|2k

(2k)! = |λ|2ℓ

(2ℓ)! cosh(|λ|)

and∣∣∣∣∣
∞∑
k=ℓ

λ2k+1

(2k + 1)!

∣∣∣∣∣ ≤
∞∑
k=ℓ

|λ2k+1|
(2k + 1)! = |λ|2ℓ+1

∞∑
k=0

|λ|2k

(2k + 2ℓ+ 1)!

≤ |λ|2ℓ+1

(2ℓ+ 1)!

∞∑
k=0

|λ|2k

(2k)! = |λ|2ℓ+1

(2ℓ+ 1)! cosh(|λ|). ◀

4.1 Algorithm
▶ Definition 11. We will use D to denote the subspace of C2n ⊗ C2n spanned by |σP ⟩ for
Pauli strings P that are either the identity or are not k-local, and ΠD to denote the projector
onto D. We define A := ΠD (I⊗n ⊗H) ΠD.

We start by giving an algorithm that returns a Bernoulli random variable X ∈ {0, 1},
where E[X] approximates the distance of H from being k-local. It does so by iteratively
applying e−iαH sandwiched by {ΠD, I

⊗2n − ΠD} measurements.

Algorithm 1 Hamiltonian Locality Estimator via Trotterized Postselection.

1: Start with |ϕ⟩ = |σI⊗n⟩.
2: for 50√

ε2
2−ε2

1
iterations do

3: Apply (I⊗n ⊗ e−iαH to |ϕ⟩ for α = ε2
2−ε2

1
100ε2

.
4: Measure |ϕ⟩ with the projectors ΠD, I

⊗2n − ΠD, terminating and returning ⊥ if the
result is I⊗2n − ΠD.

5: end for
6: Measure |ϕ⟩ in the Bell basis, returning 0 if the result is |σI⊗n⟩ and 1 otherwise.
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Let α := ε2
2−ε2

1
100ε2

be the step-size used in Algorithm 1, t :=
√
ε2

2−ε2
1

2ε2
be the total time

evolution used in Algorithm 1, and let m := t/α = 50√
ε2

2−ε2
1

be the number of iterations used

in Algorithm 1. In our analysis will frequently use the fact that α ≤ ε2
100 ≤ 1

100 and t ≤ 0.5
to simplify higher-order terms.
▶ Remark 12. While we attempted to keep the constants in the algorithm reasonable, no

attempt was made to optimize them. We observe that t should remain Θ
(√

ε2
2−ε2

1
ε2

)
for

optimal scaling, but α can be made arbitrarily small to (marginally) improve the constants
in the total time evolution used. This has a cost in the total number of queries used, scaling
roughly proportional to α−1.

First we show that the final state of the Trotterized postselection algorithm corresponds
to evolving |σI⊗n⟩ by e−iAt, with a bounded error term. There are two main sources
of error: (1) the error from higher-order terms in the respective Taylor series of e−iAα

and ΠD

(
I⊗n ⊗ e−iHα)ΠD not matching and (2) the error from post-selection causing

normalization issues. The following technical lemma allows us to tackle the error from (1).
This is done by showing that e−itA = ΠD

(
I⊗n ⊗ e−itH)ΠD ± O

(
α2) for sufficiently small α.

By chaining these together, the triangle inequality will eventually show in Lemma 14 that
the accumulated error is then at most O

(
α2m

)
= O(αt).

▶ Lemma 13. Let H =
∑
P∈P⊗n αPP be any Hamiltonian with ∥H∥∞ ≤ 1. Then,

ΠD(I⊗n ⊗ e−iαH)ΠD = e−iαA + η

where ∥η∥∞ ≤ eα · α2.

Proof. By Taylor expanding the complex exponential of e−iαH and applying Corollary 9,
we get

ΠD(I⊗n ⊗ e−iαH)ΠD = ΠD

(
I⊗n ⊗

(
I⊗n − iαH + eα · α2

2 R

))
ΠD

= I⊗2n − iαA+ et · α2

2 R′

where ∥R′∥∞ ≤ ∥I⊗n ⊗R∥∞ = ∥R∥∞ ≤ 1.
Next, we observe that ∥A∥∞ ≤ ∥I⊗n ⊗H∥∞ = ∥H∥∞ ≤ 1 and that A is Hermitian by

symmetry. We can then Taylor expand e−iαA to get

e−iαA = I⊗2n − iαA+ eα · α2

2 Q

where ∥Q∥∞ ≤ 1. By the triangle inequality, the difference

η := ΠD(I⊗n ⊗ e−iαH)ΠD − e−iαA

between these two linear transformations satisfies

∥η∥∞ ≤ ∥R′∥∞ · e
α · α2

2 + ∥Q∥∞ · e
α · α2

2 ≤ eα · α2. ◀

Luckily, the error from (2) is mostly a non-issue, using a process similar to the Elitzur-
Vaidman bomb [9]: by taking small steps between applications of ΠD, we ensure that we
are barely changing our system, and so the post-selection nearly always succeeds. This also
means that the normalization error can be suppressed to be arbitrarily small, at the cost of
linearly increasing the number of times we have to query the time evolution operator. Using
these facts together, we show that Algorithm 1 approximately applies the time evolution
operator of A.
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10:10 Hamiltonian Locality Testing via Trotterized Postselection

▶ Lemma 14. Algorithm 1 terminates before the final measurement with probability at
most 99

98αt. If it does not, |ϕ⟩ = e−iAt|σI⊗n⟩ + |∆⟩ just before the final measurement, with
∥|∆⟩∥2 ≤ 7

4αt.

Proof. Note that the algorithm can only be terminated early if, in one of the loop iterations,
the measurement in Algorithm 1 returns I⊗2n − ΠD. At the start of the iteration |ϕ⟩ =
|σI⊗n⟩ ∈ D. Since |ϕ⟩ remains within D after each successful iteration, by Taylor expanding
the exponential, and applying Corollary 9 to obtain a suitable R with ∥R∥∞ ≤ 1, the
probability of failure at each iteration is at most∥∥(I⊗2n − ΠD)

(
I⊗n ⊗ e−iHα)ΠD|ϕ⟩

∥∥2
2

=
∥∥∥∥(I⊗2n − ΠD)

(
I⊗n ⊗

(
I⊗n − iαH + α2

2 eαR

))
|ϕ⟩
∥∥∥∥2

2

=
∥∥∥∥(I⊗2n − ΠD)

(
−iα(I⊗n ⊗H) + α2

2 eα(I⊗n ⊗R)
)

|ϕ⟩
∥∥∥∥2

2

≤
(
α∥H∥∞ + α2eα

2 ∥R∥∞

)2

≤
(

1 + αeα + α2

4 e2α
)
α2

<
99
98α

2

where the third line follows from |ϕ⟩ ∈ D, the fourth from the triangle inequality combined
with the definition of the spectral norm, and the final line from α ≤ 0.01. By a union bound
over the m iterations, the first part of the lemma follows, noting that t := α ·m.

For the second part pertaining to accuracy, first we note that in each iteration, if the
measurement in Algorithm 1 does not make the algorithm terminate, the iteration had the
effect of taking |ϕ⟩ ∈ D to

ΠD

(
I⊗n ⊗ e−iαH) |ϕ⟩ = ΠD

(
I⊗n ⊗ e−iαH)ΠD|ϕ⟩,

normalized to length 1. After the m iterations of the loop of Algorithm 1, |ϕ⟩ is then

m∏
i=1

ΠD

(
I⊗n ⊗ e−iαH)ΠD|σI⊗n⟩

normalized to length 1. By Lemma 13, before normalization this is equivalent to

m∏
i=1

(
e−iαA + η

)
|σI⊗n⟩ =

(
m∑
k=0

(
m

k

)
e−iαA(m−k) · ηk

)
|σI⊗n⟩

for ∥η∥∞ ≤ α2eα. The distance of the un-normalized vector from e−iAt|σI⊗n⟩ is then∥∥∥∥∥e−iAt|σI⊗n⟩ −
m∏
i=1

(
e−iAt + η

)
|σI⊗n⟩

∥∥∥∥∥
2

=

∥∥∥∥∥
(

m∑
k=1

(
m

k

)
e−iαA(m−k) · ηk

)
|σI⊗n⟩

∥∥∥∥∥
2

≤
m∑
k=1

mk∥η∥k∞ ≤
m∑
k=1

(
mα2eα

)k ≤
∞∑
k=1

(
mα2eα

)k = mα2eα
1

1 −mα2eα
= αteα

1
1 − αteα

.
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Finally, to bound the error introduced by normalization, for each r ∈ [m], write |ϕr⟩ :=∏r
i=1 ΠD(I⊗n ⊗ e−iαH)ΠD|σI⊗n⟩ for the projected state at iteration r. We note that, by the

same argument proving that the probability of the measurement at any given step returning
the I⊗2n − ΠD result is at most 99

98α
2, |ϕr⟩ is separated from e−iAt|ϕr−1⟩ by an orthogonal

vector of length at most
√

99
98α∥e−iAt|ϕr−1⟩∥2 =

√
99
98α∥|ϕr−1⟩∥2. Therefore,

∥|ϕr⟩∥2 ≥ ∥|ϕr−1⟩∥2

√
1 − 99

98α
2 ≥ ∥|ϕr−1⟩∥2 − 0.699

98α
2

where the last inequality follows from the fact that 1 −
√

1 − x ≤ 0.6x for x ∈ [0, 5
9 ] and

99
98α

2 < 5
9 . The total additional error from the normalization is then at most 297

490α
2m = 297

490αt.
By the triangle inequality, the total distance from e−iAt|σI⊗n⟩ is at most

297
490αt+ tαeα

1
1 − αteα

≤ 7
4αt. ◀

We now show that (approximately) applying e−iAt instead of I⊗n ⊗ e−iHt allows us to
suppress the higher-order terms that were preventing us from increasing the evolution time
t when testing for locality. We will need the following results that let us characterize the
individual terms of the Taylor expansion.

▶ Fact 15. For any matrix M , ⟨σP |(I ⊗M)|σQ⟩ = Tr(PMQ)
2n .

Proof.

⟨σP |(I ⊗M)|σQ⟩ = 1
2n

∑
x,y∈{0,1}n

(⟨x| ⊗ ⟨x|P ) (|y⟩ ⊗MQ|y⟩)

= 1
2n

∑
x,y∈{0,1}n

⟨x|y⟩ · ⟨x|PMQ|y⟩ = 1
2n

∑
x∈{0,1}n

⟨x|PMQ|x⟩ = Tr(PMQ)
2n ◀

▶ Lemma 16. ⟨σI⊗n |A|σI⊗n⟩ = 0.

Proof.

⟨σI⊗n |A|σI⊗n⟩ = ⟨σI⊗n |ΠD

(
I⊗n ⊗H

)
ΠD|σI⊗n⟩ = ⟨σI⊗n |I⊗n ⊗H|σI⊗n⟩

= 1
2n Tr (H) = 0 (Fact 15)

recalling that we have assumed that Tr(H) = 0. ◀

▶ Lemma 17. For k ≥ 2, |⟨σI⊗n |Ak|σI⊗n⟩| ≤ ⟨σI⊗n |A2|σI⊗n⟩ = ∥H>k∥2
2.

Proof. The first inequality follows because ∥A∥∞ ≤ ∥H∥∞ ≤ 1, and the fact that H is
Hermitian and so A is too, meaning that every eigenvalue of Ak is non-increasing in magnitude
as a function of k, and non-negative when k is even.

For the second equality, we observe that

A|σI⊗n⟩ = ΠD

(
I⊗n ⊗H

)
ΠD|σI⊗n⟩ = ΠD

(
I⊗n ⊗H

)
|σI⊗n⟩ =

(
I⊗n ⊗H>k

)
|σI⊗n⟩,

as H has no identity component. By Fact 15,

⟨σI⊗n |A2|σI⊗n⟩ = ⟨σI⊗n |I⊗n ⊗ (H>k)2|σI⊗n⟩ = 1
2n Tr

(
(H>k)2) = ∥H>k∥2

2. ◀
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10:12 Hamiltonian Locality Testing via Trotterized Postselection

Combining Lemmas 14, 16, and 17, we are able to give bounds on the acceptance
probability of Algorithm 1 (assuming it does not terminate early) based on how close or far
H is from being k-local. This gives us an algorithm for testing locality, through repetition of
Algorithm 1 and concentration of measure.

▶ Lemma 18. Let ε := ∥H>k∥2. The probability that Algorithm 1 outputs 1, conditioned on
not terminating early, is at least ε2t2

(
1 − 3

10ε
2t2
)
− 7

2εαt
2 and no more than ε2t2

(
1 + 1

10 t
2)+

287
80 εαt

2 + 49
1600ε2αt

2.8

Proof. At the end of Algorithm 1 (assuming it did not terminate early), the final state lies
in D. By Lemma 14 and the definition of the final measurement, the probability that the
algorithm outputs 1 is the squared length of the component of |ψ⟩ := e−iAt|σI⊗n⟩ + |∆⟩ along
the complement of |σI⊗n⟩, for some ∆ such that ∥|∆⟩∥2 ≤ 2αt. So by the triangle inequality,
Pr [X = 1] is in the range9

((√
1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 − ∥|∆⟩∥2

)2
,

(√
1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 + ∥|∆⟩∥2

)2
)
.

To analyze
∣∣⟨σI⊗n |e−iAt|σI⊗n⟩

∣∣, we note that because A is Hermitian, ⟨σI⊗n |Ak|σI⊗n⟩ is
real-valued for all k ≥ 0. By splitting up the Taylor expansion of the matrix exponential into
real and imaginary terms, we see that

∣∣⟨σI⊗n |e−iAt|σI⊗n ⟩
∣∣2 =

∣∣∣∣∣⟨σI⊗n |

(
∞∑

m=0

(−i)m Amtm

m!

)
|σI⊗n ⟩

∣∣∣∣∣
2

=

∣∣∣∣∣⟨σI⊗n |

(
∞∑

m=0

(−1)m A2mt2m

(2m)!

)
|σI⊗n ⟩

∣∣∣∣∣
2

+

∣∣∣∣∣⟨σI⊗n |

(
∞∑

m=0

(−1)m+1 A2m+1t2m+1

(2m + 1)!

)
|σI⊗n ⟩

∣∣∣∣∣
2

.

Analyzing the first term, we see that∣∣∣∣∣⟨σI⊗n |

( ∞∑
m=0

(−1)mA
2mt2m

(2m)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨σI⊗n |

(
I⊗2n − t2

2 A
2 +

∞∑
m=2

(−1)mA
2mt2m

(2m)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣Tr(I⊗n)
2n − t2

2 ⟨σI⊗n |A2|σI⊗n⟩ + ⟨σI⊗n |

( ∞∑
m=2

(−1)mA
2mt2m

(2m)!

)
|σI⊗n⟩

∣∣∣∣∣ (Fact 15)

=

∣∣∣∣∣1 − ε2t2

2 +
∞∑
m=2

(−1)m⟨σI⊗n |A
2mt2m

(2m)! |σI⊗n⟩

∣∣∣∣∣ (Lemma 17)

= 1 − ε2t2

2 + ηreal

where |ηreal| ≤ ε2t4

24 cosh(t) ≤ ε2t4

20 by Fact 10, Lemma 17, the triangle inequality, and the
fact that t ≤ 1

2 .

8 The ε2 in the 49
1600 ε2αt2 term of the upper bound is intended and not a typo.

9 One might think to use 1 −
∣∣⟨σI⊗n |

(
e−iAt|σI⊗n ⟩ + |∆⟩

)∣∣2 followed by the triangle inequality, but this
actually leads to a lossy analysis of the number of queries used.
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Then, for the second term, we have

ηimaginary :=

∣∣∣∣∣⟨σI⊗n |

( ∞∑
m=0

(−1)mA
2m+1t2m+1

(2m+ 1)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨σI⊗n |

(
A+

∞∑
m=1

(−1)m+1A
2m+1t2m+1

(2m+ 1)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨σI⊗n |

( ∞∑
m=1

(−1)mA
2m+1t2m+1

(2m+ 1)!

)
|σI⊗n⟩

∣∣∣∣∣ (Lemma 16)

≤ε2
∞∑
m=1

t2m+1

(2m+ 1)! (Lemma 17)

≤ε2 t
3

6 cosh(t) ≤ 1
10ε

2t2. (Fact 10)

Since

∣∣⟨σI⊗n |e−iAt|σI⊗n⟩
∣∣2 =

(
1 − ε2t2

2 + ηreal

)2

+ η2
imaginary,

we can upper bound it by
(

1 − ε2t2

2 + |ηreal|
)2

+η2
imaginary and, as ηimaginary ≥ 0, lower bound

it by
(

1 − ε2t2

2 − |ηreal|
)2

.
We can therefore upper bound the probability of Algorithm 1 accepting by(√

1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 + ∥|∆⟩∥2

)2

≤

√1 −
(

1 − ε2t2

2 − |ηreal|
)2

+ 7
4αt

2

(Lemma 14)

≤
(√

ε2t2 + 2|ηreal| + 7
4αt

)2

≤ ε2t2 + 2|ηreal| + 7
2αt

√
ε2t2 + 1

10ε
2t4 + 49

16α
2t2

≤ ε2t2
(

1 + 1
10 t

2
)

+ 287
80 εαt

2 + 49
1600ε2αt

2
(
t ≤ 0.5, α ≤ ε2

100

)
and lower bound it by(√

1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 − ∥|∆⟩∥2

)2

≥

√1 −
(

1 − ε2t2

2 + |ηreal|
)2

− η2
imaginary − ∥|∆⟩∥2

2

≥ ε2t2 −
(
ε2t2

2 + |ηreal|
)2

− |ηimaginary|2 − 7
2εαt

2

≥ ε2t2
(

1 − 3
10ε

2t2
)

− 7
2εαt

2. ◀
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▶ Theorem 1. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm
that distinguishes whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local
Hamiltonian or (2) ε2-far from all k-local Hamiltonians, with probability 1 − δ. The al-

gorithm uses O
(√

ε2
(ε2−ε1)7 log(1/δ)

)
non-adaptive queries to the time evolution operator

with O
(√

ε2
(ε2−ε1)5 log(1/δ)

)
total evolution time.

Proof. By Lemma 18 the output of Algorithm 1, conditioned on succeeding, is a Bernoulli
random variable Xi with bounded expectation. That is, when ε ≥ ε2 then

E[Xi] ≥ ε2
2t

2
(

1 − 3
10ε

2
2t

2
)

− 7
2ε2αt

2

and when ε ≤ ε1 then

E[Xi] ≤ ε2
1t

2
(

1 + 1
10 t

2
)

+ 287
80 ε1αt

2 + 49
1600ε2αt

2.

Let

τ := 1
2

[
ε2

2t
2
(

1 − 3
10ε

2
2t

2
)

− 7
2ε2αt

2 + ε2
1t

2
(

1 + 1
10 t

2
)

+ 287
80 ε1αt

2 + 49
1600ε2αt

2
]

then be the halfway point these two values, and our decision threshold. And for convenience
let

ξ := 1
2

[
ε2

2t
2
(

1 − 3
10ε

2
2t

2
)

− 7
2ε2αt

2 − ε2
1t

2
(

1 + 1
10 t

2
)

− 287
80 ε1αt

2 − 49
1600ε2αt

2
]

be a lower bound on the distance from τ to our bounds on E[Xi]. Observe that ε1 < ε2 ≤ 1,
ε2α = ε2

2−ε2
1

100 and t =
√
ε2

2−ε2
1

2ε2
so:

9
80

(ε2
2 − ε1)2

ε2
2

≤ 1
2(ε2

2 − ε2
1)t2 − 1

5ε
2
2t

4 ≤ ξ ≤ ε2
2 − ε2

1
2 t2 ≤ ε2

2t
2

2 .

Now say that we have i.i.d samples {X1, . . . , Xs} from successful runs of Algorithm 1
for s to be determined and let X :=

∑s
i=1 Xi. If ε ≥ ε2, then by Bernstein’s inequality the

probability that X ≤ sτ is at most:

Pr
[

s∑
i=1

Xi ≤ sτ

]
= Pr

[
X − E[X] ≤ sτ − E[X]

]
≤ exp

[
−

(sτ−E[X])2

2

sE[X] (1 − E[X]) + E[X]−sτ
3

]

≤ exp

− (sτ − E[X])2

2
(
sE[X] + E[X]−sτ

3

)


≤ exp

− sξ2

2
(
ε2

2t
2 + ξ

3

)


≤ exp
[
− 3sξ2

7ε2
2t

2

]
≤ exp

[
− s

46.5
(ε2

2 − ε2
1)3

ε4
2

]
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where the fourth line follows due to the expression in the exponential being monotonically
increasing with respect to E[X] ∈ (τ, 1]. Likewise, if ε ≤ ε1 then the probability that X ≥ sτ

is at most:

Pr
[

s∑
i=1

Xi ≥ sτ

]
= Pr

[
X − E[X] ≥ sτ − E[X]

]
≤ exp

[
−

(sτ−E[X])2

2

sE[X] (1 − E[X]) + sτ−E[X]
3

]

≤ exp

− (sτ − E[X])2

2
(
sE[X] + sτ−E[X]

3

)


≤ exp

− sξ2

2
(
ε2

1t
2
(
1 + 1

10 t
2
)

+ 287
80 ε1αt2 + 49

1600ε2αt2 + ξ
3

)


≤ exp
[

− sξ2

2
(
ε2

2t
2
(
1 + 1

40 + 287
800 + 49

16000 + 1
6
))]

(ε1 < ε2, t ≤ 0.5, α ≤ ε2

100)

≤ exp
[
− s

55.9
(ε2

2 − ε2
1)3

ε4
2

]
where the fourth line also follows due to the expression in the exponential being monotonically
decreasing with respect to E[X] ∈ [0, τ). Therefore, setting

s = 55.9 ε4
2

(ε2
2 − ε2

1)3 ln(2/δ)

suffices for us to succeed at distinguishing the two cases with probability at most 1 − δ/2.
Algorithm 1 has an 99

98αt <
99

19600
(ε2

2−ε2
1)3/2

ε2
2

≤ 99
19600 chance of failure. By applying

Corollary 6,

s′ = 2
1 − 99

19600
(s+ ln(2/δ)) ≤ 115 ε4

2
(ε2

2 − ε2
1)3 ln(2/δ)

suffices to achieve s successful runs with probability 1 − δ/2. By a union bound, we will
correctly differentiate the two cases with probability at least 1 − δ.

The total time complexity used is then

s′t ≤ 115 ε4
2

(ε2
2 − ε2

1)3 ln(2/δ) ·
√
ε2

2 − ε2
1

2ε2
≤ 58 ε3

2

((ε2 − ε1)(ε2 + ε1))5/2 log(2/δ)

≤ 58
√

ε2

(ε2 − ε1)5 log(2/δ) = O
(√

ε2

(ε2 − ε1)5 log(1/δ)
)
,

with a total number of queries of

s′m = s′t

α
≤ 58 ε3

2

(ε2
2 − ε2

1)5/2 log(2/δ) · 100ε2

ε2
2 − ε2

1
≤ 5800 ε4

2
(ε2

2 − ε2
1)7/2 log(2/δ)

≤ 5800
√

ε2

(ε2 − ε1)7 = O
(√

ε2

(ε2 − ε1)7

)
. ◀
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A Lower Bound

We will utilize the following fact about diamond distance of unitaries that will make calcula-
tions easier, at a loss of some constant factors.

▶ Fact 19 ([13, Proposition 1.6]). For all unitaries U and V of equal dimension,

1
2∥U − V ∥⋄ ≤ min

θ∈[0,2π)
∥eiθU − V ∥∞ ≤ ∥U − V ∥⋄.

We now show our lower bound for k-locality testing, simply by showing that the statistical
distance of the resulting unitaries (i.e., diamond distance) only grows linearly with time.

▶ Definition 20. For 0 ≤ k ≤ n, we define

Z1:k :=
k⊗
i=1

Z ⊗
n⊗

j=k+1
I

to be the tensor product of Z on the first k qubits and identity on the last n− k qubits.

▶ Lemma 21. For 0 ≤ ε1 ≤ ε2

∥e−iZ1:kε1t − e−iZ1:kε2t∥⋄ ≤ 2(ε1 − ε2)t.

Proof. Since Z1:k is diagonal with ±1 entries, e−iZ1:kεt is diagonal with entries e∓iεt. There-
fore, the eigenvalues of eiθ · e−iZ1:kε1t − e−iZ1:kε2t can be directly calculated, giving us

min
θ∈[0,2π)

∥eiθ · e−iZ1:kε1t − e−iHε2t∥∞

= min
θ∈[0,2π)

max
(

|ei(θ−ε1t) − e−iε2t|, |ei(θ+ε1t) − eiε2t|
)

= min
(
|e−iε1t − e−iε2t|, |e−iε1t + e−iε2t|

)
= 2 min

(∣∣∣∣sin( (ε2 − ε1)t
2

)∣∣∣∣ , ∣∣∣∣cos
(

(ε2 − ε1)t
2

)∣∣∣∣)
≤ (ε2 − ε1)t,

where one of θ ∈ {0, π} minimizes the value via symmetry. By Fact 19, ∥e−iZ1:kε1t −
e−iZ1:kε2t∥⋄ ≤ 2(ε1 − ε2)t.10 ◀

10 A direct calculation of the diamond distance will give an upper bound of (ε2 − ε1)t, without the factor
of 2 from Fact 19. See [14, Proof of Proposition 1.6].
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▶ Remark 22. Lemma 21 easily extends to the scenario where one is allowed to make calls to
the inverse oracle, controlled versions of the oracle, the complex conjugate of the oracle, and
any combination of these augmentations, as the diamond distance between the corresponding
unitaries can be bounded as a function of time evolution.

We are now ready to prove our tolerant locality testing lower bound by reducing to
Lemma 21.

▶ Theorem 2. Let 0 ≤ ε1 < ε2 ≤ 1 and k ∈ N. Then any algorithm that can distinguish
whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local Hamiltonian or (2) ε2-far
from all k-local Hamiltonians, must use Ω

(
1

ε2−ε1

)
evolution time in expectation to achieve

constant success probability.

Proof. Observe that for any k′ > k, H1 := ε1Z1:k′ is within ε1 of being k-local and
H2 := ε2Z1:k′ is likewise ε2-far from being k-local. ∥H1∥∞ ≤ ∥H2∥∞ ≤ 1 is also satisfied.
Let ti be the time evolution for each query in our algorithm. By Lemma 21, the diamond
distance between the time evolution of these two cases is at most 2(ε2 − ε1)ti for each query.
By the sub-additivity of diamond distance, a total time evolution of

∑
i ti = Ω

(
(ε2 − ε1)−1)

is required to distinguish H1 and H2 with constant probability. ◀

▶ Remark 23. Theorem 2 also holds when the distance to k-locality is determined by
operator norm ∥·∥∞, any normalized schatten p-norm ∥X∥p := 1

2n/p Tr (|X|p)
1
p , or any Pauli

decomposition p-norm ∥X∥Pauli,p :=
(∑

P∈P⊗n |αP |p
) 1

p for X =
∑
P∈P⊗n αPP , improving

upon that of [6, Theorem 3.6]. This is simply because the distance of εZ1:k′ (for k′ > k)
from being k-local is exactly ε for all of these distance measures.

B Optimal Tolerant Testing with Inverse Queries

In this section we augment the tolerant testing algorithm in [12, 3], with amplitude estimation
to get an optimal tolerant tester when given access to controlled versions of the forward and
reverse time evolution.11

We begin with the following crucial result of Gutiérrez.

▶ Lemma 24 ([3, Lemma 3.1]). Let 0 ≤ ε1 ≤ ε2 ≤ 1. Let α := ε2−ε1
3c and H be an n-qubit

Hamiltonian with ∥H∥∞ = 1. Define U := e−iHα, and let U>k be U |σI⊗n⟩ projected onto
onto the space spanned by {(I ⊗ P )|σI⊗n⟩ : P ∈ {I,X, Y, Z}⊗n, |P | > k}. We have that if H
is ε1-close to being k-local, then

∥U>k∥2
2 ≤

(
(ε2 − ε1)2ε1 + ε2

9c

)2
,

and if H is ε2-far from being k-local, then

∥U>k∥2
2 ≥

(
(ε2 − ε1)ε1 + 2ε2

9c

)2
.

We also cite the following result of [11], which itself follows as a corollary of the celebrated
Quantum Amplitude Estimation [7, Theorem 12] result.

11 Using the multiplicative error form from [20] should allow for one to remove the need for controlled
access while remaining non-adaptive, though it causes the constants to blow-up.
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▶ Lemma 25 (Quantum Amplitude Estimation [11, Corollary 29]). Let Π be a projector and |ψ⟩
be an n-qubit pure state such that ⟨ψ|Π|ψ⟩ = η. Given access to the unitary transformations
RΠ = 2Π − I and Rψ = 2|ψ⟩⟨ψ| − I, there exists a quantum algorithm that outputs η̂ such that

|η̂ − η| ≤ ξ

with probability at least 8
π2 . The algorithm makes no more than π

√
η(1−η)+ξ

ξ calls to the
controlled versions of RΠ and Rψ.

In particular, this implies that if we have (controlled) query access to U , U∗ for some
unitary U , and a known state |ϕ⟩, we can estimate η = ∥ΠU |ϕ⟩∥2

2 to ζ accuracy by defining
|ψ⟩ := U |ϕ⟩ and implementing Rψ with controlled applications of U .

We are now ready to state the algorithm, which can be seen as the algorithm of [12, 3]
augmented with Lemma 25.

▶ Theorem 4. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm that
tests whether an n-qubit Hamiltonian H is (1) ε1-close to some k-local Hamiltonian or (2)
ε2-far from all k-local Hamiltonians, with probability 1 − δ. The algorithm uses O

(
log(1/δ)
(ε2−ε1)2

)
non-adaptive queries to the time evolution operator and its inverse, with O

(
log(1/δ)
ε2−ε1

)
total

evolution time.

Proof. Let U := e−iHα as in Lemma 24. We apply Lemma 24 with Π the projector onto
the space spanned by {(I ⊗ P )|σI⊗n⟩ : P ∈ {I,X, Y, Z}⊗n, |P | > k} to estimate ∥U>k∥2

2.
Observe that the absolute difference between the two terms in Lemma 24 is(

(ε2 − ε1)ε1 + 2ε2

9c

)2
−
(

(ε2 − ε1)2ε1 + ε2

9c

)2
= (ε2 − ε1)3(ε2 + ε1)

27c2 .

Therefore, we can distinguish the two cases to constant success probability by estimating
η = ∥U>k∥2

2 to error ζ = (ε2−ε1)3(ε2+ε1)
54c2 . By Lemma 25, the number of queries is then no

more than

π

√
(ε2 − ε1)2(ε1 + 2ε2)2/(81c2) + (ε2 − ε1)3(ε1 + ε2)/(54c2)

(ε2 − ε1)3(ε1 + ε2)/(54c2)

= 54πc
(ε2 − ε1)2

√
(ε1 + 2ε2)2/81 + (2ε2 − 2ε1)(2ε1 + 2ε2)/216

ε1 + ε2

≤ 54πc
(ε2 − ε1)2

√
(2ε1 + 2ε2)2/81 + (2ε1 + 2ε2)2/216

ε1 + ε2

≤ 54πc
(ε2 − ε1)2

√
11(2ε1 + 2ε2)2/648

ε1 + ε2

≤ 3
√

22πc
(ε2 − ε1)2 .

Since the Hamiltonian is applied for α := ε2−ε1
3c for each query, the total evolution of the

Hamiltonian is at most

3
√

22πc
(ε2 − ε1)2

ε2 − ε1

3c =
√

22π
ε2 − ε1

.

By standard error reduction, we can reduce the constant failure probability to at most δ
using log(1/δ) repetitions.
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Finally, observe that constructing RΠ (and its controlled version), as in Lemma 25 is free,
as Π is a known projector onto the low locality Paulis. On the other hand, Rψ requires us
to take (a version of) the Grover Diffusion operator D := 2|0⟩⟨0| − I and conjugate it by U .
This is the step that requires access to U† := eiHα. ◀

Since this matches the lower bound of Theorem 2, Theorem 4 is optimal.
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