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Abstract
We introduce a quantum cloning game in which k separate collaborative parties receive a classical
input, determining which of them has to share a maximally entangled state with an additional
party (referee). We provide the optimal winning probability of such a game for every number of
parties k, and show that it decays exponentially when the game is played n times in parallel. These
results have applications to quantum cryptography, in particular in the topic of quantum position
verification, where we show security of the routing protocol (played in parallel), and a variant of it,
in the random oracle model.
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1 Introduction

Non-local correlations have extensively been studied in the field of quantum information
theory, see e.g. [12]. Bell [9] originally showed that distant parties sharing quantum resources
can reproduce correlations that could never be attained by any classical theory. Often, non-
local correlations are studied as non-local games, which provide an operational framework for
understanding them. These games are interesting per se from a fundamental point of view,
since they give rise to understanding the underlying essence of nature, but they additionally
lead to applications such as secure key distribution [1], certified randomness [33], reduced
communication complexity [14], self-testing [32, 37], and computation [5].

A vast literature in non-local games covers the scenario where a classical referee sends
questions to non-communicating collaborative parties, and their task is to produce answers
according to a certain publicly-known predicate, where the questions and answers are all
classical. The best-known non-local game is the CHSH game [18]. Non-locality has also
been investigated in terms of supersets of non-local games, called monogamy-of-entanglement
(MoE) games [38], where a quantum referee sends the same classical question to the players
and the parties have to guess the (classical) outcome of a referee’s quantum measurement
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2:2 A Quantum Cloning Game with Applications to Quantum Position Verification

(depending on the question). MoE games have been used to provide security proofs for the
quantum cryptographic primitives device-independent quantum key distribution [10] and
quantum position verification [28]. Such games were later generalized under the name of
extended non-local games [27].

Here, we introduce the concept of the quantum cloning game, played by k distant parties
and a quantum referee. The referee publically announces a party, i.e., sends the same classical
question to all the players, and the chosen party has to end up with the maximally entangled
(EPR) state with the referee. At the beginning of the game, the players are allowed to
share any quantum state with the referee. In this work, we show that the optimal winning
probability for players using any quantum resources is given by 1

2 + 1
2k , converging to 1

2 for a
large number of players. We analyze the game when it is played n times in parallel, showing
an exponential decay in n of the optimal winning probability. Additionally, the quantum
cloning game can be generalized to any arbitrary quantum state instead of an EPR state,
and we provide its optimal winning probability.

We show that these results have applications in quantum position verification (QPV),
which is a cryptographic primitive consisting of verifying the location of an untrusted party.
Securely implementing this primitive is unachievable using only classical information, because
a general attack exists even when using computational assumptions [17]. Due to the no-
cloning theorem [41] the general classical attack does not apply if quantum information is
used instead [28, 31], however, a general quantum attack exists which requires exponential
entanglement [13, 8]. This means that hope for protocols secure against reasonable amounts
of entanglement is alive, and indeed there has been much analysis on attacks on specific
protocols [2, 28, 29, 34, 16, 36, 21, 22, 25, 20], and security analysis under extra assumptions
[30, 24], such as the random oracle model [39]. A generic 1-dimensional (the main ideas
generalize to higher dimensions) QPV protocol is described in the following way: two verifiers
V0 and V1, placed on the left and right of an untrusted prover P, supposedly at the position
pos, send quantum and classical messages to P at the speed of light, and he has to pass a
challenge and reply correctly to them at the speed of light as well, if so, the verifiers accept,
and if any of them receives a wrong answer or the timing does not correspond with the time
it would have taken for light to travel back from the honest prover, the verifiers reject. The
time consumed by the prover to perform the challenge is assumed to be negligible, and the
verifiers are assumed to have perfectly-synchronized clocks.

In this work, we consider the routing QPV protocol [28], which has an appealing simple
form: the prover has to return a received qubit to one of the verifiers, where the choice
of verifier is a function of the classical information sent by the verifiers [28]. Besides the
theoretical interest of this protocol, it is also an appealing candidate for free-space quantum
position verification, when the quantum messages can travel with the vacuum speed of light,
since the hardware of the prover could hypothetically be as simple as a mirror or an optical
switch. Despite theoretical work on this protocol [15, 20, 11, 3, 6], there were gaps left in our
understanding relative to measurement-based QPV protocol variants: namely the security of
parallel repetition of this protocol against unentangled attackers and attackers who pre-share
a linear (in the security parameter) amount of entangled qubits, and its security in the
random-oracle model against arbitrary adversaries. As an application of the quantum cloning
game, we show the security of the routing protocol in these scenarios.
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2 Preliminaries

For k ∈ N, we will denote [k] := {0, . . . , k−1}. Let H, H′ be finite-dimensional Hilbert spaces,
we denote by B(H,H′) the set of bounded operators from H to H′ and B(H) = B(H,H).
Denote by S(H) the set of quantum states on H, i.e. S(H) = {ρ ∈ B(H) | ρ ≥ 0,Tr[ρ] = 1)}.
A pure state will be denoted by a ket |ψ⟩ ∈ H. The maximally entangled state or EPR
pair is |Φ+⟩ = 1√

2 (|00⟩+ |11⟩). We denote the identity matrix by I. For M ∈ B(H), we
denote its Schatten ∞-norm by ∥M∥. We will use the notation 1, . . . , /i, . . . , k − 1 to denote
1, . . . , i− 1, i+ 1, . . . , k − 1.

▶ Definition 1. Let N ∈ N. Two permutations π, π′ : [N ]→ [N ] are said to be orthogonal if
π(i) ̸= π′(i) for all i ∈ [N ].

▶ Lemma 2 (Lemma 2 in [38]). Let Π1, . . . ,ΠN be projectors acting on a Hilbert space H.
Let {πk}k∈[n] be a set of mutually orthogonal permutations. Then,∥∥∥∥ ∑

i∈[N ]

Πi

∥∥∥∥ ≤ ∑
k∈[N ]

max
i∈[N ]

∥∥ΠiΠπk(i)∥∥. (1)

▶ Remark 3. There always exist a set of N permutations of [N ] that are mutually orthogonal,
an example is the N cyclic shifts.

▶ Lemma 4 (Lemma 1 in [38]). Let A,B,L ∈ B(H) such that AA† ⪰ B†B. Then it holds
that ∥AL∥ ≥ ∥BL∥.

3 k-party quantum cloning game

In the following definition, we introduce the quantum cloning game.

▶ Definition 5. The k-party quantum cloning game, shortly denoted by QCGk, consists of a
referee R with associated Hilbert space HR = C2 and k collaborative distant parties (players)
P0, . . . , Pk−1. Before the game starts, the parties prepare a joint quantum state of arbitrary
dimension between themselves and the referee. During the game, the referee sends x ∈ [k],
drawn uniformly at random, to all the collaborative parties. The players win the game if and
only if the party Px (holding a qubit register Px) ends up sharing the maximally entangled
state with the referee, i.e. if a projection onto |Φ+⟩RPx

yields the correct outcome.

See Figure 1 for a schematic representation of the QCGk. Intuitively, in such a game, the
referee publically announces which party has to create an entangled state with herself.

x ∈ [k] x ∈ [k] x ∈ [k] x ∈ [k]

R P0 · · · Px · · · Pk−1

|Ψ⟩RPx

ρ

Figure 1 Schematic representation of the k-party quantum cloning game, where |Ψ⟩RPx =
|Φ+⟩RPx , where the gray-shaded region represents the shared state ρ. If |Ψ⟩RPx is arbitrary, this
represents a Ψ-QCGk.

TQC 2025
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A strategy S for the QCGk is described by a quantum state ρ ∈ S(HR ⊗HP0E0 ⊗ · · · ⊗
HPk−1Ek−1), where, for i ∈ [k], registers Pi are of the same dimension as HR and Ei are
auxiliary systems of arbitrary dimension that each party possess, and completely positive trace-
preserving (CPTP) maps {Ex

PiEi→Pi
}x, where the subscript PiEi → Pi indicates that the map

has input and output registers PiEi and Pi, respectively, i.e. Ex
PiEi→Pi

: B(HPiEi
)→ B(HPi

).
The winning probability of such a game, given the strategy S, is provided by

ω(QCGk, S) = 1
k

∑
x∈[k]

Tr
[
|Φ+⟩⟨Φ+|RPx

TrP0... /P x...Pk−1

IR

⊗
i∈[k]

Ex
PiEi→Pi

(ρ)

]. (2)

The optimal winning probability of such games is given by

ω∗(QCGk) = sup
S
ω(QCGk, S), (3)

where the supremum is taken over all the possible strategies over all possible Hilbert spaces.
The following theorem gives the optimal winning probability of this game for every number
of parties k.

▶ Theorem 6. For every k ∈ N, the optimal winning probability of the QCGk is given by

ω∗(QCGk) = 1
2 + 1

2k . (4)

Intuitively, this game cannot be perfectly won since, otherwise, it would be possible to
have maximal entanglement between the referee and each of the parties, and this is not
possible since entanglement is monogamous [19]. In the proof, see below, the key part is
to show that the optimal winning probability is attainable by the actions of the players
being independent of x, intuitively, each party acts as if they were chosen to reproduce the
maximally entangled state with the referee. In addition, in the proof, we show that the
optimal value can be attained by preparing an initial state ρ where, locally, each of the
parties holds a qubit and no further actions taken by the players, i.e. their local actions are
described by the identity channel (IPi). We then specify a strategy by providing a quantum
state, since any local actions are independent of x, they can be absorbed in the quantum
state. More precisely, the optimal winning probability for the QCGk can be attained by the
strategy given by the (pure) quantum state

|φ⟩ =

√
2

k(k + 1)
∑

x∈[k]

|Φ+⟩RPx
|0⟩P0... /P x...Pk−1

. (5)

Note that other natural multi-party entangled states that have been widely studied in the
literature, such as the GHZ state ([26]) |GHZ⟩ = 1√

2 (|000⟩+ |111⟩) and the W state ([23])
|W ⟩ = 1√

3 (|001⟩+ |010⟩+ |100⟩), and their respective generalizations to arbitrary dimensions,
as well as the strategy of “guessing” which party has to reproduce the quantum state, e.g.
guessing x = 0, given by preparing the state |Φ+⟩V P0 |0⟩P1 . . . |0⟩k−1, provide significantly
suboptimal winning probabilities. For 2-players, ω∗(QCG2) = 3

4 , and

ω∗(QCGk) k→∞−−−−→ 1
2 , (6)

which converges to the value attained by the strategy given by preparing the state
|0⟩R|0⟩P0 . . . |0⟩Pk−1 , showing that when k increases even unentangled states allow for a
near-optimal winning probability.
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Proof. A strategy S for the QCGk is described by a quantum state ρ ∈ S(HR ⊗HP0E0 ⊗
. . . ⊗ HPk−1Ek−1), where, for i ∈ [k], registers Pi are of the same dimension as HR and
Ei are auxiliary systems of arbitrary dimension that each party possesses, and unitary
transformations U = {Ux

PiEi
}x, acting on the registers in the subscripts (due to the Stinespring

dilation of the quantum channels, we restrict our attention to unitary transformations Ux
PiEi

instead of quantum channels Ex
PiEi→Pi

). Let d be the dimension of the above (total) Hilbert
space, which we denote by Hd. Then, the winning probability of the QCGk, given the
strategy S on a d-dimensional Hilbert space, is provided by

ω(QCGk, S, d)

=1
k

∑
x∈[k]

Tr

[(
|Φ+⟩⟨Φ+|RPx

⊗IEx

⊗
i ̸=x∈[k]

IPiEi

)((
IR⊗Ux

PiEi
⊗. . .⊗Ux

PiEi

)
ρ(IR⊗Ux

PiEi
⊗. . .⊗Ux

PiEi
)†
)]

=1
k

∑
x∈[k]

Tr

[(
IR⊗Ux†

PiEi
⊗. . .⊗Ux†

PiEi

)(
|Φ+⟩⟨Φ+|RPx

⊗IEx

⊗
i ̸=x∈[k]

IPiEi

)
(IR ⊗ Ux

PiEi
⊗ . . . ⊗ Ux

PiEi
)ρ

]
,

where in the last equation we used cyclicity of the trace. For a specific choice of unitary
transformations U = {Ux

PiEi
}x, the optimal winning probability is given by

ω∗(QCGk, U, d)

= sup
ρ∈S(Hd)

1
k

∑
x∈[k]

Tr

[(
IR⊗Ux†

PiEi
⊗. . .⊗Ux†

PiEi

)(
|Φ+⟩⟨Φ+|RPx

⊗IEx

⊗
i̸=x∈[k]

IPiEi

)
(IR ⊗Ux

PiEi
⊗. . .⊗Ux

PiEi
)ρ

]

= 1
k

∥
∑
x∈[k]

(
IR ⊗ Ux†

PiEi
⊗ . . . ⊗ Ux†

PiEi

)(
|Φ+⟩⟨Φ+|RPx

⊗ IEx

⊗
i̸=x∈[k]

IPiEi

)
(IR ⊗ Ux

PiEi
⊗ . . . ⊗ Ux

PiEi
)∥

= 1
k

∥
∑
x∈[k]

((
IR ⊗ Ux†

PxEx

)(
|Φ+⟩⟨Φ+|RPx

⊗ IEx

)
(IR ⊗ Ux

PxEx
)
) ⊗

i̸=x∈[k]

Ux†
PiEi

⊗
i ̸=x∈[k]

IPiEi

⊗
i̸=x∈[k]

Ux
PiEi

∥

= 1
k

∥
∑
x∈[k]

((
IR ⊗ Ux†

PxEx

)(
|Φ+⟩⟨Φ+|RPx

⊗ IEx

)
(IR ⊗ Ux

PxEx
)
) ⊗

i̸=x∈[k]

Ux†
PiEi

Ux
PiEi

∥,

Notice that, since {Ux
PiEi
}x are unitary matrices, Ux†

PiEi
Ux

PiEi
= IPiEi

, moreover,
IPiEi

= U i†
PiEi

U i
PiEi

, then we can use Ux†
PiEi

Ux
PiEi

= U i†
PiEi

U i
PiEi

, and therefore

ω∗(QCGk, U, d)

= 1
k

∥
∑
x∈[k]

((
IR ⊗ Ux†

PxEx

)(
|Φ+⟩⟨Φ+|RPx ⊗ IEx

)(
IR ⊗ Ux†

PxEx

)) ⊗
i̸=x∈[k]

U i†
PiEi

U i
PiEi

∥

= 1
k

∥
∑
x∈[k]

IR

⊗
i ̸=∈[k]

U i†
PiEi

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi

IR

⊗
i∈[k]

U i
PiEi

∥

= 1
k

∥

IR

⊗
i ̸=∈[k]

U i†
PiEi

∑
x∈[k]

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi

IR

⊗
i∈[k]

U i
PiEi

∥

= 1
k

∥
∑
x∈[k]

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi ∥

= sup
ρ∈S(Hd)

1
k

∑
x∈[k]

Tr

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi

ρ

 = ω∗(QCGk, d) (7)

where in the fourth equality we used that the Schatten ∞-norm is unitarily invariant, i.e.
∥V ∗W∥ = ∥ ∗ ∥ for unitary matrices V and W , and ω∗(QCGk, d) denotes the optimal

TQC 2025



2:6 A Quantum Cloning Game with Applications to Quantum Position Verification

winning probability if the dimension of the total initial Hilbert space is d. Equation (7) shows
that, given a Hilbert space HR ⊗HP0E0 ⊗ . . .⊗HPk−1Ek−1 , the optimal winning probability
can be attained by an optimal quantum state independently of the actions of the players
after knowing x, i.e. the optimal winning probability is independent of {Ux

PiEi
}x and they

can apply {Ix
PiEi
}x . We are going to see that, actually, the optimal winning probability can

be attained by each of the parties possessing a qubit (2-dimensional Hilbert space), i.e. by
the total Hilbert space being H2k =

⊗
i∈[k] C2. From (7),

ω∗(QCGk) = sup
d∈N

ω∗(QCGk, d) = sup
d∈N

1
k
∥

∑
x∈[k]

|Φ+⟩⟨Φ+|RPx
⊗ IP0... /P x...Pk−1

⊗
i∈[k]

IEi
∥

= sup
d∈N

1
k
∥
∑

x∈[k]

|Φ+⟩⟨Φ+|RPx
⊗ IP0... /P x...Pk−1

∥∥
⊗
i∈[k]

IEi
∥

= sup
d∈N

1
k
∥
∑

x∈[k]

|Φ+⟩⟨Φ+|RPx ⊗ IP0... /P x...Pk−1
∥

= sup
ρ∈S(H2k )

1
k

∑
x∈[k]

Tr
[(
|Φ+⟩⟨Φ+|RPx

⊗ IP0... /P x...Pk−1

)
ρ
]
, (8)

where, in the arguments of the supremums, the dependence on d is implicit in the auxiliary
spaces, which, together with the registers Pi and V , fully describe the total Hilbert space,
and thus its dimension.

In order to provide the explicit value for the optimal winning probability, we have that,
from (8),

ω∗(QCGk) = 1
k
∥
∑

x∈[k]

|Φ+⟩⟨Φ+|RPx
⊗ IP0... /P x...Pk−1

∥ = 1
2 + 1

2k , (9)

where the last equation is obtained by direct computation. ◀

3.1 Quantum cloning game with any target state
The concept of QCGk can be generalized to the case where, instead of the parties having to
reproduce EPR pairs with the referee, the state that has to be reproduced is an arbitrary-fixed
state, i.e. the referee’s Hilbert space HR is now of arbitrary dimension, and on input x the
party Px has to generate a given state |Ψ⟩RPx

. Here, the dimension of the registers Pi is
the same for all i ∈ [k]. We will refer to such a game as a k-party quantum cloning game
with target state |Ψ⟩, in short denoted by Ψ-QCGk, see Figure 1. Notice that this game
becomes trivial if the target state |Ψ⟩RP is a tensor product state. In the following theorem,
we provide the optimal winning probability for any Ψ-QCGk for every number of parties k
and for any target state |Ψ⟩.

▶ Theorem 7. The optimal winning probability for every Ψ-QCGk is given by

ω∗(Ψ-QCGk) = 1
k
∥
∑

x∈[k]

|Ψ⟩⟨Ψ|RPx ⊗ IP0... /P x...Pk−1
∥. (10)

Along the lines of the proof of Theorem 6, the key idea relies on showing that the optimal
winning probability can be attained by the actions of the players being independent on x.

Proof. The result follows from the proof of Theorem 6 by repeating the same steps, replacing
|Φ+⟩V Px

by |Ψ⟩V Px
, and from (8), we obtain (10). ◀
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4 Parallel repetition of QCGk

A case of particular interest is given when QCGk is played n times in parallel, denoted
by QCG×n

k . Specifically, we will analyze QCG2 where now the two collaborative parties,
who we rename as Alice and Bob, will receive x = x0 . . . xn−1 ∈ {0, 1}n. We denote by
R0 . . . Rn−1, A0 . . . An−1 and B0 . . . Bn−1 the final (qubit) registers of the referee, Alice
and Bob, respectively. The players win if at the end of the game Alice is able to create
the maximally entangled state with the referee in all her registers such that xi = 0, and
analogously for Bob in all his registers such that xi = 1. See Figure 2 for a schematic
representation.

x ∈ {0, 1}n x ∈ {0, 1}n x ∈ {0, 1}n

R A B

⊗
xi:xi=0

|Φ+⟩Rxi
Axi

⊗
xi:xi=1

|Φ+⟩Rxi
Bxi

ρ

Figure 2 Schematic representation of the n-fold parallel repetition of the 2-party quantum cloning
game. The gray-shaded region represents the tripartie state ρ that Alice and Bob prepare.

Similarly as before, at the beginning of the game the three parties are allowed to share
any arbitrary quantum state and, upon receiving the classical information, Alice and Bob
can apply CPTP maps {Ex

A0...An−1EA→A0...An−1
}x and {Ex

B0...Bn−1EB→B0...Bn−1
}x, where EA

and EB are arbitrary auxiliary systems that Alice and Bob possess, respectively.
In the following theorem, we state that the optimal winning probability decays exponen-

tially with the number of parallel repetitions n.

▶ Theorem 8. The optimal winning probability for n parallel repetitions of the QCG2 is
such that(

3
4

)n

≤ ω∗(QCG×n
2 ) ≤

(
1
2 + 1

2
√

2

)n

. (11)

The key idea of the proof relies on combining ideas used in the proof of Theorem 7
together with Proposition 4.3 in [35], which was also used in [38] to prove parallel repetition
for monogamy-of-entanglement games.

Proof. A strategy Sn for the n-parallel repetition of QCG2 is described by a quantum state
ρ ∈ S(HR ⊗HA0...An−1EA

⊗HB0...Bn−1EB
), where, for i ∈ [n], registers Ai and Bi are of the

same dimension as HR and EA and EB are auxiliary systems of arbitrary dimension that each
party possess, and unitary transformations {Ux

A0...An−1EA
}x and {V x

B0...Bn−1EB
}x, acting on

the registers in the subscripts (due to the Stinespring dilation of the quantum channels, we
restrict our attention to unitary transformations). For x = x0 . . . xn−1 ∈ {0, 1}n, let Qxi

= Ai

if xi = 0 and Qxi
= Bi if xi = 1, and we use the shorthand notation R = R0 . . . Rn−1,

A = A0 . . . An−1 and B = B0 . . . Bn−1. Then, the winning probability of this game, given
the strategy Sn, is provided by

TQC 2025
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ω(QCG×n
2 , Sn)

= 1
2n

∑
x∈{0,1}n

Tr

[((⊗
i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)ρ(IR⊗Ux

AEA
⊗V x

BEB
)†

]

= 1
2n

∑
x∈{0,1}n

Tr

[
(IR⊗Ux†

AEA
⊗V x†

BEB
)
((⊗

i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)ρ

]

≤ 1
2n

∥
∑

x∈{0,1}n

(IR⊗Ux†
AEA

⊗V x†
BEB

)

((⊗
i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)∥.

Denote

Mx :=(IR⊗Ux†
AEA
⊗V x†

BEB
)

(⊗
i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

(IR⊗Ux
AEA
⊗V x

BEB
), (12)

then,

ω(QCG×n
2 , Sn) ≤ 1

2n
∥

∑
x∈{0,1}n

Mx∥ ≤ 1
2n

∑
k∈[2n]

max
x,x′
∥MxMx′

∥, (13)

where we used Lemma 2, and x′ = πk(x), for {πk}k being a set of mutually orthogonal
permutations. Fix x and x′, and let T be the set of indices where x and x′ differ,
i.e. T = {i | xi ̸= x′i}, and let t = |T |. Let TA = {i ∈ T | xi = 0}, and tA := |TA|,
then we have that

Mx ⪯ Mx
A

:=(IR⊗Ux†
AEA

⊗V x†
BEB

)((⊗
i∈TA

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗
( ⊗

i∈[n]\TA

IRiQxi
Q1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)

= (IR ⊗ Ux†
AEA

⊗ V x†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA

)
⊗ IBEB

)
(IR ⊗ Ux

AEA
⊗ V x

BEB
)

= (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA

)
⊗ IBEB

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
),

where in the last equality we used that V x†
BEB

V x†
BEB

= IBEB
= V x′†

BEB
V x′

BEB
. Similarly,

Mx′
⪯ Mx′

B

:=(IR⊗Ux′†
AEA

⊗V x′†
BEB

)((⊗
i∈TA

|Φ+⟩⟨Φ+|RiQx′
i

⊗IQ1−x′
i

)
⊗
( ⊗

i∈[n]\TA

IRiQx′
i
Q1−x′

i

)
⊗IEAEB

)
(IR⊗Ux′

AEA
⊗V x′

BEB
)

= (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiBi

⊗
i∈[n]\TA

IRiBiEB

)
⊗ IAEA

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
), (14)

By Lemma 4,

∥MxMx′
∥ ≤ ∥Mx

AM
x′

B ∥, (15)

then
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Mx
AMx′

B

= (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA

)
⊗ IBEB

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
)

· (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiBi

⊗
i∈[n]\TA

IRiBiEB

)
⊗ IAEA

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
).

We have that (IR ⊗ Ux
AEA

⊗ V x′

BEB
)(IR ⊗ Ux†

AEA
⊗ V x′†

BEB
) = IRAEABEB

, and, since the
Schatten ∞-norm is unitarily invariant,

∥Mx
AMx′

B ∥

= ∥

(⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA
⊗ IBEB

)(⊗
i∈TA

|Φ+⟩⟨Φ+|RiBi

⊗
i∈[n]\TA

IRiBiEB
⊗ IAEA

)
∥

= ∥

(⊗
i∈TA

(
|Φ+⟩⟨Φ+|RiAi

⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi

⊗ IAi

)) ⊗
i∈[n]\TA

IRiAiBi
⊗ IEAEB

∥

= ∥
⊗
i∈TA

(
|Φ+⟩⟨Φ+|RiAi

⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi

⊗ IAi

)
∥∥

⊗
i∈[n]\TA

IRiAiBi
⊗ IEAEB

∥

=
∏

i∈TA

∥
(
|Φ+⟩⟨Φ+|RiAi

⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi

⊗ IAi

)
∥

= 2−tA ,

(16)

where we used that, for every i,

∥
(
|Φ+⟩⟨Φ+|RiAi ⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi ⊗ IAi

)
∥ = 2−1. (17)

Without loss of generality, assume tA ≥ t/2, then, combining (15) and (16), we have that

∥MxMx′
∥ ≤ ∥Mx

AM
x′

B ∥ ≤ 2− t
2 . (18)

In order to apply the bound in Lemma 4, consider the set of permutations given by
πk(x) = x ⊕ k, where x, k ∈ {0, 1}n (they are such that they have the same Hamming
distance). There are

(
n
i

)
permutations with Hamming distance i. Then, we have

ω(QCG×n
2 , Sn) ≤ 1

2n

∑
k∈[2n]

max
x,x′
∥MxMx′

∥ ≤ 1
2n

n∑
t=0

(
n

t

)
2− t

2 =
(

1
2 + 1

2
√

2

)n

. (19)

◀

5 Application to QPV in the No-PE and BE(m) models

In this section, we analyze the security of the routing QPV protocol, originally introduced
in [28]. A round of this protocol, see Figure 3 for a schematic representation, is described as
follows:
1. The verifier V0 selects a qubit |ϕ⟩ ∈ {|0⟩, |1⟩, |+⟩, |−⟩}, and the verifier V1 selects x ∈ {0, 1},

both picked uniformly at random. They send |ϕ⟩ and x (at time t = 0) so that they
arrive at the same time (t = 1) at pos.

2. Upon receiving the information sent by V0 and V1, the prover sends the qubit |ϕ⟩ to the
verifier Vx.

TQC 2025



2:10 A Quantum Cloning Game with Applications to Quantum Position Verification

3. If |ϕ⟩ arrives at the time consistent with pos (t = 2), and a projective measurement
performed by Vx on the state sent by V0 leads to the correct outcome, the verifiers accept.
Otherwise, they reject.

V0 V1

P t = 1

t = 0

t = 2

x = H(r0 ⊕ r1)

V0 V1

⊗
xi:xi=1

|ϕi⟩

t

n
⊗
i=1

|ϕi⟩, r0 r1

⊗
xi:xi=0

|ϕi⟩

Figure 3 Schematic representation of the (H, n)-routing QPV protocol. If r0 is an empty bit
string, and x = r1, this figure represents the n-parallel repetition of the routing QPV protocol. The
time arrow is represented by t.

The most general attack to the routing protocol, pictured in Figure 4, consists of having
two attackers Alice (A) and Bob (B), located between V0 and P , and between P and V0,
respectively. Before t = 0, the attackers agree on a strategy and might prepare an entangled
state. After t = 0, Alice (A0) and Bob (B0) intercept the information sent from their closest
verifier, respectively. Due to timing constraints, they are allowed to perform one round of
simultaneous communication. After communicating (after t = 1), Alice (A1) and Bob (B1)
answer to their closest verifier, respectively.

Here, we analyze security within three attack models: (i) the No Pre-shared Entanglement
(No-PE) model [13], where adversaries do not (pre-)share any entanglement before the
protocol’s execution; (ii) the Bounded-Entanglement BE(m) model, where adversaries pre-
share at most m entangled qubits; and (iii) the Random Oracle Model (ROM), where attackers
(pre-)share any amount of entanglement before the protocol’s execution. We formalize the
concept of security, given an attack model M, as follows:

▶ Definition 9. The routing protocol is said to be α-sound in the M model if, for any
attackers acting according to such an attack model, the verifiers accept with probability at
most α.

The security of a variation of this protocol, the f -routing QPV protocol, where the
classical information x is split into two bit strings, each sent from each verifier, and the qubit
has to be routed according to the outcome of a boolean function f on those bit strings has
been studied in the BE(m) model [11, 6, 7]. The authors of these works showed that the
f -routing QPV protocol remains secure as long as m is at most linear in the size of the bit
strings. However, unlike other protocols [13, 38, 4] the security of the routing QPV protocol
in the No-PE model was never analyzed. The No-PE assumption is necessary to obtain
non-trivial bounds, since there is a perfect attack if the attackers pre-share entanglement [28].
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EntanglementV0 V1 t=0

A0 B0

t=1

A1 B1

V0 V1 t=2

⊗n
i=1|ϕi⟩,r0 r1

Figure 4 Schematic representation of a generic attack to the (H, n)-routing protocol (and in
particular, to the routing protocol).

We show security in the No-PE model, providing the tight result, summarized in the following
proposition:

▶ Proposition 10. In the No-PE model, the routing QPV protocol is 3
4 -sound. Moreover,

this is optimal.

The intuition behind Proposition 10 relies on the fact that the most general attack can be
reduced to a QCG2. Consider the purified version of the routing protocol, which is equivalent
to the original version, and where the only difference relies on V0, instead of sending the
qubit |ϕ⟩, prepares the state |Φ+⟩ and keeps a register for herself and sends the other register
to the prover. Then, as seen in Figure 4, the most general attack to the routing QPV
protocol is to place an adversary between V0 and the prover, Alice, and another adversary
between the prover and V1, Bob. In the No-PE model, we can simplify it further, as Alice
intercepts the qubit sent by V0, applies an arbitrary quantum operation to it, and possibly
some ancillary systems she possesses. She keeps a part of it and sends the other to Bob. On
the other side, Bob intercepts x, copies it and sends the copy to Alice. Since they share no
entanglement, any quantum operation that Bob could perform as a function of x can be
included in Alice’s operation. After one-round of simultaneous communication, Alice and
Bob share a tripartite state with V0, and their task is that the party designated by x has
to end up with a maximally entangled state with the V0. By Theorem 7, even if Alice and
Bob can share any state with the referee (in this case V0), they can succeed with at most
probability 3

4 .
On the other hand, to show optimality, consider the attack where (i) at the beginning of

the protocol Alice prepares the 3-qubit state 1√
3 (|Φ+⟩A0A|0⟩B + |Φ+⟩A0B |0⟩A), (ii) intercepts

|ϕ⟩ and performs a Bell measurement on the intercepted state and her register A0, immediately
she applies the teleportation corrections to both of her registers A and B, (iii) she keeps
register A and sends register B to Bob, (iv) in the meantime, Bob intercepts and broadcasts
x, after receiving the information from their fellow attacker, if x = 0, Alice sends her register
(A) to V0, whereas if x = 1, Bob sends his register (B) to V1. This attack has a winning
probability of 3

4 .
An analogous reduction applies when the routing QPV protocol is executed n times in

parallel, and therefore, its security can be reduced to the n-parallel repetition of QCG2:
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2:12 A Quantum Cloning Game with Applications to Quantum Position Verification

▶ Proposition 11. In the No-PE model, the routing QPV protocol executed n times in parallel
is ( 1

2 + 1
2
√

2 )n-sound.

A direct consequence of Lemma 5.3 in [8] implies, similarly as in [38], security for the
routing protocol executed in parallel for attackers who pre-share a linear amount of qubits:

▶ Corollary 12. In the BE(m) model, the routing QPV protocol executed n times in parallel
is
(

2m( 1
2 + 1

2
√

2 )n
)

-sound.

In particular, the above soundness is exponentially small in n if m < n log
(

( 1
2 + 1

2
√

2 )−1
)
≃

0.228n.

6 Application to QPV in the random oracle model

Consider the n-parallel repetition of the routing QPV protocol but instead of V1 sending
x ∈ {0, 1}n, V0 and V1 send r0, r1 ∈ {0, 1}ℓ, for ℓ ∈ N, to the prover, respectively. Then, the
x used in the rest of the protocol is computed via x = H(r0 ⊕ r1), for a given hash function
H : {0, 1}ℓ → {0, 1}n. We will denote this variation as (H,n)-routing QPV protocol, see
Figure 3 for a schematic representation.

To provide security in the quantum random oracle model against adversaries sharing an
arbitrary amount of entanglement, we use some techniques introduced in [40]. A quantum
random oracle is defined as a fixed function H : {0, 1}ℓ → {0, 1}n that is sampled uniformly
at random from the set of functions from ℓ bits to n bits1. The parties are not given the full
description of H directly, but they are given oracle access to H, in the sense that they have
access to a special gate implementing the unitary UH : |r⟩|b⟩ → |r⟩|b ⊕H(r)⟩. We denote
the number of queries made by the adversary by q. As a proof technique, an oracle can also
be reprogrammed, where security of the protocol is shown by first studying a variant where
the gate applied by the oracle may change over time. A typical setting is where we change
a single entry of the oracle: we denote by H[r 7→ x] the new oracle that behaves like H
except that H(r) = x. The chances of distinguishing whether H has been reprogrammed or
not can be bounded using [40], which informally states that if we can distinguish whether
the oracle has been reprogrammed or no, then we have queried it on r before it has been
reprogrammed (for completeness, see Lemma 14). In the following theorem, we show security
of the (H,n)-routing protocol in the ROM.

▶ Theorem 13. If the (possibly entangled) attackers Alice and Bob perform at most q queries
to the (quantum) random oracle H, the (H,n)-routing QPV protocol is ϵ-sound, with

ϵ = 2q2− ℓ
2 +

(
1
2 + 1

2
√

2

)n

. (20)

In particular, ϵ is negligible if q and ℓ scale polynomially with n.

The starting idea of the proof follows [40], where we send Bell pairs instead of single qubits in
order to make the input state independent of x, the output of the oracle. Then we reprogram
this oracle after adversaries share their state to ensure x is truly random and independent of

1 This can be done by simply sampling a large table T of size 2ℓ, and outputting T [r] when queried
on input r. Note that this sampling procedure is not efficient: while having an efficient oracle [42] is
sometimes required, for instance when working with composable security and computationally bounded
distinguishers, or when reducing to problems that are hard only for bounded adversaries, in our case
we do not need this additional property since we do a reduction to a problem that is hard even for
unbounded adversaries.
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the state shared by malicious parties at time t = 1. Finally, we realize that we can rewrite
this into an instance of Theorem 8. In the proof of Theorem 13, we will rely on this lemma
by Unruh:

▶ Lemma 14 ([40, Lemma 3]). Let (A1,A2) be oracle algorithms sharing state between
invocations that perform at most q queries to H. Let C be an oracle algorithm that on input
(j, r) does the following: Run AH

1 (r) until the j-th query to H, then measure the argument
of that query in the computational basis, and output the measurement outcome (or ⊥ if no
j-th query occurs). Let:

P 1
A := Pr

H $←({0,1}ℓ→{0,1}n)
r $←{0,1}l,AH

1 (r)
b′→AH

2 (r,H(r))

[ b′ = Accept ], (21)

P 2
A := Pr

H $←({0,1}ℓ→{0,1}n)
r $←{0,1}l,x $←{0,1}n

H′:=H[r 7→x],AH
1 (r)

b′→AH′
2 (r,x)

[ b′ = Accept ], (22)

PC := Pr
H $←({0,1}ℓ→{0,1}n)
r $←{0,1}l,j $←{1,...,q}

x′→CH (j,x)

[ x = x′ ]. (23)

Then, |P 1
A − P 2

A| ≤ 2q
√
PC .

Proof (of Theorem 13). To prove this theorem, we must show that the probability that the
verifiers accept in a malicious run of the protocol is lower bounded by ϵ, i.e., if we denote
by V0↭A↭B↭V1 the output of the verifiers (Accept or Reject) at the end of a protocol
involving a malicious Alice A and a malicious Bob B, we want to show that

Pr[ V0↭A↭B↭V1 = Accept ] ≤ ϵ. (24)

We prove this by defining a series of games, where the probability of accepting each game
is close to the probability of accepting the next game. By ensuring that the first game
corresponds to the real protocol, and that the probability of the last game can easily be
computed, we can bound ϵ by transitivity.

Game1. This game is defined as the real protocol, i.e. Game1 := V0 ↭ A ↭ B ↭ V1.
Therefore, we trivially have:

Pr[ V0↭A↭B↭V1 = Accept ] = Pr[ Game1 = Accept ]. (25)

Game2. Is like Game1, except that each |ϕi⟩ is replaced with one half of a Bell pair. Similarly,
instead of projecting on |ϕi⟩, the verifier will do a Bell measurement between the state sent
by the prover and its corresponding half of Bell pair, accepting only if the outcome is (0, 0).
This trick is often used in literature, hence we skip the computations. Hence

Pr[ Game1 = Accept ] = Pr[ Game2 = Accept ]. (26)

Game3. Is like Game2, except that at time t = 1, one samples the random bit string
x $← {0, 1}n, and reprogram the oracle to implement H ′ := H[r0 ⊕ r1 7→ x] (i.e., A1 and B1
will have oracle access to H ′ instead of H). Note that the simulators will use this value of
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2:14 A Quantum Cloning Game with Applications to Quantum Position Verification

x = H ′(r0 ⊕ r1) instead of H(r0 ⊕ r1) to perform the verification at the end. Intuitively, the
only way to distinguish this game from the previous game is if the adversary managed to
query H(r0 ⊕ r1) before t = 0 and after, but this is highly unlikely since neither A0 nor B0
know both r0 and r1 (and remember that they cannot query the oracle more than q times,
so they cannot just evaluate the oracle on all inputs). This intuition is formalized thanks to
Lemma 14: if we define A1(r) as the execution of the protocol in Game2 until t = 1 (which is
the same as in Game3), except that r2 is chosen as r2 := r1⊕ r, and A2(r, x) as the execution
of the protocol after time t = 1, we can remark that (using notations from Lemma 14):

P 1
A = Pr[Game2 = Accept]. (27)

since sampling (r1, r2) uniformly at random is strictly equivalent to sampling (r1, r) randomly
and then defining r2 := r ⊕ r1. Similarly, we also have:

P 2
A = Pr[Game3 = Accept]. (28)

The remaining part is to bound PC . To compute PC , we need to bound the probability of
querying H(r) during the first part of the protocol on j-th query. But when A0 does this
query, we know that it must be independent of r since all inputs of A0 are independent of r
(if not, we could break non-signaling). Similarly, queries made by B0 are independent of r:
the exact same argument does not hold since r2 = r1⊕ r does depend on r. . . but this is only
a very superficial dependency, since we could have exactly the same probability distributions
of r1 and r2 by sampling instead r2 randomly and r1 = r2 ⊕ r, making r2 independent of r
now. Hence, the j-th query is independent of r, so the best probability of it being equal to r
is lower bounded by PC ≤ 1

2ℓ . Hence, using Lemma 14, we have:

|Pr[ Game2 = Accept ]− Pr[ Game3 = Accept ]| (29)
(28)= |P 1

A − P 2
A|

(14)
≤ 2q

√
PC ≤ 2q2−ℓ/2. (30)

Game4. Now, we can realize that all operations in Game3 until t = 1 is independent of x. So
let us call |ψ⟩RPAPB

the (purification) of the state owned by the verifier (consisting in a list
of qubits part of a shared Bell pair), Alice and Bob (we also include in PB the message sent
by A0 to B1, and similarly in PA the message sent by B0 to A1). Additionally, we also include
in |ψ⟩ the (exponentially large) definition of H, r0 and r1 in both registers PA and PB , one
copy for each party. Then, we define the referee operation R as the identity, PA as the map
that runs A1, simulating the query to H ′ using the table H, r0 and r1 that are part of |ψ⟩,
and x that is given as an input to PA, and we define similarly PB simulating B1. We define
then Game4 as the game QCG×n

2 , i.e. the parallel repetition of the 2-party quantum cloning
game (Definition 5), involving the shared state |ψ⟩, the referee R, and the two parties PA and
PB . This game is exactly like Game3 as we simulate exactly the same process, just grouping
differently the various circuits involved. Hence, Pr[ Game4 = Accept ] = Pr[ Game3 = Accept ].
But using Theorem 8, we have:

Pr[ Game4 ] = ω∗(QCG×n
2 )

(8)
≤
(

1
2 + 1

2
√

2

)n

. (31)

Hence, we can combine all the above equations to obtain:

Pr[ V0↭A↭B↭V1 = Accept ] = Pr[ Game1 = Accept ] ≤
(

1
2 + 1

2
√

2

)n

+ 2q2−ℓ/2,

(32)

concluding the proof. ◀
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7 Discussion

We have introduced the concept of the k-party quantum cloning game and provided the
optimal winning probability for any number of parties. The parallel repetition for the two-
party version was studied, showing an exponential decay of the optimal winning probability.
We applied the above results to show security of the routing QPV protocol in the No Pre-
shared Entanglement and Bounded-Entanglement models, as well as in the Random Oracle
Model. The tightness of Theorem 8 remains an open question, either by showing a strategy
attaining the value (11), or if strong parallel repetition holds and actually the optimal value
is
( 3

4
)n (or neither of them). Closing this gap would imply knowing what is the optimal

security for the routing protocol in the No-PE model, and would further tighten its security
in the BE(m) and random-oracle models.
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