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Abstract
Providing evidence that quantum computers can efficiently prepare low-energy or thermal states
of physically relevant interacting quantum systems is a major challenge in quantum information
science. A newly developed quantum Gibbs sampling algorithm [11] provides an efficient simulation
of the detailed-balanced dissipative dynamics of non-commutative quantum systems. The running
time of this algorithm depends on the mixing time of the corresponding quantum Markov chain,
which has not been rigorously bounded except in the high-temperature regime. In this work, we
establish a polylog(n) upper bound on its mixing time for various families of random n × n sparse
Hamiltonians at any constant temperature. We further analyze how the choice of the jump operators
for the algorithm and the spectral properties of these sparse Hamiltonians influence the mixing
time. Our result places this method for Gibbs sampling on par with other efficient algorithms for
preparing low-energy states of quantumly easy Hamiltonians.
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1 Introduction

One of the main anticipated applications of quantum computers is the simulation and
characterization of quantum systems in condensed matter physics [40], quantum chemistry [29],
and high-energy physics [30, 4]. The problem of simulating the dynamics (time evolution)
of an interacting quantum system under a local or sparse Hamiltonian H has largely been
addressed, with efficient algorithms [22, 27, 5, 28, 20] that scale well with the number of
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3:2 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

particles, simulation time, and required precision. However, the ability of quantum computers
to evaluate the static features of quantum systems, such as their ground state or thermal
properties, is less understood.

In this work, we focus on preparing the Gibbs (thermal) state ρβ = e−βH

Tr(e−βH ) of a quantum
system, which represents the equilibrium state when the system is in contact with a thermal
bath at a fixed temperature β−1. This computational problem, known as Gibbs sampling
or “cooling,” is valuable not only for simulating thermodynamic properties but also as a
subroutine in quantum algorithms for optimization and learning [7, 2, 6]. However, to prepare
the Gibbs state, quantum computers face challenges. In general, it is not believed that
estimating the low-temperature properties of quantum systems can be solved efficiently by a
quantum computer in the worst-case [24]. Fortunately, it has been hypothesized that this
worst-case hardness of finding low-temperature states implied by arguments from complexity
theory is due to pathological Hamiltonians, which are not apparent in many physical systems
that normally occur in nature. This hypothesis is substantiated by the empirical success of
natural cooling, such as using refrigerators, in reaching thermal equilibrium.

Quantum Gibbs sampling. Aiming to mimic nature’s cooling processes, a series of recent
works have introduced quantum Markov Chain Monte Carlo (MCMC) algorithms, or quantum
Gibbs samplers [11, 10, 36, 42, 31, 23, 43, 16, 19], as promising alternatives for tackling a
range of classically intractable low-temperature simulation tasks on quantum computers.
These algorithms are designed to replicate the success of classical Markov chains in preparing
Gibbs states for classical Hamiltonians. The analysis of classical MCMC algorithms relies on
the principle of detailed balance; however, achieving this in the quantum setting has been
challenging and was only recently addressed by an algorithm in [11]. Part of the difficulty
arises from a conflict between the finite energy resolution σE achievable by efficient quantum
algorithms and the seemingly strict requirement to precisely distinguish energy levels to
satisfy detailed balance. In this work, we focus primarily on this algorithm, referring to it
as the CKG algorithm or the quantum Gibbs sampler when the context is clear. We give a
detailed review of this algorithm in Section 4.1.3 and Appendix 4.2.1.

The Gibbs sampling algorithm provides a fully general method for preparing Gibbs states
by evolving an initial state ρ0 under a Lindbladian Lβ , which is efficiently implementable
on a quantum computer and produces the state ρt = eLβt[ρ0] after time t. The runtime of
the quantum Gibbs sampler is governed by the mixing time of the corresponding quantum
Markov chain, which is roughly the time required for ρt to approach the Gibbs state ρβ .
This in turn is bounded by the spectral gap λgap(Lβ) of the Lindbladian by

tmix(Lβ) ≤ O(β∥H∥ + log(n))
λgap(Lβ) .

The spectral gap is defined here to be λmin, the smallest eigenvalue of −Lβ for any eigenvector
other than the fixed point ρβ . Bounding the spectral gap, therefore, proves not only that Lβ

has a unique fixed point, but also quantifies the rate of convergence. The mixing time varies
based on the quantum system in question. Bounding this mixing time is challenging without
access to fault-tolerant quantum computers, as we cannot run and benchmark the algorithm
directly, making theoretical analysis essential. However, such analysis is hindered by a lack
of technical tools for two key reasons. Firstly, the theory of convergence of quantum Markov
chains is new, unlike the very mature twin field for classical Markov chains. Secondly, the
Markov chain described by the algorithm is considerably complex, and depends on several
parameters that we will discuss in more detail shortly: an energy resolution σE , a series of
jump operators Aa for a ∈ [M ], and the inverse temperature β. The space of possibilities
makes the algorithm’s performance more difficult to characterize.
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This motivates the identification of quantum systems whose mixing times are tractable for
analysis yet exhibit rich features that provide insights into the performance of the quantum
Gibbs sampler for more general non-commuting Hamiltonians. In line with this, the mixing
time of the CKG algorithm has recently been bounded for local Hamiltonians, showing a
polynomial scaling with system size at high enough temperatures [33].

Mixing time of sparse Hamiltonians. In this work, we consider an alternative approach by
characterizing the mixing time of a family of sparse Hamiltonians of the form

H =
∑

i,j∈[n]

Hij |ei⟩ ⟨ej | . (1)

Such an operator can be understood as the Hamiltonian on a graph G = (V, E) with n = |V |
vertices indexed by basis states |ei⟩, i ∈ [n] and a set of edges E connecting vertices with
Hij ̸= 0. When non-zero entries Hij are all equal to 1, the Hamiltonian H corresponds to
the n × n adjacency matrix of the n-vertex graph. We define the degree d of the graph G

as the sparsity of the underlying Hamiltonian and refer to Hamiltonians with constant or
slowly increasing degrees d = polylog(n) as sparse. Note that any log(n)-qubit Hamiltonian
that consists of m = polylog(n) terms each acting locally on κ = O(1) qubits is a sparse
Hamiltonian with degree d ≤ m2κ ≤ polylog(n). However, not all sparse Hamiltonians admit
local qubit encodings.

Having defined sparse Hamiltonians, we now consider the dissipative dynamics of the
system induced by a set of M jump operators Aa =

∑
i,j∈[n] Aa

ij |ei⟩ ⟨ej | , a ∈ [M ]. We
will soon explain how the jump operators Aa relate to the Lindbladian Lβ . Briefly, the
resulting dynamics can be understood as a combination of two processes: a continuous-time
quantum walk of a single particle on the graph of states due to the coherent evolution of the
Hamiltonian H, which is combined with stochastic jumps on the graph determined by the
jump operators Aa.

Our interest in bounding the mixing time of the sparse Hamiltonians is multifaceted:
(1) Single-particle dynamics. As stated earlier, bounding the mixing time of general

interacting multipartite Hamiltonians is a challenging task. However, for simple choices
of graphs G, the mixing time of the quantum Gibbs sampler may be easier to analyze,
potentially leading to relevant techniques for tackling the case of interacting particles. In
fact, we can think of the dynamics induced by the Hamiltonian H (1) as the dynamics
of a single-particle hopping on the graph G. This single-particle evolution on path
graphs or grids is commonly analyzed in the tight-binding model in condensed matter
physics. That being said, even in the simplified case of a single particle, the Hamiltonian
H is non-commuting, characterizing a continuous-time quantum walk that can yield
exponential quantum advantage for certain oracular problems on graphs such as the
glued trees [13].

(2) Chaotic Hamiltonians. Our additional motivation for studying random sparse Hamilto-
nians stems from the fact that their spectra exhibit many of the same characteristics
as chaotic Hamiltonians, such as the SYK model [34, 25, 26] and random p-spin mod-
els [37, 41]. Understanding whether chaotic Hamiltonians have a fast mixing time as they
approach their thermal and low-energy states is a fundamental question in the study of
quantum chaos [8, 1]. As a concrete step toward addressing this problem, we identify key
spectral properties of random sparse Hamiltonians that can ensure a fast mixing time.

(3) Algorithmic applications. Preparing quantum Gibbs states, and more broadly
computing the matrix exponential of sparse matrices such as the adjacency or Laplacian
of a graph, is a fundamental subroutine in solving various graph and optimization
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3:4 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

problems. For instance, the Estrada index – defined as the trace of the matrix exponential
of a graph’s adjacency matrix – measures subgraph centrality and provides structural
insights [18]. Computing the matrix exponential is also related to matrix inversion
and linear system solvers [35]. Moreover, quantum Gibbs sampling has been applied
to solving semidefinite programs (SDPs) in optimization problems [21, 7, 6, 3], offering
quantum speedups for these problems.

2 Our main results

Motivated by these considerations, we investigate the mixing time of quantum Gibbs samplers
for sparse Hamiltonians and different choices of jump operators. Our study addresses two key
questions regarding the performance of the quantum Gibbs sampler for sparse Hamiltonians.
First, we ask

What choices of jump operators lead to a fast mixing time?

After exploring the effects of different jump operators Aa, we then focus on the spectral
properties of sparse Hamiltonians to understand:

What spectral property of the Hamiltonian determines its mixing time?

Answering these questions allows us to provide broad and intuitive insights on how the
quantum Gibbs sampler operates for general families of sparse Hamiltonians.

2.1 Choice of jumps: graph-local vs unitary design
A natural set of jump operators for a given n × n Hamiltonian on a graph G are Aa =

1√
n

|ea⟩⟨ea| or similar operators supported on a few neighboring vertices of G. Importantly,
these are not “local” in the sense of multi-particle Hamiltonians, which refers to being
composed of terms that act on a small number of qubits – often also geometrically close to
one another. Utilizing graph-local jump operators also significantly simplifies the structure
of the Lindbladian and the analysis of mixing times for certain graph families.

Moving beyond graph-local jumps, the Lindbladian Lβ of the quantum Gibbs sampler
can still be efficiently implemented on a quantum computer with a much broader class of
jumps. This is possible as long as each jump Aa is efficiently implementable, the set of
jumps M includes both Aa and its adjoint Aa†, and

∑
a∈[M ] ∥Aa†Aa∥∞ = 1 (due to this

normalization condition, we will sometimes speak of the jumping distribution A, from which
the jump operators Aa are sampled with probability ∥Aa†Aa∥). This raises the question of
whether there is an advantage in using non-local jumps that have a bounded spectral norm,
or if more structured local jumps are sufficient to achieve a fast-mixing quantum MCMC.
After all, classical continuous-time random walks are typically considered with local jumps
on the graph vertices. However, in the context of graphs, we will see that the structured
nature of graph-local jumps offers no advantage, but rather seems to cause a slowdown of
the resulting algorithm.

Graph-local jumps. To this end, in the next theorem, we establish tight bounds on the
spectral gap of the Lindbladian for cyclic graphs for graph-local jumps Aa, with an approach
similar to the one used in [38] to bound the spectral gap of a Davies generator.

▶ Theorem 2.1 (Spectral gap of cyclic graphs with local jumps). Fix temperature β−1. There
exists some constant energy resolution σE for which the spectral gap of the CKG Lindbladian
Lβ for a cyclic graph with n vertices with jump operators Aa = 1√

n
|ea⟩⟨ea| is asymptotically

Θ(n−3).
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Figure 1 Linear (above) and log-log (below) graphs of spectral gap with respect to system size.
Gaps of ten random 4-regular graphs were averaged for each data point. For the cyclic graphs
(one-dimensional lattices), the proven asymptotic decay aligns closely with the data.

In addition to theoretical analysis, we also generated data for cyclic graphs, path graphs,
and random d-regular graphs with n vertices, as shown in Figure 1. These numerical results
suggest spectral gaps of o(n−1) for generic sparse graphs with graph-local jumps. We observed
that increasing the constant d does improve the spectral gap decay, though it never improved
past the asymptotic decay O(n−1).

These results are all suboptimal, since for an n × n Hamiltonian H , we expect an efficient
result would be polynomial in the number of qubits, i.e. polylog(n) rather than poly(n). The
poor performance can be attributed to two factors. (1) The operators Aa†Aa have L1 norm
1
n . (2) In the energy basis, many entries of Aa are highly correlated.

The first drawback effectively scales the Lindbladian down by 1
n , since the L1 norm of

A†A can be as high as 1 when the operator norm ∥A†A∥ = 1
n . However, the chosen jump

operators are projectors, so their L1 and operator norms are equal. In both Theorem 2.1
and in the data, a spectral gap even worse than 1

n is observed. This is due to the second
drawback. The aforementioned correlations lead to off-diagonal terms in the Lindbladian,
which in general have the potential to dampen the spectral gap, and in the case of the cyclic
graph provably do so. It appears that more generally, the biases of an ensemble of local
jumps can introduce off-diagonal terms to the Lindbladian that decrease the spectral gap.
The same harmful correlations appear to exist in higher degree graphs in addition to cyclic
ones, though to a lesser extent as evidenced by the improved spectral gap.

Unitary design jumps. To address some of these shortcomings, we next consider non-local
jump operators, each independently drawn (along with its adjoint pair) according to a unitary
1-design D(U(n)) on n vertices. More precisely, we define

▶ Definition 2.2. A set of jump operators {Aa : a ∈ [M ]} is drawn from a 1-design
jumping distribution if it is obtained by sampling M/2 jump operators i.i.d from a unitary
1-design D(U(n)), normalizing each by 1√

M
, and including these operators along with their

adjoint.

We include the adjoint of each randomly chosen jump since the CKG Lindbladian requires
the set of jump operators to be closed under adjoint, {Aa : a ∈ [M ]} = {Aa† : a ∈ [M ]}.
When n is a power of 2, the unitary 1-design can be constructed as a tensor product of

TQC 2025



3:6 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

random Pauli operators on log2(n) qubits, in which case the jumps are self-adjoint and can
be sampled and implemented efficiently. The efficiency of our results on a general system
relies on the ability to efficiently implement some unitary 1-design.

As we will see, in our application, this 1-design sampling is effectively equivalent to
sampling from a Haar-random distribution. This approach improves on the results given for
graph-local jumps, and is able to achieve an efficient algorithm in the number of qubits for a
graph (running time polylog(n)) for Gibbs sampling. This improved performance is in part
because all the eigenvalues of a Haar random unitary have magnitude 1. Hence, it avoids the
problem of A†A having a relatively small L1 norm given the constraint on its operator norm
∥A†A∥. These jumps also avoid the second problem encountered for the graph-local jumps:
Since the number of degrees of freedom of randomness is very large over the ensemble, any
form of bias is mitigated. Indeed, the resulting Lindbladian over the full ensemble has no
off-diagonal terms resulting from correlated elements of the jump operator.

Our results extend beyond cyclic graphs to any graph of bounded degree d = O(1) where
∥H∥ ≤ d at constant temperature, or more generally when β∥H∥ = O(1). We refer to these
sparse Hamiltonians as bounded degree and formally define them as:

▶ Definition 2.3. A bounded degree system is a sequence of temperatures β(n)−1 and
Hamiltonians H(n) for which β(n)∥H(n)∥ is bounded from above by a constant independent
of system size.

▶ Theorem 2.4 (Constant spectral gap of Lindbladian in bounded degree systems). Let
β(n)−1 be a sequence of temperatures and H(n) a sequence of n × n Hamiltonians such that
β(n)∥H(n)∥ = O(1).

With any constant probability 1 − ξ, the spectral gap of a Lindbladian Lβ with σE = β−1

and M jump operators sampled from a 1-design jumping distribution for some M = Θ(log(n)),
is bounded below by a constant, i.e. λgap = Ω(1).

Assume access to an efficient block-encoding of H(n). Then as a consequence and in
the same setup, the Gibbs state of H can be prepared with error ϵ in trace distance, in time
poly(log(n), log(ϵ−1)).

While the examples of bounded degree Hamiltonians we consider are mostly graphs, the
above theorem applies to preparing the Gibbs state for any Hamiltonian at a temperature
β−1 such that β−1 = O(∥H∥).

2.2 Mixing time from spectral profile
Theorem 2.4 demonstrates that bounded-degree Hamiltonians with non-local jumps exhibit
fast mixing times. However, it leaves open the case of Hamiltonians with unbounded degrees,
such as those with d ≤ polylog(n). More formally, we define

▶ Definition 2.5. An unbounded degree system is a sequence of temperatures β(n)−1 and
Hamiltonians H(n) for which limn→∞ β(n)∥H(n)∥ = ∞. However, we still assume that
β∥H∥ = polylog(n), polynomial in the number of qubits.

In our next result, we show that again selecting the jumping distribution (including
adjoints) to be M samples from a unitary 1-design for sufficiently large M and choosing
the energy resolution σE = β−1 yields an algorithm whose efficiency depends on its low-
energy spectrum. In particular, the runtime scales inverse polynomially with the fraction of
eigenvalues δ(n) of H that are within O(β−1) of the minimum eigenvalue.
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▶ Theorem 2.6 (Spectral gap of Lindbladian in unbounded degree systems). Let β(n)−1 be a
sequence of temperatures and H(n) a sequence of n × n Hamiltonians, and let δ(n) be the
fraction of eigenvalues of H(n) within O(β−1) of λmin.

With any constant probability 1 − ξ, the spectral gap of a Lindbladian Lβ with σE =
β−1 and M jump operators sampled from a 1-design jumping distribution for some M =
Θ(δ(n)−2 log(n) log(β∥H∥)), is lower bounded by Ω(δ(n)).

Assume access to an efficient block-encoding of H(n). As a consequence, and in the
same setup, the Gibbs state of H can be prepared with error ϵ in trace distance, in time
poly(δ(n)−1, log(n), log(ϵ−1)).

Note that if β∥H∥ is bounded, then δ(n) = 1. This result therefore generalizes Theorem 2.4.

2.3 Explicit examples of random sparse Hamiltonians
Having established a sufficient spectral condition for the fast mixing of random ensembles
of sparse Hamiltonians, we now give explicit examples that satisfy this criterion. We also
give one example, the hypercube, which does not, and for which local jumps in place of
unitary design jumps achieve an exponential speedup. This example elucidates the potential
of structured local jumps for speedups, in contrast to the case of the cyclic graph in which
structured graph-local jumps yielded a slowdown.

Random regular graphs. The first example is when H is the adjacency matrix of a randomly
selected log(n)-regular graph, with polylog(n) random 1-design jumps. In Section 4.4.1, we
prove using Theorem 2.6 that this ensemble has a Lindbladian spectral gap of Ω(log(n)−3/4)
at constant temperature. This yields a polynomial algorithm to prepare the Gibbs state,
given access to an efficient block-encoding of H.

Random signed Pauli ensemble. The second example is the family of sparse Hamiltonians
considered in [9], composed of random Pauli strings with random sign coefficients given by
HP S =

∑m
j=1

rj√
m

σj , where σ is a random Pauli string on n0 qubits (such that the size of

Hamiltonian is n×n for n = 2n0), each rj is sampled randomly from {−1, 1}, and m = O( n5
0

ϵ4 )
for a parameter 1 ≥ ϵ ≥ 2−o(n0). We show in Section 4.4.2 that the CKG Lindbladian has a
spectral gap of Ω(ϵ−3/2) when we choose M = Õ

(
n2

0ϵ−3) unitary 1-design jumps, inverse
temperature β = O(ϵ−1), and σE = β−1.

Hypercubes. The final example is the family of hypercubes. A hypercube with 2d vertices
and degree d can be interpreted as a Hamiltonian on d qubits

∑
i Xi. At constant temperature,

only an exponentially small fraction of eigenvalues lie near the minimum eigenvalue. As a
result, the spectral profile implies a poor mixing time with unitary design jumps.

However, we show in Theorem 4.5 that by choosing local jumps 1√
d
Zi, the spectral gap

is 1
d , yielding an efficient algorithm for Gibbs sampling. Hypercubes therefore provide an

example where not graph-local jumps, but rather local jumps on the qubits, ensure fast
mixing. The crucial feature of local jumps that improves mixing time is that a local jump
Aa on a local Hamiltonian H satisfies ∥[Aa, H]∥ = O(1) – i.e., the jump operator only
jumps between nearby eigenstates. This property is not held by graph-local jumps in general,
so they displayed no improvement in the studied cases. In general, local jumps are the
strongest candidates for fast-mixing on local Hamiltonians, though for which classes of local
Hamiltonians fast-mixing can be achieved is still largely open. For most interesting classes of
local Hamiltonians, the condition of Theorem 2.6 is unlikely to hold.
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3:8 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

3 Proof sketch

3.1 Graph-local jumps
The proof of the mixing time for graph-local jumps in the cyclic graph involves two steps:
First, in Appendix A, we derive a general expression for the CKG Lindbladian in the energy
basis given by equation (5).

We then utilize this expression along with the fully known spectrum of the cyclic graph to
show that the Lindbladian is block-diagonal in the energy basis of this graph, as demonstrated
in Appendix B. One of these blocks corresponds to a classical Markov chain on the diagonal
entries of the state in the energy basis, for which we establish a spectral gap lower bound
using the canonical path method. For the remaining n − 1 blocks, we apply the Gershgorin
circle theorem to bound their eigenvalues.

3.2 Unitary design jumps
Bounded-degree systems. To establish a lower bound on the spectral gap of the Lindbladian
Lβ with unitary 1-design jumps, we consider a decomposition of the form Lβ = Lµ+δL, where
Lµ = EA∼D(U(n))[Lβ ] is the expected Lindbladian with the expectation taken over a single
jump operator sampled from a unitary 1-design distribution D(U(n)), and δL represents the
remainder term. Due the quadratic form of the Lindbladian given in expression (3) we see
that EA∼H(U(n))[Lβ ] = EA∼D(U(n))[Lβ ]. Here, H(U(n)) is a Haar random distribution over
jump operators.

Note that a CKG Lindbladian must have jump operators in adjoint pairs, so a Lindbladian
with a single jump operator will not satisfy detailed balance. However, the expected
Lindbladian over one Haar random jump operator is equal to the expected Lindbladian over
the adjoint pair of a Haar random jump operator, by linearity of expectation.

The proof of Theorem 2.4 proceeds by first showing that this expected Lindbladian
EA∼H(U(n))[Lβ ] has a constant spectral gap, as long as β(n)∥H(n)∥ is bounded by a constant
as a function of system size. As before, we call such systems bounded degree, since for constant
β bounded degree graphs satisfy the required property. Indeed, if such a system has degree
bounded by d, it must have spectrum in [−d, d] by Gershgorin’s circle theorem, since every
row consists of zeros and at most d ones. Adding phases to the edges of these bounded degree
graphs remains feasible by a similar argument, so there is no constraint of stoquasticity.

The result is stated formally as follows:

▶ Lemma 3.1 (Constant spectral gap of average Lindbladian for bounded degree systems). Let
β(n)−1 be a sequence of temperatures and H(n) be a sequence of n × n Hamiltonians such
that β∥H∥ = O(1). The spectral gap of Lµ = EA∼D(U(n)) [Lβ ], the expected CKG Lindbladian
with energy resolution σE = β−1 over the ensemble of one jump operator sampled from a
unitary 1-design, is asymptotically Ω(1).

To establish Lemma 3.1, we show that for any system, the average Lindbladian over a
Haar random ensemble of jump operators decomposes as Lµ = Lclassical + Ldephasing. For a
density matrix in the energy basis, the evolution of Lclassical is a classical continuous Markov
chain of the diagonal. The evolution of this classical Lindbladian maps the diagonal, in the
limit, to the Gibbs distribution. The spectral gap of Lclassical can be analyzed with the large
suite of techniques for classical Markov chains.

Meanwhile, Ldephasing damps the off-diagonal terms of the density matrix. In the limit as
t → ∞, the state therefore converges to a classical distribution on the diagonal in the energy
basis, with no off-diagonal terms, as desired. The operator Ldephasing diagonalizes in the
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energy basis of density matrices, with each off-diagonal element decaying at an independent
rate. It is therefore simple to analyze as well. In summary, Lemma 3.1 establishes that the
λgap(Lµ) = min(λgap(Lclassical), λmin(Ldephasing)) = Ω(1).

However, this result does not imply that any given jump sampled from the unitary
1-design (with its adjoint pair) would yield a gapped Lindbladian. As a result, it does not
yet yield an efficient Gibbs sampling algorithm. To obtain such a result in Theorem 2.4,
we demonstrate that the remainder term δL = Lβ − Lµ has a small spectral norm when a
Lindbladian is constructed from a sufficiently large number of jumps M , rather than just one.
In particular, a Lindbladian sampled with Θ(log(n)) normalized jumps from any 1-design
concentrates closely to its expectation, thereby establishing a spectral gap lower bound. Since
this lower bound applies to any graph at constant temperature β−1 with bounded degree, it
applies to the periodic lattices, path graphs, and k-regular graphs discussed in the previous
section.

Unbounded degree systems. In the context of unbounded degree systems, 1-design unit-
aries can no longer, in general, achieve an algorithm that is efficient in log(n) at constant
temperature. Indeed, Lµ = EA∼D(U(n)) [Lβ ] = Lclassical + Ldephasing does not necessarily
have a constant spectral gap in general, as it did in the case of bounded degree systems.
However, we may establish a condition on the spectrum of H, with which we can recover a
lower bound for the spectral gap:

▶ Lemma 3.2 (Spectral gap of average Lindbladian for unbounded systems). Let H(n) be a
sequence of n × n Hamiltonians. For some C, let δ(n) be the proportion of eigenvalues λj of
H such that β−1(λj − λmin) ≤ C. The spectral gap of Lµ = EA∼D(U(n)) [Lβ ], the expected
CKG Lindbladian over the Haar random unitary ensemble of its jump operator at temperature
β−1 with σE = Θ(β−1), is asymptotically Ω (δ(n)).

The lemma expresses that if λmin is within O(β−1) of δ(n) of the eigenvalues, the spectral
gap is at least δ(n). Similarly to Theorem 2.4, using this result to obtain an efficient Gibbs
sampling algorithm amounts to showing that a Lindbladian with enough independently
sampled jump operators shares a similar asymptotic spectral gap to the average Lindbladian,
using a concentration bound. When the average spectral gap from the above lemma is δ(n),
the number of jump operators to concentrate around the expectation increases to δ(n)−2,
along with an overhead of log(n) log(β∥H∥)2. This result is captured in Theorem 2.6, and
results in an algorithm with runtime poly(δ(n)−1, log(n), log(ϵ−1)) for Gibbs sampling, where
ϵ is the error in trace distance. This runtime bound relies on the standing assumption in this
paper that log(β∥H∥) = poly(log(n)).

4 Technical details

4.1 The quantum Gibbs sampler

4.1.1 Lindbladian evolution
The recently proposed CKG quantum MCMC algorithm addresses the problem of finding
thermal states by imitating thermodynamic processes [11, 10]. In this process, a system of
particles evolves in contact with a thermal bath at some fixed temperature β−1. Due to
interactions with the bath, the system is described by a probabilistic mixture of quantum
states ρ. This state evolves in time, by approximation, with Markovian dissipative dynamics,
dρ
dt = Lβ [ρ], given in terms of an operator Lβ known as the Lindbladian. This operator
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3:10 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

involves a coherent term B that describes the interaction among the particles in the system.
There is also a term in Lβ that is specified by a series of Lindblad operators Lj that drive
the dissipative transitions. The dynamics of the coherent term B are reversible, while the
dissipative transitions drive all states toward some “stationary state”. These transitions can
be understood as perturbations from the bath, and as all states converge to the Gibbs state,
the information of the system is leaking via these perturbations to the bath. The expression,
in terms of B and Lj , is:

Lβ [·] = −i[B, ·] +
∑

j

(
Lj(·)Lj† − 1

2{Lj†Lj , ·}
)

.

The summands Lj(·)Lj† are termed the transition part of the Lindbladian, and − 1
2 {Lj†Lj , ·}

are the decay part of the Lindbladian. The choice of the Lindbladian operator Lβ can vary
depending on the precise nature of interactions between the system and the bath. However,
to prepare the Gibbs (thermal) state at temperature β−1, the Lindbladian should satisfy

dρβ

dt
= Lβ [ρβ ] = 0 where ρβ := e−βH/Tr(e−βH), (2)

and moreover ρβ should be the unique stationary state of the Lindbladian. The long-term
evolution of the system under this Lindbladian, as a result, would converge to the Gibbs
state of the Hamiltonian H at temperature 1/β.

4.1.2 Detailed balance
To ensure that the Lindbladian Lβ converges to a state ρβ , [11] designs a Lindbladian that
satisfies Kubo-Martin-Schwinger (KMS) detailed balance with respect to ρβ . KMS detailed
balance is one of several ways of quantizing the notion of classical detailed balance for Markov
chains. KMS detailed balance of Lβ is self-adjointness with respect to the inner product

⟨σ1, σ2⟩ρ−1
β

= Tr(σ†
1ρ

−1/2
β σ2ρ

−1/2
β ). (KMS Inner Product)

In particular, it is equivalent to the relation that

Lβ [·] = ρ
1/2
β L†

β

[
ρ

−1/2
β (·)ρ−1/2

β

]
ρ

1/2
β (Detailed Balance)

where L†
β is the adjoint Lindbladian with respect to the Hilbert-Schmidt inner product

⟨σ1, σ2⟩ = Tr(σ†
1σ2). The adjoint operator L†

β , in the Heisenberg picture, describes the
dynamics of observables under evolution by Lβ . The Lindbladian evolution is described by
some quantum channel and therefore the observable I must always be fixed by exp(L†

β). This
implies that L†

β [I] = 0. The detailed balance formula thereby implies that Lβ [ρβ ] = 0, as
desired. Note that KMS detailed balance can be dually described as the self-adjointness of
L†

β with respect to the inner product ⟨σ1, σ2⟩ρβ
= Tr(σ†

1ρ
1/2
β σ2ρ

1/2
β ).

4.1.3 Construction and parameters
The quantum Gibbs sampler in [11] constructs a Lindbladian that satisfies two properties:
1. Lβ satisfies detailed balance with respect to ρβ , and therefore Lβ [ρβ ] = 0.
2. The dynamics of Lβ can be efficiently implemented.
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Their Lindbladian, which we term the CKG Lindbladian, can be simulated on a quantum
computer with a cost per unit time t = 1 roughly equal to that of simulating the Hamiltonian
dynamics of H . The CKG Lindbladian is closely related to the Davies generator, which is a
physically motivated Lindbladian that satisfies detailed balance, but that is not efficiently
implementable in general. A full description of both Lindbladians are given in the Appendix.

The Gibbs sampling algorithm evolves an initial state ρ0 according to the efficiently
implemented Lindbladian Lβ , and produces the state ρt = eLβt[ρ0] after time period t. The
mixing time is roughly the time that it takes for the state ρt to approach the Gibbs state ρβ .
That is, eLβtmix [ρ0] ≈ ρβ . The efficiency of the algorithm therefore scales linearly with the
unit time simulation cost and the mixing time. The algorithm has several parameters in the
Lindbladian’s construction. In addition to the inverse temperature β, the algorithm specifies
an energy resolution σE . A salient feature of [11]’s construction is that it can achieve detailed
balance even though the algorithm only probes the energies of the Hamiltonian H with
approximate precision. σE quantifies this level of precision. The cost of the Lindbladian
simulation depends linearly on σ−1

E , but increasing the precision may also improve the
mixing time. Taking σE → 0 for absolute precision recovers the Davies generator – when
distinguishing the energies of the system exactly is infeasible, this Lindbladian cannot be
simulated efficiently.

A set of jump operators Aa must also be specified for the Lindbladian. These operators
are decomposed by frequency and reassembled in a particular way to construct the Lindblad
operators that help Lβ satisfy detailed balance. They must appear in adjoint pairs: i.e., if
A ∈ {Aa}, then A† ∈ {Aa}. The cost of simulation scales with the cost of implementing
the oracle |a⟩ → |a⟩ ⊗ Aa. In particular, the jump operators must be normalized when
implemented for the algorithm, satisfying

∑
a ∥Aa†Aa∥ ≤ 1. CKG Lindbladians are linear

in their jump operators – if L1 has one jump operator A1 and L2 has one jump operator
A2, then a Lindbladian L with jump operators A1 and A2 satisfies L = L1 + L2. If Lβ

was constructed from jumps Aa, then jump operators
√

sAa produce the Lindbladian sLβ ,
scaling the mixing time by s. So we may therefore assume that

∑
a ∥Aa†Aa∥ = 1 exactly,

since renormalizing can only improve the spectral gap. In its normalized form, the set of
jump operators can be understood as a jumping distribution over Aa which we will notate
a ∼ A, where each is sampled with probability ∥Aa†Aa∥.

4.2 Mathematical description
We begin with a description of the Davies generator, which is the limit of the CKG Lindbladian
as σE → 0. This generator was developed from a physical approximation of an open
thermalizing quantum system, but at low temperatures it is unphysical and can be hard to
implement. We then generalize the notions to the implementable CKG Lindbladian.

4.2.1 Davies generator
In the description of the Davies generator for a given system H, there is a coherent term
and there are jump operators Aa. The Aa terms must appear in adjoint pairs in the Davies
generator. The dissipative part of the Lindbladian is expressed as follows:

Lβ [·] =
∑

a∈[M ]

∫ ∞

−∞
γ(ω)

(
Aa

ω(·)A†
ω − 1

2{A†
ωAω, ·}

)
dω, (3)

where Aa
ω is the Operator Fourier Transform (OFT) of jump operator Aa:

Aa
ω = 1√

2π

∫ ∞

−∞
eiHtAae−iHte−iωtdt.
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The Davies’ generator chooses Lindblad operators
√

γ(ω)Aa
ω, each of which selects the energy

transitions, or Bohr frequencies, in Aa that are precisely ω. Because it requires certainty
in energy, by Heisenberg’s uncertainty principle of energy and time, in the general case
simulating the evolution of the Davies generator efficiently is infeasible. In the above, γ

is some function satisfying γ(ω) = γ(ω) = e−βωγ(−ω). The Lindblad operators are scaled
by γ(ω) precisely to satisfy KMS detailed balance. Since Aa

ω represents jumps with Bohr
frequency ω, the functional equation of γ ensures a desired ratio of jumps with Bohr frequency
ω and −ω. We choose the Metropolis filter, γ(ω) = min(1, e−βω), though another common
filter γ(ω) = 1

1+e−βω for “Glauber dynamics” could also be used for the same results.
The Davies generator satisfies detailed balance with respect to ρβ , the thermal state.

In some presentations of the Davies generator, it contains a coherent term −i[H, ·]. If this
term is included, the generator does not satisfy detailed balance, so we do not follow this
convention. However, the term does not affect the fixed point of the generator, since ρβ

commutes with H and therefore −i[H, ρβ ] = 0.

4.2.2 CKG Lindbladian
The CKG Lindbladian is defined almost identically to the Davies generator, but is altered
slightly so that it still obeys detailed balance, but is efficiently implementable.

Lβ [·] = −i[B, ·]︸ ︷︷ ︸
coherent term

+
∑

a∈[M ]

∫ ∞

−∞
γ(ω)

Âa(ω)(·)Âa(ω)†︸ ︷︷ ︸
transition term

− 1
2{Âa(ω)†Âa(ω), ·}︸ ︷︷ ︸

decay term

 dω,

where Âa(ω) is now the Gaussian-supported OFT of jump operator Aa:

Âa(ω) = 1√
2π

∫ ∞

−∞
eiHtAae−iHte−iωtf(t)dt.

To ensure that the jump operators do not have infinite precision in energy, a Gaussian
supported OFT is performed instead to obtain Âa(ω), which selects a Gaussian band energies
of around ω.

Here, f(t) = e−σ2
Et2
√

σE

√
2/π, with Fourier transform f̂(ω) = 1√

σE

√
2π

exp(− ω2

4σ2
E

). As

a result, the operator Âa(ω) can be shown to be equal to
∑

ν f̂(ω − ν)Aa
ν . The function f(t)

was chosen so that its squared Fourier transform f̂2(ω) is a Gaussian with standard deviation
σE , which features prominently in the Lindbladian (since it consists of quadratic terms in
Âa(ω)). Taking σE = Θ(β−1) yields an efficient simulation algorithm with the assumption
of a block-encoding of H and a block-encoding for the jump operators

∑
a∈[M ] |a⟩ ⊗ Aa, so

σE is taken to be on the order of β−1 in this paper.
Since Aa(ω) is a noisy decomposition of Aa into frequencies, it is not immediately clear

whether there is a choice of function γ(ω) for which they can be recombined to achieve
detailed balance. Indeed, as shown in [11], there is! The choice of γ(ω) is such that the
transition part of Lβ , the summand

∑
a∈[M ]

∫∞
−∞ γ(ω)Âa(ω)(·)Âa(ω)†dω, still satisfies KMS

detailed balance. [11] proved that there is a unique choice of B, up to translation by a scalar,
such that −i[B, ·] − 1

2
∑

a∈[M ]
∫∞

−∞ γ(ω){Âa(ω)†Âa(ω), ·}dω also satisfies detailed balance.
For the Davies generator, this coherent term B is simply 0 (or corresponds to a Lamb shift
that commutes with the Hamiltonian), and the decay term by itself already satisfies detailed
balance. B can be expressed in general as:

B =
∑

a∈[M ]

∑
ν1,ν2

tanh(−β(ν1 − ν2)/4)
2i

(Aa
ν2

)†Aa
ν1

.



A. Ramkumar and M. Soleimanifar 3:13

The choice of γ for this algorithm, for which the filter is efficiently implementable, is
γ(ω) = exp

(
−β max

(
ω + βσ2

E

2 , 0
))

. As σE → 0 it converges to the Metropolis filter of the
Davies generator. In particular, this γ is precisely Metropolis filter for the Davies generator
shifted by βσ2

E . The CKG Lindbladian requires a choice of γ for which α = γ ∗ g satisfies
the functional equation that was originally satisfied by γ in the Davies generator.

We also note that Lβ is bounded in operator norm.

▶ Lemma 4.1. Consider the CKG Lindbladian Lβ with temperature β−1, using the Metropolis
filter, and with jump operators Aa for which

∑
a ∥Aa†Aa∥ ≤ 1. This Lindbladian satisfies

∥Lβ∥∞→∞ = O(log(β∥H∥)), where ∥·∥∞→∞ is the operator norm of Lβ, with respect to the
operator norm on the input and output vector spaces.

Proof. The result follows from citing Proposition B.2 in [11] to bound the operator norm of
the coherent term, and bounding the transition and decay terms manually. This proof is
described in the arXiv version [32]. ◀

4.3 Spectral gap
Since the quantum MCMC algorithm was proposed recently, numerical and analytic charac-
terizations of algorithm are limited. As for classical Markov chains, it has been shown that
the mixing time of the algorithm can be characterized by the spectral gap λgap(Lβ) of the
Lindbladian. If the first eigenvalue λ1 = 0 corresponds to eigenvector ρβ , then the spectral
gap is λgap(Lβ) = minj>1 |λj | [11]. Lindbladians are in general negative semidefinite like
classical Markov chain generators, so λgap(Lβ) = minj(−λj). More precisely, it holds that

Ω(1)
λgap(Lβ) ≤ tmix(L) ≤

log
(∥∥∥ρ

−1/2
β

∥∥∥)
λgap(Lβ) ≤ O(β∥H∥ + log(dim(H)))

λgap(Lβ) . (4)

In particular, analytically bounding this spectral gap from below is sufficient to prove
that ρβ is the unique fixed point, and for obtaining an upper bound on the mixing time.
For so-called rapid mixing, in which the mixing time is logarithmic in the number of qubits,
the spectral gap bound often does not suffice. For our purposes of proving efficiency in the
number of qubits, however, this issue is moot.

4.4 Unbounded degree systems
We now prove efficient Gibbs sampling results for certain unbounded sparse Hamiltonians.

4.4.1 Random log(n)-regular graphs
With high probability at constant temperature, a randomly selected d = log(n)-regular graph,
with poly(d) random 1-design jumps, has a Lindbladian spectral gap of Ω(d−3/4). This
gives a polynomial algorithm to prepare the Gibbs state for most such graphs at constant
temperature.

The gap of Ω(d−3/4) arises because a random d-regular graph, for d → ∞, has one
eigenvalue at d and the rest distributed from −2

√
d − 1 to 2

√
d − 1 in a distribution that

converges to a (normalized) semicircle. This semicircular distribution frequently appears in
random matrix theory, for instance in the Gaussian unitary ensemble (GUE), which models
the spectrum of many chaotic quantum systems. When the spectrum of a quantum system
indeed follows this distribution, it implies that δ(n) = Ω(d−3/4) of the eigenvalues lie within
a constant of the minimum eigenvalue.
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▶ Theorem 4.2. With any constant probability 1 − ξ, for a randomly selected d = log(n)-
regular graph, there are δ = Ω(d−3/4) eigenvalues within O(1) of the minimum eigenvalue.

As an immediate result of Theorem 4.2 and Theorem 2.6, we obtain an algorithm polynomial
in d to prepare the Gibbs state of a d-regular graph. To prove the corollary, we use Theorem 2
in [17]. For this context, the following statement suffices.

▶ Theorem 4.3. Let degree d = log(n). For sufficiently large n, there exists some D > 0
such that for any interval I ⊂ R, 0 < α < 1, and 0 < ϵ < α such that |I| > Dd−α+ϵ,
with probability 1 − o(n−1) over all random d-regular graphs, |δ(n) − µ| < d−ϵ|I|, where
µ =

∫
I

ρsc(x)dx and δ(n) is the fraction of eigenvalues of the d-regular graph in I
√

d − 1.

In the above, ρsc is the asymptotic distribution as d → ∞ of a random d-regular graph is the
semicircular distribution with radius 2

√
d − 1, ρsc(x) = 1

2π(d−1)
√

4(d − 1) − x2. From this
result, Theorem 4.2 follows. As described more explicitly in [32], the estimated density ρsc

near the bottom of the semicircle can be estimated. Then, using the theorem, this can be
related to the fraction of eigenvalues near the minimum eigenvalue as well, proving the result.

4.4.2 Pauli String Ensemble
We now mention another ensemble of Hamiltonians studied by [9] in the context of low-energy
state preparation. In [9], efficient low energy state preparation with phase estimation is
demonstrated under the same conditions as our efficient Gibbs sampling in Theorem 2.6.
Indeed, if many eigenvectors are close to the ground-state energy, as we require, then
performing phase estimation on the maximally mixed state has a high probability of measuring
a low-energy state, so low-energy state preparation is possible as well. They study the
following ensemble of Hamiltonians on n0 qubits, HP S =

∑m
j=1

rj√
m

σj , where σ is a random

Pauli string on n0 qubits, each rj is sampled randomly from {−1, 1}, and m =
⌊
c2

n5
0

ϵ4

⌋
. The

parameter ϵ satisfies ϵ ≥ 2−n0/c1 , and c1, c2 are absolute constants. The resulting spectrum
is again close enough to a semicircular distribution to obtain an efficient Gibbs sampler for
certain temperatures that depend on ϵ. As ϵ decreases, Gibbs sampling becomes efficient for
even larger values of β (lower temperatures), since the ensemble’s spectrum converges closer
to a perfect semicircular distribution at the edge of the spectrum.

Using the results in their paper, we establish that Gibbs sampling is efficient in n0 for
certain values of ϵ and corresponding temperatures β−1.

▶ Theorem 4.4. Say that H(n0) is sampled from the ensemble HP S on n0 qubits, with
ϵ = 2−o(n0) and ϵ ≤ 1. With any constant probability 1 − ξ, for sufficiently large n0,
δ = Ω(ϵ3/2) fraction of the eigenvalues lie within O(ϵ) of the minimum eigenvalue.

Proof. We utilize two results from [9]. Firstly, they argue that Pr[∥H(n0)∥ ≥ 2(1 + ϵ)] ≤
exp(−c2n0) when m ≥ n3

0
ϵ4 , which is satisfied in this case. With an arbitrary constant

probability for sufficiently large n0, therefore, ∥H(n0)∥ ≤ 4, since ϵ ≤ 1. The second
result is that with probability 1 − exp(−c3n

1/3
0 ), at least Ω(ϵ3/2) of the eigenvalues satisfy

λi ≤ (1 − ϵ)λmin where c3 is an absolute constant. With any large constant probability, we
therefore have that |λi − λmin| ≤ ϵλmin ≤ 4ϵ = O(ϵ) for Ω(ϵ−3/2) of the eigenvalues. ◀

By Theorem 2.6, we obtain a Gibbs sampling algorithm that is poly(ϵ−1, n0) to prepare
the Gibbs state at inverse temperature ϵ−1. We may rephrase this result in terms of β. For
any polynomially large β, it provides a Pauli string ensemble of Hamiltonians, HP S with
ϵ = β−1, for which with high likelihood preparing the Gibbs state is efficient in n0, assuming
access to a block-encoding of the Hamiltonian of interest.



A. Ramkumar and M. Soleimanifar 3:15

4.4.3 Hypercube graphs
For hypercube with varying dimension at a constant temperature, using unitary 1-design
jumps would yield an exponentially large runtime. The spectrum of a hypercube with
dimension d and 2d vertices consists of the integers −d, −d + 2 . . . , d − 2, d. The eigenvalue j

has multiplicity
(

d
d+j

2

)
. In particular, for any constant C, only an exponentially small fraction

of the eigenvalues δ(d) lie below −d + C. This leads to a naive algorithm with at worst
exponential complexity in d.

However, a better result can be obtained considering the hypercube as a system of d

qubits. The graph with dimension d has 2d vertices, which can be considered length d

bitstrings. Then, the adjacency matrix is the sum of Pauli X operators on each qubit,∑d
i=1 Xi, since the hypercube has an edge between any two bitstrings of Hamming distance 1.

Choosing d jump operators as 1√
d
Za, the mixing time can be improved to poly(d, log(ϵ−1)):

▶ Theorem 4.5 (Spectral Gap for Hypercube with Local Jumps). For fixed β−1, there exists
some energy resolution σE such that the spectral gap of the CKG Lindbladian Lβ for a
d-dimensional hypercube with jump operators Aa = 1√

d
Za, is asymptotically Ω(d−1).

Proof. The proof of this statement is given in the arXiv version [32] by showing that the
Lindbladian, with this choice of jump operators, is the product of independent Lindbladians
on each qubit. Each of their spectral gaps can then be calculated explicitly. ◀

In the case of the hypercube, the local jump operators 1√
d
Zi only jump between eigenstates

whose eigenvalues differ by 1. This vastly improves the performance of the classical Markov
chain and dephasing Markov chain within the Lindbladian. However, the Lindbladian does
not consist only of these two terms, as it did in the limit of independently sampled 1-design
jumps. Off-diagonal terms do exist, and the presence of Za for every index is necessary to
ensure that these off-diagonal terms do not completely eliminate the spectral gap. In some
way, there must be “enough uncorrelated” local energy jumps to dampen these off-diagonal
terms. For more complicated local Hamiltonians, it is not clear how correlations may be
suppressed while still maintaining locality.

5 Connection to previous work

Our results show that for a Hamiltonian H with temperature β−1 such that some δ(n)
fraction of the eigenstates are within O(β−1) of the ground-state energy, the CKG quantum
Gibbs sampler with 1-design jumps efficiently prepares the Gibbs state with trace distance
at most ϵ. The running time scales polynomially with δ(n)−1, β∥H∥, log(ϵ−1), and the
complexity of the block encoding of H. This result is a baseline test that shows the CKG
algorithm performs as well as other methods for preparing low-energy states of Hamiltonians.
Indeed, our spectral condition is precisely the same as a condition that ensures easy quantum
phase estimation of a near-ground state. Namely, performing quantum phase estimation on
the maximally mixed state can prepare a random eigenstate, and with probability δ(n) it is
within O(β−1) of the minimum eigenvalue. Obtaining O(δ(n)−1) samples and taking the
minimum energy can therefore prepare a near ground-state eigenvector. This approach is
the basis of the previous analysis of random sparse Hamiltonians in [9].

Moreover, in [14], a quantum algorithm is presented that prepares the Gibbs state with a
complexity that scales as poly( n

Z(β) , log(ϵ−1)). If δ(n) of the eigenstates are within O(β−1)
of the ground-state energy, then n

Z(β) = Ω(δ(n)−1), and therefore under such conditions, this
algorithm efficiently prepares the Gibbs states as well. Effectively, the CKG Gibbs sampler
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with “generic” 1-design jumps performs the same as previously developed algorithms – the
algorithm is at least as powerful, but a potential advantage in cooling must arise from a
smart (i.e., local and unbiased) choice of jump operators.

After completing our work, we also became aware of [12], where, among other contributions,
the authors derive a new, efficient quantum Gibbs sampler algorithm that utilizes jump
operators sampled from a Clifford-random circuit. This Gibbs sampler is shown to exhibit
a spectral gap bound under the same condition on the spectral density considered in
Theorem 2.6. In comparison, we show that under the conditions of Theorem 2.6, the spectral
gap of the CKG Lindbladian with an ensemble of 1-design jumps is bounded with high
probability.

Finally, our conditions on the spectrum and the structure of random unitary design jumps
resemble previous works on chaotic Hamiltonians that apply the Eigenstate Thermalization
Hypothesis (ETH) to prove the fast mixing of dissipative dynamics [8, 15]. In particular,
in [8], the proposed algorithm implements a “rounded” Davies generator, yielding a physical
Lindbladian that block-diagonalizes into components consisting of small-energy transitions.
They propose their own version of ETH that relies on jump operators, for small Bohr
frequencies ω, having independent Gaussian-distributed entries. The assumption that these
entries are independent for the result is very strong, allowing them to conclude that their jump
operators are both local and that distinct energy transitions are completely uncorrelated.

Our work shows fast mixing unconditionally for quantumly easy Hamiltonians, replacing
the local jumps and ETH assumption for the rounded Davies generator with 1-design jump
operators for the CKG Lindbladian. A similar ETH assumption to [8] would also yield
fast-mixing for the CKG Lindbladian with local jumps, but more generally some approach
must be taken to provably mitigate the correlations induced by implementing local jumps, in
contrast with 1-design jump operators.
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A CKG Lindbladian in the energy basis

We consider a quantum system consisting of basis states |ei⟩ and a Hamiltonian H. We
choose some jump operators Aa and denote Aa

lm = ⟨l| Aa |m⟩. Notate the energy eigenstates
as |j⟩ with energy Ej . We independently calculate the three parts of the Lindbladian: the
transition term Lt, the decay term Ld, and coherent term Lc so that Lβ = Lc +Lt +Ld. First,
as mentioned above, the OFT of the jump operator Aa is Âa(ω) =

∑
lm Aa

lmf̂(ω −νlm)|l⟩⟨m|,
where νlm = El − Em. To represent superoperators as linear maps, we vectorize operators
with respect to the basis of operators |m1⟩⟨m2|. In particular, |m⟩ with m = (m1, m2) will
notate the basis operator |m1⟩⟨m2|. Now, we may expand Lt, Ld, Lc. The full calculations
are performed in the arXiv version of this paper [32], yielding the following expressions:

⟨l| Lt |m⟩ =
∑

a

Aa
l1m1

Aa
l2m2

θ(νl1m1 , νl2m2),

⟨l| Ld |m⟩ = −1
2

δl1m1

∑
a,j

Aa
jm2

Aa
jl2

θ(νjm2 , νjl2) + δl2m2

∑
a,j

Aa
jl1

Aa
jm1

θ(νjl1 , νjm1)

 ,

⟨l| Lc |m⟩ = 1
2

(
δl1m1 tanh(βνm2l2/4)

∑
a,j

Aa
jm2

Aa
jl2

θ(νjm2 , νjl2)−

δl2m2 tanh(βνl1m1/4)
∑
a,j

Aa
jl1

Aa
jm1

θ(νjl1 , νjm1)
)

. (5)

Note that they can all be taken in terms of α(ν) = θ(ν, ν) using the identity θ(ν1, ν2) =
α( ν1+ν2

2 ) exp
(

− (ν1−ν2)2

8σ2
E

)
.

B Graph-Local Jumps for Cyclic Graphs

In this section we prove Theorem 2.1. Consider a cyclic graph with n vertices with adjacency
matrix H, and eigenvectors |j⟩.

The eigenbasis of a cyclic graph consists of vectors |j⟩ = n−1/2∑
a ζ−aj

n |ea⟩ with ei-
genvalues 2 cos

( 2πj
n

)
. The jump operators on the graph are chosen to be graph-local

Aa = n−1/2|ea⟩⟨ea|, and therefore have coefficients Aa
lm = n−3/2ζ

a(l−m)
n . Now we observe

that
∑

a ζ
a(i−j)
n = nδij . We therefore have the relation that∑

a

Aa
l1m1

Aa
l2m2

= n−3
∑

a

ζa((l1−m1)−(l2−m2))
n = n−2δ(l1−m1)(l2−m2).

As computed more explicitly in the arXiv version [32], we compute the components of the
Lindbladian with these jump operators:

⟨l| Lt |m⟩ = n−2θ(νl1m1 , νl2m2)δ(l1−m1)(l2−m2).

⟨l| Ld |m⟩ = −n−2

2 δl1m1δl2m2(α(νjm2) + α(νjm1))

⟨l| Lc |m⟩ = 0.

The above formulae imply that the Lindbladian is block diagonal in the eigenbasis. The
coherent term vanishes and the decay term is fully diagonal. Setting k = m1 − m2 and
k′ = l1 − l2, the transition term ⟨l| Lt |m⟩ is nonzero only if k = k′, due to the factor
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δ(l1−m1)(l2−m2) = δ(l1−l2)(m1−m2). There is therefore one block corresponding to each k,
which we will denote Lk. The block for k = 0 is the classical block of the Markov chain
on the diagonal entries of the state. Finding its spectral gap, and then lower bounding
the eigenvalues of the remaining n − 1 blocks, yields a bound for the spectral gap of the
Lindbladian.

B.1 Spectral Gap Lower Bound
We will first show that the spectral gap of the classical block is asymptotically Ω(n−1). We
have by explicit calculation that

⟨l| L0
t |m⟩ = 1

n2 α(νlm)

⟨l| L0
d |m⟩ = − 1

n2 δlm

∑
j

α(νjm).

We will use the canonical path bound, a standard technique in the theory of classical Markov
chains, to establish lower bounds on their spectral gaps. The canonical path lemma fixes
a “canonical” path between each pair of vertices on a graph and obtains a corresponding
spectral graph bound. For our purposes we let the canonical path between any two vertices
to be the edge joining them, which obtains the following statement:

▶ Lemma B.1. Say L0 is a Markov chain generator with stationary state σ. Then, the
spectral gap satisfies the following bound:

λ ≥ min
(l,m)

L0
lm

σl
.

Applying this bound in this case, and noting that the stationary state of this Markov chain
is ρll, we obtain the lower bound

λ ≥ min
l ̸=m

α(νlm)n−2

ρll
. (6)

The first equality holds because every canonical path is length 1, so the only path containing
the edge (l, m) is γlm. We may upper bound ρll with ρll ≤ e2β∑

i
Ei

≤ n−1 e2β

e−2β = n−1e4β .
Moreover, |νlm| ≤ 4 since all energies lie in [−2, 2], so α is bounded below by a positive
constant C that is independent of n. We conclude that λ ≥ minl ̸=m

α(νlm)n−2

ρll
≥ Cn−2

e4βn−1 =
Ω(n−1), as desired.

Now, for the blocks with k ̸= 0, we utilize the Gershgorin bound on the columns of
the kth block of −Lβ , −Lk, which states that the eigenvalues of Lk must be larger than
minm

[
⟨m|Lk|m⟩ −

∑
l̸=m | ⟨l|Lk|m⟩ |

]
. This approach is very similar to the one outlined

in [38] for the Davies generator. By explicitly calculating and bounding this term in the
arXiv version of this paper-[32], we obtain that the eigenvalues of Lk are Ω(n−3). This
completes the lower bound, showing that all the spectral gap in full must be Ω(n−3).

B.2 Spectral Gap Upper Bound
To prove the upper bound on the spectral gap, we consider the row vector v of length
n2, that is 1 on the indices that correspond to the block k = 1, and 0 elsewhere. As an
operator, it takes the value 1 on one offdiagonal with a fixed l1 − l2 = k. When calculating
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(vLβ)m = (L†
βv)m, we obtain the same formula as found in the Gershgorin bound calculation

above – indeed, the values on the diagonal are all positive, while the off-diagonal values are
negative:

(L†
βv)m = 1

n2

∑
l

(
α(νl1m1) + α(νl2m2)

2 − α

(
νl1m1 + νl2m2

2

))
+ 1

n2

∑
l

α

(
νl1m1 + νl2m2

2

)(
1 − exp

(
−(νl1m1 − νl2m2)2

8σ2
E

))
. (7)

The previous lower bound shows that each of these values is nonnegative. Since l1 − l2 =
m1 − m2 = 1, νl1m1 − νl2m2 = νl1m1 − νl2m2 is O(n−1). The first term in the expression,
since it is composed of summands that are second differences in α, is n terms that are O(n−2)
scaled by n−2 – it is therefore O(n−3). The summands of the second term can be similarly
estimated to be O(n−2), so it is also O(n−3). The terms of (L†

βv)m are therefore nonnegative
and are at most Cn−3 for some constant C.

To prove the upper bound, we make use of the inner product ⟨ , ⟩ρ−1
β

with respect

to which L†
β is self-adjoint. Note that ⟨|i1⟩⟨i2|, |j1⟩⟨j2|⟩ρ−1

β
= δi2j1δi1j2(ρβ)1/2

i1i1
(ρβ)1/2

i2i2
≥ 0.

Hence, when ⟨ , ⟩ρ−1
β

is expressed in the energy basis as vMw for a matrix M , M has

nonnegative elements. We therefore may upper bound ⟨(L†
βv), v⟩ρ−1

β
by Cn−3⟨v, v⟩, since

the coefficients of (L†
βv) and v are nonnegative and (L†

βv) is dominated by Cn−3v for some

C > 0. We conclude that
⟨(L†

β
v),v⟩

ρ
−1
β

⟨v,v⟩
ρ

−1
β

is O(n−3). Since L†
β is self-adjoint with respect to this

inner product, we obtain that v has Rayleigh quotient O(n−3). v is also orthogonal to I,
since ⟨v, ρβ⟩ρ−1

β
= Tr(vρ

1/2
β Iρ

1/2
β ) = Tr(vρβ) = 0, where the last equality holds since as an

operator v is zero along the diagonal. v has no overlap with I, the fixed point of L†
β , and

therefore its Rayleigh quotient is an upper bound on the spectral gap. The spectral gap
must therefore also be O(n−3). This completes the proof of Theorem 2.1.

C Bounded Degree Systems with 1-Design Jumps

In this section we prove Lemma 3.1 and Theorem 2.4, demonstrating an improvement over
the result in Theorem 2.1 for local jumps in cyclic graphs.

Proof of Lemma 3.1. To prove Lemma 3.1, we make use of the expressions (5) for the
transition, decay, and coherent parts of a general Lindbladian, but with simply one Haar
random jump (or equivalently any 1-design since the second moments of the operators are
equal). The transition term is

⟨l| Lt |m⟩ = Al1m1Al2m2θ(νl1m1 , νl2m2).

The expectation of the product Al1m1Al2m2 is zero if l1 ̸= l2 or m1 ̸= m2. The expectation
of the norm squared of an element, on the other hand, is n−1. By explicit calculation, we
therefore obtain

E [⟨l| Lt |m⟩] = δl1l2δm1m2

n
α(νl1m1)

E [⟨l| Ld |m⟩] = −1
2

δl1m1δl2m2

n

∑
j

(α(νjm2) + α(νjm1))

 ,

E [⟨l| Lc |m⟩] = 0.
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The final Lindbladian Lµ is therefore completely diagonal except for a “classical block” L0 of
indices |(m, m)⟩, whose off-diagonal terms are populated by the elements of Lt. The spectral
gap of this Lindbladian is therefore the minimum of the values along the diagonal, which are
all positive, and the spectral gap of the classical block.

As in Section B, we use the Lemma B.1 to bound the spectral gap of the classical block.
Using this lemma, with the canonical path being the edge between a pair of vertices, we
obtain the bound

λ ≥ min
l ̸=m

α(νlm)n−1

ρll
. (8)

We may upper bound ρll with ρll ≤ e−Eminβ∑
i

Ei
≤ n−1 e−Eminβ

e−Emaxβ = n−1e−O(1) = O(n−1) due to
the fact that β∥H∥ = O(1). Similarly, since α is the convolution of a Gaussian of radius
σE = β−1 with γ(ω) = exp

(
−β max

(
ω + βσ2

E

2 , 0
))

, the assumption that β∥H∥ = O(1)
again yields that α evaluated at νlm is Ω(1). Indeed, within O(β−1) of any value of νlm,
γ(ω) is Ω(1), and as a consequence α(νlm) = Ω(1). This yields a lower bound on λ of
minl ̸=m

Ω(n−1)
O(n1) = Ω(1).

Now, we lower bound the diagonal elements outside of the classical block. Since each
such element is of the form

E [⟨m| Ld |m⟩] = −1
2

 1
n

∑
j

α(νjm2) + 1
n

∑
j

α(νjm1)


and we have already established that each α term is Ω(1), so the resulting diagonal values
are all Ω(1). We conclude that the spectral gap of the Lindbladian is Ω(1). ◀

Proof of Theorem 2.4. We construct our Lindbladian by sampling M = Θ(log(n)) unnor-
malized jumps Aa from the 1-design D(U(n)) as in Definition 2.2, each with a corresponding
Lindbladian La (which has one jump Aa along with its adjoint, normalized by 2). Then,
we want to prove that with high probability, Lβ = 2

M

∑M/2
a=1 La, the Lindbladian with all

M of these jumps now normalized by the number of jumps, has spectral gap bounded by a
constant.

To prove the result, we shall make use of the matrix Bernstein’s inequality for our
concentration bound:

▶ Lemma C.1 (cf. [39]). Say X1, . . . , XN are independent random d × d Hermitian matrices,
such that E[Xi] = 0 and ∥Xi∥ ≤ R. Define Y = 1

N

∑N
i=1 Xi, and say that NE[Y 2] ≤ T .

Then Pr(∥Y ∥ ≥ t) ≤ 2d exp(− 3
2

Nt2

3T +Rt ).

Call δLa = La −Lµ, where Lµ = EA∼D[Lβ ]. Each of these operators has zero expectation.
We have that δL = 2

M

∑M/2
a=1 δLa is precisely the discrepancy between our Lindbladian

Lβ = 2
M

∑M/2
a=1 La and the expected Lindbladian Lµ. We will apply Bernstein’s inequality

for Xa = δLa, Y = δL, and N = M
2 . By Lemma 4.1, the CKG Lindbladian has operator

norm O(log(β∥H∥)), which is O(1) in this regime. We denote this upper bound R
2 . We can

now verify the condition NE[Y 2] ≤ T in the statement of Lemma C.1, since we have that
∥δLa∥ ≤ ∥La∥ + ∥Lµ∥ ≤ R = Θ(1), and

M

2

∥∥∥∥∥∥E
(∑M/2

a=1 δLa

M/2

)2
∥∥∥∥∥∥ ≤ 2

M

M/2∑
a=1

∥δLa∥2 ≤ R2.
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Every operator that satisfies detailed balance is Hermitian in some fixed basis, and
therefore each La, as well as Lµ, can be considered Hermitian. By linearity, the same holds
true for δLa = La − Lµ. The operators δLa therefore satisfy the conditions of the matrix
Bernstein inequality, and so their average δL satisfies

Pr (∥δL∥ ≥ t) ≤ 2n2 exp
(

−3
4

Mt2

3R2 + Rt

)
,

where the n2 is due to an overhead of the dimension of the Lindbladian.
For any constant t, there exists an M = Θ(log(n)) such that the term inside the

exponential is at least 3 log(n), since R is a constant. The probability that ∥δL∥ ≤ t is then
arbitrarily close to 1 for sufficiently large n and choice of M = Θ(log(n)). By Lemma 3.1, Lµ

has a constant spectral gap bounded below by some C. By Weyl’s theorem, the eigenvalues
of Lµ + δL may differ by at most t from those of Lµ. Choosing t ≤ C

2 , it follows that La,
with any constant probability, has constant spectral gap. ◀

D Unbounded Degree Systems with 1-Design Jumps

Proof of Lemma 3.2. We follow the proof of Lemma 3.1. As in Lemma 3.1, we may obtain
the following bound on the classical block:

λ ≥ min
l ̸=m

α(νlm)n−1

ρll
=

α(νlm)
(

1
n

∑
j exp(−βEj)

)
exp(−βEl)

. (9)

An explicit calculation, as in [32], therefore yields that

λ = Ω(δ(n))

by assumption that δ(n) of the eigenvalues are within O(β−1) of λmin. Now bounding the
diagonal elements outside of the classical block, we see that

E [⟨m| Ld |m⟩] = −1
2

 1
n

∑
j

α(νjm2) + 1
n

∑
j

α(νjm1)

 .

Again, since δ(n) of eigenvalues are within O(β−1) of λmin, the above sum is Ω(δ(n)), as
desired. ◀

Proof of Theorem 2.6. We follow the proof of Theorem 2.4. Defining once again La to be
the Lindbladian with one jump operator Aa and its adjoint (normalized by 2), and defining
δLa = La − Lµ, we can apply the matrix Bernstein’s inequality to obtain

Pr (∥δL∥ ≥ t) ≤ n2 exp
(

−3
4

Mt2

3R2 + Rt

)
,

since all the conditions of the inequality are again satisfied.
By Lemma 3.1, Lµ has a constant spectral gap bounded below by some Cδ(n). Selecting

t to be C
2 δ(n), there exists an M = Θ(δ(n)−2 log(β∥H∥)2 log(n)) for which the value inside

the exponential is at least 3 log(n). The probability that ∥δL∥ ≤ t is therefore above any
constant probability for sufficiently large n. By Weyl’s theorem, the eigenvalues of Lµ + δL
may differ by at most t ≤ C

2 δ(n). It follows that La, with any constant probability, has
spectral gap Ω(δ(n)). ◀
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