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Abstract
Previously, all known variants of the Quantum Satisfiability (QSAT) problem – consisting of
determining whether a k-local (k-body) Hamiltonian is frustration-free – could be classified as
being either in P; or complete for NP, MA, or QMA1. Here, we present new qubit variants of this
problem that are complete for BQP1, coRP, QCMA, PI(coRP, NP), PI(BQP1, NP), PI(BQP1, MA),
SoPU(coRP, NP), SoPU(BQP1, NP), and SoPU(BQP1, MA). Our result implies that a complete
classification of quantum constraint satisfaction problems (QCSPs), analogous to Schaefer’s dichotomy
theorem for classical CSPs, must either include these 13 classes, or otherwise show that some are
equal. Additionally, our result showcases two new types of QSAT problems that can be decided
efficiently, as well as the first nontrivial BQP1-complete problem.

We first construct QSAT problems on qudits that are complete for BQP1, coRP, and QCMA.
These are made by restricting the finite set of Hamiltonians to consist of elements similar to Hinit,
Hprop, and Hout, seen in the circuit-to-Hamiltonian transformation. Usually, these are used to
demonstrate hardness of QSAT and Local Hamiltonian problems, and so our proofs of hardness are
simple. The difficulty lies in ensuring that all Hamiltonians generated with these three elements
can be decided in their respective classes. For this, we build our Hamiltonian terms with high-
dimensional data and clock qudits, ternary logic, and either monogamy of entanglement or specific
clock encodings. We then show how to express these problems in terms of qubits, by proving that
any QCSP can be reduced to a qubit problem while maintaining the same complexity – something
not believed possible classically. The remaining six problems are obtained by considering “sums” and
“products” of some of the QSAT problems mentioned here. Before this work, the QSAT problems
generated in this way resulted in complete problems for PI and SoPU classes that were trivially equal
to NP, MA, or QMA1. We thus commence the study of these new and seemingly nontrivial classes.

While [Meiburg, 2021] first sought to prove completeness for coRP, BQP1, and QCMA, we note
that those constructions are flawed. Here, we rework them, provide correct proofs, and obtain
improvements on the required qudit dimensionality.
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6:2 QSAT Problems Are Complete for a Plethora of Classes

1 Introduction

Many of the interesting and puzzling phenomena in many-body physics occurs at the ground
state of materials. One way to study quantum systems in this state is through their ground
state energy, as this quantity can be used to provide information about physical and chemical
properties of the system. It is thus of great interest to calculate or even estimate this quantity.
This task is embodied by the k-Local Hamiltonian (k-LH) problem. Specifically, given a
k-local (k-body) Hamiltonian – an operator of the form H =

∑
i hi where each hi acts on at

most k qubits – and two numbers a, b ∈ R with b− a ≥ 1/poly(n), this problem consists of
distinguishing between the cases where H has an eigenvalue less than a or greater than b.
Kitaev [30] showed that k-LH with k ≥ 5 (and later improved to k ≥ 2 [28]) is unlikely to be
decided efficiently with a classical or quantum computer. In complexity theory terms, k-LH
with k ≥ 2 is QMA-complete.1

The LH problem is considered a “weak” quantum constraint satisfaction problem (QCSP)
as states with energy less than a do not necessarily minimize the energy of each hi. For this
reason, LH is often compared to MAX-k-SAT instead of the “strong” CSP k-SAT. Due to the
immense importance of SAT in classical complexity and other hard sciences, Bravyi [6] defined
the Quantum k-SAT (k-QSAT) problem. Given a set of k-local projectors (also referred as
clauses or constraints) and a number b ∈ R, this problem consists of distinguishing between
the cases where there exists a state that simultaneously lies in the null space of all projectors,
or for all states, the penalty incurred by violations of the constraints is greater than b.2
Bravyi showed that 2-QSAT on qubits is in P while k-QSAT with k ≥ 4 (and later improved
to k ≥ 3 [22]) is QMA1-complete when using the Clifford+T gate set G8 = {H,CNOT, T}.3

Interestingly, these two problems have in common that they are in P for a certain k but
appear to become much harder for k + 1: LH is in P for k ≤ 1 and becomes QMA-complete
for k > 1, while QSAT is in P for k ≤ 2 and QMAG8

1 -complete for k > 2. This is not entirely
surprising since the Hamiltonians considered in the problems have no restriction other than
their locality, and perhaps the difficulty lies in deciding “unphysical” Hamiltonians. Following
this line of thought, others have considered variations of these problems where the hi are
drawn from more realistic and relevant sets that satisfy some property or correspond to a
physical model. To name a few, these may be stoquastic [7], commuting [9], fermionic [31],
bosonic [41], or from models like the Heisenberg [39] and Bose-Hubbard [15]. In addition, one
might also consider placing restrictions on the geometry of the problem [33, 23, 2, 26, 36].

In a landmark result, Cubitt and Montanaro [18] showed that any LH problem where the
hi are drawn from a finite set of at most 2-local qubit Hermitian matrices can be classified as
being either in P, NP-complete, StoqMA-complete, or QMA-complete.4 As decision problems
in the latter three classes are not known to be efficiently solvable in either classical or
quantum computers, they showed that the only Hamiltonians of this type for which the
LH problem can be solved efficiently are those with only 1-local terms. This is significant,

1 The class QMA can be thought of as the quantum analog of NP, or more accurately MA since the class
has probabilistic acceptance and rejection.

2 Alternatively, this problem can be defined with local Hamiltonians instead of projectors, in which case,
the problem is equivalent to determining whether the Hamiltonian is frustration-free.

3 QMA1 is the one-sided error variation of QMA with perfect completeness, i.e. instances for which the
answer is “yes” (in this case frustration-free Hamiltonians) are accepted with certainty. The notation
G8 stems from Ref. [4] and denotes the Clifford-cyclotomic gate set of degree of 8. The reason why it is
necessary to specify the gate set for classes with perfect completeness is discussed in Section A.2.

4 StoqMA is the class of problems equivalent to estimating the ground state energy of the transverse-field
Ising model [8].
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as many relevant Hamiltonians in nature can be approximated by 2-local Hamiltonians of
this type (e.g. all those supported on Pauli operators like Heisenberg and Ising spin glass
models), and it is then likely that estimating their ground state energy efficiently lies outside
of reach. Moreover, their result has led to a much larger repertoire of problems from which to
construct reductions and potentially show the complexity of other computational problems.

Prior to our work, all known QSAT problems with finite or infinite sets of local interactions
could be classified as being either in P, NP-complete, MA-complete, or QMA1-complete, but
this list is not known to be exhaustive in either case. The fact that QSAT has resisted
classification can be attributed to two factors. First, is that since most relevant instances of
QSAT can be decided classically (2-QSAT is in P), there is a lack of interest to search for a
classification of QSAT problems with k > 2. This is unlike in the LH problem where most
relevant instances were hard (2-LH is QMA-complete), motivating the study of Cubitt and
Montanaro. Second, is the fact that QSAT problems are usually complete for classes that
are harder to work with as they seem to depend on gate sets. In this work, it is our goal to
concretize the implications that such a theorem may have, and hence motivate its study.

1.1 Summary of results
Our main result establishes that the QSAT problem SLCT-QSAT is BQPG8

1 -complete. How-
ever, as the construction and analysis of this problem is contrived, we first show that the
simpler and less optimized version of this problem, LCT-QSAT, is also complete for this
class.

▶ Theorem 1. The problem Linear-Clock-Ternary-QSAT (LCT-QSAT) with 4-local
clauses acting on 17-dimensional qudits is BQPG8

1 -complete.

An interesting feature of this problem, and one that may be of independent interest, is that
this problem makes clever use of the principle of monogamy of entanglement to strongly
constrain the structure of input instances, facilitating the task of deciding whether they are
frustration-free.5 Unfortunately, this trick comes at a price of high qudit dimensionality. Our
main result shows that by relaxing the constraint on the instance’s structure and instead
study the instances more closely, we can obtain a similar problem with the same complexity
but with reduced qudit dimensionality.

▶ Theorem 2. The problem Semilinear-Clock-Ternary-QSAT (SLCT-QSAT) with
4-local clauses acting on 6-dimensional qudits is BQPG8

1 -complete.

Recently, among many other interesting results, Rudolph [37] demonstrated that BQPG2i

1 =
BQPG2j

1 for any i, j ∈ N. In other words, any problem in BQP1 using a Clifford-cyclotomic
gate set of degree 2i can be perfectly simulated with one of degree 2j for all i, j ∈ N. For us,
this then implies that:

▶ Corollary 3. The problems LCT-QSAT and SLCT-QSAT are BQP1-complete with any
gate set G2l with l ∈ N.

Subsequently, by performing slight modifications to the clauses of SLCT-QSAT, we also
obtain QCMA-complete and coRP-complete problems:

▶ Theorem 4. The problem Witnessed SLCT-QSAT with 4-local clauses acting on
8-dimensional qudits is QCMA-complete.

5 This construction is the most faithful to those considered by Meiburg in Ref. [32].

TQC 2025



6:4 QSAT Problems Are Complete for a Plethora of Classes

▶ Theorem 5. The problem Classical SLCT-QSAT with 5-local clauses acting on 8-
dimensional qudits is coRP-complete.

Then, using a similar application of monogamy of entanglement as in LCT-QSAT, we
demonstrate that we can reduce any QCSP on qudits to another one on qubits.

▶ Theorem 6 (informal). Every QCSP C on qudits is equivalent in difficulty to some other
QCSP C′ on qubits.

▶ Corollary 7. Together, Theorems 2 and 4–6 imply:
1. SLCT-QSAT2 is a BQPG8

1 -complete problem on qubits with 48-local clauses.
2. Witnessed SLCT-QSAT2 is a QCMA-complete problem on qubits with 48-local clauses.
3. Classical SLCT-QSAT2 is a coRP-complete problem on qubits with 60-local clauses.

We refer to these problems by the same name as before, except that we now add a
subindex to represent that the problem refers to the qubit version, e.g. SLCT-QSAT2 is the
QSAT problem that results from the reduction of SLCT-QSAT.

Finally, there is a notion of direct product “⊗” and direct sum “⊕” (Definitions 17 and 18)
for both CSPs and QCSPs, which we use to show that there are six new QSAT problems
that are complete for classes PI(A,B) and SoPU(A,B), where A and B are themselves
complexity classes. PI(A,B) stands for the pairwise intersection of classes (Definition 11),
and SoPU(A,B) for the star of pairwise union of classes (Definition 12). Roughly, these
two classes correspond to the sets of problems that can be expressed as the intersection and
union (respectively) of a problem in A and a problem in B.6 We show:

▶ Theorem 8. Let “⊗” and “⊕” denote the direct product and direct sum for quantum
constraint satisfaction problems. Pairwise combinations of the four QSAT problems – 3-SAT,
Classical SLCT-QSAT2, SLCT-QSAT2, and Stoquastic 6-SAT – yield the following
complete problems:
1. Classical SLCT-QSAT2 ⊗ 3-SAT is PI(coRP,NP)-complete.
2. Classical SLCT-QSAT2 ⊕ 3-SAT is SoPU(coRP,NP)-complete.
3. SLCT-QSAT2 ⊗ 3-SAT is PI(BQPG8

1 ,NP)-complete.
4. SLCT-QSAT2 ⊕ 3-SAT is SoPU(BQPG8

1 ,NP)-complete.
5. SLCT-QSAT2 ⊗ Stoquastic 6-SAT is PI(BQPG8

1 ,MA)-complete.
6. SLCT-QSAT2 ⊕ Stoquastic 6-SAT is SoPU(BQPG8

1 ,MA)-complete.

Finally, given that the QSAT problems in Corollary 7 and Theorem 8 consist of finite sets
of projects with O(1)-local qubit clauses, and similarly 2-SAT, 3-SAT, Stoquastic 6-SAT,
and 3-QSAT (which are respectively in P, NP-complete, MA-complete and QMAG8

1 -complete),
our results imply that:

▶ Corollary 9. A complete classification theorem for strong QCSPs with O(1)-local clauses
acting on qubits must either include at least 13 classes, or otherwise indicate that some of
these are equal.

The relationship between the 13 classes mentioned here is shown in Figure 1.

6 These classes are not to be confused with A ∩ B and A ∪ B. A ∩ B corresponds to the set of problems
that are in both A and B, while A ∪ B corresponds to those that are in either A or B.
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P

coRP NP

BQPG8
1 PI(coRP, NP)

SoPU(coRP, NP)

MA
PI(BQPG8

1 , NP)

SoPU(BQPG8
1 , NP) PI(BQPG8

1 , MA)

SoPU(BQPG8
1 , MA)

QCMA

QMAG8
1

Figure 1 The classes for which we now have a complete strong QCSP, and their corresponding
inclusions. In this work, we show completeness for quantum complexity classes with perfect
completeness using the Clifford+T gate set G8 = {H, T, CNOT}. Rudolph’s result [37] further
strengthens ours by showing that BQPG8

1 = BQPG2l

1 for all l ≥ 1. We discuss some of the inclusions
in this figure in Section 2.6 and Section A.2.

2 Contributions

In this section, we summarize the main ideas and proof techniques related to the results
presented in Section 1.1. In particular, we detail the main roadblocks in the construction of
each QSAT problem, and how we overcome them. The full proofs of the statements here can
be found in the full version of the text [14].

Section A covers the notation and background information used here. For the rest of this
section, we fix the gate set G8 and omit the superscript when referring to BQP1 and QMA1,
except when needed for emphasis.

2.1 BQP1-complete problem
The goal of the construction is to design a QSAT problem that can encode the computation of
any quantum circuit in BQP1, while keeping all its instances solvable in quantum polynomial-
time with perfect completeness and bounded soundness. We define the problem using
projectors Πinit, Πprop,U , and Πout similar to Pinit, Pprop,U , and Pout defined in Equation (6).7
To see why our projectors must differ from the original ones, consider the QSAT problem
built with {Pinit, Pprop,U , Pout, Pstart, Pclock, Pend}. Showing that the problem is BQP1-hard
is straightforward, as we can encode the circuit that computes the answer to a BQP1 problem
in a similar way as that shown in Section A.3. This time however, all data particles in the
instance should be initialized, instead of having free particles whose role is to accommodate
a witness state. The difficulty lies in demonstrating that every instance generated with a
polynomial number of these projectors can also be decided in BQP1. There is a fundamental
and a practical limitation for this:

7 The projectors Pstart, Pclock, and Pstop associated with the clock encoding remain unchanged and are
integrated into the definitions of Πinit, Πprop, and Πout.

TQC 2025
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(a)

(b)

(c)

Figure 2 (a) A typical instance that encodes the computation of a BQP1 circuit UL . . . U1. The
satisfiability of the instance can also be decided in BQP1. (b) Examples of troublesome instances
whose satisfiability is not known to be decidable with a BQP1 algorithm. (c) The above instances
recast with the new set of projectors {Πinit, Πprop,U , Πout}. The bold blue arrows represent the
Πprop,U clauses which now also indicate the particles should be maximally entangled, and the
dotted red arrows those that are connected to undefined logical qudits. With these projectors, their
satisfiability can be more easily decided. The left instance is satisfiable due to the undefined clauses,
while the one on the right is unsatisfiable, as any potential satisfying state violates monogamy of
entanglement. The instance in (a) has the same meaning/satisfiability with either set of projectors.

Instances which encode the computation of a QMA1 problem, e.g. the instance in Figure 4
and the left instance in Figure 2b, are valid inputs. This is problematic since it is unknown
how to decide these instances in BQP1 (and doing so would show that BQP1 = QMA1).

Input instances may form intricate structures complicating the task of deciding if a
satisfying state exists, e.g. the right instance in Figure 2b.

We define the projectors Πinit, Πprop, and Πout to address these two difficulties (see
Figure 2c). Importantly, these projectors do not significantly alter the proof that the problem
is BQP1-hard and can proceed as mentioned. Now, let us briefly discuss how we overcome
both difficulties.

Instances like those in Figure 4, which have a proper structure and uninitialized data
particles, are prototypical examples of QMA instances. These “free” particles give one the
freedom to guess if there exists a state they can be in such that the instance can be satisfied
(or equivalently be provided with such a state which we verify). To address this issue, we
remove the need to guess a satisfying state by introducing a new undefined basis state |?⟩
(making the data particles 3-dimensional), such that setting the free data particles to this
state always results in a satisfiable instance. More specifically, we achieve this by defining
Πprop,U so that if any data particle in the clause is in state |?⟩, the clause is satisfied without
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needing to apply the associated unitary.8 Then, for these instances, the satisfying state is
given by a truncated version of the history state (without a witness) since the computation
is no longer required to elapse past the first Πprop,U clause acting on an undefined state. We
say the instance is now “trivially satisfiable” as its structure alone suffices to determine its
satisfiability.

To determine the satisfiability of intricate instances, the projectors are now also defined
to leverage the principle of monogamy of entanglement. Each clock particle is equipped with
two 2-dimensional auxiliary subspaces CA and CB (making them 12-dimensional) and the
Πprop,U clauses are then defined to require that the CB subspace of the predecessor clock
particle forms a |Φ+⟩ Bell pair with the CA subspace of its successor. Then, if a CA or
CB subspace is required to form more than one Bell pair, the principle of monogamy of
entanglement states that only one of these clauses can be satisfied, and so the instance is
unsatisfiable. Therefore, instances that are not deemed unsatisfiable because of this reason
must form one-dimensional chains with a unique “time” direction. Finally, to guarantee
that Πinit and Πout only act on the ends of the chain, these make use of a new endpoint
particle consisting of a single two-dimensional space EC and require that it also forms a
Bell pair with either the CA (for Πinit) or CB (for Πout) subspace of a clock particle. These
modifications thus yield a 17-dimensional local Hilbert space: a 3-dimensional data subspace,
plus a 2-dimensional endpoint subspace, plus a 12-dimensional clock subspace.

Although these modifications do not get rid off all difficulties, a comprehensive analysis
of the resulting instances can be used to demonstrate that a hybrid algorithm can determine
the satisfiability status of all input instances. Briefly, the classical part of the algorithm
evaluates the structure of the clauses in the instance and concludes whether it is trivially
unsatisfiable, trivially satisfiable, or is one requiring the assistance of a quantum subroutine.
Trivially unsatisfiable instances are those whose clause arrangement imply one or several
clauses cannot be simultaneously satisfied, like those that violate monogamy of entanglement.
On the other hand, trivially satisfiable instances are those whose clauses do not create any
conflicts but whose structure is simple enough that the satisfying state can be inferred, like
those with a proper structure and uninitialized data particles. We show that the only type
of instances that are not in either one of these cases, are those like Figure 2a which express
the computation of a quantum circuit on initialized ancilla qubits. For these instances,
the classical algorithm makes use of a quantum subroutine that executes the quantum
circuit expressed by the instance, while simultaneously measuring the eigenvalues of relevant
projectors. The measurement outcomes indicate whether the instance should be accepted or
rejected.

2.2 Reducing the qudit dimensionality

This section argues that even by removing the projectors that demand successive clock (or
endpoint) particles must be entangled with each other, the satisfiability of instances remains
the same. Specifically, we argue that the propagation rules, the choice of clock encoding,
and the requirement to maintain a consistent clock register state at all times suffice to show
that any instance in which the clock particles are not arranged linearly and do not point
in the same direction is unsatisfiable. Consequently, there is no longer a need for auxiliary

8 Although the data particles are 3-dimensional and the unitaries are gates from a set designed to act on
qubits, these cause no conflicts as the gates will never act on undefined data particles.

TQC 2025
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(a)

|0⟩

U
|0⟩|ψwit⟩

(b)

Figure 3 (a) Toy example of an input “quantum” instance with a TACC of length L = 4, acting
on four logical qudits and two witness qudits. Although not illustrated, the Πprop clauses are
assumed to have unitaries U1, . . . , U4 which act only on the logical qudits of the instance. These
unitaries define a circuit U = U4U3U2U1. (b) Quantum circuit representing the instance on the left.

subspaces or endpoint particles. Together, these results show that while the use of monogamy
of entanglement in the construction does facilitate some proofs, it is not crucial for the
construction. Removing these elements reduce the local dimension from 17 down to 6.

The main challenge in this construction stems from the weaker constraints that the Πinit

and Πout clauses set instead of the endpoint particles. In summary, instances with more than
a single Πinit/Πout pair may now be satisfiable. Part of the proof of this section requires
showing that if such sub-instances are potentially satisfiable, they can be further separated
into smaller linear instances, each with a single Πinit/Πout pair. Each of these smaller pieces
is then satisfied by a history state, while the clauses connecting them together (arranged in
any shape) can be satisfied trivially. For this reason, we have used the term semilinear in
the name of the resulting problem.

2.3 QCMA-complete problem
The construction from Section 2.2 can be modified to generate a QCMAG8

1 -complete problem.
Moreover, since QCMAG8

1 = QCMA [27], this results in a QCMA-complete problem. Although
there are already many problems known to be complete for this class [19, 42, 21, 24, 40],
none of them are strong QCSPs.9

In Section 2.1, we argued that the unconstrained or “free” logical qudits of an instance
allowed one to guess what state of these qudits (the witness state) might satisfy the instance.
This freedom made the problem more difficult and thus not likely contained in BQP1. For
this reason, we introduced the undefined state |?⟩, which simplified these instances and made
them decidable in BQP1. In this construction, we seek to construct a problem that sits in
between these two classes so it is QCMA-complete. To accomplish this, we desire to have
“free” logical qudits to accommodate a witness state that helps verify whether the instance is
satisfiable, but have some sort of constraint to demand that the state is classical.10

In practice, creating these constraints is challenging since any superposition of two
satisfying states will also satisfy the clause. Instead, we set the constraints such that if there
exists a quantum witness state that is part of a satisfying state, there is also a classical

9 While Ref. [40] also defines a QCMA-complete QSAT problem, it requires additional promise conditions.
10We continue using the undefined state for logical qudits whose initial state is not constrained so the

difficulty of the problem does not become QMA.
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witness state. Loosely, we accomplish this by defining new witness qudits and create a new
constraint Π|00,11⟩

init that connects a witness qudit with a logical one, and require that they
are both either |00⟩, |11⟩, or in a superposition of the two.11 In this way, the two qudits are
partially “free” as there is some freedom to their state, yet posses some desired structure.
Importantly, we ensure that the witness qudits do not form part of the computation after
this initial point.

To see why this leads to the desired effect, consider the toy instance of Figure 3 and
suppose there exists a state |ψwit⟩ of the four “free” qudits that leads to a satisfying
state. Observe that to satisfy the Π|00,11⟩

init clauses, this state must be of the form |ψwit⟩ =
(α00 |0000⟩ +α01 |0011⟩ +α10 |1100⟩ +α11 |1111⟩)L1,W1,L2,W2 with

∑
b∈{0,1}2 |αb|2 = 1, which

we can rewrite in a more convenient form as |ψwit⟩ =
∑

b∈{0,1}2 αb |b⟩L ⊗ |b⟩W . Then, a state
that satisfies all clauses of the instance is the history state

|ψhist⟩ = 1√
5

4∑
t=0

[Ut . . . U0 |00⟩ ⊗ |ψwit⟩] ⊗ |d . . . d︸ ︷︷ ︸
t

at r . . . r︸ ︷︷ ︸
4−t

⟩

= 1√
5

4∑
t=0

∑
b∈{0,1}2

αb |ξt
b⟩ ⊗ |b⟩W ⊗ |d . . . d︸ ︷︷ ︸

t

at r . . . r︸ ︷︷ ︸
4−t

⟩ ,

(1)

where |ξt
b⟩ := Ut . . . U0 |00⟩ ⊗ |b⟩L. Now, let us argue that there is also a classical witness

that leads to a satisfying history state. First, observe that any basis state |b⟩L ⊗ |b⟩W with
|αb| > 0 from the decomposition of the witness satisfies the Π|00,11⟩

init clauses. Consequently,
the history state above but with initial state |00⟩ ⊗ |b⟩L ⊗ |b⟩W satisfies the Π|0⟩

init, Π|00,11⟩
init ,

and Πprop clauses of the instance. Finally, to show that this state also satisfies the Πout

clause, recall that this clause is satisfied if at time t = 4, the probability that the second
qubit yields outcome “1” when measured is 1. As shown in Equation (3), this probability
can be written as

Pr(outcome 1) =
∑

b,b′∈{0,1}2

αbα
∗
b′ ⟨ξ4

b′ | ⊗ ⟨b′| Π(1) |ξ4
b ⟩ ⊗ |b⟩ =

∑
b∈{0,1}2

|αb|2 ⟨ξ4
b | Π(1) |ξ4

b ⟩

where Π(1) := |1⟩⟨1|2 ⊗ Irest, and in the last equality we observed that ⟨b′|b⟩ = δb,b′ . Then, by
the assumption that the instance is satisfiable, it must be that ⟨ξ4

b | Π(1) |ξ4
b ⟩ = 1 for all basis

states |b⟩ with |αb| > 0. This can also be understood as the probability that at the end of
the circuit, the second qubit yields outcome “1” when the witness is the basis state |b⟩ ⊗ |b⟩.
Therefore, the history state of Equation (1) with classical witness |ψwit⟩ = |b⟩L ⊗ |b⟩W also
satisfies all clauses of the instance.

The remaining parts of the proof require showing that all new possible qudit connections
with new Π|00,11⟩

init clause can still be handled, as well as demonstrate perfect completeness and
bounded soundness of the hybrid algorithm. For the latter, the majority of the arguments
from the BQP1 construction also directly apply here.

2.4 coRP-complete problem
In Section 2.1, we mentioned that the satisfiability of some instances is decided through
a quantum circuit. In particular, this circuit was used to verify the satisfiability of the
simultaneous Πprop clauses and final Πout clauses. For the latter, the circuit executed

11 The local Hilbert space is then 8-dimensional, as it composed of a 3-dimensional data subspace, a
3-dimensional clock subspace, and a 2-dimensional witness subspace.
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the quantum circuit UT . . . U1 on input |0⟩⊗q, measured some of the qubits, and accepted
or rejected depending on the measurement outcomes. Intuitively, to generate the coRP-
complete problem, we would like to replace the universal quantum circuit by a universal
classical reversible circuit R = RT . . . R1 (reversibility is needed since the best potentially
satisfying state is still a quantum history state) and introduce randomness into the instance
by initializing p ancilla qubits to |+⟩. Then, for these new sub-instances, we could analogously
verify the Πout clauses by sampling a bitstring b ∈ {0, 1}p, evaluating the circuit R on input
(0q, b) and deciding on its satisfiability based on the final state of the bits. While this idea is
close to the actual construction, for reasons mentioned in the full version of the text, it is
not sufficient to decide all instances.

For the construction to work, we also incorporate elements of the QCMA problem from
the previous section. Namely, we modify the Π|00,11⟩

init clause so it initializes both a witness
(now referred to as auxiliary qudit as we remove the freedom) and a logical qudit to the
maximally entangled state |Φ+⟩. This new clause is denoted Π|Φ+⟩

init .
Again using the toy example of Figure 3 (replacing the Π|00,11⟩

init clauses by Π|Φ+⟩
init clauses

and the unitaries Ui by reversible classical gates Ri), let us illustrate how this construction
allows us to verify the satisfiability of Πout clauses. If the instance is satisfiable, the satisfying
state must be the history state

|ψhist⟩ = 1√
5

4∑
t=0

[
Rt . . . R0 |00⟩ ⊗ |Φ+⟩⊗2 ]

⊗ |d . . . d︸ ︷︷ ︸
t

at r . . . r︸ ︷︷ ︸
4−t

⟩

= 1√
5

4∑
t=0

∑
b∈{0,1}2

1
2 |ξt

b⟩ ⊗ |b⟩Aux ⊗ |d . . . d︸ ︷︷ ︸
t

at r . . . r︸ ︷︷ ︸
4−t

⟩ ,

where in the second line we observed that |Φ+⟩⊗p = 2− p
2

∑
b∈{0,1}p |b⟩L ⊗ |b⟩Aux for any

p ∈ N, and defined |ξt
b⟩ := Rt . . . R1 |00⟩ ⊗ |b⟩L. The Πout clause is satisfied if at time t = 4,

the probability that the second qubit yields outcome “1” when measured is 1. This probability
is given by

Pr(outcome 1) = 1
4

∑
b,b′∈{0,1}2

⟨ξ4
b′ | ⊗ ⟨b′| Π(1) |ξ4

b ⟩ ⊗ |b⟩ = 1
4

∑
b∈{0,1}2

⟨ξ4
b | Π(1) |ξ4

b ⟩ ,

from where it is evident that if the instance is satisfiable, ⟨ξ4
b | Π(1) |ξ4

b ⟩ = 1 for all b ∈ {0, 1}2.
Hence, it is possible to verify the Πout clause by sampling one of the strings b, running circuit
R on input (02, b), and measuring the state of the second qubit.

Another important consideration is that the classical reversible gate set must be chosen
with care. Although not covered in this version of the paper, we usually desire that G is
a gate set such that all gates in the set change the basis states upon application, and so
V (Πi) of Equation (2) can be implemented perfectly with gates from this set. Here, only the
first property is relevant. We choose G = {X, (X ⊗X ⊗X)Toffoli}, which clearly satisfies
this property and is also a universal gate set for reversible classical computation. As a
consequence, the QSAT problem of this section has 5-local clauses since the Πprop clauses
may use a Toffoli. This is the best locality we can achieve as it is also well known that any
universal gate set for reversible quantum computation must include a 3-bit gate.

2.5 Universality of qubits for QCSPs
In previous sections, we showed that there are QSAT problems acting on qudits that are
complete BQPG8

1 , QCMA, and coRP. Here, we refine these statements and show that there
are QSAT problems on qubits (albeit with higher locality) that are also complete for these
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classes. To achieve this, we show that any QCSP on qudits can be reduced to another QSAT
problem on qubits using little computational power. We note that this section, apart from
some changes in the exposition, stems directly from Ref. [32].

At first glance, this statement may seem trivial as operations on qubits are universal
for quantum computation, i.e. we can emulate a d-qudit with a ⌈log2(d)⌉ qubits and carry
out unitaries on those qubits. For our QSAT problems, it is true that any instance retains
its satisfiability status when expressed in terms of qubits. However, it is not clear if all
input instances generated with these new qubit clauses are contained within this class. For a
successful reduction, we must have both.

For an even more explicit example, let us first represent the basis clock states using
qubits as: |r⟩ := |00⟩, |a⟩ := |01⟩, and |d⟩ := |10⟩. The Πstart = |r⟩⟨r| clause (defined exactly
as Pinit in Equation (7)) can now be written as Πstart = |00⟩⟨00| + |11⟩⟨11|, where the
last term is to prevent the fourth basis state |11⟩, which did not exist before. The clause
(|00⟩⟨00| + |11⟩⟨11|)1,2 + (|00⟩⟨00| + |11⟩⟨11|)2,3 acting on three qubits is now valid and is
satisfied by the state |010213⟩. This state, however, presents some ambiguity: either we have
|r⟩ on qubits 1 and 2, or |a⟩ on qubits 2 and 3. In general, decomposing all clauses into qubits
and considering all input instances that may occur adds a significant level of complexity
to the problem, making it difficult to determine if it remains in the same class. Moreover,
we remark that this is not only particular to our QSAT problems, but in fact applies to all
CSPs and QCSPs defined on qudits or non-Boolean variables! In general, the issue is that we
cannot ensure that the new qubit clauses are applied to qubits in a consistent fashion based
on its parent qudit problem. For example, a qubit clause might treat a particular qubit
as “qubit 1” of a previous d-qudit, while another clause might refer to the same qubit as
“qubit 2”. Moreover, the qubit clauses could also “mix and match”, combining “qubit 1” from
one previous d-qudit with “qubit 2” from another d-qudit (as in the example with Πstart).
Overall, these lead to constraints that were unrealizable in the parent qudit problem.

Our main result of this section shows that with a more clever reduction than directly
decomposing a d-qudit into ⌈log2(d)⌉ qubits, we can guarantee that a satisfiable/unsatisfiable
instance on qubits maps to one on qudits with the same satisfiability status. This is something
that is not known to be possible classically! More formally, we show that

▶ Theorem 10 (Theorem 6; formal). For any QCSP C on d-qudits, there is another QCSP
C′ on qubits, and AC0 circuits f and g, such that f reduces C to C′, and g reduces C′ to C. If
C is k-local, then C′ can be chosen to be 4 · 2⌈log2(⌈log2(d)⌉)⌉k local (that is, O(log(d)) times
larger.)

The main idea behind the proof is that in the quantum world, we can fix the issues
mentioned above by again using monogamy of entanglement to bind together our constituent
qubits into ordered, entangled larger systems. Ultimately, each clause in the resulting qubit
problem incorporates new projectors that force a particular ordering of qubits, and any two
clauses that try to “mix and match”, or use the same set of qubits but with different ordering,
are necessarily frustrated.

If in Theorem 10 we do not require the reductions to be in AC0, and instead allow
P-reductions, a locality of 4⌈log2(d)⌉k suffices. This is used in Corollary 7.

2.6 Direct sum and direct product problems
There is a notion of direct sum (denoted by “⊕”) and direct product (denoted by “⊗”) on
CSPs and QCSPs that allow us to define the remaining six complete problems. To be clear,
these are operations on languages themselves, not on instances. For example, we can talk
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about the languages 3-Colorable ⊕ 4-SAT and 3-Colorable ⊗ 4-SAT. Although this
notion appears to be quite natural, we were unable to find many sources discussing such
ideas – possibly because the classical theory is not as exciting, for reasons we also discuss.
The relevant task here is to demonstrate that sum and product QCSPs inherit completeness
properties from their constituents. In this way, we are able to construct QCSPs that are
complete for PI and SoPU classes, defined as follows.

▶ Definition 11 (Pairwise intersection of classes). If C1 and C2 are two complexity classes
(any sets of languages), then PI(C1, C2) is the class that denotes the pairwise intersection of
C1 and C2. In other words, it is the class of languages that can be written as the intersection,
i.e. the logical AND, of a language in C1 and a language in C2.

▶ Definition 12 (Star of pairwise unions of classes). If C1 and C2 are two complexity classes,
then their star of pairwise unions, denoted SoPU(C1, C2), is a complexity class defined as
follows: for each language L1 ∈ C1 and L2 ∈ C2, let d be a fresh symbol that is not in the
alphabet of L1 or L2. Then, the language (dL1|dL2)∗ is in SoPU(C1, C2). SoPU(C1, C2) is the
closure of all such languages under L (logspace reductions).

Definition 12 merits a brief explanation. For a pair of languages L1 and L2, what
do the strings in the language L := (dL1|dL2)∗ look like? Given an input string like
d010011d101101d101001, it will belong to L if and only if each of the three bitstrings
{010011, 101101, 101001} belongs to either L1 or L2. If C is a complexity class powerful
enough to break apart the individual bitstrings from the d-delimited string, as well decide
both L1 and L2, then SoPU(C1, C2) ∈ C.

We begin discussing that there are CSPs that are complete for these classes, and then
extend this to the quantum setting since the latter follows almost identically.

2.6.1 Direct product of constraint satisfaction problems
To begin, it is useful to recall the precise definition of a CSP. A constraint satisfaction
problem is a triple (V,D,C), where V = {v1, . . . , vn} is a finite set of variables, each taking
a value from the domain D. If the domain is D = {0, 1}, then we have a Boolean CSP, and
can be generalized to dits if D is instead D = {0, . . . , d}. C is a set of constraints, where
each constraint c ∈ C restricts the values that a subset of the variables may take.

Now, let L1 and L2 be two CSPs with domains D1 and D2, and allowed constraints C1
and C2, respectively.

▶ Definition 13 (Direct product of CSPs). Given the CSPs L1 and L2, their direct product
L1 ⊗ L2 is a CSP whose domain is the Cartesian product D1 ×D2. Each constraint ci ∈ C1
(resp. C2) of locality k leads to a constraint c′

i in L1 ⊗ L2, also of locality k, as follows. A
tuple (v1, v2, . . . , vk) ∈ (D1 ×D2)k, where each entry vi = (vi,1, vi,2), belongs to c′

i if the tuple
(vi,1, . . . , vk,1) belongs to ci. Each constraint in L1 ⊗ L2 arises this way from a constraint in
L1 or L2.

The goal of this subsection is to show that when one CSP is complete for a complexity
class A, and another is complete for a class B, the product problem is complete for the
complexity class PI(A,B). Formally,

▶ Theorem 14 (Completeness of direct products for PI). Let M be a set of functions closed
under composition with local functions, and closed under concatenations (i.e. if some f, g :
Σ∗

1 → Σ∗
2 are each in M , then h : x → f(x)g(x) is as well). Let L1 be a CSP complete under
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M -reductions for a class C1, and likewise L2 be complete for C2. Assume that each of C1 and
C2 are closed under reductions by local functions, closed under intersections, and contain
the language All of all strings, Σ∗. Then, the direct product L1 ⊗ L2 is complete under
M -reductions for PI(C1, C2).

The assumptions in this theorem are mild and satisfied even for AC0-reductions and
most complexity classes. In other words, this theorem essentially states that if we have CSPs
complete for “reasonable” classes C1 and C2, the product CSP is complete for PI(C1, C2).

2.6.2 Direct sum of constraint satisfaction problems
If direct products let us express (informally) a “two-input logical AND” of two CSPs, then
direct sums let us express “unbounded-fanin AND of fanin-2 ORs”.

▶ Definition 15 (Direct sum of CSPs). Given the CSPs L1 and L2, their direct sum L1 ⊕L2
is a CSP whose domain is the disjoint union D1 ·∪D2. Each constraint in L1 ⊕ L2 is either
of the form ci ∪

(
Dk

2
)
, where ci ∈ C1 is a constraint of locality k; or it is ci ∪

(
Dk

1
)

for some
ci ∈ C2.

To better understand this definition, consider an instance of L1 ⊕ L2 with a single
connected component, and assume that it is satisfiable.12 The definition of the problem
and this assumption imply that any satisfying state must either have all variables set to
values from D1, or all of them must be from D2. Then, for a general instance of L1 ⊕ L2,
solving the problem amounts to identifying all of the connected components, and for each
one determine whether it can be satisfied entirely from values of D1 or D2. The instance is
satisfiable iff all components are as well.

One might expect that, by analogy with the direct product, the sum of CSPs should then
be complete for the pairwise union of two classes, PU(A,B). This would be true if we only
had to worry about problems that formed a single connected component, which is not the
case. This is why we must define the “star of pairwise unions” as in Definition 12. The goal
of this section is to demonstrate this fact formally.

▶ Theorem 16 (Completeness of direct sums for SoPU). Let be M a set of functions closed
under composition with logspace-computable functions (such as the set of logspace functions
themselves, FL). Let L1 be a CSP complete under M -reductions for a class C1, and likewise
L2 be M-complete for C2. Assume that each of C1 and C2 are closed under M-reductions,
and contain the language None of no strings, ∅. Then, the direct sum L1 ⊕ L2 is complete
under M -reductions for SoPU(C1, C2).

2.6.3 Quantum sums and products
The constructions above transfer in a very natural way to the quantum setting. Now, instead
of domains that are a Cartesian product or disjoint union, the Hilbert spaces are a tensor
product or direct sum. The clauses are accordingly built as tensor products and direct sums.

▶ Definition 17 (Direct product of QCSPs). Given the QCSPs L1 and L2, their direct product
L1 ⊗L2 is a QCSP whose domain is the tensor product Hilbert space D1 ⊗D2. Each operator
Hi in L1 leads to an operator Hi ⊗ I, a tensor product with the identity, and likewise for L2.

12 A connected component of a CSP is a connected component in the graph for that CSP, where the vertices
are variables, and there is an edge between variables if they share a constraint.
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▶ Definition 18 (Direct sum of QCSPs). Given the QCSPs L1 and L2, their direct sum
L1 ·∪ L2 is a QCSP whose domain is the direct sum Hilbert space D1 ⊕D2. Each operator
Hi in L1 leads to an operator Hi ⊕ 0, a direct sum with the 0 operator, requiring that a
frustration-free state lies in the null space of Hi or the right half of the direct sum (or a
linear combination). Likewise for operators in L2.

These have the same essential properties as the direct product and sum for classical CSPs,
where we can produce product and sum instances that are satisfiable iff both (resp. either)
of the original instances are satisfiable.

Given the discussion above on languages and strings of symbols, one might think that we
must talk about quantum states and concatenations of strings of qubits. This is not the case.
The strings of symbols are just the encoding of the constraints, which are classical data even
for a QCSP. The only quantum-specific requirements involve checking that tensor products
or embeddings of satisfying states yield another satisfying state; and the appropriate converse
properties. These follow directly from the definition of tensor products and direct sums.

2.6.4 Basic class properties
Here, we state some basic properties of general PI(A,B) and SoPU(A,B) classes.

▶ Lemma 19. If the class B includes the language All of all strings, then A ⊆ PI(A,B).
Similarly, if B includes the language None of no strings, then A ⊆ SoPU(A,B).

▶ Lemma 20. PI and SoPU respect the inclusion order of complexity classes. That is, A ⊆ C

and B ⊆ D implies PI(A,B) ⊆ PI(C,D) and SoPU(A,B) ⊆ SoPU(C,D).

SoPU generally leads to a more powerful class than PI, that is:

▶ Lemma 21. If classes A and B are closed under reductions by local functions, then
PI(A,B) ⊆ SoPU(A,B).

This is apparent from the definition of these classes since SoPU is also required to compute
the AND of multiple inputs. It is also true that PI and SoPU do not increase the power of
classes by combining a class A with something weaker. Formally:

▶ Lemma 22. If A is closed under intersection, and B ⊆ A, then PI(A,B) ⊆ A. More-
over, if A is closed under logspace reductions, unions, and delimited concatenation, then
SoPU(A,B) ⊆ A.

2.7 New complete problems
As mentioned previously, while the notion of product and sum of constraint problems seems
natural, classical constraint problems do not seem to offer such a rich theory. This is due to the
fact that most classes with complete CSPs are contained within each other. Indeed, Allender
et al.’s refinement of Schaefer’s dichotomy theorem states that all Boolean CSPs are either in
co-NLOGTIME; or are complete for L, NL, ⊕L, P or NP under AC0 reductions [3]. With the
exception of NL and ⊕L, all possible pairs from this list have an obvious containment relation,
so the only nontrivial consequence would be that there exists a CSP, on a domain of size
four, that is PI(⊕L,NL)-complete under AC0 reductions. However, under the more common
P -reductions, the complexity of these problems becomes either in P or NP-complete.13 Then,

13 The same is true for CSPs defined on qudits [43].
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since P ⊆ NP and these classes meet all properties discussed in Lemma 22, it follows that
products or sums of these problems result in complexity classes that are trivially equal to
NP. For example, 2-SAT ⊕ 3-SAT and 2-SAT ⊗ 3-SAT are complete problems for PI(P,NP)
and SoPU(P,NP), but these classes are trivially equal to NP.

This is no longer the case in this work. The seven classes we have discussed so far
which have complete CSPs are P, coRP, BQP1, NP, QCMA, and QMA1. Importantly,
these all have the closure properties discussed in this section so far: union, intersection,
logspace reductions, and delimited concatenation; and they all include the trivial problems
ALL and NONE. Among these classes, most pairs {A,B} have A ⊆ B, in which case
PI(A,B) = SoPU(A,B) = B. However, there are three pairs that are not known to contain

each other, these are: coRP
?
⊆ NP, BQP1

?
⊆ NP, and BQP1

?
⊆ MA. Each of these pairs leads

to two new classes PI(A,B) and SoPU(A,B), that are not obviously equal to some other
known class. Together, we obtain six more complexity classes with complete QCSPs.

2.7.1 Relations to other classes
Notably, the pair coRP and NP involves only classical classes, and accordingly there is more
theory already developed around them.

From the lemmas stated earlier in this section, one can show that NP ⊆ PI(coRP,NP) ⊆
SoPU(coRP,NP) ⊆ MA. In addition to this, we can relate PI(coRP,NP) to the class DP :=
PI(NP, coNP) studied in Ref. [34]. This class forms the second layer of the boolean hierarchy
BH, i.e. DP = BH2 [13]. Since coRP ⊆ coNP, Lemma 20 tells us that PI(coRP,NP) ⊆ DP.
On the other hand, SoPU(coRP,NP) does not obviously lie in the Boolean hierarchy. If the
class was a simple pairwise union (instead of the “star of pairwise unions”), it would lie in
BH3 – the pairwise union of DP and NP. However, it seems unlikely that SoPU(coRP,NP)
falls within this class, as doing so would require showing that one could condense the long
list of checks required to decide a SoPU problem down to only two queries. In this line
of thought, we know that queries to an NP oracle do not need to depend on each other
adaptively, so SoPU(coRP,NP) is contained in P||NP = PNP[log], studied in Refs. [11, 25].14

These classes are also related to two interesting collapse statements. First, observe
that if P = RP (derandomization), then coRP = P ⊆ NP and so NP ⊆ PI(coRP,NP) ⊆
SoPU(coRP,NP) = SoPU(NP,NP) = NP. Moreover, an even weaker version of derandom-
ization where NP = MA would also lead to a collapse. Here, since coRP ⊆ MA, we have
NP ⊆ PI(coRP,NP) ⊆ SoPU(coRP,NP) ⊆ SoPU(MA,NP) = SoPU(NP,NP) = NP. Second,
we see that if NP = coNP (concise refutations), then coRP ⊆ coNP = NP.

For the PI and SoPU classes that involve BQP1, NP, or MA, it seems difficult to state
other inclusions, besides the fact that they lie above BQP1 and below QCMA.

3 Discussion and open questions

Perhaps the most interesting points of discussion are the implications of Corollary 9. In the
latter case, if a complete classification theorem for QSAT problems shows that there are
fewer than 13 classes, this would present exciting implications as equalities between some
of these classes tackle many interesting and open questions (see Figure 1). This is true
even for adjacent classes. For instance, P = coRP would imply that probabilistic algorithms

14 P||NP is the class of problems that can be solved by a P machine with polynomially many nonadaptive
NP queries, or alternatively, logarithmically many adaptive queries.
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with perfect completeness can be derandomized, and QCMA = QMA1 would imply that any
quantum-verifiable problem (with perfect completeness) could be verified using a classical
witness state. Even for the PI and SoPU classes defined here, we have that if PI(A,B) = A,
then B ⊆ A. As mentioned in Section 2.7, it is expected through derandomization conjectures
that some of these classes are in fact equal to each other. Even if this classification theorem
proves any of these conjectures, it would be a great result since such proofs have eluded us
for many decades. In the former case of Corollary 9, a classification showing that there are
more than 13 classes would be a stark contrast with classical CSPs, which can be completely
classified as being either in P or NP-complete [38, 43]. This would highlight the more rich
and complex panorama of strong QCSPs, and establish a larger repertoire of problems from
which to construct reductions and potentially describe the complexity of other problems.

This last point also raises the question whether there could be other classes with complete
QSAT problems. Considering those corresponding to polynomial-time computation and
verification, we think that this is unlikely. For example, we have not mentioned complete
QCSPs for BPP, BQP, or QMA. Since coRP ⊆ BPP, BQP1 ⊆ BQP, and QMA1 ⊆ QMA,
there are clearly strong QCSPs in these classes. However, the challenge lies in proving their
hardness: as shown in Section A.3, these proofs usually require encoding a probabilistic
circuit into an instance of this problem. As is also shown there, perfect completeness is critical
for the construction, and thus does not work for a circuit with two-sided error. Adressing
this would require a different technique.15 A positive resolution could arise if these classes
admit a scheme that boosts their acceptance probabilities to 1. Jordan et al. [27] showed
that this was possible for QCMA (demonstrating that QCMA = QCMA1), but whether this
is possible for BPP, BQP, or QMA remains an open question. Another set of classes we have
not considered, are those with no error. Little is known about these classes as they appear to
be extremely difficult to work with since the perfect soundness requirement implies that no
incorrect instance is ever accepted. Besides classes related to polynomial-time computation
and verification, there could be other classes with complete QCSPs. After all, the complexity
class landscape is vast.

In Theorems 2 and 5, we describe two new types of QSAT problems that can be solved
efficiently with a quantum or probabilistic classical computer. Unfortunately, the projectors
used in these problems are artifacts built to achieve these results and do not immediately
correspond to QSAT problems of interest, even in the qubit case. Recent developments in
the fields of quantum chemistry [5], high-energy physics [35] and nuclear physics [10, 16, 17]
have shown that 3- or 4-local Hamiltonians are sometimes necessary to explain emergent
physics. The QSAT problems for these Hamiltonians are not immediately tractable as k ≥ 3,
so it would be exciting to determine if these problems, or others, fall within these complexity
classes. We hope that having demonstrated that such problems exist, our results inspire
others to search for more relevant cases.

Finally, Theorem 8 adds an additional six classes to the set of classes with strong QCSP
complete problems. Beyond the inclusions shown in Figure 1, little is known about them. It
would thus be interesting to investigate how these classes relate to others, and which other
problems fall within them.

15 Another technique is to reduce an already known hard problem into an instance of the target problem.
For the LH problem, this is done via perturbation theory gadgets [28, 39, 18]. However, these gadgets
rely on approximations and hence do not preserve perfect completeness.
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A Notation and background

A.1 Notation
For a bitstring x, let |x| denote the number of bits in x.

A promise problem A = (Ayes, Ano) is a computational problem consisting of two non-
intersecting sets Ayes, Ano ⊆ {0, 1}∗ where given an instance x ∈ {0, 1}∗ (promised to be in
one of the two sets), one is tasked to determine if x ∈ Ayes (x is a yes-instance) or x ∈ Ano

(x is a no-instance).16 If Ayes ∪Ano = {0, 1}∗, then A is called a language. For an instance
x, we let n = |x| denote the size of x.

For some complexity classes, we specify the gate set used. Here, we use the Clifford-
cyclotomic gate sets Gm defined in Ref. [4]. Specifically, we only consider those that are a
power of two. These are: G2 := {X,CNOT,Toffoli, H ⊗H}, G4 := {X,CNOT,Toffoli, ζ8H},
and for l ≥ 3, G2l := {H,CNOT, T2l}. Here, T2l = diag(1, ζ2l) where ζ2l = e2πi/2l is a
primitive 2l-th root of unity.

In all quantum circuits considered here, we let U0 = I be a dummy unitary used for
convenience. The same is true for classical circuits Q and classical reversible circuits R.
For circuits that decide computational problems, we let ans denote the qubit that when
measured provides this decision. We accept the instance if the qubit is measured and yields
outcome “1”, and reject otherwise. Usually, ans is the first ancilla qubit of the circuit.

For a circuit Un that decides an instance x with |x| = n, we denote Ux as the circuit
where the instance x is encoded into it and the inputs are only ancilla qubits in the |0⟩ state.

A.2 Classes with perfect completeness
This version of the paper assumes familiarity with basic complexity classes; for a detailed
introduction, we refer the reader to the full version of the paper [14]. Here, we only discuss a
variation of probabilistic complexity classes with perfect completeness.

These are the classes where the acceptance probability of yes-instances is equal to one,
and they are one of the two types of classes with one-sided error. Although these classes
appear to be similar to their two-sided error variation, quantum complexity classes with
one-sided error require a more precise treatment as they are not known to be independent

16 The asterisk over the set is known as the Kleene star and is used to represent strings of any finite size.
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of the gate set used. Indeed, the Solovay-Kitaev theorem [29] used to resolve this issue for
classes with two-sided error only works for approximate equivalence of universal gate sets
and not perfect equivalence. Thus, for classes with one-sided error (with some exceptions),
one must specify the gate set used by the quantum circuits. This is not the case for classical
complexity classes as it is known that every classical circuit using gate set G can be perfectly
simulated by another circuit using a universal gate set G′.

Given this discussion, we can then define one-sided error classes as follows:

▶ Definition 23 (Classes with perfect completeness). Let C be a complexity class with two-sided
error. The variant of this class with perfect completeness is defined in a similar way to C
except for the following differences:
1. For a promise problem A, the acceptance probability must be exactly 1 when x ∈ Ayes.
2. If C is a quantum complexity class, the gate set G used by the quantum circuits {Un} must

be specified.
The class is generally denoted as C1, or CG

1 if it is a quantum complexity class.

This sensibility to the gate set in quantum complexity classes is the reason why, in Theorems 1
and 2, we explicitly state that LCT-QSAT and SLCT-QSAT are complete for BQP1 with the
particular choice of gate set G8. It also presents other complications. To see this, consider
BQP. It is evident that BQPG

1 ⊆ BQP for any arbitrary gate set G, and also that P ⊆ BQP.
However, is it true that P ⊆ BQPG

1 ? Fortunately, one can show that for the Clifford+T gate
set (i.e. G8) used in this paper, the class BQPG8

1 follows the intuitive containment of classes.
Interestingly, Jordan et al. [27] showed that if the circuits that decide a QCMA problem

consist of gates with a succinct representation (e.g. G8), the acceptance probability of yes-
instances can be amplified additively to be exactly 1. In other words, they showed that
QCMA ⊆ QCMAG8

1 , concluding that QCMAG8
1 = QCMA. This explains why in Theorem 4

we state that the problem Witnessed SLCT-QSAT is QCMA-complete. To this day, it
remains an open question whether a similar scheme can also work for BQP and QMA. In the
case of QMA, it seems this is not the case as one can show that there exists an oracle for
which QMA ̸= QCMA1 [1]. However, a similar claim was made about QCMA and QCMA1.

A.3 k-QSAT & the Circuit-to-Hamiltonian transformation
Here, we introduce Quantum k-SAT (denoted here as k-QSAT) as presented by Gosset and
Nagaj in Ref. [22]. We present relevant parts of the proofs showing that k-QSAT is contained
in QMA1 for any constant k, and QMA1-hard for k ≥ 6. While Bravyi’s [6] original work
demonstrates hardness for k ≥ 4, we choose to present this slightly weaker result for brevity,
but also to introduce our clock encoding and notation useful for the rest of this paper.

As we are working to prove the inclusion and hardness of this problem for a class requiring
perfect completeness, it is necessary to specify the gate set used by the quantum circuits.
For reasons discussed below, we choose G8. In addition, we also have to be wary that
all operations can be performed with perfect accuracy using gates from this set and all
measurements are in the computational basis. For this purpose, Gosset and Nagaj introduce
the following set of projectors.

▶ Definition 24 (Perfectly measurable projectors). Let P be the set of projectors such that
every matrix element in the computational basis is of the form 1

4 (a+ ib+
√

2c+ i
√

2d) for
all a, b, c, d ∈ Z.

The (promise) problem k-QSAT can be defined as follows.
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▶ Definition 25 (k-QSAT). Given an integer n and an instance x consisting of a collection
of projectors {Πi} ⊂ P where each Πi acts nontrivially on at most k qubits, the problem
consists on deciding whether (1) there exists an n-qubit state |ψsat⟩ such that Πi|ψsat⟩ = 0
for all i, or (2) for every n-qubit state |ψ⟩, Σi ⟨ψ|Πi|ψ⟩ ≥ 1/poly(n). We are promised that
these are the only two cases. We output “YES” if (1) is true, or “NO” otherwise.

One can think of this problem as being presented with a list of constraints or clauses (the
projectors Πi) and tasked with distinguishing between the following cases: (1) there exists
a state that satisfies all constraints (a satisfying state), or (2) any possible state induces
a violation of the constraints greater than 1/poly(n). The promise sets the conditions for
classifying instances as either x ∈ Ayes or x ∈ Ano.17

A.3.1 In QMA1

Suppose we are presented with a witness state |ψwit⟩ and a k-QSAT instance composed
of projectors {Πi}. The quantum algorithm that decides whether this state satisfies all
projectors Πi consists of simply measuring the eigenvalues of all projectors on this state.
Then, if all measured eigenvalues are 0, we conclude that all projectors are satisfied by the
state and output “YES”. Otherwise, we reject.

Specifically, we measure the eigenvalue of a projector Πi by applying the unitary

V (Πi) = Πi ⊗X + (I − Πi) ⊗ I, (2)

to the witness and an additional ancilla qubit in the state |0⟩, followed by a measurement of
the ancilla in the computational basis. Here, X denotes the Pauli-X gate. The probability
that |ψwit⟩ does not satisfy projector Πi (obtain outcome “1”) is given by

pi = ⟨ψwit| Πi |ψwit⟩ . (3)

Defining the acceptance probability as the probability that all measurements produce outcome
“0”, and assuming V (Πi) can be implemented perfectly with gate set G, one can show that
this algorithm meets the completeness and soundness conditions of QMA1, concluding that
k-QSAT is contained in this class.

As mentioned, to support this claim, it is necessary to demonstrate that V (Πi) can be
implemented perfectly using gate set G8. This follows from the fact that the projectors Πi

are from the set P together with a theorem by Giles and Selinger [20].

A.3.2 QMA1-hard
Now, we discuss elements of the proof demonstrating that k-QSAT is QMA1-hard when k ≥ 6
and for any gate set G that is universal for quantum computation.

The idea is to demonstrate that any instance x of an arbitrary promise problem in QMA1
can be transformed or reduced in polynomial time into an instance x′ of k-QSAT, where the
answer to both problems is the same for all instances. Furthermore, we also need to show
that all projectors of the resulting k-QSAT instance act on at most 6 qubits.

17Without the promise, the problem seems to become harder, as it requires distinguishing between the
case where the projectors are satisfiable, and the case where they are not but the violation induced by
some states could be exponentially close to zero. Without the promise, the problem is most likely not
contained in QMA1.

TQC 2025



6:22 QSAT Problems Are Complete for a Plethora of Classes

Let Ux = UL . . . U1 with Ui ∈ G and L = poly(n) be the QMA1 verification circuit where
given an instance x of a problem A = (Ayes, Ano), Ux decides whether x ∈ Ayes or x ∈ Ano.
The input to the circuit consists of the p-qubit witness state |ψwit⟩, and a q-qubit ancilla
register D (referred to as the data register) initialized to the state |0⟩⊗q, where p and q are
two polynomials in n = |x|. Additionally, let the answer be obtained by measuring the ancilla
qubit ans in the computational basis. The goal of the reduction is to engineer a set of 6-local
projectors such that they are uniquely satisfied by the state encoding the evaluation of the
circuit U on |ϕ0⟩ := |0⟩⊗q ⊗ |ψwit⟩ at all steps of the computation. This state is appropriately
known as the (computational) history state and is given by

|ψhist⟩ := 1√
L+ 1

L∑
t=0

Ut . . . U0 |ϕ0⟩D ⊗ |Ct⟩C . (4)

Here, we have introduced a clock register C acting on a new (not yet specified) Hilbert space
used to keep track of the current step in the computation. This history state can be defined
in many ways depending on the implementation of the states |Ct⟩. In this paper, we choose
a clock encoding acting on Hclock = (C3)⊗L+1, consisting of the ready state |r⟩, the active
state |a⟩, and the dead state |d⟩. The clock progresses as

|C0⟩ = |a0r1r2 . . . rL⟩ ,
|C1⟩ = |d0a1r2 . . . rL⟩ ,

...
|CL⟩ = |d0d1d2 . . . aL⟩ .

(5)

The projectors that allow us to build the required 6-QSAT instance act on both of these
Hilbert spaces and are given by

P
(i)
init := |1⟩⟨1|i ⊗ |a⟩⟨a|0 ,

P
(i)
out := |0⟩⟨0|i ⊗ |a⟩⟨a|L ,

P
(i)
prop,U := 1

2
[
I⊗2 ⊗ |ar⟩⟨ar| + I⊗2⊗ |da⟩⟨da| − U ⊗ |da⟩⟨ar| − U† ⊗ |ar⟩⟨da|

]
,

(6)

which receive an index to specify its action on a given particle. Moreover, Pprop,U acts on
clock qudits i− 1 and i. Observe that Pinit and Pout act on a single data and clock particle,
while Pprop,U acts on two data qubits and two clock particles. As each clock particle can be
represented by two qubits, albeit a bit wastefully, it is evident that these projectors are at
most 6-local (on qubits). Other clock encodings may lead to different locality.18

Each projector in Equation (6) penalizes states that do not meet certain requirements.
(Initialization) Pinit requires that when clock particle 0 is in the state |a⟩, data qubit i is
initialized to |0⟩. (Computational propagation) Pprop,U requires that as clock particles i and
i+ 1 transition from |ar⟩ to |da⟩, U is applied to two qubits of the data register. (Readout)

18 In Ref. [6], Bravyi employs a four-state clock encoding, 2L + 1 clock basis states, and an additional
propagation projector. This allows interactions between either two clock particles at a time or one clock
particle and two data qubits, resulting in 4-local projectors. However, this comes at a cost of increased
clock particle dimensionality.
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Figure 4 Representation of a 6-QSAT instance which encodes a QMA1 verification circuit
U = UL . . . U1. For simplicity, we let U act on four data qubits: two ancilla qubits (those present in
Pinit clauses), and two for the witness state (uninitialized ones). The ancilla measured at the end of
the computation is labeled ans. The leftmost and rightmost clock particles are marked with “start”
and “stop” icons, indicating the action of Pstart and Pstop clauses, respectively. The Pclock clauses
are shown as arrows on top of Pprop,U lines, representing the clock progression.

Finally, Pout requires that when clock qudit L is in the state |a⟩, data qubit i is in the state
|1⟩.19 Aside from these projectors, one also has to define

Pstart := |r⟩⟨r|0 ,
Pstop := |d⟩⟨d|L ,

P
(i)
clock := |r⟩⟨r|i ⊗ (I − |r⟩⟨r|)i+1 + |a⟩⟨a|i ⊗ (I − |r⟩⟨r|)i+1 + |d⟩⟨d|i ⊗ |r⟩⟨r|i+1 ,

(7)

which are at most 4-local projectors requiring that the clock states have the form described
in Equation (5). Furthermore, the six types of projectors of Equations (6) and (7) are of
the form given in Definition 24 and are hence projectors from P, as required. Finally, using
these projectors, the instance that encodes the verifier circuit U = UL . . . U1 is given by

Hinit :=
∑

b∈ancilla
P

(b)
init,

Hprop :=
L∑

t=1
P

(t)
prop,Ut

Hout := P
(ans)
out ,

Hclock := Pstart + Pstop +
∑
c∈C

P
(c)
clock.

We illustrate this instance in Figure 4. The set of projectors that define this k-QSAT instance
are the individual terms of the sum. They are often grouped into positive semi-definite
terms as above for historical reasons. Briefly, the Hinit term requires that all ancilla qubits
from register D are initialized to |0⟩, leaving the data qubits for the witness state “free”
or uninitialized. Hprop defines a clock register of L+ 1 particles and requires that as time
progresses from t− 1 to t, Ut is applied to the data qubits. Hout requires that at the end of
the computation ans is measured to be “1”. Finally, Hclock requires that we obtain a running
clock register progressing as shown in Equation (5). Together, Hinit, Hprop, and Hclock

require that if there exists a state satisfying all of their projectors, the state must mimic the
evaluation of the quantum circuit U = UL . . . U1 on the state |ϕ0⟩. This is the history state

19 Unlike Bravyi [6] and Meiburg [32], we define Pout so it is satisfied when the logical qubit is in the state
|1⟩, and not |0⟩.
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of Equation (4) with the clock encoding of Equation (5). Moreover, if the verification circuit
U accepts yes-instances with certainty, the history state also satisfies Hout and is thus the
unique ground state of the 6-local Hamiltonian H = Hinit +Hprop +Hout +Hclock.

This concludes the transformation of the circuit into local Hamiltonians. Completing
the proof that 6-QSAT is QMA1-hard requires showing that, if x ∈ Ayes, then x′ has a
frustration-free ground state, and if x ∈ Ano, then the ground state energy of H is not too
low. Proving these is beyond the scope of this section.
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