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Abstract
We study quantum algorithms for verifying properties of the output probability distribution of a
classical or quantum circuit, given access to the source code that generates the distribution. We
consider the basic task of uniformity testing, which is to decide if the output distribution is uniform
on [d] or ε-far from uniform in total variation distance. More generally, we consider identity testing,
which is the task of deciding if the output distribution equals a known hypothesis distribution, or is
ε-far from it. For both problems, the previous best known upper bound was O(min{d1/3/ε2, d1/2/ε}).
Here we improve the upper bound to O(min{d1/3/ε4/3, d1/2/ε}), which we conjecture is optimal.
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1 Introduction

For 30 years we have known that quantum computers can solve certain problems significantly
faster than any known classical algorithm. Traditionally, most of the research in this area has
focused on decision problems (like SAT) or function problems (like Factoring), where for each
possible input there is a unique “correct” output. However, we have also found that quantum
computers can yield speedups for the task of sampling from certain probability distributions.
Prominent examples include boson sampling [1] and random circuit sampling [8]. Sampling
tasks have seemed more natural for NISQ-era quantum computation, and indeed many of the
first candidate experimental demonstrations of quantum advantage have been for sampling
problems [6].

One of the downsides of sampling problems is the challenge of verifying the output of an
algorithm, whether classical or quantum, that claims to sample from a certain distribution.
As a simple example, consider a classical or quantum algorithm that implements a supposed
hash function with output alphabet [d] := {1, . . . , d}. The algorithm designer claims that the
output distribution of this hash function is uniform on [d]. If p denotes the actual output
distribution of the algorithm, and ud denotes the uniform distribution on [d], then we would
like to test whether p = ud, and reject the claim if p is in fact ε-far from ud in total variation
distance, meaning 1

2∥p− ud∥1 > ε. (We will also consider other distance measures in this
work, since the complexity of the testing task is sensitive to this choice.)
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7:2 Uniformity Testing When You Have the Source Code

This verification task is called “uniformity testing” (in total variation distance) and its
complexity is well studied in the classical literature. If we only have access to samples from
p, but are not allowed to inspect the algorithm that produces these samples, it is known
that Θ(d1/2/ε2) samples are necessary and sufficient to solve this problem; there are various
classical algorithms that achieve this bound (starting with that of [28]; see, e.g., [11] for a
detailed survey and discussion), and it is also not possible to do better with a quantum
algorithm. But what if – as in the examples above – we do have access to the algorithm that
produces p? Can we improve on this complexity if we have access to the “source code” of
the algorithm?

Having the source code

To clarify, the “source code” for a classical randomized sampling algorithm means a random-
ized circuit (with no input) whose output is one draw from p. More generally, the “source
code” for a quantum sampling algorithm means a unitary quantum circuit (with all input
qubits fixed to |0⟩) which gives one draw from p when some of its output bits are measured in
the standard basis and the rest are discarded.1 The simplest way to use the code C for p is
to run it, obtaining one sample. If C has size S, then getting one sample this way has cost S.
Another way to use the code C is to deterministically compute all its output probabilities;
this gives one perfect information about p, but has cost bound 2S . But quantum computing
has suggested a third way to use the code: “running it in reverse”. For example, Grover’s
original algorithm [18] can be seen as distinguishing two possibilities for p on [2], namely
p1 = 0 or p1 = 1/N , while using only O(N1/2) forwards/backwards executions of C. The
total cost here is O(N1/2) · S, the same as the cost for O(N1/2) samples.

We suggest that the utility of “having the source code” for distribution testing problems
remains notably underexplored. Indeed, there is significant room for improvment in the
bounds for even the most canonical of all such problems: uniformity testing. Our main
theorem is the following:

▶ Theorem 1. There is a computationally efficient quantum algorithm for uniformity testing
with the following guarantees: given ε ≥ 1/

√
d, the algorithm makes O(d1/3/ε4/3) uses of “the

code” for an unknown distribution p over [d], and distinguishes with probability at least .99
between

(1) p = ud, and (2) dTV(p,ud) > ε. (1)

The main idea behind this theorem is to combine very careful classical probabilistic analysis
with a black-box use of Quantum Mean Estimation (QME) [19, 9, 21, 25, 20, 22]; see Section 2
for further discussion. Table 1 below compares our result to prior work on the problem.
Table 1 has two columns because it seems that different algorithms are necessary depending
on how d and ε relate. (Interestingly, this is not the case in the classical no-source-code
model.) Thus combining our new result with that of [24], the best known upper bound
becomes O(min{d1/3/ε4/3, d1/2/ε}). We remark that although [24]’s algorithm/analysis is
already simple, we give an alternative simple algorithm and analysis achieving O(d1/2/ε) in
Section A, employing the classical analysis + QME approach used in the proof of our main
theorem.

1 This is sometimes termed the “purified quantum query access model”, and is the most natural and
general model. The “quantum string oracle”, referenced later in Table 1, refers to a situation in which
one assumes a very specific type of source code for p (thus making algorithmic tasks easier). See
Section 3 for details and [7] for a thorough discussion.
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Lower bounds?

As for lower bounds (holding even in the quantum string oracle model): complexity Ω(1/ε)
is necessary even in the case of constant d = 2, following from work of [26]; and, [12] showed
a lower bound of Ω(d1/3) even in the case of constant ε, by reduction from the collision
problem [2]. For reasons discussed in Section 2, we make the (somewhat bold) conjecture
that our new upper bound is in fact tight for all d and ε:

▶ Conjecture 2. Any algorithm that distinguishes p = ud from dTV(p,ud) > ε with success
probability at least .99 requires Ω(min{d1/3/ε4/3, d1/2/ε}) uses of the code for p. (Moreover,
we conjecture this lower bound in the stronger quantum string oracle model.)

Identity testing

Several prior works in this area have also studied the following natural generalization of
uniformity testing: testing identity of the unknown distribution p to a known hypothesis
distribution q. An example application of this might be when q is a Porter–Thomas-type
distribution arising as the ideal output of a random quantum circuit. Luckily, fairly recent
work has given a completely generic reduction from any fixed identity testing problem to the
uniformity testing problem; see [16], or [11, Section 2.2.3]. We can therefore immediately
extend our new theorem to the general identity-testing setting:

▶ Corollary 3. There is a computationally efficient quantum algorithm for identity testing
to a reference distribution q over [d] with the following guarantees: The algorithm makes
O(min(d1/3/ε4/3, d1/2/ε)) uses of “the code” for an unknown distribution p over [d], and
distinguishes with probability at least .99 between

(1) p = q, and (2) dTV(p,q) > ε. (2)

(For completeness, we verify in Section C that the blackbox reduction does indeed carry
through in our setting, preserving access to “the code”.)

More fine-grained results

In proving our main theorem, we will in fact prove a strictly stronger version, one which is
more fine-grained in two ways:
(1) Tolerance: Not only does our test accept with high probability when p = ud, it also

accepts with high probability when p is sufficiently close to ud.

Table 1 “Sample” complexity for uniformity testing with respect to total variation distance.

Reference Large ε regime Small ε regime Access model

[28, 4] Θ(d1/2/ε2) Classical, no source code
[10] O(d1/3) for ε = Θ(1)∗ Quantum string oracle
[12] O(d1/3/ε2) Quantum string oracle
[15] O(d1/2/ε) · log(d/ε)3 log log(d/ε) Source code
[24] O(d1/2/ε) Source code

This work O(d1/3/ε4/3) for ε ≥ 1√
d

Source code

*The work states a bound of O(d1/3/ε4/3), but adds that ε must be constant.
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7:4 Uniformity Testing When You Have the Source Code

(2) Stricter distance measure. Not only does our test reject with high probability when
dTV(p,ud) > ε, it also rejects with high probability when dH(p,ud) > ε. (This is
stronger, since dTV(p,q) ≤ dH(p,q) always.)

To elaborate, recall the below chain of inequalities, which also includes KL- and χ2-
divergence. (We review probability distance measures in Section 3.)

dTV(p,q)2 ≤ d2
H(p,q) ≤ KL(p || q) ≤ χ2(p || q). (3)

The strictly stronger version of Theorem 1 that we prove is:

▶ Theorem 4. There is a computationally efficient quantum algorithm for uniformity testing
with the following guarantees: For 1/d ≤ θ ≤ 1, the algorithm makes O(d1/3/θ2/3) uses
of “the code” for an unknown distribution p over [d], and distinguishes with probability at
least .99 between

(1) χ2(p || ud) ≤ .99θ and ∥p∥∞ ≤ 100/d, and (2) d2
H(p,ud) > θ. (4)

We remark that most prior works on uniformity testing [10, 12, 15, 24] also had some
additional such fine-grained aspects, beyond what is stated in Table 1.

Additional results

Speaking of χ2-divergence, we mention two additional results we prove at the end of our
work. These results additionally inform our Conjecture 2.

First, as mentioned earlier, in Section A we give an alternative proof of the O(d1/2/ε)
upper bound of [24], and – like in that work – our result is tolerant with respect to χ2-
divergence. That is, we prove the strictly stronger result that for θ ≤ 1/d, one can use
the code O(d1/2/θ1/2) times to distinguish χ2(p || ud) ≤ cθ from χ2(p || ud) > θ (for some
constant c > 0).

Second, recall that χ2(p || ud) can be as large as d. For example, χ2(uS || ud) = d
r − 1

for any set S ⊆ [d] of size r. Thus it makes sense to consider the uniformity testing problem
even with respect to a χ2-divergence threshold θ that exceeds 1. In Section B we show (albeit
only in the quantum string oracle model) that for θ ≥ 1, one can use the code O(d1/3/θ1/3)
times to distinguish χ2(p || ud) ≤ cθ from χ2(p || ud) > θ, and this is optimal.

2 Technical overview of our proof

Our main algorithm is concerned with achieving the best possible ε-dependence for uniformity
testing while maintaining a d-dependence of d1/3; in this way, it is best compared with
the older works of [10, 12], the latter of which achieves complexity O(d1/3/ε2), as well as
the classical (no-source-code) algorithm achieving complexity O(d1/2/ε2). In fact, all four
algorithms here are almost the same (except in terms of the number of samples they use).
Let us describe our viewpoint on this common methodology.
We consider the algorithm as being divided into two Phases, and we may as well assume
each Phase uses n samples. Phase 1 will have two properties:

It will make n black-box draws from p (i.e., the source code is not used in Phase 1).
Using these draws, Phase 1 will end by constructing a certain “random variable” – in the
technical sense of a function Y : [d]→ R.
The mean of this random variable Y , vis-a-vis the unknown distribution p, will ideally
be close to χ2(p || u) = d · ∥p− ud∥2

2. That is, ideally µ := Ep[Y ] =
∑d

j=1 pjY (j) ≈
χ2(p || ud).
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Phase 2 then performs a mean estimation algorithm on Y (vis-a-vis p) to get an estimate of µ
and therefore of χ2(p || ud). Ideally, the resulting overall algorithm is not just a uniformity
tester, but a χ2-divergence-from-uniformity estimator. This could then be weakened to a
TV-distance uniformity tester using the inequality dTV(p,ud)2 ≤ χ2(p || ud).

The mean estimation algorithm used in Phase 2 differs depending on whether one has
the source code or not. In the classical (no source code) model, one simply uses the
naive mean estimation algorithm based on n more black-box samples; by Chebyshev’s
inequality, this will (with high probability) give an estimate of µ to within ±O(σ/n1/2),
where σ := stddevp[Y ] =

√∑d
j=1(Y (j)− µ)2. In the case of a quantum tester with the

source code access, we can use a Quantum Mean Estimation (QME) routine; in particular,
the one from [22] will (with high probability) yield an estimate of µ to within ±O(σ/n).2

A subtle aspect of this overall plan is that the mean µ and standard deviation σ of Y
are themselves random variables (in the usual sense), where the randomness comes from
Phase 1. Thus it is natural to analyze EPhase 1[µ] and EPhase 1[σ]. Of course, these depend
on the definition of Y , which we now reveal: Y (j) = d

nXj − 1, where Xj denotes the number
of times j ∈ [d] was drawn in Phase 1. The point of this definition of Y is that a short
calculation implies

EPhase 1[µ] = χ2(p || ud); (5)

that is, the random variable µ is an unbiased estimator for our quantity of interest, the
χ2-divergence of p from ud. This is excellent, because although the algorithm does not see µ
at the end of Phase 1, it will likely get a good estimate of it at the end of Phase 2. . . so long
as (the random variable) σ is small.

We therefore finally have two sources of uncertainty about our final error (in estimating
χ2(p || ud)):
1. Although EPhase 1[µ] = χ2(p || ud), the random variable µ may have fluctuated around

its expectation at the end of Phase 1. One way to control this would be to bound
VarPhase 1[µ] (and then use Chebyshev).

2. The Phase 2 mean estimation incurs an error proportional to σ. One way to control this
would be to bound EPhase 1[σ2] (and then use Markov to get a high-probability bound
on σ2, and hence σ).

The quantities controlling the error here, VarPhase 1[µ] and EPhase 1[σ2], are explicitly calcul-
able symmetric polynomials in p1, . . . ,pd of degree at most 4, depending on n. In principle,
then, one can relate these quantities to χ2(p || ud) = d · ∥p− ud∥2

2 itself, and derive a bound
on how big n must be to (with high probability) get a good estimate of χ2(p || ud).

In the classical (no source code) case, this methodology is a way to obtain the O(d1/2/ε2)
sample complexity, adding to the number of existing classical sample-optimal algorithms
for the task. (This method in particular has some potential useful applications; e.g., one
could consider decoupling the number of samples used in Phases 1 and 2 to, e.g., obtain
tradeoffs for memory-limited settings). On one hand, with this method one can give a very
compressed proof of the O(d1/2/ε2) that, factoring out routine calculations, fits in half a

2 This QME routine was not available at the time of [10, 12] which had to make do with Quantum
Approximate Counting [9] – essentially, QME for Bernoulli random variables. But this is not the source
of our improvement; one can obtain our main theorem with only a (polylog d)-factor loss using just
Quantum Approximate Counting.

TQC 2025



7:6 Uniformity Testing When You Have the Source Code

page (see, e.g., [27, Sec. 10]). On the other hand, one has to execute the calculations and
estimations with great care, lest one would obtain a suboptimal result (there is a reason it
took 8 years3 to get the optimal quadratic dependence on ε [17, 28]).

In the case when source code is available, so that one can use the QME algorithm, how
well does this methodology fare? On one hand, QME gives a quadratic improvement over
naive classical mean estimation, meaning one can try to use signficantly fewer samples in
Phase 2. But when one balances out the sample complexity between the two Phases, it
implies one is using fewer samples in Phase 1, and hence one gets worse concentration of µ
around its mean in Phase 1. So the calcuations become more delicate.

2.1 Heuristic calculations
Instead of diving into complex calculations, let’s look at some heuristics. First, let’s consider
how the algorithm proceeds in the case when p really is the uniform distribution ud. In this
case, as long as we’re in a scenario where n≪ d1/2, we will likely get all distinct elements
in Phase 1, meaning that Xj will be 1 for exactly n values of j and Xj will be 0 otherwise.
Then Y (j) will be d

n − 1 for n values of j and will be −1 otherwise. This indeed means
µ = Ep[Y ] = 1

d

∑d
j=1 Y (j) = 0 = ∥p− ud∥2 with certainty in Phase 1. This is very good; we

get no error out of Phase 1. However QME in Phase 2 will not perfectly return the value µ = 0;
rather, it will return something in the range ±O(σ/n), where σ =

√
1
d

∑d
j=1(Y (j)− 0)2 =√

d
n − 1 ∼ d1/2/n1/2. Thus the value returned by QME may well be around d1/2/n3/2,

which from the algorithm’s point of view is consistent with χ2(p || ud) ≈ d1/2/n3/2. Thus
the algorithm will only become confident that dTV(p,ud)2 ⪅ d1/2/n3/2, and hence it can
only confidently accept in the case p = ud provided d1/2/n3/2 ⪅ ε2; i.e., n ⪆ d1/3/ε4/3. We
thereby see that with this algorithm, a uniformity testing upper bound of O(d1/3/ε4/3) is
the best we can hope for. If one also believes that this algorithm might be optimal (and it
has been the method of choice for essentially all previously known results), then this could
possibly be taken as evidence for our Conjecture 2.

At this point, one might try to prove that complexity O(d1/3/ε4/3) is achievable; so far
we have only argued that with this many samples, the algorithm will correctly accept when
p = ud (with high probability). Again, before jumping into calculations, one might try
to guess the “hardest” kind of ε-far distributions one might face, and try to work out the
calculations for these cases. The hardest distributions in the classical case (i.e., the ones that
lead to the matching Ω(d1/2/ε2) lower bound) are very natural: they are the p’s in which half
of the elements j ∈ [d] have pj = 1+2ε

d and half have pj = 1−2ε
d . Assuming this is the “worst

case”, one can calculate what VarPhase 1[µ] and EPhase 1[σ2] will be, and the calculations
turn out just as desired. That is, with n = O(d1/3/ε4/3), these two error quantities can be
shown to be suffciently small so that the overall algorthm will correctly become confident
that χ2(p || ud) = d · ∥p− ud∥2

2 ≤ 4d · dTV(p,ud)2 significantly exceeds ε2, and hence the
algorithm can correctly reject.

Everything therefore looks good, but there is a fly in the ointment. Even though this
particular p with its values of 1±2ε

d seems like the “hardest” distribution to face, one still
has to reason about all possible p’s with dTV(p,ud). And when one does the calculations
of Var[µ] and E[σ2] as prescribed by the standard methodology, the plan ends up failing.

3 Technically, it took more than 8 years, as the proof of [28] was later shown to have a flaw: so the tight
dependence had to wait until [4]. See [11, Section 2.3] for a discussion.
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Specifically one gets too much error for p’s that have somewhat “heavy” elements, meaning
pj ’s with pj ≫ 1/d. The prior works [10, 12] cope with this failure by taking more samples;
i.e., setting n = O(d1/3/εc) for c > 4/3 (specifically, [12] achieves c = 2). But our goal is to
show that this is unnecessary – that the algorithm itself works, even though the standard
and natural way of analyzing it fails.

In short, the reason the standard analysis of the algorithm fails is due to “rare events” that
are caused by heavy elements in p. These j’s with pj ≫ 1/d may well still have pj ≪ 1/n
(for our desired n = O(d1/3/ε4/3)), and thus be drawn only rarely in Phase 1. The major
difficulty is that when they are drawn, they generate a very large contribution to σ2, causing
EPhase 1[σ2] to be “misleadingly large”. That is, when there are heavy elements, σ2 may have
the property of typically being much smaller than its expectation. Thus controlling the QME
error using the expected value of σ2 is a bad strategy.

Perhaps the key insight in our analysis is to show: In those rare Phase 1 outcomes when
σ2 is unusually large, µ is also unusually large compared to its expectation. The latter
event is helpful, because if µ ends up much bigger than its expectation, we can tolerate a
correspondingly worse error-bar from QME. In short, we show that the rare bad outcomes
for σ2 coincide with the rare good outcomes for µ.

In order to make this idea work out quantitatively, we (seem to) need to weaken our
ambitions and get something a bit worse than a χ2-divergence-from-uniform estimation
algorithm, in two ways. (This is fine, as our main goal is just a non-tolerant uniformity tester
with respect to TV.) First, rather than insisting that we accept with high probability when
χ2(p || ud) ≤ .99θ and reject with high probability when χ2(p || ud) > θ, we need to only
require rejection when d2

H(p,ud) > θ. The reason is that the rare large values of σ2 that we
face are only comparable with the larger value d2

H(p,ud), and not with χ2(p || ud).4
As for the second weakening we need to make: We explicitly add to our tester a check

that the value of maxj{Xj} arising after Phase 1 is not too large. Roughly speaking, this
extra test ensures that there are no very heavy elements. (Of course, this is satisfied when
p = ud, so we don’t mind adding this test.) The reason we need to add this check is so
that we can bound the quadratic expression

∑d
j=1 X

2
j (which enters into the value of σ2) by

maxj{Xj} ·
∑d

j=1 Xj ; in turn, once maxj{Xj} is checked to be small, this expression can be
bounded by the linear quantity

∑d
j=1 Xj , which can be related to µ. It is by relating σ2 to

µ in this way that we are able to show the correlation between rare events – that when σ2 is
big, µ is also big.

To conclude, we apologize to the reader for writing a “technical overview” whose length
is nearly comparable to that of the actual proof itself. While we tried to make our argument
as streamlined and concise as possible, we felt that it was worth conveying the ideas and
detours which led us there, and which, while now hidden, motivated the final proof.

3 Preliminaries

3.1 Probability distances
Throughout, log and ln the binary and natural logarithms, respectively. We identify a
probability distribution p over [d] = {1, 2, . . . , d} with its probability mass function (pmf), or,

4 We remark that this χ2-versus-Hellinger-squared dichotomy is quite reminsicent of the one that occurs
in classical works on identity testing, such as [4].
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7:8 Uniformity Testing When You Have the Source Code

equivalently, a vector p ∈ Rd such that pi ≥ 0 for all i and
∑d

i=1 pi = 1. For a subset S ⊆ [d],
we accordingly let p(S) =

∑
i∈S pi. The total variation distance between two distributions

p,q over [d] is defined as

dTV(p,q) = sup
S⊆[d]

{p(S)− q(S)} = 1
2∥p− q∥1 ∈ [0, 1], (6)

where the last equality is from Scheffé’s lemma. By Cauchy–Schwarz, this gives us the
relation

1
2∥p− q∥2 ≤ dTV(p,q) ≤

√
d

2 ∥p− q∥2. (7)

We will in this paper also consider other notions of distance between probability distributions:
the squared Hellinger distance, defined as

d2
H(p,q) =

d∑
i=1

(√pi −
√qi)2 = ∥√p−√q∥2

2 ∈ [0, 2]. (8)

(Some texts normalize this by a factor of 1
2 ; we do not do so, as it makes our statements

cleaner.) The chi-squared divergence is then defined as

χ2(p || q) =
d∑

i=1

(pi − qi)2

qi
=
(

d∑
i=1

p2
i

qi

)
− 1 , (9)

while the Kullback–Leibler divergence (least relevant to us, but quite common in the literature),
in nats, is defined as

KL(p || q) =
d∑

i=1
qi ln qi

pi
. (10)

As mentioned in Equation (3), we have the following well known [14] chain of inequalities:

dTV(p,q)2 ≤ d2
H(p,q) ≤ KL(p || q) ≤ χ2(p || q). (11)

Moreover, for the special case of the uniform distribution ud over [d], we have

χ2(p || ud) = d · ∥p− ud∥2
2 . (12)

3.2 Distribution access models
For a probability distribution p on [d], we say a unitary Up is a synthesizer for p if for some
k

Up |0k⟩ =
∑
i∈[d]

√
pi |i⟩ |ψi⟩ , (13)

where the |ψi⟩’s are normalized states often called “garbage states”. Note that any classical
randomized circuit using S gates that samples from p can be converted to a synthesizer
Up in a purely black-box way with gate complexity O(S). (See [22] for details and a more
thorough discussion of synthesizers.)

In this paper, we say an algorithm makes t uses of “the code for p” to mean that we use
(as a black box) the unitaries Up, U†

p, and controlled-Up a total of t times in the algorithm.
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Each of these unitaries is easy to construct given an explicit gate decomposition of Up with
the same gate complexity up to constant factors.

The quantum string oracle, which is used in many prior works, is a specific type of source
code for p. Here we have standard quantum oracle access to an m-bit string x ∈ [d]m for
some m. For any symbol i ∈ [d], the probability pi is defined as the frequency with which
that symbol appears in x, i.e., pi = 1

m |{j : xj = i}|. Note that calling this oracle on the
uniform superposition over m gives us a synthesizer for p. When a randomized sampler for
p is converted to a synthesizer, we get a quantum string oracle, but quantum string oracles
are not as general as arbitrary synthesizers. For example, all probabilities described by a
quantum string oracle will be integer multiples of 1

m , whereas an arbitrary synthesizer has
no such constraint.

3.3 Quantum Mean Estimation
When we use QME, we will have the source code for some distribution p on [d], and we will
also have explicitly constructed some (rational-valued) random variable Y : [d] → Q (say,
simply as a table). From this, one can easily generate code that outputs a sample from Y

(i.e., outputs Y (j) for j ∼ [d]), using the code for p just one time. We will then use the
following QME result from [22]:

▶ Theorem 5. There is a computationally efficient quantum algorithm with the following
guarantee: Given the source code for a random variable Y , as well as parameters n and
δ, the algorithm uses the code O(n log(1/δ)) times and outputs an estimate µ̂ such that
Pr[|µ̂− µ| > σ/n] ≤ δ, where µ = E[Y ] and σ = stddev[Y ].

4 Algorithm in the Large Distance Regime

In this section, we establish Theorem 1, our main technical contribution. We do this by
proving the strictly stronger Theorem 4, which we restate more formally:

▶ Theorem 6. For any constant B > 0, there exists a computationally efficient quantum
algorithm (Algorithm 1) with the following guarantees: on input 1

d ≤ θ ≤ 1, it makes
O(d1/3/θ2/3) uses (where the hidden constant depends on B) of “the code” for an unknown
probability distribution p over [d], and satisfies
1. If χ2(p || ud) ≤ .99θ and ∥p∥∞ ≤ B/d, then the algorithm will accept with probability at

least .99.
2. If d2

H(p,ud) ≥ θ, then the algorithm will reject with probability at least .99.

Proof. Let us start by recording the following inequalities that we will frequently use:

n = ⌈cd1/3/θ2/3⌉, θ ≥ 1/d =⇒ c/θ ≤ n ≤ cd. (14)

We begin with a simple lemma regarding the check on Section 4:

▶ Lemma 7. If ∥p∥∞ ≤ B/d, then Section 4 will reject with probability at most .001.
Conversely, if ∥p∥∞ > 2L/n, then Section 4 will reject with probability at least .999.

Proof. Let Xj ∼ Bin(n, pj) denote the number of times j is drawn. The second (“conversely”)
part of of the proposition follows from a standard Chernoff bound. As for the first part,
suppose ∥p∥∞ ≤ B/d. Now on one hand, if n ≤ d.99/B, so that L = 100, we have

Pr[Bin(n, pj) ≥ 100] ≤
(
n

100

)
p100

j ≤ ((en/100)pj)100 ≤ (e/(100d.01))100 ≤ .001/d, (15)
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Algorithm 1 for the large distance regime.

Require: Parameter 1
d ≤ θ ≤ 1, constant B ≥ 1.

1: Let c = c(B) and let C = C(c) be sufficiently large, and let L be defined as

L :=
{

100 if n ≤ d.99/B,
Bc ln d if n > d.99/B.

2: Set n := ⌈cd1/3/θ2/3⌉.
3: Make n draws J1, . . . ,Jn, and let Xj =

∑n
t=1 1{Jt=j} be the number of times j ∈ [d] is

seen.
4: if Xj ≥ L for any j then reject
5: Do QME with Cn “samples” on the random variable Y defined by Y j = d

nXj − 1,
obtaining µ̂.

6: if µ̂ ≤ .995θ then accept
7: else reject

and thus Xj < 100 for all j except with probability at most .001, as desired. Otherwise,
L = Bc ln d, and since E[Xj ] ≤ Bn/d ≤ Bc, the desired result follows from a standard
Chernoff and union bound (provided c is large enough). ◀

From this, we conclude:
In Case (1), Line 4 rejects with probability at most .001.
In Case (2), we may assume ∥p∥∞ ≤ 2L/n and ∥X∥∞ ≤ L, else Line 4 rejects with
probability ≥ .999. Call this observation (♢).

Now to begin the QME analysis, write pj = 1+εj

d , where εj ∈ [−1, d − 1], and let
µ =

∑d
j=1 pjY j , the mean of Y (from QME’s point of view). Writing η := d2

H(p,ud), our
first goal will be to show:

In Case (1), µ ≤ .991θ except with probability at most .001; (16)
In Case (2), µ ≥ .997η except with probability at most .002. (17)

Starting with Equation (16), a short calculation (using
∑d

j=1 εj = 0) shows

µ = navg
t=1
{εJt} =⇒ E[µ] = 1

d

d∑
j=1

ε2
j = χ2(p || ud) =⇒ E[µ] ≤ .99θ in Case (1).

(18)

Also in Case (1) we get from Equation (18) that

Var[µ] = 1
n

Varj∼p[εj ] ≤ 1
n
Ej∼p[ε2

j ] ≤ B

nd

n∑
j=1

ε2
j = B

n
χ2(p || ud) ≤ .99Bθ

n
≤ Bθ2

c
, (19)

the last inequality using Equation (14). Combining the preceding two inequalities and using
Chebyshev, we indeed conclude Equation (16) (provided c = c(B) is sufficiently large).

Towards Equation (17), let b ≥ 2 be a certain universal constant to be chosen later, and
say that j ∈ [d] is light if pj ≤ b/d (i.e., εj ≤ b− 1), heavy otherwise. We will write

µ1 = navg
t=1
{εJt : J t heavy} ≥ 0, µ2 = navg

t=1
{εJt : J t light} (so µ = µ1 + µ2), (20)
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and also observe

η = d2
H(p, ud) = 1

d

d∑
j=1

(
√

1 + εj−1)2 ≤ 1
d

d∑
j=1

min{|εj |, ε2
j } ≤ 1

d

∑
heavy j

εj+ 1
d

∑
light j

ε2
j =: η1+η2. (21)

Let us now make some estimates. First:

pheavy :=
∑

j heavy
pj = 1

d

∑
j heavy

(1 + εj) ≥ η1. (22)

Also, similar to our Case (1) estimates we have

E[µ2] = 1
d

∑
light j

(ε2
j + εj) = η2 − η1 (where we used

d∑
j=1

εj = 0), (23)

and

Var[µ2]

= 1
n

Varj∼p[1j light · εj ] ≤ 1
n
Ej∼p[1j light · ε2

j ] ≤ b

nd

∑
j light

ε2
j

= b

n
η2 ≤ b

c
θη2 ≤ b

c
η2η (in Case (2)). (24)

We will now establish Equation (17); in fact, we we even will show the following very slightly
stronger fact:

In Case (2), µ ≥ .997(η1 + η2) ≥ .997η except with probability at most .002. (25)

We divide into two subcases:

Case (2a): η1 ≤ .001η2. In this case we have η2 ≥ 1
1.001 (η1 + η2), and E[µ2] ≥ .999η2

from Equation (23). Since Equation (24) implies Var[µ2] ≤ 1.001 b
cη

2
2 , Chebyshev’s inequality

tells us that µ2 ≥ .998η2 except with probability at most .001 (provided c is large enough).
But then µ ≥ µ2 ≥ .998

1.001 (η1 + η2), confirming Equation (25).

Case (2b): η1 > .001η2. In this case we have η1 ≥ .001
1.001 (η1 + η2) ≥ .0009(η1 + η2). We

now use that heavy j have εj ≥ b− 1 to observe that

µ1 = navg
t=1
{εJt

: J t heavy} ≥ (b−1)·(fraction of J t’s that are heavy) = (b−1)·Bin(n, pheavy)
n

(26)

(in distribution). We see that E[µ1] ≥ (b−1)pheavy, and moreover concentration of Binomials
and Equation (22) imply that

µ1 ≥
1
2(b− 1)pheavy ≥

1
2(b− 1)η1 except with probability at most .001, (27)

provided that pheavyn is a sufficiently large constant. But we can indeed ensure this by taking
c sufficient large: by Equation (22), being in Case (2b), and Equation (14), it holds that

pheavyn ≥ η1n ≥ .0009(η1 + η2)n ≥ .0009ηn ≥ .0009θn ≥ .0009c. (28)
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At the same time, Equation (23) certainly implies E[µ2] ≥ −η1, and Equation (24) implies
Var[µ2] ≤ b

cη2(η1 + η2) ≤ 1000·1001b
c η2

1 (using Case (2b)). Thus Chebyshev implies

µ2 ≥ −1.1η1 except with probability at most .001, (29)

provided c is large enough. Combining Equations (27) and (29) yields

µ = µ1+µ2 ≥ ( b−1
2 −1.1)η1 ≥ .0009( b−1

2 −1.1)(η1+η2) except with probability at most .002,
(30)

which verifies Equation (25) provided b is a large enough constant.

We have now verified the properties of µ claimed in Equations (16) and (25). Next we
analyze the random variable σ2 that represents the variance of Y (from QME’s point of
view). Our goal will be to show:

In Case (1), σ2/(Cn)2 ≤ 10−6 · θ2 except with probability at most .001, (31)
In Case (2), σ2/(Cn)2 ≤ 10−6 · µ2 except with probability at most .001. (32)

Together with Equations (16) and (25), these facts are sufficient to complete the proof of the
theorem, by the QME guarantee of Theorem 5.

We have:

σ2 :=
d∑

j=1
pjY 2

j − µ2 = (d/n)2
d∑

j=1
pjX2

j − (µ + 1)2 ≤ (d/n)2
d∑

j=1
pjX2

j = σ2
S + σ2

Sc , (33)

where we’ve defined σ2
S := (d/n)2∑

j∈S pjX2
j and Sc = [d] \ S. We will be making two

different choices for S later, but we will always assume

S ⊇ {j : j light}, which implies
∑
j∈S

εj ≤ 0 (34)

(the implication because
∑d

j=1 εj = 0 and Sc contains only j’s with εj ≥ b− 1 ≥ 0). Now
since E[X2

j ] = npj(1− pj) + (npj)2 ≤ npj + (npj)2, we have

E[σ2
S ] ≤ (d2/n)

∑
j∈S

p2
j + d2

∑
j∈S

p3
j (35)

≤ d/n + (2/n)
∑
j∈S

εj + (1/n)
∑
j∈S

ε2
j + 1/d + (3/d)

∑
j∈S

εj + (3/d)
∑
j∈S

ε2
j + (1/d)

∑
j∈S

ε3
j

(36)

≤ (5cd/n)

(
1 + 1

d

∑
j∈S

εj + 1
d

∑
j∈S

ε2
j

)
+ 1

d

∑
j∈S

ε3
j (37)

(where the last inequality used 1/d ≤ c/n ≤ (c − 1)d/n from Equation (14)). Using
Equation (34) to drop the term of Equation (37) that’s linear in the εj ’s, we thereby conclude

E[σ2
S/(Cn)2] ≤ E[σ2

S/n
2] ≤ (5cd/n3)

1 + 1
d

∑
j∈S

ε2
j

+ (d1/2/n2)

1
d

∑
j∈S

ε2
j

3/2

(38)

≤ (5θ2/c2)(1 + ηS) + θ4/3

c2d1/6 η
3/2
S , (39)
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where ηS := 1
d

∑
j∈S ε

2
j . In Case (1) we select S = [d], so ηS = χ2(p || ud) ≤ .99θ ≤ θ ≤ 1,

and the above bound gives

Case (1) =⇒ E[σ2/(Cn)2] ≤ 10θ2/c2 + θ17/6

c2d1/6 ≤ ·10−9 · θ2 (40)

(provided c is large enough). Now Equation (31) follows by Markov’s inequality.
In Case (2) we select S = {j : j light}, so ηS = η2 and we conclude (using obvious

notation)

Case (2) =⇒ E[σ2
light/(Cn)2] ≤ (5θ2/c2)(1 +η2) + θ4/3

c2d1/6 η
3/2
2 ≤ .4 ·10−9 · (η1 +η2)2, (41)

(provided c large enough), where we used θ ≤ η ≤ η1 + η2 and also θ ≤ 1. We now complete
the bounding of σ2 in Case (2) by two different strategies:

Case (2.i): n > d.99/B. In this case, L = Bc ln d, and (♢) tells us ∥p∥∞ ≤ 2L/n, so we
have

∥p∥∞ ≤
2Bc ln d

n
≤ 2B2c ln d

d.99 . (42)

Now returning to Equation (37), we get

E[σ2
heavy/(Cn)2] ≤ 5cd

C2n3 + 5cd
C2n3

(
1 + εmax + n

5cdε
2
max

)
· 1
d

∑
j heavy

εj (43)

≤ 5θ2

(Cc)2 + 5cd2

C2n3

(
∥p∥∞ + n

5c · ∥p∥
2
∞

)
η1 ≤

5θ2

(Cc)2 + 14B6c2 ln2 d

C2d1.96 η1,

(44)

where we used Equation (42) and n > d.99/B. We can again bound the first expression in
Equation (44) as 5θ2

(Cc)2 ≤ 10−6 · (η1 + η2)2. As for the second expression, either η1 = 0 (there
are no heavy j’s) or else η1 ≥ b−1

d (there is at least one heavy j). In either case, we have
η1 ≤ d

b−1η
2
1 ≤ dη2

1 , so we can bound this second expression by

14B6c2 ln2 d

C2d.96 η2
1 ≤ .4 · 10−9 · (η1 + η2)2 (45)

where we used C = C(c) sufficiently large (and we could have taken C = 1 were willing to
assume d sufficiently large). Putting this bound together with Equation (41) we obtain:

Case (2.i) =⇒ E[σ/(Cn)2] ≤ .8 · 10−9 · (η1 + η2)2 ≤ .8
.997 · 10−9 · µ2 ≤ ·10−9 · µ2, (46)

using Equation (25). Equation (32) now follows (in this Case (2.i)) by Markov’s inequality.

Case (2.ii): n ≤ d.99/B. In this case we use a different strategy. Recall from Equation (33)
that

σ2 ≤ (d/n)2
d∑

j=1
pjX2

j ≤ (d/n)2∥X∥∞

d∑
j=1

pjXj = (d/n)∥X∥∞(1 + µ). (47)

By (♢) we may assume ∥X∥∞ ≤ L = 100, the equality because we are in Case (2.ii). Thus

σ2/(Cn)2 ≤ σ2/n2 ≤ 100(d/n3)(1 + µ) ≤ 100θ2

c3 + 100θ2

c3 µ ≤ 10−6 · µ2. (48)

(provided c large enough), where we used θ ≤ η ≤ 1
.997 µ (from Equation (25)) and also θ ≤ 1.

This verifies Equation (32) in Case (2.ii), completing the proof. ◀
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unknown probability distribution p over [d], and distinguishes with probability at least 2/3
between (1) χ2(p || ud) ≤ ε2

144 , and (2) χ2(p || ud) > ε2.

This in turn will follow from the more general result on tolerant ℓ2 closeness testing, where
one is given access to the source code for two unknown probability distributions p,q over [d],
and one seeks to distinguish ∥p− q∥2 ≤ c · τ from ∥p− q∥2 ≥ τ .

▶ Theorem 9. There is a computationally efficient quantum algorithm (Algorithm 2) for
closeness testing with the following guarantees: it takes O(1/τ) “samples” from two unknown
probability distributions p,q over [d], and distinguishes with probability at least 2/3 between
(1) ∥p− q∥2 ≤

τ
12 , and (2) ∥p− q∥2 > τ .

Theorem 8 can then be obtained as a direct corollary by setting τ = ε/
√
d, recalling that

when q is the uniform distribution ud, ℓ2 distance and χ2 divergence are equivalent:

∥p− ud∥2
2 =

d∑
i=1

(pi − 1/d)2 = 1
d

d∑
i=1

(pi − 1/d)2

1/d = 1
d
χ2(p || ud)

We emphasize that the result of Theorem 9 itself is not new, as a quantum algorithm achieving
the same sample complexity (in the same access model) was recently obtained by [24].5
However, our algorithm differs significantly from the one in [24], and we believe it to be of
independent interest for several reasons:

it is conceptually very simple: (classically) hash the domain down to two elements, and
use QME to estimate the bias of the resulting Bernoulli;
it neatly separates the quantum and classical aspects of the task, only using QME (as a
blackbox) in a single step of the algorithm;
in contrast to the algorithm of [24], it decouples the use of the source code from p and
q, allowing one to run our algorithm when the accesses to the two distributions are on
different machines, locations, or even will be granted at different points in time (i.e., one
can run part of the algorithm using the source code for p, and, one continent and a year
apart, run the remaining part on the now-available source code for q without needing p
anymore).

The idea behind Theorem 9 is relatively simple: previous work (in the classical setting)
showed that hashing the domain from d to a much smaller d′ ≪ d could yield sample-optimal
testing algorithms in some settings, e.g., when testing under privacy bandwidth, or memory
constraints. Indeed, while this “domain compression” reduces the total variation distance by a
factor Θ(

√
d′/d), this shrinkage is, in these settings, balanced by the reduction in domain size.

The key insight in our algorithm is then to (1) use this hashing with respect to ℓ2 distance,
not total variation distance, and show that one can in this case get a two-sided guarantee in
the distance (low-distortion embedding) instead of a one-sided one; and (2) compress the
domain all the way to d′ = 2, so that one can then invoke the QME algorithm to simply
estimate the bias of a coin to an additive ±τ , a task for which a quantum quadratic speedup
is well known.

Proof of Theorem 9. As mentioned above, a key building block of our algorithm is the
following “binary hashing lemma,” a simple case of the domain compression primitive of [3]:

5 Technically, [24]’s result can be seen as slightly stronger, in that it allows to test ∥p − q∥2 ≤ (1 − γ)τ
vs. ∥p − q∥2ud > τ , for arbitrarily small constant γ > 0.
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▶ Lemma 10 (Random Binary Hashing (Lemma 2.9 and Remark 2.4 of [11]). Let p,q ∈ ∆(d).
Then, for every α ∈ [0, 1/2],

Pr
S

[ |p(S)− q(S)| ≥ α∥p− q∥2 ] ≥ 1
12(1− 4α2)2 ,

where S ⊆ [d] is a uniformly random subset of [d].

Given our goal of tolerant testing, we also require a converse to Lemma 10, stated and proven
below:

▶ Lemma 11. Let p,q ∈ ∆(d). Then, for every β ∈ [1/2,∞),

Pr
S

[ |p(S)− q(S)| ≥ β∥p− q∥2 ] ≤ 1
4β2 ,

where S ⊆ [d] is a uniformly random subset of [d].

Proof. As in the proof of Lemma 10, we write δ := p−q ∈ Rd and p(S)−q(S) = 1
2Z, where

Z :=
∑d

i=1 δiξi for ξ1, . . . , ξd i.i.d. Rademacher. We will use the following fact established in
the proof of this lemma, which we reproduce for completeness:

E
[
Z2] =

∑
1≤i,j≤d

δiδjE[ξiξj ] =
d∑

i=1
δ2

i = ∥δ∥2
2 . (49)

By Markov’s inequality, we then have

Pr
S

[ |p(S)− q(S)| > β∥p− q∥2 ] = Pr
S

[
Z2 > 4β2E

[
Z2] ] ≤ 1

4β2

concluding the proof. ◀

While the above two lemmas allow us to obtain a slightly more general result than in the
theorem statement by keeping α, β as free parameters, for concreteness, set α := 1/(2

√
2)

and β = 4. This implies the following:
If ∥p− q∥2 ≥ τ , then

Pr
S

[ ∣∣∣∣p(S)− |S|
d

∣∣∣∣ ≥ τ√
8

]
≥ 1

48

If ∥p− q∥2 ≤
τ
12 , then

Pr
S

[ ∣∣∣∣p(S)− |S|
d

∣∣∣∣ ≥ τ√
9

]
≤ 1

64 .

where S ⊆ [d] is a uniformly random subset of [d]. This allows us to distinguish between the
two cases with only O(1) repetitions:

Algorithm 2 QME+Binary Hashing Tester.

1: Set T = O(1), δ := 1
600 , τ := 1/48+1/64

2 . ▷ δ ≤ 1
3
( 1

48 −
1

64
)
.

2: for t = 1 to T do
3: Pick a u.a.r. subset St ⊆ [d] (independently of previous iterations)
4: Estimate p(St),q(St) by p̂t, q̂t to within ± τ

100 with error probability δ. ▷ QME
5: if |p̂t − q̂t| ≤ ε√

8d
then bt ← 0

6: else bt ← 1
return accept if 1

T

∑T
t=1 bt ≤ τ ▷ Estimate of the probability accept

TQC 2025
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A standard analysis shows that, for T a sufficiently large constant, with probability at
least 2/3 the estimate 1

T

∑T
t=1 bt will be within an additive δ + 1

1000 of the corresponding
value (either 1/48 or 1/64), in which case the output is correct. The total number of samples
required is T times the sample of the Quantum Mean Estimation call on Line 4, which
is O(1/τ): the complexity of getting a O(τ)-additive estimate of the mean of a Bernoulli
random variable with high (constant) probability. This concludes the proof. ◀

B Algorithm in the Giant Distance Regime

In this appendix, we show that, in the (stronger) quantum string oracle model, one can
perform tolerant uniformity testing with respect to χ2 divergence in the “very large parameter
regime,” that is, to distinguish χ2(p || ud) ≤ cθ from χ2(p || ud) > θ for θ ≥ 1:

▶ Theorem 12. There is a computationally efficient quantum algorithm for uniformity
testing with the following guarantees: For θ ≥ 1, the algorithm makes O(d1/3/θ1/3) calls to
the quantum string oracle for an unknown distribution p over [d], and distinguishes with
probability at least .99 between

(1) χ2(p || ud) ≤ c · θ, and (2) χ2(p || ud) > θ , (50)

where c > 0 is an absolute constant. Moreover, this query complexity is optimal.

Note that, as discussed in the introduction, this result does not imply anything in terms of
total variation distance, as the latter is always at most 1; however, we believe this result
to be of interest for at least two reasons: (1) it is in itself a reasonable (and often useful)
testing question, when total variation distance is not the most relevant distance measure,
and implies, for instance, testing χ2(p || ud) ≤ c · θ from KL(p || ud) > θ; and (2) one can
show that this complexity is tight, by a reduction to the θ-to-1 collision problem, which
provides additional evidence for Conjecture 2.

Proof. The main ingredient of the proof is the following lemma, which guarantees that
taking N = Θ(d/θ) from the unknown distribution p is enough to obtain (with high constant
probability) a multiset of elements with, in one case, no collisions, and in the other at least
one collision:

▶ Lemma 13. For θ ≥ 1, there exists a constant c ∈ (0, 1) such that taking N i.i.d. samples
from an unknown p over [d] results in a multiset S satisfying the following with probability
at least .99:

If χ2(p || ud) ≤ c · θ, then all elements in S are distinct;
If χ2(p || ud) ≥ θ, then at least two elements in S are identical;

as long as 1601 · d
θ ≤ N ≤

1
10c ·

d
θ . (In particular, taking c := 1

16010 suffices to ensure such a
choice of N is possible.)

Before proving this lemma, we describe how it implies our stated complexity upper bound.
Lemma 13 guarantees that we can reduce our testing problem to that of deciding if, given
oracle access to a string of size N = Θ(

√
d/θ), whether all the elements in it are distinct.

This problem is solved by Ambainis’ element distinctness quantum-walk algorithm [5] using
O(N2/3) = O(d1/3/θ1/3) quantum queries.

Proof of Lemma 13. Suppose we take N i.i.d. samples X1, . . . , XN from p, and count the
number Z of collisions among them:

Z :=
∑

1≤i<j≤N

1{Xi=Xj}
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Letting δ := p− ud and powt(x) :=
∑d

i=1 x
t
i for all integer t ≥ 0 and vector x ∈ Rd (so that

δi = pi − 1/d for all i), we have, pow1(δ) = 0, and

pow2(δ) = ∥p− ud∥2
2 = 1

d
χ2(p || ud)

Now, it is not hard to verify that E[Z] =
(

N
2
)
∥p∥2

2 =
(

N
2
)
(pow2(δ) + 1/d), and

Var[Z] =
(
N

2

)
∥p∥2

2

(
1− ∥p∥2

2

)
+ 6
(
N

3

)(
∥p∥3

3 − ∥p∥
4
2

)
≤ E[Z] + 6

(
N

3

)(
pow3(δ) + 3

d
pow2(δ)

)
(51)

From this, we get, setting τ :=
√
θ/d ≥ 1/

√
d:

If χ2(p || ud) ≤ c · θ, then pow2(δ) ≤ c2 · τ2, and as long as N ≤ 1
10cτ we have

(
N
2
)
(c2 ·

τ2 + 1/d) ≤ 1/100, so that by Markov’s inequality

Pr[Z ≥ 1 ] ≤ Pr[Z ≥ 100E[Z] ] ≤ 1
100

If χ2(p || ud) ≥ θ, then pow2(δ) ≥ τ2, and by Chebyshev’s inequality and Equation (51)

Pr[Z = 0 ] ≤ Pr[ |Z − E[Z]| ≥ E[Z] ] ≤ 1
E[Z] + 4

N
·

pow3(δ) + 3
d pow2(δ)

(pow2(δ) + 1/d)2

≤ 2
N(N − 1)τ2 + 4

N
·

pow2(δ)3/2 + 3
d pow2(δ)

pow2(δ)2

≤ 3
N2τ2 + 4

Nτ
+ 12
Ndτ2

≤ 3
N2τ2 + 4

Nτ
+ 12
N

(τ ≥ 1/
√
d)

≤ 3
N2τ2 + 16

Nτ

which is at most 1
100 for N ≥ 1601

τ .

This proves the lemma. ◀

This concludes the proof of the upper bound part of Theorem 12. To conclude, it only
remains to show that this is, indeed, optimal. For this, we need a lower bound of [23], which
generalized a lower bound of Aaronson and Shi [2]:

▶ Theorem 14 ([23]). Let d > 0 and r ≥ 2 be integers such that r|d, and let f : [d]→ [d] be
a function to which we have quantum oracle access. Then deciding if f is 1-to-1 or r-to-1,
promised that one of these holds, requires Ω((d/r)1/3) quantum queries.

When we view this function as a quantum string oracle for a probability distribution, the
function being 1-to-1 corresponds to the uniform distribution on [d]. In the other case, the
distribution is uniform on a subset of size [d/r], for any r ≥ θ + 1 dividing d. An easy
calculation shows that the second distribution is at χ2 divergence

χ2(p || ud) =
∑
i∈[d]

(
p2

i

1/d

)
− 1 = d · r

2

d2 ·
d

r
− 1 = r − 1 ≥ θ, (52)

from uniform, which completes the proof. ◀
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C Reduction from Identity to Uniformity Testing

As mentioned in the introduction, there is a known reduction from identity to uniformity
testing, due to Goldreich [16] and inspired by [13]: which, in a blackbox way, converts an
instance of uniformity testing (in total variation distance) with reference distribution q over
[d] and distance parameter ε to an instance of uniformity testing over [4d] and distance
parameter ε/4. (Here, we follow the exposition and parameter setting of [11, Section 2.2.3].)

To be able to use it in our setting, all we need to check is that this blackbox reduction
Φq preserves access to “the code”: that is, given the code Cp for a probability distribution
p over [d], that we can efficiently have access to the code Cp′ for the resulting distribution
p′ = Φq(p) over [4d]. To do so, note that Φq is the composition of 3 successive mappings,

Φq = Φ(1)
q ◦ Φ(2)

q ◦ Φ(3)
q

where Φ(3)
q : [d]→ [d], Φ(2)

q : [d]→ [d+ 1], and , Φ(2)
q : [d+ 1]→ [4d]. So it suffices to show

that each of these 3 mappings does preserve access to the code generating a sample from the
resulting distribution.

The first, Φ(3)
q , is the easier, as it consists only in mixing its input with the uniform

distribution:

Φ(3)
q (p) = 1

2p + 1
2ud

for which a circuit can be easily obtained, given a circuit for p.
The second, Φ(2)

q , “rounds down” the probability of each of the d elements of the domain,
and sends the remaining probability mass to a (d+ 1)-th new element:

Φ(2)
q (p)i =

{
⌊4dqi⌋
4dqi

· pi, i ∈ [d]
1−

∑d
i=1

⌊4dqi⌋
4dqi

· pi, i = d+ 1

This corresponds to adding to the circuit Cp for p a “postprocessing circuit” which, if
the output of Cp is i, outputs i with probability ⌊4dqi⌋

4dqi
(and d+ 1 otherwise).

The third, Φ(1)
q , assumes that the reference distribution q is “grained” (namely, all its

probabilities are positive multiples of 1/(4d)), which will be the case after the first two
mappings6 fully known). Having partitioned [4d] in sets S1, . . . , Sd where

|Si| = 4d · qi ≥ 1

and Φ(1)
q is given by

Φ(3)
q (p)i =

d∑
j=1

pi

|Si|
1{j∈Si}, i ∈ [4d] .

This corresponds to adding to the circuit Cp for p a “postprocessing circuit” which, if
the output of Cp is i, outputs an element of Si uniformly at random. (Importantly,
S1, . . . , Sd are uniquely determined by q, and do not depend on p or Cp at all.)

To summarize, each of these three mappings can be implemented to provide, given a circuit
Cp for p, a circuit Cp′ for the output p′, so that altogether the reduction can be implemented
in a way which preserves access to “the code.”

6 Specifically, when chaining the three mappings, the reference distribution called q here is actually
Φ(2)

q ◦ Φ(3)
q (q).
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