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Abstract
This work investigates the family of extended tilted-CHSH inequalities in the single-prover cryp-
tographic compiled setting. In particular, we show that a quantum polynomial-time prover can
violate these Bell inequalities by at most negligibly more than the violation achieved by two non-
communicating quantum provers. To obtain this result, we extend a sum-of-squares technique to
monomials with arbitrarily high degree in the Bob operators and degree at most one in the Alice
operators. We also introduce a notion of partial self-testing for the compiled setting, which resembles
a weaker form of self-testing in the bipartite setting. As opposed to certifying the full model, partial
self-testing attempts to certify the reduced states and measurements on separate subsystems. In the
compiled setting, this is akin to the states after the first round of interaction and measurements
made on that state. Lastly, we show that the extended tilted-CHSH inequalities satisfy this notion
of a compiled self-test.
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1 Introduction

In a bipartite Bell scenario, two non-communicating provers receive inputs x and y and reply
with outputs a and b to a verifier. The collection of probabilities of observing outcomes
(a, b) given (x, y) determines a correlation p = {p(a, b|x, y)}. Bell’s celebrated theorem
implies that if the provers are permitted to share an entangled quantum state and make
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8:2 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

local quantum measurements, called a bipartite (quantum) model, then certain correlations
have no realization by a classical (or local hidden-variable) model [7]. The distinction
between quantum and classical correlations is often explored through Bell inequalities. A
Bell inequality is a linear inequality on the set of correlations which is satisfied by all
classical correlations. Hence, these inequalities can be violated by certain models using
quantum entanglement, realizing correlations that are not classical. The quantum value of
a Bell inequality refers to the largest violation achievable by a bipartite (quantum) model.
A prominent example is the Clauser-Horne-Shimony-Holt (CHSH) inequality, where the
classical bound is 2, but the quantum value is 2

√
2 [11].

Due to their ability to witness these non-classical effects, Bell inequality violations play
a major role in areas like device-independent cryptography [1, 15, 30, 31, 33], protocols
for verifiable delegated quantum computation [32, 17, 14], and in the study of multiprover
interactive proofs (MIPs) and the variant MIP∗ with entangled provers [12], also called
nonlocal games. Many of the key applications of Bell inequalities rely on a remarkable
property known as self-testing [22, 23, 35, 34]. Informally, a Bell inequality is a self-test for
an ideal bipartite (quantum) model Q if there exist local isometries which transform any
employed bipartite model Q′ achieving maximum Bell violation into the ideal model Q. It
is well-known that the CHSH inequality is a self-test for the bipartite model employing a
maximally entangled state on two qubits, along with the Pauli σx and σz measurements,
among others [22]. Another prominent example is the family of tilted-CHSH inequalities [2,
35, 4], which self-test partially entangled two-qubit states, and were integral in the work of
Coladangelo, Goh, and Scarani who employed them as part of a protocol to self-test any
pure bipartite entangled state [13].

Despite the enormous success of self-testing, a practical drawback is the requirement
of multiple non-communicating quantum provers. Recently, a number of cryptographic
approaches have been proposed that replace the non-communication assumption with com-
putational assumptions [19, 26, 18]. This makes the setting more practical by having a
single quantum prover, rather than multiple. One new and prominent approach is the
Kalai-Lombardi-Vaikuntanathan-Yang (KLVY) compilation procedure introduced in [19],
which transforms a 2-prover 1-round Bell scenario into a 1-prover 2-round scenario with
a single computationally bounded prover. The core ingredient in the KLVY compilation
procedure is quantum homomorphic encryption (QHE), which emulates, to a certain extent,
the non-communication between the rounds of interaction. In the compiled game, the inputs
to the prover happens sequentially. In the first round, the prover obtains an encryption
χ of the input x from the verifier. Without breaking the security, the prover cannot dis-
tinguish between encryptions of different inputs. The prover performs a polynomial time
quantum circuit on χ, and then returns an output α to the verifier. In the second round,
the information about x has already been “hidden” from the prover, so the verifier can send
input y in the plain (i.e. unencrypted) to the prover, upon which the prover can perform a
measurement and return outcome b to the verifier. The verifier checks for a Bell inequality
violation (across many such interactions) using the values of x, the decryption of α, along
with (y, b). QHE has two key features that makes this resemble the bipartite setting. Firstly,
it allows the first round quantum prover to perform measurements as they would have in
the bipartite setting, without knowing the input. Secondly, the encryption ensures that no
classical polynomial-time prover can violate a Bell inequality by more than an negligible
amount (see Section 3 details). Both of these are non-trivial and were the subject of [19].

In a follow-up work, Natarajan and Zhang showed that the maximal quantum violation
of the CHSH inequality in the compiled setting is bounded by the maximal violation in
the bipartite setting, up to negligible factors in the security parameter [27]. Subsequent
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works have analyzed the quantum soundness of the KLVY compilation procedure for other
multiprover scenarious, including all 2-player XOR nonlocal games [16], Bell inequalities
tailored to maximally entangled bipartite states [6], delegated quantum computation with a
single-device [27, 25], and even in the study of contextuality [3]. Despite these advancements,
many results have yet to be reproduced in the compiled setting. Our work takes another
step in growing the list of protocols that will function as desired in the compiled setting.

Upper bounding compiled Bell violations

As mentioned, the compiled value of a Bell inequality is always at least the quantum value.
This is because any bipartite (quantum) model can be implemented with homomorphic
encryption via a correctness property of the QHE scheme used in the procedure. On the
other hand, establishing upper bounds on the largest violation possible in the compiled
setting is challenging, as general techniques for bounding these violations depend on the
spatial separation between the two provers. Nonetheless, upper bounds on the violations of
a certain Bell inequalities in the compiled setting can be verified using the sum-of-squares
(SOS) technique [27, 16, 6]. The SOS approach is a powerful method and has been used
extensively to upper bound Bell inequality violations and the values of nonlocal games in
the bipartite setting. Informally, this technique relates the maximum compiled value η, of a
Bell functional I, to a decomposition of the Bell operator or Bell polynomial S as a sum
of Hermitian squares, ηI− S =

∑
i P
†
i Pi. Before our work, progress was made on realizing

this approach in the compiled setting, however, there were some limitations. In particular,
it was required that the polynomials Pi involved in the decomposition were at most degree
two in both Alice’s and Bob’s observables, restricting the technique to Bell inequalities with
an SOS decomposition of this form; this excludes, for example, the family of tilted-CHSH
inequalities.

Our first result extends the SOS technique to a larger family of Bell polynomials. More
specifically, we extend the pseudo-expectation techniques in [27, 16] to allow for evaluations
on polynomial terms Pi that consist of arbitrary monomials in the algebra generated by
Bob’s observables. In Theorem 3 we prove that an extended pseudo-expectation will be
positive on the corresponding Hermitian square P †i Pi for any such term Pi. Consequently,
we show that for any Bell inequality with an SOS decomposition in which Pi are of the form
Pi =

∑
j γj(Ax)kjwj(B) for some γj ∈ C, kj ∈ {0, 1} and wj(B) being arbitrary monomials

in Bob’s observables, η is an upper-bound on the maximum compiled quantum value. Our
extension captures a wide class of Bell inequalities including tilted-CHSH, enabling us to
bound the compiled value of the tilted-CHSH inequalities, by the quantum value and a
negligible function of security parameter, see Theorem 5 for details.

A compiled self-testing result

Our second contribution is a concept of self-testing in the compiled setting. One of the main
obstacles to deriving self-testing results in the compiled setting is the lack of techniques for
extracting any algebraic relations on the measurement operators acting under the encryption.
Nevertheless, it remains possible to derive relations on the observables in the second round.
With this in mind, we consider a partial notion of self-testing that applies to the measurements
made by the prover in the second round. In particular, our definition only requires the
existence of an isometry robustly certifying the ideal post-measurement state after the first
round, and the action of the measurements made in the second.

TQC 2025



8:4 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

As our final result, we provide an example by showing violations of the compiled tilted-
CHSH inequalities satisfy this notion of partial self-testing. This family of inequalities
was introduced by Acín, Massar, and Pironio [2], and the Bell functionals take the form
αθ⟨A0⟩+ ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩, where ⟨AxBy⟩, ⟨Ax⟩ denote the expectation
of measurements corresponding to settings X = x, Y = y, and αθ ∈ R. Notably, they
are tailored to robustly self-test the two qubit states cos(θ)|00⟩ + sin(θ)|11⟩ [35, 4], and
were used as part of a more complex protocol to obtain self-testing for all pure bipartite
entangled states [13]. The work of Barizien, Sekatski, and Bancal [5] extended this family to
include extra degrees of freedom in Bob’s measurements, which we will refer to as “extended”
tilted-CHSH inequalities.

We apply Theorem 3 to the SOS decomposition for the extended tilted-CHSH inequalities
presented in [5]. Specifically, in Theorem 5 we prove that the maximum quantum value
achieved for any of the extended tilted-CHSH functionals is preserved by the KLVY compil-
ation procedure. Then in Theorem 12 we use this same decomposition to prove that this
family of games is a compiled self-test according to Definition 11.

Related work

A recent work of [20] implies that the compiled value of any 2-prover Bell scenario is bounded
by the largest violation possible among so-called commuting operator models. However,
unlike some previous results, such as [6, 16], the upper bound in [20] lacks a dependence on
the security parameter λ, making it unclear how the compiled value is related to the quantum
value at fixed security parameters. Hence, results such as ours, which obtain a bound on the
compiled value that depends negligibly on the security parameter, remain of great importance.
Furthermore, [20] also considers a notion of self-testing in the compiled setting, however, due
to their methods the results are in terms of commuting operator self-tests (as defined in [29,
Proposition 7.8]) and only hold in the limit of the security parameter λ→∞.

Another related work is [26], which presents a protocol for certifying that an unknown
computationally bounded device has prepared a maximally entangled pair of qubits, and
whether a measurement was performed on each qubit in either the computational or Hadamard
basis. The techniques used to prove our compiled self-test have similarities to those of [26],
particularly in the choice of isometry (see Definition 11) and proof structure, which in turn
resembles self-testing techniques in the bipartite setting [4]. There are however some key
differences. Firstly, [26] certifies the preparation of a maximally entangled state by the
device before any measurements are made. While our results are tailored to the more general
class of partially entangled states, we only make statements about the post-measurement
states after each round. It is an interesting open question if our results can be extended
in this way (see Section 4.1 for more details), and statements weaker than certifying the
prepared state could also be possible. For example, can a compiled self-test be used to show
the prepared state must have been entangled? Another significant difference to [26] is that
the self-testing protocol in this work strongly resembles the bipartite case, owing to the
compilation procedure mapping bipartite nonlocal scenarios to single prover scenarios. Our
main result can therefore be interpreted as translating a self-testing statement in the Bell
scenario to one in the compiled Bell scenario. On the other hand, the authors of [26] describe
their approach as more “custom”, guided by the available cryptographic primitives, and pose
the open question of finding a general procedure for translating self-testing results from the
nonlocal setting. We showed this is possible for the special case of titled-CHSH inequalities.
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Future outlook

Moving forward, we consider several natural directions for following up on this work:
1. Tilted-CHSH inequalities were an integral component of the self-testing for all pure

bipartite entangled states [13]. Building off of our work on compiled tilted-CHSH
inequalities, a natural question is whether similar results can be obtained in the compiled
setting.

2. It would be desirable to understand the fundamental limitations of our notion of self-
testing and other similar notions such as the computational self-testing given in [26].
Furthermore, is a finer notion of self-testing in the compiled setting that characterizes
both Alice’s and Bob’s operators and the initial state possible without specifying the
underlying QHE scheme? Moreover, is every self-test in the standard Bell scenario also a
compiled self-test, and vice-versa?

3. Many current techniques for bounding the value of compiled nonlocal games/Bell inequal-
ities can be obtained using some variant of the sum-of-squares decomposition approach.
Given our improvements to this approach outlined in Theorem 3, it is possible to search
for valid decompositions which include arbitrary words in Bob’s operators. Is it possible
to use this approach to give a limited variant of the NPA hierarchy [28] in the compiled
setting?

2 Background

2.1 Mathematical notation
Throughout the article, Hilbert spaces are denoted by H, and are assumed to be finite-
dimensional unless explicitly stated otherwise. Elements of H are denoted by |v⟩ ∈ H,
where the inner product ⟨u|v⟩ for |v⟩, |u⟩ ∈ H is linear in the second argument and defines
the vector norm ∥|v⟩∥ =

√
⟨v|v⟩. Quantum pure states are the norm 1 elements of H. In

this work, B(H) denotes the unital †-algebra of bounded linear operators on H with norm
∥M∥2

op = sup|v⟩∈H,|v⟩̸=0⟨v|M†M |v⟩/⟨v|v⟩. We also write ∥A∥2 =
√

tr(A†A) to denote the
Schatten 2-norm for A ∈ B(Cd) ∼= Md(C). The unit in B(H) is denoted by I, and we write
|M | =

√
M†M for the positive part of M ∈ B(H). Given a finite set A, a collection of

positive operators {Ma ≥ 0 : a ∈ A} with the property that
∑

a∈AMa = I, is called a POVM
over A. When the operators in a POVM are orthogonal projections, we call it a PVM. Given
a random variable X, which takes values X = x ∈ X according to a distribution µ : X → R≥0
such that

∑
x∈X µ(x) = 1, we denote the expectation of X by E[X] =

∑
x∈X µ(x) · x. For

a, b ∈ R and δ > 0, a ≈δ b is short for |a− b| ≤ δ. A function negl : N→ R is called negligible
if for all k ∈ N there exists N ∈ N such that for every n ≥ N it holds that negl(n) ≤ 1

nk .

2.2 Bell scenarios, inequalities, and violations
Before we discuss compiled Bell inequalities, let us recall the bipartite case. Here we let
A,B,X , and Y be finite sets, with |A| = mA, |B| = mB, |X | = nA, and |Y| = nB. A
bipartite Bell scenario is described by the tuple S = (A,B,X ,Y, π), where π : X ×Y → R≥0
is a distribution over the measurement settings. In a scenario, each party receives an input
x ∈ X (resp. y ∈ Y) sampled according to π, and returns outputs a ∈ A (resp. b ∈ B).
The parties are non-communicating, and therefore cannot coordinate their outputs. The
behaviour of the provers is characterized by a correlation, a set of conditional probabilities

TQC 2025



8:6 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

p = {p(a, b|x, y) : a ∈ A, b ∈ B, x ∈ X , y ∈ Y}, which is realized by an underlying physical
theory or model. In the quantum setting, we allow the provers to share a bipartite quantum
state, and say the correlation p is realized by a bipartite (quantum) model

Q =
(
HA,HB , {{Ma|x}a∈A}x∈X , {{Nb|y}b∈B}y∈Y , |Ψ⟩AB

)
, (1)

where HA and HB are Hilbert spaces, {Ma|x}a∈A and {Nb|y}b∈B are POVMs on HA and
HB respectively, and |Ψ⟩AB is a vector state in HA ⊗HB. More generally, a correlation p
is quantum (or an element of Cq(nA, nB ,mA,mB)) if there exists a bipartite model Q for
which p can be realized via the Born rule as p(a, b|x, y) = ⟨Ψ|Ma|x ⊗Nb|y|Ψ⟩. We denote the
class of bipartite (quantum) models by Q(nA, nB ,mA,mB). From now on we will refer to
such models simply as bipartite models.

In contrast to the set of quantum correlations, we have the collection of local correlations
Cloc(nA, nB ,mA,mB). These are the correlations {p(a, b|x, y)} for which there exists a
classical model, that is a probability distribution µk and a local distributions pA

k (a|x) and
pB

k (b|y) such that p(a, b|x, y) =
∑

k µk p
A
k (a|x) pB

k (b|y). We let C = (µk, {pA
k }, {pB

k }) denote
a classical model and let L(nA, nB ,mA,mB) denote the class of all classical models. In
what follows we consider Bell scenarios where nA = nB = n, and mA = mB = m. With this
notation Bell’s theorem [7] states that Cloc(2, 2) is a strict subset of Cq(2, 2).

Given a Bell scenario S, one can consider a linear (or Bell) functional on the set of
correlations

I =
∑

a∈A,b∈B,x∈X ,y∈Y

wabxy p(a, b|x, y), (2)

for coefficients wabxy ∈ R. A Bell inequality is a functional I and a bound η > 0
such that I ≤ η for all p ∈ Cloc(n,m). Given a functional I, the classical value is the
maximal value achieved by the classical correlations p ∈ Cloc(n,m). We denote this value
by ηL := supp∈Cloc(m,n) I. The quantum value for I is the maximal value achieved by
the set of quantum correlations p ∈ Cq(m,n), and we denote the quantum value on I by
ηQ := supp∈Cq(m,n) I. Hence, a Bell violation occurs whenever there is a p ∈ Cq(m,n) for
which I > ηL. A violation of a Bell inequality by non-communicating provers employing a
quantum model is an indication of entanglement between provers.

Typically when ηL is known for a given I, the main challenge is finding an upper bound
on ηQ. In this case, one often considers the Bell operator1 S =

∑
abxy wabxy Ma|x ⊗Nb|y,

and ⟨S⟩ = ⟨Ψ|S|Ψ⟩ its quantum expectation with respect to |Ψ⟩ ∈ HA ⊗ HB. Since
bipartite models with separable quantum states generate the classical correlations Cq(m,n),
⟨Ψ|S|Ψ⟩ ≤ ηL whenever |Ψ⟩ is separable (unentangled). However, it’s possible that there could
be entangled states for which ⟨Ψ′|S|Ψ′⟩ > ηL. Hence, given a Bell operator S, we can recover
the maximum classical and quantum values ηL = supC∈L(n,m)⟨S⟩ and ηQ = supQ∈Q(n,m)⟨S⟩
respectively. Technically, we have not fixed the dimensions of the Bell operator as we
want to consider any finite-dimensional model. Hence, the supremum is implicitly over all
finite-dimensional Hilbert spaces HA ⊗HB .

An approach to establishing upper bounds on ⟨S⟩ is using sum-of-squares techniques.
Let S be a Bell operator and η′ > 0. The shifted Bell operator η′I − S admits a sum-of-
squares (SOS) decomposition if there exists a set of polynomials {Pi}i∈I in the elements
{Ma|x, Nb|y : a ∈ A, b ∈ B, x ∈ X , y ∈ Y} satisfying η′I− S =

∑
i∈I P

†
i Pi. The existence of

1 For a more mathematically rigorous treatment of Bell operators and the SOS approach consult [16].
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an SOS decomposition for the operator η′I− S implies that η′I− S is positive, and therefore
η′ is an upper bound on the maximum quantum value of ⟨S⟩. Additionally, if η′ is achievable
by a bipartite model, then we write η′ = ηQ. In this case, the shifted Bell operator is
S̄ = ηQI−S, and observing ⟨Ψ|S̄|Ψ⟩ = 0 implies the constraints Pi|Ψ⟩ = 0 for all i ∈ I; these
constraints can often be used to infer the algebraic structure (rigidity) of the measurements
{Ma|x}a∈A,x∈X , {Nb|y}b∈B,y∈Y which achieve ⟨S⟩ = ηQ.

3 Compiled Bell scenarios

The compilation procedure of a Bell scenario is essentially the same as the procedure for
compiling nonlocal games outlined in [19]. Let S = (X ,Y,A,B, π) be a 2-prover Bell
scenario and fix a quantum homomorphic encryption scheme with security against quantum
distinguishers and correctness with respect to auxiliary input. Readers unfamiliar with QHE
schemes and these properties can refer to Definition 14 found in the appendix.

A compiled Bell scenario is the following 2-round single-prover scenario. To setup,
the verifier samples a secret key sk← Gen(1λ). Then, the verifier samples a pair of inputs
(x, y) ∈ X × Y according to the distribution π : X × Y → R≥0, and encrypts the first input
as the ciphertext χ← Enc(sk, x).
1. The verifier sends the ciphertext χ to the prover. The prover replies with a ciphertext α

encoding their output. The verifier decrypts obtaining outcome a← Dec(sk, α) from A.
2. The verifier sends the sampled (plaintext) input y ∈ Y to the prover, who replies with

another outcome b ∈ B.

In the compiled scenario, for a chosen security parameter λ, the prover prepares an initial
quantum polynomial time (QPT) preparable state |Ψ(λ)⟩ ∈ H̃(λ) where H̃(λ) is a single
Hilbert space (see Definition 13 for details on efficient quantum procedures). Then, the
first round of the protocol is characterized by a family of POVMs {{M̃ (λ)

α|χ}α∈Ā}χ∈X̄ and
unitaries {U (λ)

α,χ}α∈Ā,χ∈X̄ , where X̄ and Ā are the set of all valid ciphertexts of the first round
input and output, respectively. Unlike in the bipartite setting, we must account for unitary
operations applied to the post-measurement state in the first round. With this in mind, we
denote the sub-normalized post-measurement state given the measurement over ciphertext χ
and encrypted outcome α by

U (λ)
α,χM̃

(λ)
α|χ|Ψ

(λ)⟩ =: |Ψ(λ)
α|χ⟩. (3)

Note that these vectors are sub-normalized. In particular, the probability of obtaining α ∈ Ā
given χ ∈ X̄ is given by ⟨Ψ(λ)

α|χ|Ψ
(λ)
α|χ⟩. In the second round, the device makes a POVM

measurement {{N (λ)
b|y }b∈B}y∈Y , where the resulting conditional probability is given by

⟨Ψ(λ)|M̃ (λ)†
α|χ U (λ)†

α,χ N
(λ)
b|y U

(λ)
α,χM̃

(λ)
α|χ|Ψ

(λ)⟩ = ⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩, (4)

for a fixed, λ ∈ N, sk← Gen(1λ), ciphertexts χ ∈ X̄ , α ∈ Ā, and plaintexts y ∈ Y, b ∈ B.
To summarize, for a fixed QHE scheme, λ ∈ N, a compiled (quantum) model is given

by a tuple

Q̃(λ) = (H̃(λ), {|Ψ(λ)
α|χ⟩}α∈Ā,χ∈X̄ , {{N

(λ)
b|y }b∈B}y∈Y), (5)

where all the relevant measurements and states are obtained by some QPT procedure. We
remark that one can consider a description of the model which includes the initial state |Ψ(λ)⟩
and the operators {U (λ)

α,χM̃
(λ)
α|χ}α∈Ā,χ∈X̄ , rather than the post-measurement states |Ψ(λ)

α|χ⟩.

TQC 2025



8:8 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

Hence, Q̃(λ) is really a coarse description of a quantum model in the compiled setting. The
joint distribution of the outcomes after both rounds is given by

p(λ)(a, b|x, y) = E
sk←Gen(1λ)

E
χ:Enc(x)=χ

∑
α:Dec(α)=a

⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩. (6)

Note that the marginal distribution p(λ)(a|x) obtained from Equation (6) will be in-
dependent of the second input y due to the sequential nature of the protocol. However,
the marginal p(λ)(b|y, x) currently depends on x. The aim of what follows is to establish
a computational independence between this distribution and the inputs x. To do so we
will need to consider the distributions of the decrypted outputs and appeal to the security
promise of the QHE scheme. Specifically, we require a key lemma which has appeared in
several works [27, 16, 6]. We borrow a version from [20] and we refer the reader to the
reference for the proof.

▶ Lemma 1 ([20], Proposition 4.6). Let Q̃(λ) be a compiled quantum model, and N (λ) =
w({N (λ)

b|y }b∈B,y∈Y) be a monomial in the measurement operators {N (λ)
b|y }b∈B,y∈Y , where λ ∈ N

is the security parameter for a fixed QHE scheme. Then, for any two QPT sampleable
distributions D1,D2 over plaintext inputs x ∈ X there exists a negligible function negl(λ) of
the security parameter λ such that the following holds∣∣∣∣∣ E

sk←Gen(1λ)
E

x←D1
E

χ:Enc(x)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)|Ψ(λ)

α|χ⟩ − E
sk←Gen(1λ)

E
x←D2

E
χ:Enc(x)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)|Ψ(λ)

α|χ⟩

∣∣∣∣∣
≤ negl(λ).

The approximate no-signalling conditions from Alice to Bob can then be seen by applying
Lemma 1 to the monomials of degree 1 in the QPT measurement operators {N (λ)

b|y }b∈B,y∈Y ,
since

∣∣∣ E
sk←Gen(1λ)

E
χ:Enc(x)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)

b|y |Ψ(λ)
α|χ⟩ − E

sk←Gen(1λ)
E

χ:Enc(x′)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)

b|y |Ψ(λ)
α|χ⟩
∣∣∣ ≤ negl(λ)

(7)

holds for all b ∈ B, y ∈ Y and x, x′ ∈ X with x ̸= x′.
In the above statements, the measurements are completely general, and the states are

sub-normalized vectors. The following lemma shows that when considering the compiled
value, we can assume that the states and measurement operators in the compiled strategy
are pure and projective.

▶ Lemma 2. Let H′(λ) be the Hilbert space of the device, and {{ρ(λ)
α|χ}α∈Ā}χ∈X̄ be a family of

QPT-preparable sub-normalized states on H′(λ) after the first round. Let {{N
′(λ)
b|y }b∈B}y∈Y be a

family of QPT-implementable POVMs on H′(λ), which induce the behaviour p(λ)(α, b|χ, y) =
tr[N

′(λ)
b|y ρ

(λ)
α|χ]. Then there exists a Hilbert space H(λ), a family of QPT-preparable sub-

normalized states {{|Ψ(λ)
α|χ⟩}α∈Ā}χ∈X̄ in H(λ), and a family of QPT-implementable PVMs

{{N (λ)
b|y }b∈B}y∈Y on H(λ) which satisfy

⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩ = p(λ)(α, b|χ, y), ∀α ∈ Ā, χ ∈ X̄ , b ∈ B, y ∈ Y. (8)

See Section A.2 for the proof of Lemma 2.
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We say a compiled model Q̃(λ) = (H̃(λ), {|Ψ(λ)
α|χ⟩}α∈Ā,χ∈X̄ , {{N

(λ)
b|y }b∈B}y∈Y) is pure and

projective whenever the states |Ψ(λ)
α|χ⟩ are all pure and the measurements N (λ)

b|y are all projective
(i.e. PVMS).

3.1 Quantum bounds for compiled inequalities
A compiled (quantum) model Q̃(λ) describes the correlations p(λ) =
{p(λ)(a, b|x, y)}a∈A,b∈B,x∈X ,y∈Y observed in a compiled Bell scenario. A compiled
Bell functional is a linear functional I(λ) evaluated on correlations realized by compiled
models. That is

I(λ) =
∑
abxy

wabxy E
sk←Gen(1λ)
χ:Enc(x)=χ

∑
α:Dec(α)=a

⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩. (9)

By the properties of the compilation procedure [19, Theorem 3.2], Bell inequalities are pre-
served under compilation (up to negligible error). In particular, for large security parameter,
efficient classical provers cannot violate a Bell inequality by much more than they could
in the (bipartite) scenario. From now on, we will suppress the security parameter λ ∈ N
along with the expectation over secret keys Esk←Gen(1λ) and simply write the expectation for
a fixed key. In particular, we express the compiled model as Q̃ and Equation (9) as

I =
∑
abxy

wabxy E
χ:Enc(x)=χ

∑
α:Dec(α)=a

⟨Ψα|χ|Nb|y|Ψα|χ⟩.

We now turn our attention to the maximum value I can take in the compiled setting
with an efficient quantum prover. The results of [19] imply that an efficient quantum prover
can achieve the same violation in the bipartite setting. However, the existence of a quantum
compiled behavior which exceeds the maximal quantum Bell violation in the bipartite case
(by more than negligible factors) has not been ruled out. Nonetheless, in several cases (like
the CHSH inequality and more generally all XOR games [16]) we know that the quantum
compiled behavior cannot exceed the value ηQ by more than negligible amounts. One
technique for establishing such bounds was introduced in [27] and uses SOS techniques to
bound the quantum violation of the compiled Bell functional.

3.2 Extending the pseudo-expectations
Our approach builds off the methods used in [27] and [16]. To explain this approach we recall
that a pseudo-expectation is a unital, linear map from a subspace T of the algebra generated
by {Ma|x, Nb|y}a∈A,x∈X ,b∈B,y∈Y to the complex numbers, ẼQ̃ : T → C, which is determined
by a compiled quantum model Q̃. In the case n = m = 2, it suffices to define the pseudo-
expectation ẼQ̃ on the observables Ax =

∑
a∈{0,1}(−1)aMa|x, By =

∑
b∈{0,1}(−1)bNb|y and

require that they are mapped to their expectations in the compiled scenario2. We further
assume that all measurements are projective (cf. Lemma 2). In previous works, the definition
of the pseudo-expectation had been restricted to monomials consisting of at most one Alice
and one Bob observable as outlined below:

2 Though in the following we define ẼQ̃
for n = m = 2, this can be directly extended to arbitrary Bell

scenarios by defining ẼQ̃
on the POVM elements Ma|x, Nb|y in an analogous way.
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ẼQ̃[AxBy] := E
χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|By|Ψα|χ⟩,

ẼQ̃[AxAx′ ] := δx,x′ ,

ẼQ̃[ByBy′ ] := E
x∈X

E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|ByBy′ |Ψα|χ⟩,

ẼQ̃[Ax] := E
χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|Ψα|χ⟩,

ẼQ̃[By] := E
x∈X

E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|By|Ψα|χ⟩,

ẼQ̃[I] := 1,

(10)

where Ex∈X denotes the expectation according to an arbitrary fixed distribution over X .
This is already sufficient to handle known SOS decompositions for a variety of well-studied
Bell inequalities whenever the polynomials are expressed in the basis {I, Ax, By}x∈X ,y∈Y .
However, there are Bell inequalities, such as the tilted-CHSH inequality [4, 5], for which no
known SOS decomposition exists in the basis {I, Ax, By}x∈X ,y∈Y .

The contribution of this section is to expand the definition of the pseudo-expectation
to the basis encompassing all monomials in Ax, B0, B1, for a fixed x ∈ X , in a way that is
approximately non-negative on Hermitian squares. This allows us to handle more general
SOS decompositions, and in particular, the tilted-CHSH inequalities. Let w(Ax, B0, B1) be
a monomial in the elements {Ax, B0, B1}. Importantly, x is fixed, and we do not consider
monomials of the form A0A1By for example. Let w̄ be the canonical form of w under the
relations [Ax, By] = 0, (By)2 = (Ax)2 = I, where all Ax terms are commuted to the left.
Since we only consider one value of x, these will all be of the form (Ax)iw̄(B0, B1) for some
i ∈ {0, 1}, where the monomial w̄(B0, B1) cannot be reduced further. We then define the
pseudo-expectation

ẼQ̃

[
w(Ax, B0, B1)

]
:= ẼQ̃

[
(Ax)iw̄(B0, B1)

]
. (11)

For the case i = 0, we define

ẼQ̃

[
w̄(B0, B1)

]
:= E

x∈X
E

χ:Enc(x)=χ

∑
α

⟨Ψα|χ|w̄(B0, B1)|Ψα|χ⟩, (12)

and for the case i = 1,

ẼQ̃

[
Axw̄(B0, B1)

]
:= E

χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|w̄(B0, B1)|Ψα|χ⟩. (13)

From the above definitions, we next state the main result of this section, which can be applied
generally to any polynomial expressible in the basis {Ax, B0, B1}.

▶ Theorem 3. Let {Ax}x∈X and {By}y∈Y be binary observables, and let

P =
∑

i

γi(Ax)kiwi(B0, B1), (14)

where γi ∈ C, ki ∈ {0, 1} and each wi(B0, B1) is any monomial in the algebra of {B0, B1}.
Then there exists a negligible function negl(λ) of the security parameter λ ∈ N such that

ẼQ̃[P †P ] ≥ −negl(λ). (15)

Furthermore, for a given Bell functional I, and a compiled model Q̃, ẼQ̃(I) is the expected
value of the compiled model Q̃ on I.

The proof can be found in Section A.2.



A. Mehta, C. Paddock, and L. Wooltorton 8:11

3.3 Quantum bounds for compiled tilted-CHSH expressions
We now present the family of extended tilted-CHSH type expressions and their SOS decom-
positions discovered in [5]. Let θ ∈ (0, π/4], ϕ ∈

(
max{−2θ,−π+ 2θ},min{2θ, π−2θ}

)
\{0},

and tθ,ϕ ∈ R such that

1
t2θ,ϕ

= sin2(2θ)
tan2(ϕ)

− cos2(2θ). (16)

From here, we define the following expressions:

Sθ,ϕ := A0 ⊗
B0 +B1

cos(ϕ) + t2θ,ϕ

[
sin(2θ)A1 ⊗

B0 −B1

sin(ϕ) + cos(2θ) I⊗ B0 +B1

cos(ϕ)

]
,

ηQ
θ,ϕ := 2(1 + t2θ,ϕ).

(17)

We also let Iθ,ϕ denote the corresponding Bell functional, and recall the following result.

▶ Lemma 4 ([5], Section 3.2.1). Let θ ∈ (0, π/4], ϕ ∈
(

max{−2θ,−π + 2θ},min{2θ, π −
2θ}
)
\ {0}, tθ,ϕ be given by Equation (16) and Sθ,ϕ, η

Q
θ,ϕ be defined in Equation (17). Define

the following polynomials:

N0 := A0 ⊗ I− I⊗ B0 +B1

2 cos(ϕ) ,

N1 := A1 ⊗ I− sin(2θ) I⊗ B0 −B1

2 sin(ϕ) − cos(2θ)A1 ⊗
B0 +B1

2 cos(ϕ) .
(18)

Then the shifted Bell operator S̄θ,ϕ = ηQ
θ,ϕI− Sθ,ϕ admits the SOS decomposition

S̄θ,ϕ = N†0N0 + t2θ,ϕN
†
1N1. (19)

Using the decomposition in Lemma 4, it was shown in [5] that the inequality ⟨Sθ,ϕ⟩ ≤ ηQ
θ,ϕ

self-tests the partially entangled state |ψθ⟩ = cos(θ)|00⟩+ sin(θ)|11⟩ and the measurements

A0 = σZ , A1 = σX ,

By = cos(ϕ)σZ + (−1)y sin(ϕ)σX , y ∈ {0, 1},
(20)

where σZ , σX are the Pauli operators. Notably, by setting ϕ = µθ where tan(µθ) = sin(2θ),
this family encompasses what are most commonly referred to as “tilted-CHSH inequalities”
given by the Bell operator

Tθ = αθA0 ⊗ I +A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1), (21)

where αθ = 2/
√

1 + 2 tan2(2θ) [2, 35, 4]. Compared to the SOS decompositions for Tθ

from [4], the decomposition of [5] is expressed in the basis for which our extended pseudo-
expectation is well defined (cf. Theorem 3), allowing us to provide bounds on the compiled
value of Tθ, and more generally the family Sθ,ϕ.

▶ Theorem 5. Let θ ∈ (0, π/4], ϕ ∈
(

max{−2θ,−π + 2θ},min{2θ, π − 2θ}
)
\ {0}, and let

Sθ,ϕ be the extended tilted-CHSH expression with quantum bound ηQ
θ,ϕ, given by Equation (17).

Then the maximum quantum value of the corresponding compiled Bell inequality is given by
ηQ

θ,ϕ + negl(λ)′, where negl(λ)′ is a negligible function of the security parameter.
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Proof. We evaluate the pseudo-expectation on the shifted Bell expression S̄θ,ϕ:

ẼQ̃[S̄θ,ϕ] = ẼQ̃[N†0N0] + λ2
θ,ϕẼQ̃[N†1N1], (22)

where we used the decomposition in Lemma 4. The polynomial N0 is expressed in the basis
{A0, B0, B1}, and we find by Theorem 3 that

ẼQ̃[N†0N0] ≥ −negl(λ). (23)

Similarly, N1 is expressed in the basis {A1, B0, B1}, and we see by Theorem 3 that
ẼQ̃[N†1N1] ≥ −negl(λ). Putting these together, we obtain

ẼQ̃[S̄θ,ϕ] ≥ −negl(λ)(1 + λ2
θ,ϕ) =: −negl(λ)′, (24)

which implies ẼQ̃[Sθ,ϕ] ≤ ηQ
θ,ϕ + negl(λ)′ as desired, where ẼQ̃[Sθ,ϕ] is the expected value of

the compiled Bell inequality. ◀

▶ Remark 6. The extension of the Sθ,ϕ family presented in [5, Section 3.2.3] self-tests the
state |ψθ⟩ along with the more general measurements

A0 = σZ , A1 = σX ,

B0 = cos(ϕ)σZ + sin(ϕ)σX ,

B1 = cos(ω)σZ + sin(ω)σX ,

(25)

for ϕ ∈ (−2θ, 0) and ω ∈ (0, 2θ). This family of Bell inequalities can also be compiled under
our definition of the pseudo-expectation. This is because each SOS polynomial is given in
the basis {Ax, B0, B1} for a fixed x, and we can apply Theorem 3 directly as was done in
Theorem 5. We omit the explicit proof of this for brevity.

4 Self-testing in the compiled setting

Recall that a bipartite (quantum) model Q, consists of a shared state |Ψ⟩, along with local
POVM measurements {Ma|x} and {Nb|y} for Alice and Bob, respectively. Given a Bell
expression I, the inequality I ≤ ηQ self-tests an ideal bipartite model Q∗ if any optimal
bipartite model is essentially the same as Q∗, modulo some physically irrelevant degrees of
freedom. This is more formally stated in terms or the existence of local isometries which
maps the employed model to the ideal one. When small errors are permitted, one considers
the following definition of robust self-testing.

▶ Definition 7 (Bipartite self-test). The inequality I ≤ ηQ is a self-test for a bipartite model
Q∗ =

(
{Pa|x}, {Qb|y}, |ϕ⟩

)
if there exist a non-negative function f(ϵ) such that f(ϵ)→ 0 as

ϵ→ 0, such that for any bipartite model Q =
(
{Ma|x}, {Nb|y}, |Ψ⟩

)
achieving I ≥ ηQ − ϵ for

ϵ ≥ 0, there exists a Hilbert space Haux, an auxiliary state |ζ⟩ ∈ Haux and local isometries
VA and VB, such that defining V : HA⊗HB → Cd⊗Cd⊗Haux, V = VA⊗VB, the following
is satisfied for all x, y, a, b:∥∥VA ⊗ VB(Ma|x ⊗Nb|y)|Ψ⟩ − (Pa|x ⊗Qb|y)|ϕ⟩ ⊗ |ζ⟩

∥∥ ≤ f(ϵ).

In the bipartite setting, one could consider the situation where Alice measures first using
a POVM {Pa|x}, collapsing the state to a post-measurement state ρa|x on Bob’s subsystem
HB , upon which Bob performs his measurement, resulting in the application of the POVM
element Qb|y. With this in mind, we consider the setting where the only relevant features of
the model are those from Bob’s (resp. Alice’s) perspective. In particular, subsystem A is
traced out following the recorded measurement of outcome of a given x.
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▶ Definition 8 (Partial model). Given a bipartite model Q =
(
{Ma|x}, {Nb|y}, |Ψ⟩

)
, we define

the partial model of Q by Q′ = ({Nb|y}, {ρa|x}) where

ρa|x = trA[(Ma|x ⊗ IB)|Ψ⟩⟨Ψ|]. (26)

We note that ρa|x will generally be mixed. When each ρa|x is pure, we say that Q has a pure
partial model, denoted by Q′ = ({Nb|y}, {|ϕa|x⟩}).

Symmetrically, given a bipartite model one can consider a (pure) partial model on HA by
tracing out subsystem B. However, because our motivation is the compiled setting, we will
focus on the partial models on HB . Furthermore, we remark that the notion of pure partial
models is not vacuous. In particular, the optimal bipartite model for the CHSH inequality
has a pure partial model on HB [10]. With the notion of a partial quantum model, we define
the notion of a partial (or one-sided) self-test for a bipartite model.

▶ Definition 9 (Partial self-test). The inequality I ≤ ηQ is a partial self-test for a bipartite
model Q∗ =

(
{Pa|x}, {Qb|y}, |ϕ⟩

)
with a pure partial model

(
{Qb|y}, {|ϕa|x⟩}

)
if there exists

a non-negative function f(ϵ) such that f(ϵ)→ 0 as ϵ→ 0, such that for any partial quantum
model Q =

(
{Nb|y}, {ρa|x}

)
achieving I ≥ ηQ − ϵ for ϵ ≥ 0, there exist a Hilbert space Haux,

a collection of auxiliary states {σa|x} and an isometry V : HB → Cd ⊗Haux such that the
following is satisfied for all x, y, a, b:∥∥V Nb|yρa|xNb|yV

† −Qb|y|ϕa|x⟩⟨ϕa|x|Qb|y ⊗ σa|x
∥∥

2 ≤ f(ϵ)
and

∥∥V ρa|xV
† − |ϕa|x⟩⟨ϕa|x| ⊗ σa|x

∥∥
2 ≤ f(ϵ),

Give the symmetry of HA and HB in the bipartite case, one can define a notion of partial
self-test for either subsystem. Given a bipartite self-test, one can check that tracing out
either subsystem results in a partial self-test. We leave it as an open question as to whether a
partial self-test (say over HA and over HB) implies that the correlation is a bipartite self-test.

4.1 Compiled self-tests from partial models
There are two main difficulties with self-testing in the compiled setting. Firstly, the correctness
with respect to auxiliary systems property of the compiler (see Property (1) in Definition 14)
only guarantees that a QPT prover can prepare states (possibly mixed) ρa|x over HB that
are negligible in trace distance from the post measurement states Pa|x|Ψ⟩⟨Ψ|Pa|x/p(a|x) of
the ideal bipartite model Q. This puts a fundamental constraint on our ability to exactly
describe the set of ideal models in the compiled setting. Secondly, unlike in the nonlocal
setting, it is not clear how to extract information about the measurements and states in
the first round due to the homomorphic evaluation of the measurements and preparation of
the states. To address these challenges we introduce the compiled counter-part of a partial
quantum model.

Recall that a compiled (quantum) model Q̃ consists of a family of post-measurement
states for “Alice” |ϕ̃α|χ⟩, which correspond to the state of the device following the encrypted
question χ, and encrypted answer α, and a POVM {Nb|y} employed by “Bob”. One could
also consider a more general compiled quantum model, which includes a description of the
initial state and Alice’s operators. The point of taking the coarser model is that it allows us
to introduce the notion of the compiled-counterpart of a bipartite model Q, which relates
the post-measurement information in the bipartite setting with another bipartite model that
resembles a compiled model.
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▶ Definition 10 (Compiled-counterpart model). Given a pure partial model Q′, the compiled-
counterpart model of Q′ is the pure partial model Q̃(λ) = ({|ϕ̃(λ)

α|χ⟩}, {Q
(λ)
b|y }) satisfying the

following conditions for all λ ∈ N:

|ϕ̃(λ)
α|χ⟩ = |ϕa|x⟩, for all sk : Gen(1λ) = sk, χ : Enc(x, sk) = χ, α : Dec(α, sk) = a.

N
(λ)
b|y = Qb|y, for all b, y.

We remark that the compiled counterpart need not be an actual compiled model. For
example, it is not required to satisfy the QPT conditions needed of a compiled model. Instead
it is a model that resembles an idealized version of an honest implementation of a partial
model under homomorphic encryption. We proceed with a definition of self-testing in the
compiled setting that resembles partial self-testing in the bipartite setting in the context of
these compiled-counterparts.

▶ Definition 11 (Compiled self-test). Let I denote a Bell expression with an optimal pure
partial model Q∗. The inequality I ≤ ηQ is a compiled self-test for the corresponding
compiled-counterpart Q̃∗ = ({|ϕ̃α|χ⟩}, {Qb|y}), if there exists a non-negative function f(ϵ)
such that f(ϵ) → 0 as ϵ → 0, such that for every pure and projective compiled model
Q̃ =

(
{|Ψα|χ⟩}, {Nb|y}

)
that achieves I ≥ ηQ − ϵ for some ϵ ≥ 0, there exists a negligible

function negl(λ), an isometry V : H̃ → Cd ⊗ Haux, and auxiliary states |auxα|χ⟩ ∈ Haux,
which satisfy the following for all x, b, y:

E
χ:Enc(x)=χ

∑
α

∥∥V |Ψα|χ⟩ − |ϕ̃α|χ⟩ ⊗ |auxα|χ⟩
∥∥2 ≤ negl(λ) + f(ϵ), and (27a)

E
χ:Enc(x)=χ

∑
α

∥∥V Nb|y|Ψα|χ⟩ −Qb|y|ϕ̃α|χ⟩ ⊗ |auxα|χ⟩
∥∥2 ≤ negl(λ) + f(ϵ). (27b)

Equation (27a) is a statement about the provers state after the first round. It asserts that,
given a question x and answer a, the post-measurement state is negligibly close to that of an
ideal prover implementing the honest bipartite model. To see this concretely, suppose the right
hand side was exactly equal to zero. Then we have the equality V |Ψα|χ⟩ = |ϕ̃α|χ⟩ ⊗ |auxα|χ⟩
for all χ such that Enc(x) = χ and all α. Substituting |ϕ̃α|χ⟩ for the states |ϕa|x⟩ from
Definition 10, we obtain

V |Ψα|χ⟩ = |ϕa|x⟩ ⊗ |auxα|χ⟩ (28)

whenever Enc(x) = χ and Dec(α) = a. That is, the post-measurement states are equal to
the target states up an isometry. Therefore, we interpret (27a) as an approximate version of
Equation (28), which accounts for a finite size security parameter λ and small errors in the
Bell violation ϵ. Equation (27b) is the analogous statement including the measurements in
the second round. We remark that if V could depend on the question x and answer a, (27a)
would trivially hold regardless of the compiled Bell violation, since the states |ϕa|x⟩ could
be prepared directly. It is therefore essential to enforce the same isometry is applied for all
a and x. Furthermore, (27b) captures several existing self-testing results in the compiled
setting. For example those presented in [27, Lemma 34], [16, Theorem 3.6] and [16, Eqs. 98
and 103]. Our proposed definition then goes further by also certifying the states after the
first round but before Bob’s measurements, as captured by (27a).

It is natural to ask if Definition 11 is the strongest form of self-testing possible in this
scenario, or if one can also certify the initial state |Ψ⟩ before Alice’s measurements. An
initial guess would be to show there exists an isometry V satisfying

V |Ψ⟩ ≈negl(λ) |ϕ⟩ ⊗ |aux⟩, (29)
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where |ϕ⟩ is the ideal bipartite entangled state. However, on its own this statement is not
very useful: such an isometry always exists, namely, one which ignores |Ψ⟩ and prepares |ϕ⟩
directly. A possible way around is to demand the same V also satisfies (27). At a glance, this
suggests certifying the initial state alone is not meaningful in the single prover setting; one
always needs to also consider the measurements. This contrasts the two prover setting, where
self-testing statements made only about the state are known [34] and non-trivial due to the
space-like separation of the provers. Another question worth asking is if the assumption of
having a pure projective models Q̃ can be relaxed in the definition Definition 11.

4.2 Compiled self-test for tilted-CHSH inequalities
Our final result is that the extended tilted-CHSH Bell inequalities are compiled self-tests
according to Definition 11. In particular, we have the following result.

▶ Theorem 12. Let θ ∈ (0, π/4], ϕ ∈
(

max{−2θ,−π + 2θ},min{2θ, π − 2θ}
)
\ {0}, and

let Iθ,ϕ be the generalized tilted-CHSH functional with quantum bound ηQ
θ,ϕ according to

Equation (17). Then the inequality Iθ,ϕ ≤ ηQ
θ,ϕ is a compiled self-test for the compiled-counter

part of (20) according to Definition 11.

The proof is reminiscent of the approach in [4], and includes similar calculations to those
used in [27, 6] which establish rigidity statements in the compiled setting. Given the length
of the proof, we refer the reader to the longer version of this work [24] for all the details.
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A Appendix

A.1 Efficient quantum circuits and homomorphic encryption
To define a quantum homomorphic encryption scheme we require the following concepts from
quantum cryptography.

▶ Definition 13. A procedure P is quantum polynomial time (QPT) if:
1. there exists a uniform logspace family of quantum circuits that implement P, and
2. the runtime of the circuit is polynomial in the number of qubits and the security parameter

λ ∈ N.
A family of quantum states F is QPT (preparable) if there is a QPT P for preparing F .

We now define a quantum homomorphic encryption (QHE) scheme. A formal definition
of QHE first appeared in [9]. We follow the description of QHE outlined in [19, 8]:

▶ Definition 14. A quantum homomorphic encryption scheme Q for a family of circuits C
consists of a security parameter λ ∈ N and the following algorithms:

(i) A PPT algorithm Gen which takes as input a unary encoding 1λ of the security parameter
λ ∈ N and outputs a secret key sk.

(ii) A PPT algorithm Enc which takes as input the secret key sk and a plaintext x ∈ {0, 1}n

and produces a ciphertext χ ∈ {0, 1}k.
(iii) A QPT algorithm Eval which takes as input a classical description of a quantum circuit

C : H⊗ (C2)⊗n → (C2)⊗m from C, a quantum plaintext |Ψ⟩ ∈ H on a Hilbert space, a
ciphertext χ, and evaluates a quantum circuit EvalC(|Ψ⟩ ⊗ |0⟩poly(λ,n), χ) producing a
ciphertext α ∈ {0, 1}ℓ.

(iv) A QPT algorithm Dec which takes as input ciphertext α, and secret key sk, and produces
a quantum state |Ψ′⟩.

Although the existence of algorithms (i)-(iv) defines a QHE scheme, we consider several
additional important properties a scheme may or may not possess:
1. (Correctness with auxiliary input). For every security parameter λ ∈ N, secret key sk←

Gen(1λ), classical circuit C : HA ⊗ (C2)⊗n → {0, 1}m, quantum state |Ψ⟩AB ∈ HA ⊗HB ,
plaintext x ∈ {0, 1}n ciphertext χ← Enc(x, sk), the following procedures produce states
with negligible trace distance with respect to λ:
a. Starting from the pair (x, |Ψ⟩AB), run the quantum circuit C on register A, outputting

the classical string a ∈ {0, 1}m along with the contents of register B.
b. Starting from (χ, |Ψ⟩AB), run the circuit EvalC(·) on register A, obtaining ciphertext

α ∈ {0, 1}ℓ, output a′ = Dec(α, sk) along with the contents of register B.
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2. (Security against efficient quantum distinguishers). Fix a secret key sk← Gen(1λ). Any
quantum polynomial time adversary A with access to Enc(·, sk) (but does not know sk)
cannot distinguish between ciphertexts χ← Enc(x0, sk) and χ′ ← Enc(x1, sk) with non-
negligible probability in λ, where x0 and x1 are any plaintexts chosen by the adversary.
That is

|Pr[AEnc(x0,sk)(x0) = 1]− Pr[AEnc(x0,sk)(x1) = 1]| ≤ negl(λ),

for all pairs (x0, x1).

The KLVY compilation procedure requires schemes that satisfy (1) and (2). QHE schemes
satisfying (1) and (2) have been described in [21, 8].

A.2 Proofs
Proof of Lemma 2. Let V (λ)

y : H′(λ) → C|B| ⊗H′(λ) be the isometry defined by

V (λ)
y |ϕ⟩ =

∑
b∈B

|b⟩ ⊗
√
N

′(λ)
b|y |ϕ⟩, ∀|ϕ⟩ ∈ H

′(λ). (30)

Furthermore, let U (λ)
y be the unitary which satisfies U (λ)

y (|0⟩ ⊗ |ϕ⟩) = V
(λ)

y |ϕ⟩ for all |ϕ⟩ ∈
H′(λ). Define the projectors,

Ñ
(λ)
b|y := U (λ)†

y (|b⟩⟨b| ⊗ I)U (λ)
y . (31)

Since |B| is constant with respect to λ and each N
′(λ)
b|y is QPT, the resulting PVMs {Ñ (λ)

b|y }b∈B

are QPT for every y ∈ Y. For the sub-normalized states, let |Ψ̃α|χ⟩ ∈ H
′(λ) ⊗ H̃(λ) be any

purification3 of ρ(λ)
α|χ with H′(λ) ∼= H̃(λ), and define

|Ψ(λ)
α|χ⟩ := |0⟩ ⊗ |Ψ̃(λ)

α|χ⟩ ∈ C|X | ⊗H
′(λ) ⊗ H̃(λ) =: H(λ). (32)

Again, since |X | is constant with respect to λ the (sub-normalized) states |Ψ(λ)
α|χ⟩ are QPT-

preparable. Now, extend each Ñ (λ)
b|y to act trivially on the purifying system H̃(λ) by defining

N
(λ)
b|y := Ñ

(λ)
b|y ⊗ I. We observe

tr
[
N

(λ)
b|y |Ψ

(λ)
α|χ⟩⟨Ψ

(λ)
α|χ|

]
= tr

[
Ñ

(λ)
b|y trQ̃[|Ψ(λ)

α|χ⟩⟨ψ
(λ)
α|χ|]

]
= tr[Ñ (λ)

b|y (|0⟩⟨0| ⊗ ρ(λ)
α|χ)]

= tr
[(
|b⟩⟨b| ⊗ I

)
U (λ)

y

(
|0⟩⟨0| ⊗ ρα|χ

)
U (λ)†

y

]
= tr

[√
N

′(λ)
b|y ρ

(λ)
α|χ

√
N

′(λ)
b|y

]
= p(λ)(α, b|χ, x),

(33)

where Q̃ denotes the purifying system H̃(λ). Since H̃(λ) has the same dimensions as H(λ),
the PVMs N (λ)

b|y are indeed QPT. ◀

3 Strictly speaking, since ρ
(λ)
α|χ is sub-normalized, |Ψ̃(λ)

α|χ⟩ is equal to the purification of ρ
(λ)
α|χ/tr[ρ(λ)

α|χ]
weighted by tr[ρ(λ)

α|χ], whenever tr[ρ(λ)
α|χ] > 0.
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Proof of Theorem 3. To begin, we write

ẼQ̃[P †P ] =
∑

ij

γ∗i γjẼQ̃[(Ax)kiwi(B0, B1)(Ax)kjwj(B0, B1)]

=
∑

ij

γ∗i γjẼQ̃[(Ax)ki+kj w̄ij(B0, B1)],
(34)

where we used the linearity of ẼQ̃[·] in the first line, and in the second line we used the fact
that ẼQ̃[w] = ẼQ̃[w̄] (where w̄ is the canonical form of the monomial w), and defined w̄ij to
be the canonical form of wiwj . We now need to consider two types of terms. First, when
ki ⊕ kj = 0, we apply the definition in Equation (12) in conjunction with Lemma 1 to write∑

ij:ki⊕kj=0
γ∗i γjẼQ̃[w̄ij(B0, B1)]

= E
x′∈X

E
χ:Enc(x′)=χ

∑
α

⟨Ψα|χ|

( ∑
ij:ki⊕kj=0

γ∗i γjw̄ij(B0, B1)
)
|Ψα|χ⟩

≈negl(λ) E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|

( ∑
ij:ki⊕kj=0

γ∗i γjw̄ij(B0, B1)
)
|Ψα|χ⟩

=
∑

ij:ki⊕kj=0
γ∗i γj E

χ:Enc(x)=χ

∑
α

⟨Ψα|χ|w̄ij(B0, B1)|Ψα|χ⟩.

(35)

When ki ⊕ kj = 1, we can apply Equation (13) directly. Putting these two together, we
observe∑

ij

γ∗i γjẼQ̃[(Ax)ki+kj w̄ij(B0, B1)]

=
∑

ij:ki⊕kj=0
γ∗i γjẼQ̃[w̄ij ] +

∑
ij:ki⊕kj=1

γ∗i γjẼQ̃[Axw̄ij ]

≈negl(λ)
∑

ij:ki⊕kj=0
γ∗i γj E

χ:Enc(x)=χ

∑
α

⟨Ψα|χ|w̄ij(B0, B1)|Ψα|χ⟩

+
∑

ij:ki⊕kj=1
γ∗i γj E

χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|w̄ij(B0, B1)|Ψα|χ⟩

= E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|
∑

ij

(−1)Dec(α)·(ki+kj)γ∗i γjwi(B0, B1)wj(B0, B1)|Ψα|χ⟩

= E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|
∣∣∣∑

i

(−1)Dec(α)·kiγiwi(B0, B1)
∣∣∣2|Ψα|χ⟩ ≥ 0.

(36)

Where in the fifth line, we used the fact that Bob’s observables satisfy the canonical relations,
so we can always replace the canonical monomial w̄ij with wiwj . The final line is obtained by
noting the square inside the expectation. We therefore conclude ẼQ̃[P †P ] ≈negl(λ) h for some
h ≥ 0, which implies |ẼQ̃[P †P ] − h| ≤ negl(λ), and ẼQ̃[P †P ] ≥ h − negl(λ) ≥ −negl(λ) as
required. Lastly, it is straightforward to verify from the definition that for any Bell functional
I we have ẼQ̃(I) recovers the expected value under Q̃. ◀
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