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Abstract
Quantum pseudorandomness has found applications in many areas of quantum information, ranging
from entanglement theory, to models of scrambling phenomena in chaotic quantum systems, and,
more recently, in the foundations of quantum cryptography. Kretschmer (TQC ’21) showed that both
pseudorandom states and pseudorandom unitaries exist even in a world without classical one-way
functions. To this day, however, all known constructions require classical cryptographic building
blocks which are themselves synonymous with the existence of one-way functions, and which are
also challenging to implement on realistic quantum hardware.

In this work, we seek to make progress on both of these fronts simultaneously – by decoupling
quantum pseudorandomness from classical cryptography altogether. We introduce a quantum
hardness assumption called the Hamiltonian Phase State (HPS) problem, which is the task of decoding
output states of a random instantaneous quantum polynomial-time (IQP) circuit. Hamiltonian
phase states can be generated very efficiently using only Hadamard gates, single-qubit Z rotations
and CNOT circuits. We show that the hardness of our problem reduces to a worst-case version of
the problem, and we provide evidence that our assumption is plausibly fully quantum; meaning,
it cannot be used to construct one-way functions. We also show information-theoretic hardness
when only few copies of HPS are available by proving an approximate t-design property of our
ensemble. Finally, we show that our HPS assumption and its variants allow us to efficiently
construct many pseudorandom quantum primitives, ranging from pseudorandom states, to quantum
pseudoentanglement, to pseudorandom unitaries, and even primitives such as public-key encryption
with quantum keys.
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1 Introduction

Pseudorandomness [34, 68] is ubiquitous in theoretical computer science and has found
applications in many areas, ranging from cryptography, to computational complexity, to the
study of randomized algorithms, and even to combinatorics. The celebrated result of Håstad,
Impagliazzo, Levin, and Luby [44] shows that one can construct a pseudorandom generator
from any one-way function – a function that is easy to evaluate but computationally hard
to invert. Pseudorandom generators can then in turn be used to construct more advanced
cryptographic primitives, such as pseudorandom functions [35], i.e., keyed families of functions
that appear random to any computationally bounded observer. This fact has elevated the
notion of a one-way function as the minimal assumption in all of theoretical cryptography.
One-way functions are typically built from well-studied mathematical conjectures, such as the
hardness of factoring [61] and discrete logarithms [54], decoding error correcting codes [13, 4],
or finding short vectors in high-dimensional lattices [59]. More advanced cryptographic
primitives (which are believed to lie beyond what is generically possible to construct from
any one-way function), such as public-key encryption, tend to require highly structured
assumptions which are more susceptible to algorithmic attacks – particularly by quantum
computers [65], which has led to the design of post-quantum assumptions [3].

In quantum cryptography, there has recently been a significant interest in so-called
“fully quantum” cryptographic primitives (occasionally referred to as MicroCrypt primitives)
which are potentially weaker than the conventional minimal assumptions used in classical
cryptography. Here, the notion of quantum pseudorandomness has emerged as the natural
quantum analogue of pseudorandomness in the classical world [46, 50, 2]. In particular, Ji, Liu
and Song [46] proposed the notion of pseudorandom states [46] and pseudorandom unitaries
as the natural quantum analogues of pseudorandom generators [44] and pseudorandom
functions [35], respectively. The work of Kretschmer [50, 51] has shown that such fully
quantum cryptographic primitives can exist in a world in which no classical cryptography
exists – including one-way functions. At the same time, quantum pseudorandomness has
applications in many areas of quantum information, ranging from entanglement theory [2, 16,
32], quantum learning theory [70], to models of scrambling phenomena in chaotic quantum
systems [49, 31], and, more generally, even in the foundations of quantum cryptography [46,
50, 51, 57, 5, 17, 15, 48, 10].

Limitations of existing constructions. Despite strong evidence that MicroCrypt primitives
such as pseudorandom quantum states and pseudorandom unitaries lie “below” one-way
functions [50, 51], all known constructions implicitly make use of one-way functions (or other
assumptions which are themselves synonymous with the existence of one-way functions) [46,
19, 55]. This naturally begs the question:

Is it possible to construct fully quantum primitives, including quantum pseudorandomness,
from quantum rather than classical hardness assumptions?

Instantiating fully quantum primitives from a concrete and well-founded quantum hardness
assumption (rather than from the existence of one-way functions) has remained a long
standing open problem [6, 57].

Moreover, the fact that quantum pseudorandom states and unitaries are built from
classical one-way functions makes them nearly impossible to realize on realistic quantum
hardware. In some sense, this is inherent because cryptographic pseudorandom functions
are highly complex by design [11], and therefore require a massive computational overhead
to implement coherently. As a result, this severely limits the potential of using quantum
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pseudorandomness in practical applications; for example in the context of entanglement
theory [2, 16], or when studying the emergence of thermal equilibria in isolated many-body
systems [32], or when modeling scrambling phenomena in chaotic quantum systems [49].
A second limitation of existing pseudorandom constructions is therefore also the notion of
quantum efficiency, which begs the question:

Are there more efficient constructions of quantum pseudorandomness which can be
implemented on realistic quantum hardware?

Making progress on both of these questions would not only lead to new insights in the
foundations of quantum cryptography and the study of quantum hardness assumptions more
generally, but also make quantum pseudorandomness more useful in practice. To this day,
however, no concrete fully quantum hardness assumption has been explored in an attempt
to answer this question.

Towards a fully quantum assumption. In order to plausibly claim that quantum pseu-
dorandomness and other fully quantum cryptographic primitives exist in a world in which
classical cryptography does not, we must construct these primitives from new assumptions
that do not themselves imply classical cryptography.

The history of cryptography has taught us that finding good and well-founded crypto-
graphic assumptions is not at all an easy task – even entirely plausible assumptions have
often found surprising attacks [66, 26, 12]. What makes a new cryptographic assumption
reasonable? While no widely agreed upon standards exist [36], the conventional belief is to
use assumptions

which are rooted in a well-studied problem (ideally, a problem that has already been
analyzed for many years) and which seems intractable in the worst case;
for which there is a natural notion of what constitutes a “random instance” of the problem;
moreover, such an instance can always be efficiently generated;
for which there is evidence of average-case hardness, ideally in the form of a worst-case
to average-case reduction;
which can be connected to other assumptions or computational tasks that have been
studied over the years, and
which have enough structure to enable interesting cryptographic primitives.

A natural candidate for constructing quantum pseudorandomness (and other fully
quantum cryptographic primitives) is via random quantum circuits. In fact, the com-
putational pseudorandomness of random quantum circuits appears to be a folklore conjecture
and is widely believed among many quantum computer scientists. As we are unaware of a
concrete technical conjecture, we provide such a formulation here.

▶ Conjecture 1 (Random quantum circuits give rise to pseudorandom unitaries). Consider
n-qubit random quantum circuits with m gates defined by repeating the following process m
times independently at random: Draw a random pair (i, j) of qubits and apply a gate from
a universal gate set G ⊂ SU(4) to the qubits i and j. Then, there exist univeral constants
c > 0 and CG > 0 (depending on the gate set G) such that random quantum circuits with
m ≥ CGn

c gates form ensembles of pseudorandom unitaries.

We note that many other possible formulations (e.g. with specific geometric architectures or
only regarding pseudorandom states) are also possible. Indeed, if Conjecture 1 holds even
with exponential security, then Ref. [63] implies that a simple ensemble of random quantum
circuits in a 1D architecture of depth polylog(n) is also pseudorandom.

TQC 2025



9:4 Efficient Quantum Pseudorandomness from Hamiltonian Phase States

Conjecture 1 can be seen as a direct quantum analogue of a claim that was first proposed
by Gowers [37] who conjectured that random reversible quantum circuits form pseudorandom
permutations on bitstrings. This conjecture has inspired multiple recent works in classical
cryptography. For instance, it was recently proven by He and O’Donnell [42] that the
Luby-Rackoff [52] construction of pseudorandom permutations from pseudorandom functions
can be implemented with reversible permutations. Random reversible circuits have recently
also inspired entirely new approaches for constructing program obfuscation schemes [25].

Gowers originally conjectured the emergence of pseudorandomness when attempting to
prove that random quantum circuits converge quickly to ensembles of t-wise independent
permutations [37] (this bound was further improved later on towards an optimal scaling [43,
24, 28]. In fact, this property can itself be viewed as evidence for pseudorandomness. It
turns out that random quantum circuits satisfy an analogous property by converging nearly
optimally towards approximate t-designs [28, 20, 40, 63].

However, we currently do not have rigorous evidence for Conjecture 1; for example, in
terms of a worst-to-average reduction for a corresponding learning problem. Moreover, and
maybe more importantly, it is unclear how one would use unstructured random quantum
circuits to construct more advanced quantum cryptographic primitives. A similar situation
arises for general one-way functions, which require additional structure to build more advanced
cryptographic applications, such as public-key encryption. It could very well be the case that
random quantum circuits are simply too mixing to be a useful in the context of quantum
cryptography. A natural way forward is to search for a sweet spot – an ensemble of random
quantum circuits that is sufficiently structured to permit the construction of interesting
cryptographic primitives but which, at the same time, is sufficiently mixing to guarantee
security.

2 Our contributions

In this work, we simultaneously address the two major open problems in the field of quantum
pseudorandomness and propose the first well-founded and fully quantum hardness assumption.
To this end, we follow the strategy sketched above, and propose a family of quantum states
which we call Hamiltonian Phase States. These states are a family of quantum states which
are “maximally quantum” in the sense that the state has support on all bitstrings with
amplitudes equal in magnitude, but varying phases. Hamiltonian Phase States are generated
by a family of commuting instantaneous quantum polynomial-time (IQP) circuits which
generalize the X programs proposed by Shepherd and Bremner [64]. The corresponding
circuits are highly structured in that they are generated by a Hamiltonian with only Z-type
terms applied to the all-|+⟩ state. This structure makes them amenable to rigorous analysis
[47, 22, 38]. At the same time, these circuits are also believed to be sufficiently mixing and
hard to simulate classically [64, 21, 23, 41]. Moreover, since Hamiltonian phase states can be
generated by a commuting Hamiltonian, they admit an efficient implementation in practice.

Phase states are a natural direction to look at in the search for a fully-quantum crypto-
graphic assumption with sufficient amounts of structure. On the one hand, this is because
of their quantum advantage properties. On the other hand, the (quantum) learnability of
different ensembles of phase states has been studied extensively in recent work [7].

There, the authors give optimal bounds for the sample complexity of learning many
families of phase states from quantum samples, as well as upper bounds on the time complexity.
Importantly, there are families of phase states generated using a small number of (long-range)
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Figure 1 Hamiltonian Phase States (HPS) are generated by sequentially applying Ising-type
rotations around angles θi to the state |+n⟩ = H⊗n |0n⟩. (a) Example of a HPS on 4 qubits.
Connected boxes at sites i, j, k with angle θ represent the unitary exp(iθZiZjZk). (b) HPS can be
implemented using only single-qubit Z rotations interlaced with CNOT circuits.

gates, which cannot be learned from polynomially many samples. Following this, our proposed
cryptographic assumption is that Hamiltonian Phase States are hard to learn, given quantum
samples and classical side information.

Moreover, the known constructions for pseudorandom states with useful cryptographic
applications are based on phase states [46]. These are generated using a single-bit output
quantum-secure pseudorandom function family {fk}k with

|ϕk⟩ ∝
∑

x

ωfk(x)
q |x⟩ , (1)

where ωq is a q-th root of unity, for example q = 2 [19]. Because these states are based
on a classical assumption, they require the reversible implementation of a classical PRF
which requires a large number of Toffoli gates. These are extremely expensive in standard
fault-tolerant constructions. However, the results of Refs. [46, 7] suggest that a more natural
family of phase states which is generated by a quantum circuit with a small number of
expensive gates can also yield quantum pseudorandomness. This would require gates affecting
a large number of qubits, since low-degree phase states can be learned efficiently. As we
show below, in spite of having terms with high support, the Hamiltonian Phase States can
be generated highly efficiently using only local Z-rotations and CNOT gates.

2.1 Hamiltonian Phase States
Let A ∈ Zm×n

2 be a binary matrix and let θ = (θ1, . . . , θm) be a set of uniformly random
angles in the interval [0, 2π) according to some discretization into q = poly(n) parts. We
consider phase states of the form

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

H⊗n |0n⟩ . (2)

where, for i ∈ [m], we denote the i-th row of A by (Ai1, . . . ,Ain) and let
n⊗

j=1
ZAij = ZAi1 ⊗ · · · ⊗ ZAin for Z0 = I, Z1 = Z.

We call these states Hamiltonian Phase States since they can naturally be prepared as
the result of a time evolution under a sparse Ising Hamiltonian. We also call the matrix
A the architecture of the states, as it specifies the overall structure/location of the Ising
terms. Hamiltonian Phase States with a single fixed angle θi ≡ θ have been studied as a

TQC 2025



9:6 Efficient Quantum Pseudorandomness from Hamiltonian Phase States

means to demonstrate verified quantum advantage, when measured in the X basis, under
the name X-programs [64]. A Hamiltonian Phase State is therefore a generalized version
of an X program parameterized by the pair (A,θ). X programs with θ = π/8 have the
interesting property that its Fourier coefficients can be computed efficiently classically, but
at the same time the simulation of such X-programs is believed to be classically intractable
[64, 21, 23, 41].

Our cryptographic assumption rests on the apparent hardness of learning Hamiltonian
Phase States (or generalized X programs), which was highlighted in recent work [7]. Con-
cretely, our quantum computational assumption amounts to the conjecture that our ensemble
of Hamiltonian phase states satisfies the following two properties:

Random Hamiltonian Phase States are hard to invert in the following sense: given |ΦA
θ ⟩
⊗t,

for any t = poly(n), it is computationally difficult to reverse-engineer the angles θ and
architecture A. This means that the ensemble {|ΦA

θ ⟩}θ,A gives rise to a so-called one-way
state generator (OWSG).
Random Hamiltonian Phase States are hard to distinguish from Haar random states in
the following sense: given |ΦA

θ ⟩
⊗t, for any t = poly(n), it is computationally difficult to

distinguish |ΦA
θ ⟩
⊗t from |Ψ⟩⊗t, where |Ψ⟩ is a Haar random state. This means that the

ensemble {|ΦA
θ ⟩}θ,A gives rise to a so-called pseudorandom state generator (PRSG).

We can call the two assumptions above the search (respectively, decision) variant of
Hamiltonian Phase State assumption (HPSn,m,q,χ). Here, n,m ∈ N are circuit parameters, q
is a discretization parameter for the interval [0, 2π), and χ is a distribution over the choice
of matrix A ∈ Zm×n

2 ; typically, χ is chosen to be the uniform distribution.
There is some evidence that HPSn,m,q,χ is a reasonable assumption for constructing

pseudorandom states. Brakerski and Shmueli [19] show that the states DH⊗n |0n⟩ form a
state t-design when the diagonal operator D consists of a 2t-wise independent binary phase
operator. Previously, Nakata, Koashi and Murao [58] also showed that the states DH⊗n |0n⟩,
where D is a diagonal operator composed of appropriate diagonal gates with random phases,
form a t-design. Starting from this intuition, we now provide rigorous evidence for the
hardness of the HPSn,m,q,χ assumption.

2.2 Overview of our Results

In this work, we establish HPSn,m,q,χ as a well-founded quantum computational assumption.
Specifically, we address each of the meta-criteria we mentioned before:

(Evidence of worst-case hardness) The learnability of ensembles of phase states has been
studied extensively in recent work [7], and has been found to have exponential time
complexity in the worst case (despite only having polynomial sample complexity).
(Notion of a random instance) A random Hamiltonian phase state |ΦA

θ ⟩, e.g., as in Equa-
tion (2), is naturally defined in terms of a random binary matrix A← Zm×n

q and a random
set of angles θ = (θ1, . . . , θm). Hence, it can be efficiently generated by a simple quantum
circuit comprising O(m/n · n2) CNOT gates, n Hadamard gates, and m single-qubit Z
rotations.
(Evidence of average-case hardness) Our learning task admits a worst-case to average-case
reduction. We separately show how to re-randomize the architecture and the set of angles.
Thus, the hardness of our problem reduces to a worst-case version.
(Relation to other problems) We draw a connection between the task of learning Hamilto-
nian Phase states and the security of classical Goppa codes and the well-known McEliece
cryptosystem.
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(Cryptographic applications) Hamiltonian Phase states have a sufficient amount of struc-
ture which suffices to construct a number of interesting cryptographic primitives which
we sketch in detail in Section 2.3.

Finally, we also provide evidence that HPSn,m,q,χ is plausibly fully-quantum and does not
allow one to construct one-way functions. In particular, we note that the result of [50]
indicates that the idealized versions of any assumption that yields only pseudorandom states
can not be used to build one-way functions in a black-box way. We further discuss the
implications of the fact that HPS states are state t-designs on this reduction, noting that
the resulting concentration properties by themselves rule out one-way function constructions
that do not simulateneously measure many copies of the HPS state. For all of the primitives
we construct, in addition to just constructing these primitives from our hardness assumption,
we argue that constructing them from our hardness assumption yields more efficient and
practical implementations of these primitives (if and when fault-tolerant quantum computers
become widely available).

2.3 Applications
In this section, we give an overview of all the applications which are enabled by the HPS
assumption. Besides the natural application of constructing efficient one-way state generators
and pseudorandom state generators, which essentially follow by definition of our assumption,
we also construct a number of other interesting applications that are relevant in quantum
information science more broadly.

Quantum Trapdoor Functions and Public-Key Encryption with Quantum Public Keys

Recent work of Coladangelo [29] introduced the notion of a quantum trapdoor function
(QTF). This primitive is essentially a variant of a one-way state generator that also features
a secret trapdoor which makes inversion possible. QTFs are interesting in the sense that
they almost enable public-key encryption: two parties can communicate classical messages
over a quantum channel without ever exchanging a shared key in advance – the only caveat
being that this requires the public keys to be quantum states [29]. Using a construction
based on binary-phase states, Coladangelo [29] showed that quantum trapdoor functions
exist, if post-quantum one-way functions exist. However, to this day, it remains unclear how
to construct QTFs from assumptions which are potentially weaker than one-way functions,
such as the existence of pseudorandom states.

In the full version, we show how to construct QTFs from our (decisional) HPS assumption,
which yields the first construction of QTFs from an assumption which is plausibly weaker
than that of one-way functions. We believe that this application strongly highlights the
versatility of Hamiltonian Phase states in the context of quantum cryptography; for example,
it is far less clear how to construct QTFs from other, less structured, assumptions such as
genuinely random quantum circuits via Conjecture 1.

Quantum Pseudoentanglement

The notion of pseudoentanglement [2, 16] has found many applications in quantum physics,
for example to study the emergence of thermal equilibria in isolated many-body systems [32].
Pseudoentangled states have also been viewed as a potential tool for probing computational
aspects of the AdS/CFT correspondence, which physicists believe may shed insight onto
the behavior of black holes in certain simplified models of the universe. We note that it
is currently not known how to construct these from any assumption other than one-way

TQC 2025



9:8 Efficient Quantum Pseudorandomness from Hamiltonian Phase States

functions. In the full version, we give a construction of pseudoentangled states from our HPS
assumption, which yields the first construction of pseudoentanglement from an assumption
which is plausibly weaker than that of one-way functions. Our proof sheds new light on
the entanglement properties of random IQP circuits more generally.1 Therefore, we believe
that this contribution is of independent interest. Moreover, as we point out in the next
section, our construction is also highly efficient and could enable implementations of quantum
pseudoentanglement in practical scenarios.

Pseudorandom Unitaries

Pseudorandom unitaries are families of unitaries that are indistinguishable from Haar random
unitaries in the presence of computationally bounded adversaries. They are widely considered
the most powerful fully-quantum primitive, and there has been a long line of work towards
constructing them from the existence of one-way functions [5, 18, 55, 27], eventually resulting
in the most recent breakthrough result by Ma and Huang [53].

The result of [53] show that the ensemble of unitaries, colloquially known as the PFC-
ensemble [55], form an approximation to a Haar random unitary. However, this construction
is not well suited for the HPS assumption, which, in some sense, provides a pseudorandom
diagonal unitary. In the full version, we provide a plausible construction of efficient pseudor-
andom unitaries from an natural assumption which is directly related to our HPS assumption:
alternating applications of HPS unitaries and Hadamards.

2.4 Physical Implementations
Hamiltonian Phase States with m terms on n qubits can be generated very efficiently
compared to phase states constructed from pseudorandom functions: to prepare a HPS, we
require only a layer of Hadamard gates, followed by ⌈m/n⌉ alternating layers of single-qubit
Z rotations and CNOT circuits. To see this, we observe two facts. First,

CNOTk,le
iθZl = eiθZkZlCNOTk,l, (3)

where CNOTk,l is controlled on qubit k and targeted on qubit l. Second,

CNOTk,l |+n⟩ = |+n⟩ . (4)

More generally, if C is a circuit comprised of CNOT gates, then C |x⟩ = |C · x⟩, where
C ∈ GL(n,Z2) is an invertible binary matrix. Given an HPS, decompose its architecture
matrix A ∈ Zn×m

2 into ⌈m/n⌉ submatrices of n rows (except for the last one), and suppose
each of those submatrices has full rank. The HPS |ΦA

θ ⟩ can then be prepared as

|ΦA
θ ⟩ =

C⌈m/n⌉

m∏
i=(⌈m/n⌉−1)n

eiθiZi

 · · ·(C1

n∏
i=1

eiθiZi

)
|+n⟩ (5)

where the CNOT circuits Ck are chosen such that the first n rows of A are given by
C⌈m/n⌉ · · ·C1, the second n rows by C⌈m/n⌉ · · ·C2, and so on, see Figure 1 for an example.
If the rank condition above is not satisfied, decompose A into the minimal number ℓ of
submatrices with full rank, and proceed as above. The smallest meaningful example of such

1 To the best of our knowledge, such bounds for random IQP circuits were previously not known.
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states – with n random, linearly independent terms – can thus be prepared using a single
layer of rotations and a CNOT circuit. By the fact that GL(n,Z2) is a group, uniformly
random architecture matrices Ci and phases θi generate a uniformly random HPS.

This protocol for the implementation of HPS is also interesting from an early fault-
tolerance perspective, since there are quantum codes in which all required operations are
transversal, yielding a highly efficient fault-tolerant implementation. To see this, consider a
q = 2d-fold discretization of the unit circle. Now, we observe that there are d-dimensional
CSS codes with a transversal Z1/2d−1 gate such as the [[2d−1, 1, 3]] simplex code [69]. By the
fact that they are CSS codes, they also admit a transversal CNOT gate between code blocks.
This means that HPS can be prepared using transversal in-block Z1/2d−1 gates as well as
inter-block CNOT gates, making them amenable to implementations in early fault-tolerant
architectures such as reconfigurable atom arrays [14], or trapped ion processors [62, 60] in
which arbitrary inter-block connectivities can be achieved.

3 Hamiltonian Phase State Assumption

In this section, we give a formal definition of our hardness assumption. Recall that an n-qubit
Hamiltonian Phase State is of the form

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

H⊗n |0n⟩

where A ∈ Zm×n
2 is a binary matrix and θ = (θ1, . . . , θm) is a set of angles in the interval

[0, 2π). To avoid matters of precision, we introduce a discretization parameter q ∈ N with
q = poly(n) and partition the interval [0, 2π) into q parts via the set

Θq :=
{

2πk
q

: k ∈ {0, 1, . . . , q − 1}
}
.

We now introduce two variants of our hardness assumption.

3.1 Search Variant
Our first variant considers a search problem. Roughly speaking, it says that given many copies
of a random Hamiltonian phase state, it is computationally difficult to reverse-engineer its
architecture and its angles. Therefore, our assumption says that an ensemble of Hamiltonian
Phase states forms a one-way state generator [57].

We now give a formal definition.

▶ Definition 2 (Search HPS). Let n ∈ N denote the security parameter, and let m and q

be integers (possibly depending on n). Let χ be a distribution with support over matrices in
Zm×n

2 . Then, the (search) Hamiltonian Phase State assumption (HPSn,m,q,χ) states that, for
any number of copies t = poly(n) and for any efficient quantum algorithm A,

Pr
[
1← Ver(A′,θ′, |ΦA

θ ⟩) : A∼χ, θ∼Θm
q

(A′,θ′)←A(|ΦA
θ ⟩

⊗t)

]
≤ negl(n) ,

where Ver(A′,θ′, |ΦA
θ ⟩) denotes the algorithm which applies the projective measurement

{|ΦA′

θ′ ⟩⟨ΦA′

θ′ |, I − |ΦA′

θ′ ⟩⟨ΦA′

θ′ |}

TQC 2025



9:10 Efficient Quantum Pseudorandomness from Hamiltonian Phase States

onto |ΦA
θ ⟩ and outputs 1, if the measurement succeeds, and outputs 0 otherwise. We say that

a quantum algorithm solves the (search) HPSn,m,q,χ problem if it runs in time poly(n,m, log q)
and succeeds with probability at least 1/poly(n,m, log q).

An alternative but equivalent formulation of the security property is to say that it is
computationally difficult to find a state |ΦA′

θ′ ⟩ which has non-vanishing fidelity with the input
state, on average over the choice of architecture and set of angles.

3.2 Decision Variant

Our second variant considers a decision problem. Roughly speaking, it says that given many
copies of a random Hamiltonian phase state, it is computationally difficult to distinguish
it from many copies of a Haar state. Therefore, our (decision) assumption says that an
ensemble of Hamiltonian Phase states forms a pseudorandom state generator [46, 57].

▶ Definition 3 (Decision HPS). Let n ∈ N denote the security parameter, and let m and q
be integers (possibly depending on n). Let χ be a distribution with support over matrices in
Zm×n

2 . Then, the (decision) Hamiltonian Phase State assumption (HPSn,m,q,χ) states that,
for any number of copies t = poly(n) and for any efficient quantum distinguisher D,∣∣∣Pr

[
1← D(|ΦA

θ ⟩
⊗t) : A∼χ

θ∼Θm
q

]
− Pr

[
1← D(|Ψ⟩⊗t) : |Ψ⟩∼Haar(2n)

]∣∣∣ ≤ negl(n) ,

We say that a quantum algorithm solves the (decision) HPSn,m,q,χ problem if it runs in time
poly(n,m, log q) and succeeds with probability at least 1/poly(n,m, log q).

4 Evidence for Average-Case Hardness and Full Quantumness

In this section, we give several pieces of evidence for the security of the HPSn,m,q,χ assumption,
as well as evidence that it is a fully quantum assumption.

First, in Section 4.1, we show two worst-to-average-case reductions for the HPSn,m,q,χ

problem, and also discuss the limitations of those reductions. To this end, we first show that
if the Hamiltonian architecture matrix A is publicly known, then there is a worst-to-average-
case reduction for the angles θ ∈ Θq . Second, we show that for m = n, and any fixed set of
angles, there is a worst-to-average-case reduction over the architecture matrices A.

Then, we show that if χ is the uniform distribution of m× n binary matrices and q > 2t,
Hamiltonian Phase States with m ≳ nt2 random terms form approximate state t-designs
in Section 4.2. This shows that given less than Ω(

√
m/n) many copies, HPS are information-

theoretically indistinguishable from Haar-random states. It also implies that the Hamiltonian
Phase States contain an exponentially large set of almost orthogonal states. This implies
that Hamiltonian phase states are fast mixing, giving additional evidence that the learning
problem is computationally hard.

In the full version, we discuss algorithms for learning phase states with public and
secret architecture matrices. In particular, we give a sample-optimal (but exponential-time)
algorithm for solving the HPS problem using pretty good measurements [9, 56] and a simple
algorithm that uses classical shadows [1, 45]. Moreover, we also discuss why the HPS
assumption is fully quantum. To this end, we give evidence against the possibility of building
one-way functions from HPS.
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4.1 Worst-Case to Average-Case Reduction

We begin providing evidence for the security of our assumption by showing how in different
regimes learning the parameters of the HPS problem of a fixed (worst-case) instance can
be reduced to learning a random instance. Our evidence will treat the angles θ and the
Hamiltonian architecture matrix A separately. Specifically, we will show two types of worst-
to-average-case reductions. First, we will show that in a certain regime of m,n, given a copy
of a HPS instance, a quantum algorithm can efficiently generate a random HPS with the
same angles and architecture dimensions. Second, we will fix the Hamiltonian architecture A
and show that given a copy of a HPS instance and its architecture A, a quantum algorithm
can generate a random HPS with the same architecture but uniformly random angles. Our
worst-to-average-case reductions are therefore similar to those for, say, the Learning with
Errors (LWE) problem [59], with different levels of public knowledge.

Reduction for the architecture for m ≤ n

First, we observe that for any fixed choice of angles θ, the Hamiltonian architecture can
be re-randomized if m ≤ n and χ is the uniform distribution over full-rank matrices
R(m,n) := {A ∈ Zm×n

2 | rank(A) = min(m,n)}. Notice that the restriction to Hamiltonian
architectures with full rank is not too significant, since the probability that a uniformly
random Zm×n

2 matrix has full rank with probability2 ∏min(m,n)
k=1 (1− 2−k) ≥ 0.288 [67]. The

basic idea of the reduction is to apply a circuit composed of uniformly random CNOT gates
to the given HPS instance. In the parameter regime we consider, this will have the effect of
completely scrambling the Hamiltonian architecture to a uniformly random one with the
same choices of m,n and subject to the full-rank constraint.

▶ Lemma 4 (Worst-to-average-case reduction for the architecture). Suppose there exists an
algorithm A that runs in time T and solves the (search) HPSn,m,q,χ problem with probability ϵ
in the average case, where χ is the uniform distribution over R(m,n) and m ≤ n. Then, there
exists an algorithm which runs in time T ·poly(n) and inverts Hamiltonian phase states |ΦC

θ ⟩
⊗t

with probability ϵ for a worst-case choice of architecture C ∈ R(m,n), uniformly random
angles θ, and for any number of copies t = poly(n). Here, R(m,n) = {A ∈ Zm×n

2 |rank(A) =
min(m,n)} is the set of full-rank binary m× n matrices.

Proof. Consider the reduction B which, on input |ΦC
θ ⟩
⊗t, does the following:

1. B samples a uniformly random invertible matrix R ∼ GL(n,Z2).
2. B runs the average-case solver A on the input

(UR |ΦC
θ ⟩)⊗t.

where UR is the n-qubit unitary transformation given by UR : |x⟩ 7→ |R−1 · x⟩, for
x ∈ {0, 1}n. Finally, B outputs whatever A outputs.

Note that UR is a quantum circuit composed just of CNOT gates and therefore efficiently
implementable. Because the average-case solver A runs in time T , it follows that the reduction
B runs in time T · poly(n).

2 See https://math.mit.edu/~dav/genlin.pdf, and this Stackexchange post for a proof.
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Next, we show that B also succeeds with probability ϵ. By assumption, the worst-case
instance |ΦC

θ ⟩
⊗t consists of structured phase states states

|ΦC
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZCij

H⊗n |0n⟩ ,

where C ∈ R(m,n) and θ is a tuple of random angles θ = (θ1, . . . , θm) ∈ Θm
q . To complete

the proof, it suffices to show that UR |ψC
θ ⟩)⊗t is distributed exactly as in the HPSn,n,q,χ

problem, where χ is the uniform distribution over R(m,n). First, we make the following key
observation: it follows from unitarity of UR that

UR |ΦC
θ ⟩ =

UR exp

i
m∑

i=1
θi

n⊗
j=1

ZCij

U†R

URH
⊗n |0n⟩ .

Because UR is an invertible matrix, it leaves the state H⊗n |0n⟩ invariant, and thus we have
URH

⊗n |0n⟩ = H⊗n |0n⟩. Next, we study the action of UR onto tensor products of Pauli
operators. We find that for any index i ∈ [n]:

UR

 n⊗
j=1

ZCij

U†R =
∑

x∈{0,1}n

⟨x|UR

 n⊗
j=1

ZCij

U†R |x⟩ · |x⟩⟨x|

=
∑

x∈{0,1}n

⟨Rx|

 n⊗
j=1

ZCij

 |Rx⟩ · |x⟩⟨x|

=
∑

x∈{0,1}n

(−1)
∑n

j=1
Cij(Rx)j |x⟩⟨x|

=
∑

x∈{0,1}n

(−1)
∑n

j=1
(C·R)ijxj |x⟩⟨x|

=
∑

x∈{0,1}n

⟨x|

 n⊗
j=1

Z(C·R)ij

 |x⟩ · |x⟩⟨x|
=

n⊗
j=1

Z(C·R)ij .

Because UR is acting on a matrix exponential of a diagonal matrix, it follows that

UR exp

i
m∑

i=1
θi

n⊗
j=1

ZCij

U†R = exp

i
m∑

i=1
θi UR

 n⊗
j=1

ZCij

U†R


= exp

i
m∑

i=1
θi

n⊗
j=1

Z(C·R)ij

 .

Finally, we observe that for m = n, R(m,n) = GL(n,Z2), which is a group. Because
C ∈ GL(n,Z2) it follows that C · R is uniformly distributed whenever R ∼ GL(n,Z2).
Putting everything together, it follows that UR |ψC

θ ⟩)⊗t is distributed precisely as in the
HPSn,n,q,χ problem, and thus B succeeds with probability ϵ. The claim for m ≤ n follows
from the fact that in that case C is a submatrix of a GL(n,Z2) matrix. ◀
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4.2 Hamiltonian Phase States Form Approximate State Designs

In this subsection we show that the states in the HPS ensemble form approximate state
designs if m ≥ Cn for a constant C > 0. It will be convenient to view HPS as a random
walk of depth m on the diagonal group. We will therefore slightly adjust the notation.
Consider the following probability distribution ν on the diagonal subgroup of SU(2n): Draw
a uniformly random bitstring A1 ∈ {0, 1}n and a uniformly random angle θ ∈ [0, 2π) and
apply e

iθ
⊗n

j=1
ZA1j

. We can draw m such diagonal unitaries independently and multiply
them. The resulting probability measure is denoted by ν∗m.

We will first show that ei
∑m

i=1
θi

⊗n

j=1
ZAij

is an approximate t-design on the diagonal
group. More precisely, we prove the following theorem:

▶ Theorem 5. For m ≥ 2t(2nt+log(1/ε)) the random unitary eiθi

∑m

i=1

⊗
j

ZAij

with random
Aij and θi is a ε-approximate diagonal t-design. Moreover, the same bound holds if θi is
drawn uniformly from {2πk/q}q

k=1, where q is an integer satisfying q > 2t.

We provide a proof of Theorem 5 in the full version. The proof of Theorem 5 is remarkably
simple in comparison to the derivations of similar results for random quantum circuits [28,
20, 40]. Additionally, the constants in Theorem 5 are unusually small: In stark contrast the
constants in these results are north of 1013. A similar result was obtained in Ref. [39] for the
related random Pauli rotations eiθP for a random θ ∈ (0, 2π] and a random Pauli string P .

Theorem 5 almost directly implies the following corollary:

▶ Corollary 6. For m ≥ 2t(2nt+ log(1/ε)) the state ensemble defined by |ΦA
θ ⟩ = U |+n⟩ for

U drawn from ν∗m (or ν∗mq for q > 2t) is a ε+O(t2/2n)-approximate state t-design.

As a consequence no algorithm with access to t copies can distinguish the states |ϕA
θ ⟩ from

Haar random. In particular, this rules out a large class of natural attacks which make use of
a small number of samples. Prominent examples in classical cryptanalysis are linear attacks
(2-wise independence rules this out), and differential attacks (t-wise independence rules out
log2(t) differential attacks). Moreover, the fact that HPS with sufficiently many terms can
generate arbitrary state t designs makes it seem unlikely even that there is a distinguishing
algorithm using just a few more than t samples. This would mean that there is a sharp
transition in the complexity of distinguishing HPS states from uniform. Thus, the t-design
property gives evidence for the security of the HPS assumption.

As a consequence we can also show that HPS contains many almost orthogonal states,
yielding additional evidence for the HPS assumption:

▶ Corollary 7. Let m = 100nt, δ = 1− 2−n/8 and t ≤ 2n/2. For any fixed state |ψ⟩, we have
with probability 1− 2−Ω(nt) over the matrix A that

Prθ

|⟨ψ| exp

 m∑
i=1

iθi

n⊗
j=1

ZAij

 |+n⟩|2 ≥ 1− δ

 ≤ 2−Ω(nt). (6)

We defer the proofs of Theorem 5 and Corollary 7 to the full version of the paper.
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4.3 Algorithms for Learning Hamiltonian Phase States
Recall that our (search) HPS assumption can be thought of as a state discrimination task.
The goal is to recover the architecture A ∈ Zm×n

2 and the set of angles θ ∈ Θm
q given many

copies of a random Hamiltonian phase state from the ensemble

E =

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

 |+n⟩


A∈Zm×n

2 , θ=(θ1,...,θm)∈Θm
q

.

In this section, we consider various learning algorithms for the (search) HPS probem. We
observe that the HPS problem does in fact have polynomial quantum sample complexity,
and can thus be solved information-theoretically. However, as we also observe, all known
learning algorithms have exponential time complexity, which suggests that the HSP problem
cannot be solved efficiently. We distinguish between the private-key and public-key setting:
the former is essentially the learning task from Definition 2, whereas in the latter we further
assume that the learner also has access to the architecture matrix A ∈ Zm×n

2 . We provide
evidence that the learning tasks remains hard even if we reveal additional information about
A ∈ Zm×n

2 and the goal is simply to guess the angles θ.

Sample complexity of HPS and hypothesis selection. While we believe that HPS is a
computationally hard problem, it can be solved information-theoretically with only polyno-
mially many samples. In full generality, the problem of finding a fixed state ρj among many
hypothesis states ρ1, . . . , ρM is called quantum hypothesis testing. Currently, the best known
general algorithm is threshold search as described in [8, Theorem 1.5] requires n log2(M)
copies improving over the bound from Ref. [1]. For the HPS problem this implies an upper
bound on the sample complexity of O(n log2(qm2nm)) = O(n3m2 log(q)). As the fidelities
for pure states are PSD observables of rank 1, we can also use the shadow tomography
protocol of Ref. [45]. Given a secret state |ΦA

θ ⟩ allows us to estimate the fidelities of all
the M = qm2nm phase states up to an error of ε from O(log(M)/ε2) = O(mn log(q)/ε2)
samples. Then, a solver can simply list all estimated fidelities and pick the state with the
largest overlap up to an error of ε.

We expect these bounds to be tight in the regime where m ≤ O(nlog(q)). For m → ∞
better bounds are available at least for q = 2d. In this case, the HPS instance generated b
unitaries in the dth level of the Clifford hierarchy and it was proven in Ref. [7, Theorem 15]
that for any state of the form

exp

i
∑

y∈{0,1}n

ay

n⊗
j=1

Zyj

 |+n⟩ (7)

with ay ∈ Z a circuit description can be learned with O(nd) copies using only measurements
in the standard basis.

Learning algorithms for HPS with a public architecture. In the special case when the
architecture is public, our HPS assumption does in fact admit an optimal3 but nevertheless
exponential-time learning algorithm.

3 Here, we mean an algorithm that achieves the optimal success probability for a given number of copies.
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We consider the following state discrimination task, where the goal is to recover the set
of angles θ given many copies from the ensemble

EA =

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

 |+n⟩


θ=(θ1,...,θm)∈Θm

q

where the matrix A ∈ Zm×n
2 is a random but fixed architecture which is known to the

learner. This fits exactly into the framework of the pretty good measurement (PGM) [9, 56].
The ensemble E now turns out to be geometrically uniform because it can be written as
EA =

{
UA

θ |+n⟩
}

θ=(θ1,...,θm) where {UA
θ }θ is an Abelian group of matrices. Eldar and

Forney [30] showed that the PGM is optimal for all geometrically uniform ensembles, which
implies that it is also optimal for our variant of the HPS problem. Nevertheless, despite
the optimality, the best known algorithm for implementing pretty good measurements has
exponential-time complexity in the size of the ensemble [33]. Consequently, we believe that
the HPS problem remains computationally intractable, even if the architecture is public.
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