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Preface

The 20th Conference on The Theory of Quantum Computation, Communication and Cryp-
tography (TQC) was hosted by the Indian Institute of Science, Bengaluru in India, and
held from September 15 to September 19, 2025. The TQC conference is a leading annual
international conference for students and researchers working in the theoretical aspects of
quantum information science. The scientific objective of TQC is to bring together the theor-
etical quantum information science community to present and discuss the latest advances in
the field.

Areas of interest for TQC include, but are not restricted to: quantum algorithms,
models of quantum computation, quantum complexity theory, the simulation of quantum
systems, quantum cryptography, quantum communication, quantum information theory,
quantum estimation and measurement, quantum error correction and fault-tolerant quantum
computing, the intersection of quantum information and condensed-matter theory, and the
intersection of quantum information and machine learning.

A list of the previous editions of TQC follows:
TQC 2024, Okinawa Institute for Science and Technology, Japan
TQC 2023, University of Aveiro, Portugal
TQC 2022, University of Illinois at Urbana-Champaign, USA
TQC 2021, University of Latvia, Latvia (virtual conference)
TQC 2020, University of Latvia, Latvia (virtual conference)
TQC 2019, University of Maryland, USA
TQC 2018, University of Technology Sydney, Australia
TQC 2017, Université Pierre et Marie Curie, France
TQC 2016, Freie Universität Berlin, Germany
TQC 2015, Université libre de Bruxelles, Brussels, Belgium
TQC 2014, National University of Singapore, Singapore
TQC 2013, University of Guelph, Canada
TQC 2012, University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks and a poster session. The
invited talks were given by André Chailloux (French Institute for Research in Computer
Science and Automation), Stacey Jeffery (CWI), Rajendra Kumar (IIT Delhi), and Hayata
Yamasaki (University of Tokyo).

Submissions were solicited for two tracks: With Proceedings (talk and proceedings) and
Without Proceedings (talk only). There were 375 submissions. The program committee
selected 77 submissions for talks, including 12 to be published in the With Proceedings
track. I wish to thank the members of the Program Committee and all subreviewers for their
incredible work which helped to form an excellent program. Also I wish to thank the Local
Organizing Committee for all their efforts in organizing the conference and the Steering
Committee for their guidance, as well as for maintaining the conference’s high standards.
Last but not least, I thank the authors of all the TQC 2025 submissions.
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Quantum Search with In-Place Queries
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Abstract
Quantum query complexity is typically characterized in terms of xor queries |x, y⟩ 7→ |x, y ⊕ f(x)⟩
or phase queries, which ensure that even queries to non-invertible functions are unitary. When
querying a permutation, another natural model is unitary: in-place queries |x⟩ 7→ |f(x)⟩.

Some problems are known to require exponentially fewer in-place queries than xor queries, but
no separation has been shown in the opposite direction. A candidate for such a separation was the
problem of inverting a permutation over N elements. This task, equivalent to unstructured search
in the context of permutations, is solvable with O(

√
N) xor queries but was conjectured to require

Ω(N) in-place queries.
We refute this conjecture by designing a quantum algorithm for Permutation Inversion using

O(
√

N) in-place queries. Our algorithm achieves the same speedup as Grover’s algorithm despite
the inability to efficiently uncompute queries or perform straightforward oracle-controlled reflections.

Nonetheless, we show that there are indeed problems which require fewer xor queries than
in-place queries. We introduce a subspace-conversion problem called Function Erasure that requires
1 xor query and Θ(

√
N) in-place queries. Then, we build on a recent extension of the quantum

adversary method to characterize exact conditions for a decision problem to exhibit such a separation,
and we propose a candidate problem.
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1:2 Quantum Search with In-Place Queries

1 Introduction

Quantum algorithms are typically developed and characterized in terms of query complex-
ity. The strongest promises of quantum advantage over classical computation come from
unconditional separations proved in terms of black-box queries, including Shor’s period-
finding algorithm and Grover’s search algorithm. Understanding the nuances of the query
model is therefore essential for advancing quantum algorithm design and sculpting quantum
advantages.

Given an arbitrary Boolean function f , the standard query model in quantum computation
is defined by xor oracles Sf , also known as “standard oracles”, which map basis states
|x⟩ |y⟩ to |x⟩ |y ⊕ f(x)⟩. Other common models, such as phase oracles, are known to be
equivalent. The use of xor oracles goes back to the early days of quantum computation
[23, 20, 21, 18, 17] and even reversible computation [14, 15, 36, 16]. xor oracles embed
potentially irreversible functions in a reversible way, ensuring that all queries are unitary.
This enables quantum query complexity to encompass arbitrary Boolean functions and offers
a standard input-output format for using one algorithm as a sub-routine in another.

Other oracle models for quantum computation have been studied, but most abandon
unitarity [37, 26, 41, 30, 27, 39, 32, 33] or provide query access to quantum functions with
no analog in classical query complexity, e.g. general unitaries [3, 5].

When querying a permutation, there is another natural oracle model: an in-place oracle
Pf which maps |x⟩ to |f(x)⟩. These oracles have been called in-place [22, 9], erasing [1, 2],
and minimal [28, 8].1 Just like xor oracles, in-place oracles can be directly studied and
compared in both quantum and classical computation.

In-place oracles were first studied in the quantum setting by Kashefi, Kent, Vedral, and
Banaszek [28]. They showed several results comparing xor oracles and in-place oracles,
including a proof that Θ(

√
N) queries to an xor oracle are required to simulate an in-place

query to the same permutation. Around the same time, Aaronson [1] proved that Set
Comparison, an approximate version of the Collision problem, requires an exponential
number of xor queries but only a constant number of in-place queries.

These oracles relate to multiple topics in quantum algorithms and complexity theory.
Aaronson’s lower bound for the collision problem [1] was partially inspired by the desire
to separate the in-place and xor query models. [28] observed that a constant number of
in-place queries is sufficient to solve Rigid Graph Isomorphism, a necessary subcase for
solving general Graph Isomorphism. An identical protocol was later generalized to define
the concept of QSampling, which is sufficient to solve SZK, by Aharonov and Ta-Shma [4].
These ideas inspired pursuing lower bounds on the Index Erasure problem [40, 7, 31],
ruling out potential algorithms for Graph Isomorphism using xor oracles. Fefferman and
Kimmel [22] showed an oracle separation of QMA and QCMA relative to randomized in-place
oracles. Also, the expressive power of in-place oracles relates to the conjectured existence of
one-way permutations [15, p. 926]. Additionally, because in-place oracles are not self-inverse,
they offer a setting in which to study computation with inverse-free gate sets [19].

In-place oracles outperform xor oracles in every established separation between the two
query models, but it is conjectured that the oracles are incomparable, each better-suited for
certain tasks. Aaronson [2] raised proving such a separation as an open problem. Fefferman

1 Unfortunately, “permutation oracle” has been used to refer to any oracle which embeds a permutation.
Following a suggestion by John Kallaugher, we have found it convenient in conversation to refer to
“xoracles” and “smoracles” (for “small oracles”).
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and Kimmel [22] conjectured that inverting a permutation over N elements, a task which
requires only O(

√
N) queries to an xor oracle, requires Ω(N) queries to an in-place oracle.

Permutation Inversion is formally as hard as unstructured search [34], so this conjecture
effectively predicts that the speedup of Grover’s algorithm [25] is impossible with an in-place
oracle.

Results

We refute the conjecture of [22] by designing a new quantum algorithm that solves Permu-
tation Inversion with O(

√
N) queries to an in-place oracle, recovering the same speedup

as Grover’s search algorithm.
We additionally apply this algorithm to tightly characterize the ability of xor and

in-place oracles to simulate each other. Then, we change focus and make progress towards
showing the desired separation. We introduced a subspace-conversion problem that requires
1 xor query and exponentially-many in-place queries.

Finally, we propose a candidate decision problem that can be solved with O(
√
N) queries

to an xor oracle and that we conjecture requires Ω(N) queries to an in-place oracle. We then
apply recent advances in the quantum adversary bound to define a new class of adversary
matrices which must be used if such a decision-problem separation exists.

1.1 Quantum Search
Unstructured search, famously solved by Grover’s algorithm with O(

√
N) queries to an xor

oracle, is one of the most well-studied problems in quantum query complexity. The first
non-trivial quantum lower bound was for unstructured search [17]. Later work modifying the
query model, for instance by introducing noise or faults into queries, focused on unstructured
search [37, 41, 30, 27, 39, 5].

In-place oracles are only defined for bijections (see Section 2). Restricted to permutations,
the unstructured search problem is equivalent to Permutation Inversion [34].2

▶ Definition 1. Given query access to a permutation π on [N ] = {0, . . . , N − 1}, the
Permutation Inversion problem is to output π−1(0).

The choice to invert 0 can of course be replaced with any element. It is also straightforward
to define a related decision problem, for example, deciding if π−1(0) is odd or even.

Like general unstructured search, Permutation Inversion has been a frequent target
for new lower bound techniques. It can be solved with O(

√
N) queries to an xor oracle

using Grover’s algorithm. Ambainis [6] applied his new quantum adversary method to show
that Ω(

√
N) queries to an xor oracle are in fact required to solve the problem. Nayak [34]

gave an alternative proof by showing the problem is as hard as general unstructured search.
Rosmanis [38] also reproduced this tight lower bound using the compressed oracle technique
on random permutations. As for in-place oracles, [22] proved that Ω(

√
N) in-place queries

are needed to solve Permutation Inversion. Belovs and Yolcu [13] later applied their
advancements on the quantum adversary method to reprove the same lower bound. We
add to this sequence of work, studying Permutation Inversion in Section 3 to give the
following result.

2 The reductions between Permutation Inversion and unstructured search are entirely classical. So the
reductions hold using either xor oracles or in-place oracles, although some quantum garbage registers
may differ.

TQC 2025



1:4 Quantum Search with In-Place Queries

|x∗⟩

. . .
β

α

|x∗⟩

. . .
β

−α

|x∗⟩

. . .
(N−1)β−α

N

XOR Query

Diffusion

Amplified!

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

Figure 1 (Color) Illustration of how one iteration of Grover’s search algorithm amplifies |x∗⟩ :=
|π−1(0)⟩. Amplitudes are ordered according to the permutation in order to match Figure 3 later.

▶ Theorem 2. For a permutation π on [N ], Permutation Inversion can be solved with
O(

√
N) in-place queries to π.

Thus, we refute the conjecture that Ω(N) in-place queries are required, and we show the
Ω(

√
N) lower bound [22, 12] is tight.

Grover’s Algorithm

Before we sketch our algorithm, we first recall Grover’s algorithm for unstructured search [25]
in the context of Permutation Inversion. Grover’s algorithm repeatedly alternates
between using xor queries to negate the amplitude of |π−1(0)⟩ and using the “Grover
Diffusion operator” to reflect all amplitudes about the average, steadily amplifying |π−1(0)⟩
on every iteration. In other words, the algorithm alternates between the oracle-dependent
reflection I − 2 |π−1(0)⟩⟨π−1(0)| and the diffusion reflection

D = I − 2 |s⟩⟨s| , (1)

where |s⟩ is the uniform superposition 1√
N

∑
|i⟩. This is illustrated in Figure 1.

In-place oracles seem at odds with oracle-dependent reflections, since reflections – like
xor queries – are self-inverse, but inverting an in-place query is equivalent to inverting the
underlying permutation, which would solve Permutation Inversion. With this in mind, it
would be natural to conjecture, as [22] did, that no Grover-style speedup is possible using
in-place oracles.

A New Algorithm

Let x∗ := π−1(0) be the “marked item” to be found. Our algorithm starts with an equal
superposition over [N ] along with an ancilla register and a “flag” qubit: 1√

N

∑
|i⟩ |0n⟩ |0⟩.

The algorithm repeatedly iterates over steps Mark, Shift, and Diffuse the Difference. The
intuition behind these steps is as follows.
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Mark: For every basis state i ∈ [N ], make a copy of i and query the oracle. Then,
conditioned on the output of π(i) being 0, flip the flag qubit from |0⟩ to |1⟩.
(The Mark step cannot be used to implement Grover’s algorithm as usual because the
query answer remains in the ancilla register, as garbage, until the next step.)
Shift: In the |1⟩-flagged branch, all amplitude is concentrated on |x∗⟩, while in the
|0⟩-flagged branch, the amplitude is spread evenly over all basis states except |x∗⟩.
In only the |0⟩-flagged branch of the superposition, query the oracle to shift the amplitude
of each basis state forward according to π (perform a controlled in-place query to π).
This shifts amplitude from |i⟩ onto |π(i)⟩, and in particular, from |π−1(x∗)⟩ onto |x∗⟩.
Diffuse the Difference: The two branches are now such that if they are interfered to
produce two branches, one branch which adds amplitudes and another branch which
subtracts amplitudes, then the amplitude on |x∗⟩ would be above average in the former
branch and below average in the latter branch.
Perform the standard Grover diffusion operator (Equation (1)) controlled on the flag qubit
being the |−⟩ state, which reflects the “difference branch” about its average amplitude.
This results in the amplitude on |x∗⟩ being similarly amplified in both branches. In fact,
we find the branches are inverse-exponentially close to each other, and that after the t-th
iteration, the overall state is effectively

|ψt⟩ =

αt |x∗⟩ +
∑

i∈[N ]\{x∗}

βt |i⟩

 |0n⟩ |0⟩ ,

where αt increases by approximately 1/
√
N each iteration.

These steps are repeated O(
√
N) times to increase the amplitude on |x∗⟩ until there is a

constant probability of measuring it. Each iteration uses a constant number of in-place
queries, so the overall query complexity is O(

√
N). For more intuition, see a circuit diagram

in Figure 2 and an illustration in Figure 3 similar to Figure 1 above.
In Section 2.1, we give a construction for the controlled in-place query necessary for

the Shift step of the algorithm. This construction differs significantly from the analogous
construction for xor oracles.

▶ Lemma 3. There exists a unitary circuit making 1 in-place query to π which for all x ∈ [N ]
maps

|a⟩ |x⟩ |y⟩ 7→

{
|a⟩ |x⟩ |y⟩ when a = 0
|a⟩ |π(x)⟩ |y⟩ when a = 1

,

where y is the image under π of some fixed point, such as y = π(0).

Note that although y depends on the oracle π, it is independent of the query x. So while
y is garbage, it is effectively negligible. Because it is never entangled with the input register,
the garbage can be safely measured and erased. See Section 2.1 for more details.

1.2 Simulating Other Oracles
In Section 4, we tightly characterize the ability of xor and in-place oracles to simulate
each other. We do so by applying our new algorithm to give new upper bounds and by
developing a novel lower bound. The contents of Section 4 are deferred to the Full Version.
For a permutation π on [N ], Grover’s algorithm can be used to simulate an xor query
to π−1, an in-place query to π−1, or an in-place query to π using O(

√
N) xor queries to

π, and this complexity is known to be tight [28]. We show how to use our new algorithm

TQC 2025



1:6 Quantum Search with In-Place Queries

to perform the analogous simulations using O(
√
N) queries to an in-place oracle. The

constructions are non-trivial due to the inability of in-place oracles to uncompute garbage.
The simulations are approximate with inverse-exponential error due to the error in our
algorithm for Permutation Inversion.

Next, we prove that our simulations are tight by giving matching lower bounds. Inspired
by [28], we prove this by arguing that if few in-place queries could simulate an xor query,
then we could violate the lower bound of [22] for performing unstructured search.

▶ Theorem 4. For a permutation π on [N ], Ω(
√
N) in-place queries to π are necessary to

approximately simulate an xor query to π.

Given that an xor query to π can be implemented using 1 xor query to π, Theorem 4
makes this the first task known to require more in-place queries than xor queries. We
improve on this in the next section.

We can summarize all upper and lower bounds above as follows.

▶ Corollary 5 (Summary of relationships). For a permutation π on [N ], Θ(
√
N) queries to

any one of an in-place oracle for π, an in-place oracle for π−1, an xor oracle for π, or an
xor oracle for π−1 are necessary and sufficient to approximately simulate any one of the
others.

1.3 A Subspace-Conversion Separation
In Section 5 we improve the unitary-implementation separation given in the previous section
to a subspace-conversion separation. The contents of Section 5 are deferred to the Full
Version.

Index Erasure is the task of generating the state 1√
N

∑
x∈[N ] |f(x)⟩ given queries to f .

It was introduced by Shi [40] and formalized as a state-generation task by Ambainis, Magnin,
Roetteler, and Roland [7]. As noted by [40], solving Index Erasure would imply solutions
to Set Equality and Graph Isomorphism. Similar work on QSampling [4] suggests many
more applications. Index Erasure requires Ω(

√
N) xor queries [7, 31] but just 1 in-place

query, so the problem seems to capture key differences between the models.
We define the converse problem, Function Erasure.

▶ Definition 6. Given query access to a function f , Function Erasure is the subspace-
conversion problem of transforming any superposition of the form

∑
αx |x⟩ |f(x)⟩ to

∑
αx |x⟩.

A state-conversion problem requires implementing an algorithm which, given an oracle
to function f , maps an input |ψf ⟩ to output |ϕf ⟩. A subspace-conversion problem simply
generalizes this to multiple input-output pairs for each oracle function f . We discuss the
details of unitary-implementation, subspace-conversion, and other types of problems in
Section 5.

Function Erasure can trivially be solved with 1 xor query to f . Then by Corollary 5,
O(

√
N) in-place queries are sufficient. Finally, we show how Function Erasure and

one additional in-place query are sufficient to simulate an xor query. To avoid violating
Theorem 4, this implies Ω(

√
N) queries are necessary.

▶ Theorem 7. For a permutation π on [N ], Θ(
√
N) in-place queries to π are necessary and

sufficient for Function Erasure.

Theorem 7 makes Function Erasure the first coherent subspace-conversion problem
known to require fewer xor queries than in-place queries. This improves on the new
unitary-implementation separation from the previous section.
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1.4 Lower Bounds
The first works to study in-place oracles proved that there are problems which can be solved
with asymptotically fewer queries to in-place oracles than to the corresponding xor oracles
[28, 1]. They left open the question of whether a separation could be shown in the opposite
direction, making the two oracles formally incomparable, or whether in-place oracles are
generically superior to xor oracles. Our main result (Theorem 2) refutes one conjectured
path towards constructing a problem for which xor oracles are better than in-place oracles.
Our study of Function Erasure demonstrates the first problem which provably requires
fewer queries to an xor oracle than an in-place oracle, although it is a subspace-conversion
problem instead of a decision problem. In Section 6, we consider the possibility of improving
this to a decision-problem separation.

Conventional Lower Bound Techniques

Section 6.1 is deferred to the Full Version. There, we discuss how common quantum lower
bound techniques, the polynomial method [10] and the unweighted adversary method [6], fail
to prove the desired separation. We show that under these techniques, any lower bound on
the number of in-place queries implies the same lower bound on the number of xor queries,
making these techniques unable to prove a separation where xor oracles outperform in-place
oracles.

A Candidate Decision Problem

In Section 6.2, we introduce a new problem, Embedded PermInv, which can be solved
with Θ(

√
N) queries to an xor oracle and which we conjecture requires Ω(N) queries to an

in-place oracle. As we discuss, the problem is designed to embed an injection from [N2] to
[N ] into a bijection on [N2], which we believe circumvents algorithms using in-place oracles.
The idea behind this problem builds on the “Simon’s problem with garbage” proposed by
Aaronson [2].

Techniques for a Decision-Problem Separation

Finally, in Section 6.3, we briefly discuss the potential for more sophisticated lower bound
methods to prove a decision-problem separation, including for our candidate Embedded
PermInv. A full exposition is given in the Appendix of the full version of this article.

The recent extension of the quantum adversary method by Belovs and Yolcu [13] applies
to arbitrary linear transformations, including in-place oracles. The adversary bound is
an optimization problem over adversary matrices such that the optimal value equals the
quantum query complexity for a given problem. Of course, the difficulty with the adversary
method is to design a “good” adversary matrix exhibiting a tight bound.

We introduce a special class of feasible solutions which we call extended adversary matrices.
We show, with some technical caveats, that there exists an xor query advantage over in-place
oracles for a decision problem if and only if it is witnessed by extended adversary matrices.
Then, for our candidate problem Embedded PermInv, we are able to remove these caveats
and state that if our conjectured separation is true, then it must be witnessed by extended
adversary matrices.

1.5 Open Problems
A list of open problems is given in the full version of this article.

TQC 2025
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2 Quantum Oracles

As stated previously, the standard query model in quantum computation and classical
reversible computation is the xor oracle. Other common models, such as the phase oracle,
are equivalent. For a function f , an xor oracle Sf maps |x⟩ |y⟩ 7→ |x⟩ |y ⊕ f(x)⟩, where ⊕
denotes bitwise xor with queries encoded in binary.

When querying an invertible function, there is another natural unitary query model.3 An
in-place oracle Pπ maps |x⟩ 7→ |π(x)⟩.

Here we list several basic identities given by [28].
1. Given query access to both π and π−1, standard and in-place oracles are equivalent.

More precisely, Pπ can be simulated using 1 query to Sπ and 1 query to either of Sπ−1 ,Pπ−1 .
Similarly, Sπ can be simulated using 1 query to Pπ and 1 query to either of Sπ−1 ,Pπ−1 .
So, the interesting case is when we can query π but cannot query its inverse.

2. xor oracles are self-inverse, Sπ = (Sπ)†, but generally (Sπ)† ̸= Sπ−1 .
In contrast, generally Pπ ̸= (Pπ)† but it does hold that (Pπ)† = Pπ−1 .

3. Θ(
√
N) queries to an xor oracle Sπ can be used to simulate a query to Pπ.

The upper bound is due to Grover’s search algorithm. The lower bound follows by
observing that a circuit for Pπ querying Sπ can be inverted to give a circuit for Pπ−1

querying (Sπ)† = Sπ, which would solve Permutation Inversion, which requires
Ω(

√
N) queries to Sπ.

The xor query model was motivated by two needs. First is the need to embed non-
invertible functions in a reversible query. Second is that because xor oracles are self-inverse,
they enable uncomputing. An early criticism of reversible computation by Landauer [29]
was that in order to maintain reversibility, a computation would need to retain intermediate
work until the end, only deferring the cost of information erasure instead of avoiding it. To
the contrary, Bennett showed that any circuit can efficiently be made into a reversible one
that uncomputes any intermediate work and gives its original output in the form of an xor
query [14, 15]. Given a garbage-producing reversible circuit, first apply the circuit, then copy
the desired output into a new register using xor, and then apply the circuit in reverse, gate-
by-gate, to uncompute all intermediate steps, leaving only the input and the copied output.
Moreover, such a gate-by-gate reversal works when one algorithm is used as a black-box
subroutine for another, since given a black-box following this xor-model, it is self-inverse.
So full algorithms, including subroutines, can indeed be reversed gate-by-gate. Besides these
two reasons, xor oracles simply appeared natural at the time quantum computing was
formalized. As far as we are aware, in-place oracles have not been studied in the classical
reversible computing literature. There have been just a few references to alternative classical
reversible implementations of 1-to-1 functions [36, 16]. So quantum computation, which is
based on reversible operations, later inherited the xor model. At the same time, the ability
to uncompute enabled quantum interference [23, 18]. Many early results also only involved
binary functions, and other results were motivated more by ensuring quantum computers
could implement tasks such as error-reduction and subroutines (BQPBQP = BQP [17]) rather
than questioning the query model.

3 We restrict our study to bijections, and without loss of generality to permutations on [N ]. A similar
oracle which queries an injection would still be reversible, but it would be an isometry rather than a
unitary. Our algorithm seems to require a bijection since is uses the oracle’s previous outputs as its
next inputs.
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One more important feature of xor oracles is that for a function f , the complexity
of implementing Sf using reversible operations is at most a constant multiplicative factor
more than for the general, irreversible circuit implementing f [14]. For in-place oracles, no
construction is known for efficiently transforming an irreversible circuit for permutation π

into a reversible circuit for Pπ. In fact, the widely believed existence of one-way permutations
implies that there exist permutations for which this is impossible. This is because given
a reversible implementation of Pπ, inverting the circuit gate-by-gate gives (Pπ)† = Pπ−1

with exactly the same circuit size, whereas one-way permutations should have different
complexities than their inverses. This may limit the practical instantiation of in-place oracles,
although they may lead to useful insights in other ways.

2.1 Controlled In-Place Oracle

The proof of Lemma 3 is deferred to the Full Version.

3 Permutation Inversion

In this section, we prove our main result, that Permutation Inversion (Definition 1) can
be solved with Θ(

√
N) queries to an in-place oracle.

Proof of Theorem 2. The lower bound was proved by Fefferman and Kimmel [22] and later
reproved by [13]. To prove the upper bound, we give an algorithm.

Algorithm. For convenience, we assume N = 2n and identify the integers [N ] by their
binary representations in {0, 1}n. We denote the target element π−1(0) by x∗.

First, query Pπ once to check whether π(0) is 0, and terminate early with answer 0 if it
is. Otherwise, initialize three registers to the state |ψ0⟩ := 1√

N

∑N
i=1 |i⟩A |0n⟩B |0⟩C, where

A and B are each n = logN qubits and C is one qubit. Then, repeat the following steps
T = O(

√
N) times:

(1) Mark
xor register A into B, and apply Pπ to B.
Controlled on B being |0n⟩, apply NOT to C, flagging the branch where A contains x∗.

(2) Shift (and Clean Up)
Controlled on C being |0⟩, apply Pπ to A.
Controlled on C being |0⟩, xor A into B, resetting B to |0n⟩.

(3) Diffuse the Difference
Controlled on C being |−⟩, apply the diffusion operator to A.
The diffusion operator D := 2H⊗n |0n⟩⟨0n|H⊗n − I is the same used in Grover’s algo-
rithm [25], equivalent to a reflection about the uniform superposition.

(4) Optional: Measure
Measure C. If |1⟩ is observed then abort and report failure.

Finally, measure register A and output the result. See Figure 2 for a circuit diagram of
one iteration of the algorithm and Figure 3 for an illustration of the effect.

Below, we will find that each Measure step aborts with probability 1/N . So, these
intermediate measurements could be omitted and the qubit reused as it is, and the quantum
union bound [24, 35] implies the overall success probability would decrease by at most√
T/N = O

(
N−1/4). For now, we include the optional Measure step to simplify the analysis.

TQC 2025
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Mark Shift Diffuse the Difference

•

Pπ

•

D• • |ψt⟩A

• •

|ψt−1⟩A

|0⟩C

{
H • H Measure C

Pπ |0n⟩B

|0n⟩B




Figure 2 One iteration of our Permutation Inversion algorithm. D is the standard diffusion
operator. • denotes an operation controlled on |1⟩ and ◦ denotes an operation controlled on |0⟩.

Analysis. Now we prove that our algorithm succeeds with high probability.
We use |ψt⟩ to denote the state after t iterations. We will show by induction that after

each iteration, if the algorithm did not terminate early, then the state is of the form

|ψt⟩ =

αt |x∗⟩ +
∑

i∈[N ]\{x∗}

βt |i⟩


A

⊗ |0n⟩B |0⟩C (2)

for some real values αt, βt. In particular, all |i⟩ for i ̸= x∗ share the same amplitude. The
transformation from |ψt−1⟩ to |ψt⟩ is illustrated in Figure 3.

By construction, the initial state |ψ0⟩ is the uniform superposition, with α0 = β0 = 1√
N

.
Next, the t-th iteration begins with the state

|ψt−1⟩ =

αt−1 |x∗⟩ +
∑

i∈[N ]\{x∗}

βt−1 |i⟩

 |0n⟩ |0⟩ .

For ease of notation, we will drop the subscripts so that α, β implicitly refer to αt−1, βt−1.
After the Mark step, the state will be

|ψ′
t−1⟩ = α |x∗⟩ |0n⟩ |1⟩ +

∑
i∈[N ]\{x∗}

β |i⟩ |π(i)⟩ |0⟩ .

After the Shift (and Clean Up) step, the state will be

|ψ′′
t−1⟩ = α |x∗⟩ |0n⟩ |1⟩ +

∑
i∈[N ]\{x∗}

β |π(i)⟩ |0n⟩ |0⟩

= α |x∗⟩ |0n⟩ |1⟩ +
∑

i∈[N ]\{0}

β |i⟩ |0n⟩ |0⟩ .

As the name suggests, this step shifts amplitudes within the summation off of |0⟩ and
onto |x∗⟩.
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Next, to prepare for the Diffuse the Difference step, we rewrite register C in the Hadamard
basis. The state is equivalent to

|ψ′′
t−1⟩ = 1√

2

(β + α) |x∗⟩ +
∑

i∈[N ]\{0,x∗}

β |i⟩

 |0n⟩ |+⟩

+ 1√
2

(β − α) |x∗⟩ +
∑

i∈[N ]\{0,x∗}

β |i⟩

 |0n⟩ |−⟩ .

Next, the Diffuse the Difference step applies the diffusion operator D controlled on C being
|−⟩. The diffusion operator can be viewed as reflecting every amplitude about the average
amplitude. This results in

|ψ′′′
t−1⟩ = 1√

2

[
(β + α) |x∗⟩ +

∑
i∈[N ]\{0,x∗}

β |i⟩

]
|0n⟩ |+⟩

+ 1√
2

[(
β + α− 2(β + α)

N

)
|x∗⟩ +

(
2β − 2(β + α)

N

)
|0⟩

+
∑

i∈[N ]\{0,x∗}

(
β − 2(β + α)

N

)
|i⟩

]
|0n⟩|−⟩ .

Returning register C to the standard basis, we see

|ψ′′′
t−1⟩ =

(β + α− β + α

N

)
|x∗⟩ +

∑
i∈[N ]\{x∗}

(
β − β + α

N

)
|i⟩

 |0n⟩ |0⟩

+

β + α

N
|x∗⟩ −

(
β − β+α

N

)
|0⟩ +

∑
i∈[N ]\{0,x∗}

β + α

N
|i⟩

 |0n⟩ |1⟩ .

The amplitude on |x∗⟩ is now larger than the original amplitude α.
Finally, for the sake of analysis, we choose to measure C and abort if |1⟩ is observed. We

will handle the failure case later. For now, we postselect on having observed |0⟩. This results
in the final (normalized) state

|ψt⟩ =
√

N

N − 1

(β + α− β + α

N

)
|x∗⟩ +

∑
i∈[N ]\{x∗}

(
β − β + α

N

)
|i⟩

 |0n⟩ |0⟩

=

√N − 1
N

(β + α) |x∗⟩ +
∑

i∈[N ]\{x∗}

(√
N − 1
N

β − 1√
N

√
N − 1

α

)
|i⟩

 |0n⟩ |0⟩ .

at the end of the t-th iteration. This state has the form we claimed, with

αt =
√
N − 1
N

(βt−1 + αt−1) and βt =
√
N − 1
N

βt−1 − 1√
N

√
N − 1

αt−1,

concluding our induction.
The above recurrence lets us write a closed form for αt and βt:[
αt

βt

]
=

 √N−1
N

√
N−1

N

−1√
N

√
N−1

√
N−1

N

[αt−1
βt−1

]
=

 √N−1
N

√
N−1

N

−1√
N

√
N−1

√
N−1

N

t [
1√
N
1√
N

]
.
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|x∗⟩ |0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩

. . .

|x∗⟩

. . . ⊗|1⟩
|x∗⟩

. . . ⊗|0⟩

|x∗⟩

. . . ⊗|0⟩

|x∗⟩

. . . ⊗ 1√
2 |+⟩

|x∗⟩

. . . ⊗ 1√
2 |−⟩

|x∗⟩

. . . ⊗ 1√
2 |−⟩

|x∗⟩

. . .

|x∗⟩

. . . ⊗|1⟩⊗|0⟩

β

α

α

β

β

β

α + β

β

β − α

β

α

β

M
ar

k
Sh

ift
D

iff
us

e
th

e
D

iff
er

en
ce

Change of basis

Change of basis

Controlled Diffusion

Controlled In-Place Query

Amplified! Negligible

· · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|x∗⟩

. . . ⊗|1⟩
α

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

|x∗⟩

. . . ⊗ 1√
2 |+⟩β

α + β

|0⟩ |π(0)⟩ |π2(0)⟩ |π3(0)⟩ · · ·

Figure 3 (Color) Illustration of how amplitudes change in each iteration of the algorithm. Register
B is left implicit (note it is unentangled with A and C by the end of the Shift step). Each iteration
begins with the nearly uniform superposition from Equation (2). The Mark step queries π and
creates a marked branch and an unmarked branch, illustrated in two columns. The Shift step makes
a query in only the unmarked branch, shifting amplitude onto |x∗⟩. The Diffuse the Difference step
is controlled on |−⟩, so we first rewrite the basis of C, rearranging amplitudes accordingly. Black
and yellow arrows indicate positive and negative contributions. The diffusion operator reflects all
amplitudes about their mean. A final change of basis leaves a state almost entirely entangled with
|0⟩ and with increased amplitude on x∗.
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For a diagonalizable matrix M = ADA−1, we know M t = ADtA−1, so we can diagonalize
the above matrix to find

αt = 1√
N t+1

1
2i

[(√
N − 1 + i

)t+1
−
(√

N − 1 − i
)t+1

]
.

Rewriting the expression in polar form, this is equivalent to

αt = 1√
N t+1

1
2i

[√
N t+1ei(t+1)θ −

√
N t+1e−i(t+1)θ

]
for θ = arctan

(
1√
N − 1

)
.

Finally, the identity z−z
2i = Im(z) = sin (ϕ) for z = eiϕ yields

αt = sin
[
(t+ 1) arctan

(
1√
N − 1

)]
.

We want to find the value of t that maximizes αt. Setting

t∗ =
π
2

arctan
(

1√
N−1

) − 1

achieves αt∗ = 1. The series expansion of this formula shows t∗ is asymptotically π
2

√
N+O(1),

as desired. However, t must be an integer, so we set the number of iterations to T = ⌊t∗⌋.
Observe that sin (x) increases as x approaches π

2 , so it is sufficient to lower bound αt∗−1 ≤ αT .
Substituting and then simplifying, we find

αt∗−1 = sin
[
π

2 − arctan
(

1√
N − 1

)]
= cos

[
arctan

(
1√
N − 1

)]
=
√

1 − 1
N
.

So, given the algorithm never terminates early, it outputs |x∗⟩ with probability at least
|αT |2 ≥ 1 − 1/N .

Finally, we handle the possibility of the algorithm terminating early. In each iteration,
given |ψ′′′

t−1⟩, the probability of measuring |1⟩ is
(
α2 + (N − 1)β2)/N = 1/N . Therefore, in

T = O(
√
N) iterations, the probability of aborting is at most a negligible T/N = O(1/

√
N).

Overall, we have that our algorithm aborts with probability at most O(1/
√
N), while if

it does not abort, then it fails to find |x∗⟩ with probability at most O(1/N). We conclude
that with T = π

2
√
N + O(1) queries to Pπ, we can solve Permutation Inversion with

probability 1 − O(1/
√
N). ◀

4 Simulating Other Oracles

This section is omitted due to space constraints and appears in the Full Version.

5 A Subspace-Conversion Separation

This section is omitted due to space constraints and appears in the Full Version.

6 Lower Bounds

In this section, we consider avenues for improving our separations with xor oracles outper-
forming in-place oracles to demonstrate a decision-problem separation.
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In Section 6.1, we explain the limitations of conventional lower bound techniques for
showing that fewer xor queries are required for a task than in-place queries. In Section 6.2,
we introduce a candidate decision problem which we conjecture exhibits such a separation.
Then in Section 6.3, we explore recently developed tools for proving lower bounds for arbitrary
oracles, including in-place oracles. We develop exact conditions for a decision problem to
exhibit a separation. Further details are given in the Appendix of the Full Version.

6.1 Conventional Lower Bound Techniques
In pursuit of proving a decision-problem separation with xor oracles outperforming in-place
oracles, we begin by considering standard tools. Two techniques have dominated quantum
query complexity: the polynomial method and the (basic) adversary method. See the thesis
of Belovs [11, Chap. 3] for an excellent survey of these tools. Unfortunately, we find that
these two methods are insufficient for proving the desired separation.

The remainder of this section is omitted and appears in the full version of this article.

6.2 A Candidate Decision Problem
In this section, we introduce a decision problem called Embedded PermInv which can be
solved with Θ(

√
N) xor queries and which we conjecture requires Ω(N) in-place queries.

Earlier, we showed that in-place query algorithms can achieve the same query complexity
as xor oracles for Permutation Inversion. As noted in Footnote 3, our algorithm appears
to crucially rely on the fact that it is inverting a permutation rather than an injection. The
algorithm uses the image of the permutation from one iteration as the input in the next.
Now that our goal is to find a problem for which in-place queries are less useful than xor
queries, we leverage this limitation. (Below, Si is the symmetric group of degree i.)

▶ Definition 8 (Promised Permutation Inversion). Given query access to a permutation f

on [N2] =
{

0, . . . , N2 − 1
}

, the decision problem Embedded PermInv : SN2 → {0, 1} is
defined by

Embedded PermInv(f) =
{

1 if f−1(0) ≤ N , and
0 otherwise.

In effect, this problem embeds an injection from [N ] →
[
N2] into a bijection on

[
N2],

with the promise that an algorithm only needs to search over [N ]. This problem is inspired by
a candidate proposed by Aaronson [2] which was a version of Simon’s problem with garbage
appended to each query. When querying an xor oracle, it is easy to copy the desired part
of any answer and then uncompute with an additional query, allowing the garbage to be
ignored. In contrast, it is unclear how to uncompute or erase the garbage with an in-place
oracle, which would prevent interference. Here, instead of Simon’s problem we focus on
Permutation Inversion, and we formalize the idea of appending garbage as embedding
an injection into a bijection.

▶ Lemma 9. Embedded PermInv can be decided with at most Θ(
√
N) xor queries.

The proof of Lemma 9 is deferred to the Full Version.
It is unclear how to solve Embedded PermInv as efficiently as the above algorithm

when using in-place queries. Simply querying
∑

|x⟩ 7→
∑

|f(x)⟩ would be useless. One
can instead consider algorithms that involve mapping |x⟩ |0⟩ 7→ |x⟩ |f(x)⟩. Any such query
x ∈ [N ] will lead to an unknown element f(x) ∈ [N2]. Since f(x) may not be in [N ], this (a
priori) unknown element seems useless for finding the pre-image f−1(0) ∈ [N ]. Moreover,
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in-place oracles are not self-inverse and do not readily allow uncomputing queries. So the
image is both useless to keep around and not readily uncomputable using in-place queries.
We conjecture this task as a candidate for which xor oracles outperform in-place oracles.

▶ Conjecture 10. Embedded PermInv requires at least Ω(N) queries to an in-place oracle.

Note that even a classical algorithm can solve the problem with N queries by simply
querying every element of [N ]. Also note that while an exponential query separation is
possible for Simon’s with garbage, the largest separation possible with Embedded PermInv
is polynomial. We hope that the structure of the problem makes a separation more tractable.

6.3 Sketch of Techniques for a Decision Problem Separation
Here, we briefly we explore applying a recent version of the quantum adversary bound to
prove the desired decision-problem separation. A full exposition is given in the Appendix of
the Full Version.

Quantum query complexity can be characterized by the adversary method. This method
has been used to develop several different adversary bounds or adversary theorems in different
contexts. For example, prior work derived adversary bounds in the xor oracle model. In
general, an adversary bound for a decision problem ϕ : D → {0, 1} is an optimization problem
such that the optimum is a lower bound on the query complexity. Belovs and Yolcu [13]
recently developed a new version of the adversary bound that applies to arbitrary linear
transformations. In fact, [13, Section 10] specifically observed this includes in-place oracles
in addition to xor oracles. Moreover, the bound of [13] is tight, meaning the optimum value
of the optimization problem corresponds to the optimum query complexity and vice versa.

One caveat is that the lower bound of [13] is for Las Vegas query complexity, a quantum
analog of the expected number of queries needed for a zero-error algorithm, in contrast to
the usual notion of bounded-error complexity. So, our results in this section are primarily
focused on Las Vegas complexity. But, for the special case of Embedded PermInv, we are
able to extend the analysis to bounded-error complexity.

The optimization problem in the adversary bound developed by [13] is specifically an
optimization over adversary matrices Γ. The optimal choice of adversary matrix then
corresponds to the optimal query algorithm. In other versions of the adversary method,
adversary matrices have been restricted to nonnegative values (the positive weight method) or
to general real numbers (the negative weights method). For a decision problem ϕ : D → {0, 1},
previous methods have nearly always restricted Γ such that an entry Γ[f, g] indexed by
problem instances f and g satisfies that if ϕ(f) = ϕ(g), then Γ[f, g] = 0. But, one feature of
this new version of the adversary method is that it removes that restriction: we are free to
assign nonzero values to all entries of Γ.

We call these matrices, with nonzero entries corresponding to problem instances with the
same answer, extended adversary matrices. We show that, just as negative-weight adversary
matrices are necessary to prove tight lower bounds for certain problems, these “extended”
adversary matrices are necessary to prove the desired decision-problem separation with
xor oracles outperforming in-place oracles. In other words, if we use only tools from the
negative-weight adversary bound to construct adversary matrices Γ, then we cannot prove
our desired query separation.

▶ Theorem (Informal statement). For a decision problem ϕ : D → {0, 1}, the Las Vegas
query complexity using xor oracles is asymptotically less than the Las Vegas query complexity
using in-place oracles if and only if optimizing over extended adversary matrices witnesses it.
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Again, the above statement is in terms of Las Vegas complexity instead of the more
typical bounded-error complexity. But, for our candidate problem Embedded PermInv
introduced in the previous section, we are able to extend the statement to bounded-error
complexity

▶ Theorem (Informal statement). For the decision problem Embedded PermInv, the
bounded-error query complexity using xor oracles is asymptotically less than the bounded-
error query complexity using in-place oracles if and only if optimizing over extended adversary
matrices witnesses it.

See the Appendix of the Full Version for details. In sum, we considerably narrow down
what techniques could possibly prove an Ω(N) lower bound on Embedded PermInv.
Although we rule out the polynomial and unweighted adversary methods, the new adversary
method of Belovs and Yolcu [13] is tight, so that if such a lower bound is possible, then it
is witnessed by adversary matrices. By the above theorem, we see that any lower bound
stronger than Ω(

√
N) must use this new class of extended adversary matrices.
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We introduce a quantum cloning game in which k separate collaborative parties receive a classical
input, determining which of them has to share a maximally entangled state with an additional
party (referee). We provide the optimal winning probability of such a game for every number of
parties k, and show that it decays exponentially when the game is played n times in parallel. These
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verification, where we show security of the routing protocol (played in parallel), and a variant of it,
in the random oracle model.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases Quantum position verification, cloning game, random oracle, parallel repeti-
tion

Digital Object Identifier 10.4230/LIPIcs.TQC.2025.2

Related Version Previous Version: https://arxiv.org/abs/2410.22157

Funding Léo Colisson Palais: European Union (ERC, ASC-Q, 101040624) and the Dutch Ministry
of Economic Affairs and Climate Policy (EZK), as part of the Quantum Delta NL programme.
Llorenç Escolà-Farràs: Dutch Ministry of Economic Affairs and Climate Policy (EZK), as part of
the Quantum Delta NL programme.
Florian Speelman: Dutch Ministry of Economic Affairs and Climate Policy (EZK), as part of the
Quantum Delta NL programme.

1 Introduction

Non-local correlations have extensively been studied in the field of quantum information
theory, see e.g. [12]. Bell [9] originally showed that distant parties sharing quantum resources
can reproduce correlations that could never be attained by any classical theory. Often, non-
local correlations are studied as non-local games, which provide an operational framework for
understanding them. These games are interesting per se from a fundamental point of view,
since they give rise to understanding the underlying essence of nature, but they additionally
lead to applications such as secure key distribution [1], certified randomness [33], reduced
communication complexity [14], self-testing [32, 37], and computation [5].

A vast literature in non-local games covers the scenario where a classical referee sends
questions to non-communicating collaborative parties, and their task is to produce answers
according to a certain publicly-known predicate, where the questions and answers are all
classical. The best-known non-local game is the CHSH game [18]. Non-locality has also
been investigated in terms of supersets of non-local games, called monogamy-of-entanglement
(MoE) games [38], where a quantum referee sends the same classical question to the players
and the parties have to guess the (classical) outcome of a referee’s quantum measurement

© Léo Colisson Palais, Llorenç Escolà-Farràs, and Florian Speelman;
licensed under Creative Commons License CC-BY 4.0

20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025).
Editor: Bill Fefferman; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leo.colisson-palais@univ-grenoble-alpes.fr
https://orcid.org/0000-0001-8963-4656
mailto:llorensescola@gmail.com
https://orcid.org/0000-0001-6194-0491
mailto:f.speelman@uva.nl
https://orcid.org/0000-0003-3792-9908
https://doi.org/10.4230/LIPIcs.TQC.2025.2
https://arxiv.org/abs/2410.22157
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de
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(depending on the question). MoE games have been used to provide security proofs for the
quantum cryptographic primitives device-independent quantum key distribution [10] and
quantum position verification [28]. Such games were later generalized under the name of
extended non-local games [27].

Here, we introduce the concept of the quantum cloning game, played by k distant parties
and a quantum referee. The referee publically announces a party, i.e., sends the same classical
question to all the players, and the chosen party has to end up with the maximally entangled
(EPR) state with the referee. At the beginning of the game, the players are allowed to
share any quantum state with the referee. In this work, we show that the optimal winning
probability for players using any quantum resources is given by 1

2 + 1
2k , converging to 1

2 for a
large number of players. We analyze the game when it is played n times in parallel, showing
an exponential decay in n of the optimal winning probability. Additionally, the quantum
cloning game can be generalized to any arbitrary quantum state instead of an EPR state,
and we provide its optimal winning probability.

We show that these results have applications in quantum position verification (QPV),
which is a cryptographic primitive consisting of verifying the location of an untrusted party.
Securely implementing this primitive is unachievable using only classical information, because
a general attack exists even when using computational assumptions [17]. Due to the no-
cloning theorem [41] the general classical attack does not apply if quantum information is
used instead [28, 31], however, a general quantum attack exists which requires exponential
entanglement [13, 8]. This means that hope for protocols secure against reasonable amounts
of entanglement is alive, and indeed there has been much analysis on attacks on specific
protocols [2, 28, 29, 34, 16, 36, 21, 22, 25, 20], and security analysis under extra assumptions
[30, 24], such as the random oracle model [39]. A generic 1-dimensional (the main ideas
generalize to higher dimensions) QPV protocol is described in the following way: two verifiers
V0 and V1, placed on the left and right of an untrusted prover P, supposedly at the position
pos, send quantum and classical messages to P at the speed of light, and he has to pass a
challenge and reply correctly to them at the speed of light as well, if so, the verifiers accept,
and if any of them receives a wrong answer or the timing does not correspond with the time
it would have taken for light to travel back from the honest prover, the verifiers reject. The
time consumed by the prover to perform the challenge is assumed to be negligible, and the
verifiers are assumed to have perfectly-synchronized clocks.

In this work, we consider the routing QPV protocol [28], which has an appealing simple
form: the prover has to return a received qubit to one of the verifiers, where the choice
of verifier is a function of the classical information sent by the verifiers [28]. Besides the
theoretical interest of this protocol, it is also an appealing candidate for free-space quantum
position verification, when the quantum messages can travel with the vacuum speed of light,
since the hardware of the prover could hypothetically be as simple as a mirror or an optical
switch. Despite theoretical work on this protocol [15, 20, 11, 3, 6], there were gaps left in our
understanding relative to measurement-based QPV protocol variants: namely the security of
parallel repetition of this protocol against unentangled attackers and attackers who pre-share
a linear (in the security parameter) amount of entangled qubits, and its security in the
random-oracle model against arbitrary adversaries. As an application of the quantum cloning
game, we show the security of the routing protocol in these scenarios.
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2 Preliminaries

For k ∈ N, we will denote [k] := {0, . . . , k−1}. Let H, H′ be finite-dimensional Hilbert spaces,
we denote by B(H,H′) the set of bounded operators from H to H′ and B(H) = B(H,H).
Denote by S(H) the set of quantum states on H, i.e. S(H) = {ρ ∈ B(H) | ρ ≥ 0,Tr[ρ] = 1)}.
A pure state will be denoted by a ket |ψ⟩ ∈ H. The maximally entangled state or EPR
pair is |Φ+⟩ = 1√

2 (|00⟩+ |11⟩). We denote the identity matrix by I. For M ∈ B(H), we
denote its Schatten ∞-norm by ∥M∥. We will use the notation 1, . . . , /i, . . . , k − 1 to denote
1, . . . , i− 1, i+ 1, . . . , k − 1.

▶ Definition 1. Let N ∈ N. Two permutations π, π′ : [N ]→ [N ] are said to be orthogonal if
π(i) ̸= π′(i) for all i ∈ [N ].

▶ Lemma 2 (Lemma 2 in [38]). Let Π1, . . . ,ΠN be projectors acting on a Hilbert space H.
Let {πk}k∈[n] be a set of mutually orthogonal permutations. Then,∥∥∥∥ ∑

i∈[N ]

Πi

∥∥∥∥ ≤ ∑
k∈[N ]

max
i∈[N ]

∥∥ΠiΠπk(i)∥∥. (1)

▶ Remark 3. There always exist a set of N permutations of [N ] that are mutually orthogonal,
an example is the N cyclic shifts.

▶ Lemma 4 (Lemma 1 in [38]). Let A,B,L ∈ B(H) such that AA† ⪰ B†B. Then it holds
that ∥AL∥ ≥ ∥BL∥.

3 k-party quantum cloning game

In the following definition, we introduce the quantum cloning game.

▶ Definition 5. The k-party quantum cloning game, shortly denoted by QCGk, consists of a
referee R with associated Hilbert space HR = C2 and k collaborative distant parties (players)
P0, . . . , Pk−1. Before the game starts, the parties prepare a joint quantum state of arbitrary
dimension between themselves and the referee. During the game, the referee sends x ∈ [k],
drawn uniformly at random, to all the collaborative parties. The players win the game if and
only if the party Px (holding a qubit register Px) ends up sharing the maximally entangled
state with the referee, i.e. if a projection onto |Φ+⟩RPx

yields the correct outcome.

See Figure 1 for a schematic representation of the QCGk. Intuitively, in such a game, the
referee publically announces which party has to create an entangled state with herself.

x ∈ [k] x ∈ [k] x ∈ [k] x ∈ [k]

R P0 · · · Px · · · Pk−1

|Ψ⟩RPx

ρ

Figure 1 Schematic representation of the k-party quantum cloning game, where |Ψ⟩RPx =
|Φ+⟩RPx , where the gray-shaded region represents the shared state ρ. If |Ψ⟩RPx is arbitrary, this
represents a Ψ-QCGk.

TQC 2025
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A strategy S for the QCGk is described by a quantum state ρ ∈ S(HR ⊗HP0E0 ⊗ · · · ⊗
HPk−1Ek−1), where, for i ∈ [k], registers Pi are of the same dimension as HR and Ei are
auxiliary systems of arbitrary dimension that each party possess, and completely positive trace-
preserving (CPTP) maps {Ex

PiEi→Pi
}x, where the subscript PiEi → Pi indicates that the map

has input and output registers PiEi and Pi, respectively, i.e. Ex
PiEi→Pi

: B(HPiEi
)→ B(HPi

).
The winning probability of such a game, given the strategy S, is provided by

ω(QCGk, S) = 1
k

∑
x∈[k]

Tr
[
|Φ+⟩⟨Φ+|RPx

TrP0... /P x...Pk−1

IR

⊗
i∈[k]

Ex
PiEi→Pi

(ρ)

]. (2)

The optimal winning probability of such games is given by

ω∗(QCGk) = sup
S
ω(QCGk, S), (3)

where the supremum is taken over all the possible strategies over all possible Hilbert spaces.
The following theorem gives the optimal winning probability of this game for every number
of parties k.

▶ Theorem 6. For every k ∈ N, the optimal winning probability of the QCGk is given by

ω∗(QCGk) = 1
2 + 1

2k . (4)

Intuitively, this game cannot be perfectly won since, otherwise, it would be possible to
have maximal entanglement between the referee and each of the parties, and this is not
possible since entanglement is monogamous [19]. In the proof, see below, the key part is
to show that the optimal winning probability is attainable by the actions of the players
being independent of x, intuitively, each party acts as if they were chosen to reproduce the
maximally entangled state with the referee. In addition, in the proof, we show that the
optimal value can be attained by preparing an initial state ρ where, locally, each of the
parties holds a qubit and no further actions taken by the players, i.e. their local actions are
described by the identity channel (IPi). We then specify a strategy by providing a quantum
state, since any local actions are independent of x, they can be absorbed in the quantum
state. More precisely, the optimal winning probability for the QCGk can be attained by the
strategy given by the (pure) quantum state

|φ⟩ =

√
2

k(k + 1)
∑

x∈[k]

|Φ+⟩RPx
|0⟩P0... /P x...Pk−1

. (5)

Note that other natural multi-party entangled states that have been widely studied in the
literature, such as the GHZ state ([26]) |GHZ⟩ = 1√

2 (|000⟩+ |111⟩) and the W state ([23])
|W ⟩ = 1√

3 (|001⟩+ |010⟩+ |100⟩), and their respective generalizations to arbitrary dimensions,
as well as the strategy of “guessing” which party has to reproduce the quantum state, e.g.
guessing x = 0, given by preparing the state |Φ+⟩V P0 |0⟩P1 . . . |0⟩k−1, provide significantly
suboptimal winning probabilities. For 2-players, ω∗(QCG2) = 3

4 , and

ω∗(QCGk) k→∞−−−−→ 1
2 , (6)

which converges to the value attained by the strategy given by preparing the state
|0⟩R|0⟩P0 . . . |0⟩Pk−1 , showing that when k increases even unentangled states allow for a
near-optimal winning probability.
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Proof. A strategy S for the QCGk is described by a quantum state ρ ∈ S(HR ⊗HP0E0 ⊗
. . . ⊗ HPk−1Ek−1), where, for i ∈ [k], registers Pi are of the same dimension as HR and
Ei are auxiliary systems of arbitrary dimension that each party possesses, and unitary
transformations U = {Ux

PiEi
}x, acting on the registers in the subscripts (due to the Stinespring

dilation of the quantum channels, we restrict our attention to unitary transformations Ux
PiEi

instead of quantum channels Ex
PiEi→Pi

). Let d be the dimension of the above (total) Hilbert
space, which we denote by Hd. Then, the winning probability of the QCGk, given the
strategy S on a d-dimensional Hilbert space, is provided by

ω(QCGk, S, d)

=1
k

∑
x∈[k]

Tr

[(
|Φ+⟩⟨Φ+|RPx

⊗IEx

⊗
i ̸=x∈[k]

IPiEi

)((
IR⊗Ux

PiEi
⊗. . .⊗Ux

PiEi

)
ρ(IR⊗Ux

PiEi
⊗. . .⊗Ux

PiEi
)†
)]

=1
k

∑
x∈[k]

Tr

[(
IR⊗Ux†

PiEi
⊗. . .⊗Ux†

PiEi

)(
|Φ+⟩⟨Φ+|RPx

⊗IEx

⊗
i ̸=x∈[k]

IPiEi

)
(IR ⊗ Ux

PiEi
⊗ . . . ⊗ Ux

PiEi
)ρ

]
,

where in the last equation we used cyclicity of the trace. For a specific choice of unitary
transformations U = {Ux

PiEi
}x, the optimal winning probability is given by

ω∗(QCGk, U, d)

= sup
ρ∈S(Hd)

1
k

∑
x∈[k]

Tr

[(
IR⊗Ux†

PiEi
⊗. . .⊗Ux†

PiEi

)(
|Φ+⟩⟨Φ+|RPx

⊗IEx

⊗
i̸=x∈[k]

IPiEi

)
(IR ⊗Ux

PiEi
⊗. . .⊗Ux

PiEi
)ρ

]

= 1
k

∥
∑
x∈[k]

(
IR ⊗ Ux†

PiEi
⊗ . . . ⊗ Ux†

PiEi

)(
|Φ+⟩⟨Φ+|RPx

⊗ IEx

⊗
i̸=x∈[k]

IPiEi

)
(IR ⊗ Ux

PiEi
⊗ . . . ⊗ Ux

PiEi
)∥

= 1
k

∥
∑
x∈[k]

((
IR ⊗ Ux†

PxEx

)(
|Φ+⟩⟨Φ+|RPx

⊗ IEx

)
(IR ⊗ Ux

PxEx
)
) ⊗

i̸=x∈[k]

Ux†
PiEi

⊗
i ̸=x∈[k]

IPiEi

⊗
i̸=x∈[k]

Ux
PiEi

∥

= 1
k

∥
∑
x∈[k]

((
IR ⊗ Ux†

PxEx

)(
|Φ+⟩⟨Φ+|RPx

⊗ IEx

)
(IR ⊗ Ux

PxEx
)
) ⊗

i̸=x∈[k]

Ux†
PiEi

Ux
PiEi

∥,

Notice that, since {Ux
PiEi
}x are unitary matrices, Ux†

PiEi
Ux

PiEi
= IPiEi

, moreover,
IPiEi

= U i†
PiEi

U i
PiEi

, then we can use Ux†
PiEi

Ux
PiEi

= U i†
PiEi

U i
PiEi

, and therefore

ω∗(QCGk, U, d)

= 1
k

∥
∑
x∈[k]

((
IR ⊗ Ux†

PxEx

)(
|Φ+⟩⟨Φ+|RPx ⊗ IEx

)(
IR ⊗ Ux†

PxEx

)) ⊗
i̸=x∈[k]

U i†
PiEi

U i
PiEi

∥

= 1
k

∥
∑
x∈[k]

IR

⊗
i ̸=∈[k]

U i†
PiEi

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi

IR

⊗
i∈[k]

U i
PiEi

∥

= 1
k

∥

IR

⊗
i ̸=∈[k]

U i†
PiEi

∑
x∈[k]

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi

IR

⊗
i∈[k]

U i
PiEi

∥

= 1
k

∥
∑
x∈[k]

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi ∥

= sup
ρ∈S(Hd)

1
k

∑
x∈[k]

Tr

|Φ+⟩⟨Φ+|RPx ⊗ IEx

⊗
i̸=x∈[k]

IPiEi

ρ

 = ω∗(QCGk, d) (7)

where in the fourth equality we used that the Schatten ∞-norm is unitarily invariant, i.e.
∥V ∗W∥ = ∥ ∗ ∥ for unitary matrices V and W , and ω∗(QCGk, d) denotes the optimal

TQC 2025
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winning probability if the dimension of the total initial Hilbert space is d. Equation (7) shows
that, given a Hilbert space HR ⊗HP0E0 ⊗ . . .⊗HPk−1Ek−1 , the optimal winning probability
can be attained by an optimal quantum state independently of the actions of the players
after knowing x, i.e. the optimal winning probability is independent of {Ux

PiEi
}x and they

can apply {Ix
PiEi
}x . We are going to see that, actually, the optimal winning probability can

be attained by each of the parties possessing a qubit (2-dimensional Hilbert space), i.e. by
the total Hilbert space being H2k =

⊗
i∈[k] C2. From (7),

ω∗(QCGk) = sup
d∈N

ω∗(QCGk, d) = sup
d∈N

1
k
∥

∑
x∈[k]

|Φ+⟩⟨Φ+|RPx
⊗ IP0... /P x...Pk−1

⊗
i∈[k]

IEi
∥

= sup
d∈N

1
k
∥
∑

x∈[k]

|Φ+⟩⟨Φ+|RPx
⊗ IP0... /P x...Pk−1

∥∥
⊗
i∈[k]

IEi
∥

= sup
d∈N

1
k
∥
∑

x∈[k]

|Φ+⟩⟨Φ+|RPx ⊗ IP0... /P x...Pk−1
∥

= sup
ρ∈S(H2k )

1
k

∑
x∈[k]

Tr
[(
|Φ+⟩⟨Φ+|RPx

⊗ IP0... /P x...Pk−1

)
ρ
]
, (8)

where, in the arguments of the supremums, the dependence on d is implicit in the auxiliary
spaces, which, together with the registers Pi and V , fully describe the total Hilbert space,
and thus its dimension.

In order to provide the explicit value for the optimal winning probability, we have that,
from (8),

ω∗(QCGk) = 1
k
∥
∑

x∈[k]

|Φ+⟩⟨Φ+|RPx
⊗ IP0... /P x...Pk−1

∥ = 1
2 + 1

2k , (9)

where the last equation is obtained by direct computation. ◀

3.1 Quantum cloning game with any target state
The concept of QCGk can be generalized to the case where, instead of the parties having to
reproduce EPR pairs with the referee, the state that has to be reproduced is an arbitrary-fixed
state, i.e. the referee’s Hilbert space HR is now of arbitrary dimension, and on input x the
party Px has to generate a given state |Ψ⟩RPx

. Here, the dimension of the registers Pi is
the same for all i ∈ [k]. We will refer to such a game as a k-party quantum cloning game
with target state |Ψ⟩, in short denoted by Ψ-QCGk, see Figure 1. Notice that this game
becomes trivial if the target state |Ψ⟩RP is a tensor product state. In the following theorem,
we provide the optimal winning probability for any Ψ-QCGk for every number of parties k
and for any target state |Ψ⟩.

▶ Theorem 7. The optimal winning probability for every Ψ-QCGk is given by

ω∗(Ψ-QCGk) = 1
k
∥
∑

x∈[k]

|Ψ⟩⟨Ψ|RPx ⊗ IP0... /P x...Pk−1
∥. (10)

Along the lines of the proof of Theorem 6, the key idea relies on showing that the optimal
winning probability can be attained by the actions of the players being independent on x.

Proof. The result follows from the proof of Theorem 6 by repeating the same steps, replacing
|Φ+⟩V Px

by |Ψ⟩V Px
, and from (8), we obtain (10). ◀
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4 Parallel repetition of QCGk

A case of particular interest is given when QCGk is played n times in parallel, denoted
by QCG×n

k . Specifically, we will analyze QCG2 where now the two collaborative parties,
who we rename as Alice and Bob, will receive x = x0 . . . xn−1 ∈ {0, 1}n. We denote by
R0 . . . Rn−1, A0 . . . An−1 and B0 . . . Bn−1 the final (qubit) registers of the referee, Alice
and Bob, respectively. The players win if at the end of the game Alice is able to create
the maximally entangled state with the referee in all her registers such that xi = 0, and
analogously for Bob in all his registers such that xi = 1. See Figure 2 for a schematic
representation.

x ∈ {0, 1}n x ∈ {0, 1}n x ∈ {0, 1}n

R A B

⊗
xi:xi=0

|Φ+⟩Rxi
Axi

⊗
xi:xi=1

|Φ+⟩Rxi
Bxi

ρ

Figure 2 Schematic representation of the n-fold parallel repetition of the 2-party quantum cloning
game. The gray-shaded region represents the tripartie state ρ that Alice and Bob prepare.

Similarly as before, at the beginning of the game the three parties are allowed to share
any arbitrary quantum state and, upon receiving the classical information, Alice and Bob
can apply CPTP maps {Ex

A0...An−1EA→A0...An−1
}x and {Ex

B0...Bn−1EB→B0...Bn−1
}x, where EA

and EB are arbitrary auxiliary systems that Alice and Bob possess, respectively.
In the following theorem, we state that the optimal winning probability decays exponen-

tially with the number of parallel repetitions n.

▶ Theorem 8. The optimal winning probability for n parallel repetitions of the QCG2 is
such that(

3
4

)n

≤ ω∗(QCG×n
2 ) ≤

(
1
2 + 1

2
√

2

)n

. (11)

The key idea of the proof relies on combining ideas used in the proof of Theorem 7
together with Proposition 4.3 in [35], which was also used in [38] to prove parallel repetition
for monogamy-of-entanglement games.

Proof. A strategy Sn for the n-parallel repetition of QCG2 is described by a quantum state
ρ ∈ S(HR ⊗HA0...An−1EA

⊗HB0...Bn−1EB
), where, for i ∈ [n], registers Ai and Bi are of the

same dimension as HR and EA and EB are auxiliary systems of arbitrary dimension that each
party possess, and unitary transformations {Ux

A0...An−1EA
}x and {V x

B0...Bn−1EB
}x, acting on

the registers in the subscripts (due to the Stinespring dilation of the quantum channels, we
restrict our attention to unitary transformations). For x = x0 . . . xn−1 ∈ {0, 1}n, let Qxi

= Ai

if xi = 0 and Qxi
= Bi if xi = 1, and we use the shorthand notation R = R0 . . . Rn−1,

A = A0 . . . An−1 and B = B0 . . . Bn−1. Then, the winning probability of this game, given
the strategy Sn, is provided by
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2:8 A Quantum Cloning Game with Applications to Quantum Position Verification

ω(QCG×n
2 , Sn)

= 1
2n

∑
x∈{0,1}n

Tr

[((⊗
i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)ρ(IR⊗Ux

AEA
⊗V x

BEB
)†

]

= 1
2n

∑
x∈{0,1}n

Tr

[
(IR⊗Ux†

AEA
⊗V x†

BEB
)
((⊗

i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)ρ

]

≤ 1
2n

∥
∑

x∈{0,1}n

(IR⊗Ux†
AEA

⊗V x†
BEB

)

((⊗
i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)∥.

Denote

Mx :=(IR⊗Ux†
AEA
⊗V x†

BEB
)

(⊗
i∈[n]

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗IEAEB

(IR⊗Ux
AEA
⊗V x

BEB
), (12)

then,

ω(QCG×n
2 , Sn) ≤ 1

2n
∥

∑
x∈{0,1}n

Mx∥ ≤ 1
2n

∑
k∈[2n]

max
x,x′
∥MxMx′

∥, (13)

where we used Lemma 2, and x′ = πk(x), for {πk}k being a set of mutually orthogonal
permutations. Fix x and x′, and let T be the set of indices where x and x′ differ,
i.e. T = {i | xi ̸= x′i}, and let t = |T |. Let TA = {i ∈ T | xi = 0}, and tA := |TA|,
then we have that

Mx ⪯ Mx
A

:=(IR⊗Ux†
AEA

⊗V x†
BEB

)((⊗
i∈TA

|Φ+⟩⟨Φ+|RiQxi
⊗IQ1−xi

)
⊗
( ⊗

i∈[n]\TA

IRiQxi
Q1−xi

)
⊗IEAEB

)
(IR⊗Ux

AEA
⊗V x

BEB
)

= (IR ⊗ Ux†
AEA

⊗ V x†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA

)
⊗ IBEB

)
(IR ⊗ Ux

AEA
⊗ V x

BEB
)

= (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA

)
⊗ IBEB

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
),

where in the last equality we used that V x†
BEB

V x†
BEB

= IBEB
= V x′†

BEB
V x′

BEB
. Similarly,

Mx′
⪯ Mx′

B

:=(IR⊗Ux′†
AEA

⊗V x′†
BEB

)((⊗
i∈TA

|Φ+⟩⟨Φ+|RiQx′
i

⊗IQ1−x′
i

)
⊗
( ⊗

i∈[n]\TA

IRiQx′
i
Q1−x′

i

)
⊗IEAEB

)
(IR⊗Ux′

AEA
⊗V x′

BEB
)

= (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiBi

⊗
i∈[n]\TA

IRiBiEB

)
⊗ IAEA

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
), (14)

By Lemma 4,

∥MxMx′
∥ ≤ ∥Mx

AM
x′

B ∥, (15)

then



L. Colisson Palais, L. Escolà-Farràs, and F. Speelman 2:9

Mx
AMx′

B

= (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA

)
⊗ IBEB

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
)

· (IR ⊗ Ux†
AEA

⊗ V x′†
BEB

)

((⊗
i∈TA

|Φ+⟩⟨Φ+|RiBi

⊗
i∈[n]\TA

IRiBiEB

)
⊗ IAEA

)
(IR ⊗ Ux

AEA
⊗ V x′

BEB
).

We have that (IR ⊗ Ux
AEA

⊗ V x′

BEB
)(IR ⊗ Ux†

AEA
⊗ V x′†

BEB
) = IRAEABEB

, and, since the
Schatten ∞-norm is unitarily invariant,

∥Mx
AMx′

B ∥

= ∥

(⊗
i∈TA

|Φ+⟩⟨Φ+|RiAi

⊗
i∈[n]\TA

IRiAiEA
⊗ IBEB

)(⊗
i∈TA

|Φ+⟩⟨Φ+|RiBi

⊗
i∈[n]\TA

IRiBiEB
⊗ IAEA

)
∥

= ∥

(⊗
i∈TA

(
|Φ+⟩⟨Φ+|RiAi

⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi

⊗ IAi

)) ⊗
i∈[n]\TA

IRiAiBi
⊗ IEAEB

∥

= ∥
⊗
i∈TA

(
|Φ+⟩⟨Φ+|RiAi

⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi

⊗ IAi

)
∥∥

⊗
i∈[n]\TA

IRiAiBi
⊗ IEAEB

∥

=
∏

i∈TA

∥
(
|Φ+⟩⟨Φ+|RiAi

⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi

⊗ IAi

)
∥

= 2−tA ,

(16)

where we used that, for every i,

∥
(
|Φ+⟩⟨Φ+|RiAi ⊗ IBi

)(
|Φ+⟩⟨Φ+|RiBi ⊗ IAi

)
∥ = 2−1. (17)

Without loss of generality, assume tA ≥ t/2, then, combining (15) and (16), we have that

∥MxMx′
∥ ≤ ∥Mx

AM
x′

B ∥ ≤ 2− t
2 . (18)

In order to apply the bound in Lemma 4, consider the set of permutations given by
πk(x) = x ⊕ k, where x, k ∈ {0, 1}n (they are such that they have the same Hamming
distance). There are

(
n
i

)
permutations with Hamming distance i. Then, we have

ω(QCG×n
2 , Sn) ≤ 1

2n

∑
k∈[2n]

max
x,x′
∥MxMx′

∥ ≤ 1
2n

n∑
t=0

(
n

t

)
2− t

2 =
(

1
2 + 1

2
√

2

)n

. (19)

◀

5 Application to QPV in the No-PE and BE(m) models

In this section, we analyze the security of the routing QPV protocol, originally introduced
in [28]. A round of this protocol, see Figure 3 for a schematic representation, is described as
follows:
1. The verifier V0 selects a qubit |ϕ⟩ ∈ {|0⟩, |1⟩, |+⟩, |−⟩}, and the verifier V1 selects x ∈ {0, 1},

both picked uniformly at random. They send |ϕ⟩ and x (at time t = 0) so that they
arrive at the same time (t = 1) at pos.

2. Upon receiving the information sent by V0 and V1, the prover sends the qubit |ϕ⟩ to the
verifier Vx.
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2:10 A Quantum Cloning Game with Applications to Quantum Position Verification

3. If |ϕ⟩ arrives at the time consistent with pos (t = 2), and a projective measurement
performed by Vx on the state sent by V0 leads to the correct outcome, the verifiers accept.
Otherwise, they reject.

V0 V1

P t = 1

t = 0

t = 2

x = H(r0 ⊕ r1)

V0 V1

⊗
xi:xi=1

|ϕi⟩

t

n
⊗
i=1

|ϕi⟩, r0 r1

⊗
xi:xi=0

|ϕi⟩

Figure 3 Schematic representation of the (H, n)-routing QPV protocol. If r0 is an empty bit
string, and x = r1, this figure represents the n-parallel repetition of the routing QPV protocol. The
time arrow is represented by t.

The most general attack to the routing protocol, pictured in Figure 4, consists of having
two attackers Alice (A) and Bob (B), located between V0 and P , and between P and V0,
respectively. Before t = 0, the attackers agree on a strategy and might prepare an entangled
state. After t = 0, Alice (A0) and Bob (B0) intercept the information sent from their closest
verifier, respectively. Due to timing constraints, they are allowed to perform one round of
simultaneous communication. After communicating (after t = 1), Alice (A1) and Bob (B1)
answer to their closest verifier, respectively.

Here, we analyze security within three attack models: (i) the No Pre-shared Entanglement
(No-PE) model [13], where adversaries do not (pre-)share any entanglement before the
protocol’s execution; (ii) the Bounded-Entanglement BE(m) model, where adversaries pre-
share at most m entangled qubits; and (iii) the Random Oracle Model (ROM), where attackers
(pre-)share any amount of entanglement before the protocol’s execution. We formalize the
concept of security, given an attack model M, as follows:

▶ Definition 9. The routing protocol is said to be α-sound in the M model if, for any
attackers acting according to such an attack model, the verifiers accept with probability at
most α.

The security of a variation of this protocol, the f -routing QPV protocol, where the
classical information x is split into two bit strings, each sent from each verifier, and the qubit
has to be routed according to the outcome of a boolean function f on those bit strings has
been studied in the BE(m) model [11, 6, 7]. The authors of these works showed that the
f -routing QPV protocol remains secure as long as m is at most linear in the size of the bit
strings. However, unlike other protocols [13, 38, 4] the security of the routing QPV protocol
in the No-PE model was never analyzed. The No-PE assumption is necessary to obtain
non-trivial bounds, since there is a perfect attack if the attackers pre-share entanglement [28].
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EntanglementV0 V1 t=0

A0 B0

t=1

A1 B1

V0 V1 t=2

⊗n
i=1|ϕi⟩,r0 r1

Figure 4 Schematic representation of a generic attack to the (H, n)-routing protocol (and in
particular, to the routing protocol).

We show security in the No-PE model, providing the tight result, summarized in the following
proposition:

▶ Proposition 10. In the No-PE model, the routing QPV protocol is 3
4 -sound. Moreover,

this is optimal.

The intuition behind Proposition 10 relies on the fact that the most general attack can be
reduced to a QCG2. Consider the purified version of the routing protocol, which is equivalent
to the original version, and where the only difference relies on V0, instead of sending the
qubit |ϕ⟩, prepares the state |Φ+⟩ and keeps a register for herself and sends the other register
to the prover. Then, as seen in Figure 4, the most general attack to the routing QPV
protocol is to place an adversary between V0 and the prover, Alice, and another adversary
between the prover and V1, Bob. In the No-PE model, we can simplify it further, as Alice
intercepts the qubit sent by V0, applies an arbitrary quantum operation to it, and possibly
some ancillary systems she possesses. She keeps a part of it and sends the other to Bob. On
the other side, Bob intercepts x, copies it and sends the copy to Alice. Since they share no
entanglement, any quantum operation that Bob could perform as a function of x can be
included in Alice’s operation. After one-round of simultaneous communication, Alice and
Bob share a tripartite state with V0, and their task is that the party designated by x has
to end up with a maximally entangled state with the V0. By Theorem 7, even if Alice and
Bob can share any state with the referee (in this case V0), they can succeed with at most
probability 3

4 .
On the other hand, to show optimality, consider the attack where (i) at the beginning of

the protocol Alice prepares the 3-qubit state 1√
3 (|Φ+⟩A0A|0⟩B + |Φ+⟩A0B |0⟩A), (ii) intercepts

|ϕ⟩ and performs a Bell measurement on the intercepted state and her register A0, immediately
she applies the teleportation corrections to both of her registers A and B, (iii) she keeps
register A and sends register B to Bob, (iv) in the meantime, Bob intercepts and broadcasts
x, after receiving the information from their fellow attacker, if x = 0, Alice sends her register
(A) to V0, whereas if x = 1, Bob sends his register (B) to V1. This attack has a winning
probability of 3

4 .
An analogous reduction applies when the routing QPV protocol is executed n times in

parallel, and therefore, its security can be reduced to the n-parallel repetition of QCG2:
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▶ Proposition 11. In the No-PE model, the routing QPV protocol executed n times in parallel
is ( 1

2 + 1
2
√

2 )n-sound.

A direct consequence of Lemma 5.3 in [8] implies, similarly as in [38], security for the
routing protocol executed in parallel for attackers who pre-share a linear amount of qubits:

▶ Corollary 12. In the BE(m) model, the routing QPV protocol executed n times in parallel
is
(

2m( 1
2 + 1

2
√

2 )n
)

-sound.

In particular, the above soundness is exponentially small in n if m < n log
(

( 1
2 + 1

2
√

2 )−1
)
≃

0.228n.

6 Application to QPV in the random oracle model

Consider the n-parallel repetition of the routing QPV protocol but instead of V1 sending
x ∈ {0, 1}n, V0 and V1 send r0, r1 ∈ {0, 1}ℓ, for ℓ ∈ N, to the prover, respectively. Then, the
x used in the rest of the protocol is computed via x = H(r0 ⊕ r1), for a given hash function
H : {0, 1}ℓ → {0, 1}n. We will denote this variation as (H,n)-routing QPV protocol, see
Figure 3 for a schematic representation.

To provide security in the quantum random oracle model against adversaries sharing an
arbitrary amount of entanglement, we use some techniques introduced in [40]. A quantum
random oracle is defined as a fixed function H : {0, 1}ℓ → {0, 1}n that is sampled uniformly
at random from the set of functions from ℓ bits to n bits1. The parties are not given the full
description of H directly, but they are given oracle access to H, in the sense that they have
access to a special gate implementing the unitary UH : |r⟩|b⟩ → |r⟩|b ⊕H(r)⟩. We denote
the number of queries made by the adversary by q. As a proof technique, an oracle can also
be reprogrammed, where security of the protocol is shown by first studying a variant where
the gate applied by the oracle may change over time. A typical setting is where we change
a single entry of the oracle: we denote by H[r 7→ x] the new oracle that behaves like H
except that H(r) = x. The chances of distinguishing whether H has been reprogrammed or
not can be bounded using [40], which informally states that if we can distinguish whether
the oracle has been reprogrammed or no, then we have queried it on r before it has been
reprogrammed (for completeness, see Lemma 14). In the following theorem, we show security
of the (H,n)-routing protocol in the ROM.

▶ Theorem 13. If the (possibly entangled) attackers Alice and Bob perform at most q queries
to the (quantum) random oracle H, the (H,n)-routing QPV protocol is ϵ-sound, with

ϵ = 2q2− ℓ
2 +

(
1
2 + 1

2
√

2

)n

. (20)

In particular, ϵ is negligible if q and ℓ scale polynomially with n.

The starting idea of the proof follows [40], where we send Bell pairs instead of single qubits in
order to make the input state independent of x, the output of the oracle. Then we reprogram
this oracle after adversaries share their state to ensure x is truly random and independent of

1 This can be done by simply sampling a large table T of size 2ℓ, and outputting T [r] when queried
on input r. Note that this sampling procedure is not efficient: while having an efficient oracle [42] is
sometimes required, for instance when working with composable security and computationally bounded
distinguishers, or when reducing to problems that are hard only for bounded adversaries, in our case
we do not need this additional property since we do a reduction to a problem that is hard even for
unbounded adversaries.
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the state shared by malicious parties at time t = 1. Finally, we realize that we can rewrite
this into an instance of Theorem 8. In the proof of Theorem 13, we will rely on this lemma
by Unruh:

▶ Lemma 14 ([40, Lemma 3]). Let (A1,A2) be oracle algorithms sharing state between
invocations that perform at most q queries to H. Let C be an oracle algorithm that on input
(j, r) does the following: Run AH

1 (r) until the j-th query to H, then measure the argument
of that query in the computational basis, and output the measurement outcome (or ⊥ if no
j-th query occurs). Let:

P 1
A := Pr

H $←({0,1}ℓ→{0,1}n)
r $←{0,1}l,AH

1 (r)
b′→AH

2 (r,H(r))

[ b′ = Accept ], (21)

P 2
A := Pr

H $←({0,1}ℓ→{0,1}n)
r $←{0,1}l,x $←{0,1}n

H′:=H[r 7→x],AH
1 (r)

b′→AH′
2 (r,x)

[ b′ = Accept ], (22)

PC := Pr
H $←({0,1}ℓ→{0,1}n)
r $←{0,1}l,j $←{1,...,q}

x′→CH (j,x)

[ x = x′ ]. (23)

Then, |P 1
A − P 2

A| ≤ 2q
√
PC .

Proof (of Theorem 13). To prove this theorem, we must show that the probability that the
verifiers accept in a malicious run of the protocol is lower bounded by ϵ, i.e., if we denote
by V0↭A↭B↭V1 the output of the verifiers (Accept or Reject) at the end of a protocol
involving a malicious Alice A and a malicious Bob B, we want to show that

Pr[ V0↭A↭B↭V1 = Accept ] ≤ ϵ. (24)

We prove this by defining a series of games, where the probability of accepting each game
is close to the probability of accepting the next game. By ensuring that the first game
corresponds to the real protocol, and that the probability of the last game can easily be
computed, we can bound ϵ by transitivity.

Game1. This game is defined as the real protocol, i.e. Game1 := V0 ↭ A ↭ B ↭ V1.
Therefore, we trivially have:

Pr[ V0↭A↭B↭V1 = Accept ] = Pr[ Game1 = Accept ]. (25)

Game2. Is like Game1, except that each |ϕi⟩ is replaced with one half of a Bell pair. Similarly,
instead of projecting on |ϕi⟩, the verifier will do a Bell measurement between the state sent
by the prover and its corresponding half of Bell pair, accepting only if the outcome is (0, 0).
This trick is often used in literature, hence we skip the computations. Hence

Pr[ Game1 = Accept ] = Pr[ Game2 = Accept ]. (26)

Game3. Is like Game2, except that at time t = 1, one samples the random bit string
x $← {0, 1}n, and reprogram the oracle to implement H ′ := H[r0 ⊕ r1 7→ x] (i.e., A1 and B1
will have oracle access to H ′ instead of H). Note that the simulators will use this value of
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x = H ′(r0 ⊕ r1) instead of H(r0 ⊕ r1) to perform the verification at the end. Intuitively, the
only way to distinguish this game from the previous game is if the adversary managed to
query H(r0 ⊕ r1) before t = 0 and after, but this is highly unlikely since neither A0 nor B0
know both r0 and r1 (and remember that they cannot query the oracle more than q times,
so they cannot just evaluate the oracle on all inputs). This intuition is formalized thanks to
Lemma 14: if we define A1(r) as the execution of the protocol in Game2 until t = 1 (which is
the same as in Game3), except that r2 is chosen as r2 := r1⊕ r, and A2(r, x) as the execution
of the protocol after time t = 1, we can remark that (using notations from Lemma 14):

P 1
A = Pr[Game2 = Accept]. (27)

since sampling (r1, r2) uniformly at random is strictly equivalent to sampling (r1, r) randomly
and then defining r2 := r ⊕ r1. Similarly, we also have:

P 2
A = Pr[Game3 = Accept]. (28)

The remaining part is to bound PC . To compute PC , we need to bound the probability of
querying H(r) during the first part of the protocol on j-th query. But when A0 does this
query, we know that it must be independent of r since all inputs of A0 are independent of r
(if not, we could break non-signaling). Similarly, queries made by B0 are independent of r:
the exact same argument does not hold since r2 = r1⊕ r does depend on r. . . but this is only
a very superficial dependency, since we could have exactly the same probability distributions
of r1 and r2 by sampling instead r2 randomly and r1 = r2 ⊕ r, making r2 independent of r
now. Hence, the j-th query is independent of r, so the best probability of it being equal to r
is lower bounded by PC ≤ 1

2ℓ . Hence, using Lemma 14, we have:

|Pr[ Game2 = Accept ]− Pr[ Game3 = Accept ]| (29)
(28)= |P 1

A − P 2
A|

(14)
≤ 2q

√
PC ≤ 2q2−ℓ/2. (30)

Game4. Now, we can realize that all operations in Game3 until t = 1 is independent of x. So
let us call |ψ⟩RPAPB

the (purification) of the state owned by the verifier (consisting in a list
of qubits part of a shared Bell pair), Alice and Bob (we also include in PB the message sent
by A0 to B1, and similarly in PA the message sent by B0 to A1). Additionally, we also include
in |ψ⟩ the (exponentially large) definition of H, r0 and r1 in both registers PA and PB , one
copy for each party. Then, we define the referee operation R as the identity, PA as the map
that runs A1, simulating the query to H ′ using the table H, r0 and r1 that are part of |ψ⟩,
and x that is given as an input to PA, and we define similarly PB simulating B1. We define
then Game4 as the game QCG×n

2 , i.e. the parallel repetition of the 2-party quantum cloning
game (Definition 5), involving the shared state |ψ⟩, the referee R, and the two parties PA and
PB . This game is exactly like Game3 as we simulate exactly the same process, just grouping
differently the various circuits involved. Hence, Pr[ Game4 = Accept ] = Pr[ Game3 = Accept ].
But using Theorem 8, we have:

Pr[ Game4 ] = ω∗(QCG×n
2 )

(8)
≤
(

1
2 + 1

2
√

2

)n

. (31)

Hence, we can combine all the above equations to obtain:

Pr[ V0↭A↭B↭V1 = Accept ] = Pr[ Game1 = Accept ] ≤
(

1
2 + 1

2
√

2

)n

+ 2q2−ℓ/2,

(32)

concluding the proof. ◀
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7 Discussion

We have introduced the concept of the k-party quantum cloning game and provided the
optimal winning probability for any number of parties. The parallel repetition for the two-
party version was studied, showing an exponential decay of the optimal winning probability.
We applied the above results to show security of the routing QPV protocol in the No Pre-
shared Entanglement and Bounded-Entanglement models, as well as in the Random Oracle
Model. The tightness of Theorem 8 remains an open question, either by showing a strategy
attaining the value (11), or if strong parallel repetition holds and actually the optimal value
is
( 3

4
)n (or neither of them). Closing this gap would imply knowing what is the optimal

security for the routing protocol in the No-PE model, and would further tighten its security
in the BE(m) and random-oracle models.
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Abstract
Providing evidence that quantum computers can efficiently prepare low-energy or thermal states
of physically relevant interacting quantum systems is a major challenge in quantum information
science. A newly developed quantum Gibbs sampling algorithm [11] provides an efficient simulation
of the detailed-balanced dissipative dynamics of non-commutative quantum systems. The running
time of this algorithm depends on the mixing time of the corresponding quantum Markov chain,
which has not been rigorously bounded except in the high-temperature regime. In this work, we
establish a polylog(n) upper bound on its mixing time for various families of random n × n sparse
Hamiltonians at any constant temperature. We further analyze how the choice of the jump operators
for the algorithm and the spectral properties of these sparse Hamiltonians influence the mixing
time. Our result places this method for Gibbs sampling on par with other efficient algorithms for
preparing low-energy states of quantumly easy Hamiltonians.
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1 Introduction

One of the main anticipated applications of quantum computers is the simulation and
characterization of quantum systems in condensed matter physics [40], quantum chemistry [29],
and high-energy physics [30, 4]. The problem of simulating the dynamics (time evolution)
of an interacting quantum system under a local or sparse Hamiltonian H has largely been
addressed, with efficient algorithms [22, 27, 5, 28, 20] that scale well with the number of
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particles, simulation time, and required precision. However, the ability of quantum computers
to evaluate the static features of quantum systems, such as their ground state or thermal
properties, is less understood.

In this work, we focus on preparing the Gibbs (thermal) state ρβ = e−βH

Tr(e−βH ) of a quantum
system, which represents the equilibrium state when the system is in contact with a thermal
bath at a fixed temperature β−1. This computational problem, known as Gibbs sampling
or “cooling,” is valuable not only for simulating thermodynamic properties but also as a
subroutine in quantum algorithms for optimization and learning [7, 2, 6]. However, to prepare
the Gibbs state, quantum computers face challenges. In general, it is not believed that
estimating the low-temperature properties of quantum systems can be solved efficiently by a
quantum computer in the worst-case [24]. Fortunately, it has been hypothesized that this
worst-case hardness of finding low-temperature states implied by arguments from complexity
theory is due to pathological Hamiltonians, which are not apparent in many physical systems
that normally occur in nature. This hypothesis is substantiated by the empirical success of
natural cooling, such as using refrigerators, in reaching thermal equilibrium.

Quantum Gibbs sampling. Aiming to mimic nature’s cooling processes, a series of recent
works have introduced quantum Markov Chain Monte Carlo (MCMC) algorithms, or quantum
Gibbs samplers [11, 10, 36, 42, 31, 23, 43, 16, 19], as promising alternatives for tackling a
range of classically intractable low-temperature simulation tasks on quantum computers.
These algorithms are designed to replicate the success of classical Markov chains in preparing
Gibbs states for classical Hamiltonians. The analysis of classical MCMC algorithms relies on
the principle of detailed balance; however, achieving this in the quantum setting has been
challenging and was only recently addressed by an algorithm in [11]. Part of the difficulty
arises from a conflict between the finite energy resolution σE achievable by efficient quantum
algorithms and the seemingly strict requirement to precisely distinguish energy levels to
satisfy detailed balance. In this work, we focus primarily on this algorithm, referring to it
as the CKG algorithm or the quantum Gibbs sampler when the context is clear. We give a
detailed review of this algorithm in Section 4.1.3 and Appendix 4.2.1.

The Gibbs sampling algorithm provides a fully general method for preparing Gibbs states
by evolving an initial state ρ0 under a Lindbladian Lβ , which is efficiently implementable
on a quantum computer and produces the state ρt = eLβt[ρ0] after time t. The runtime of
the quantum Gibbs sampler is governed by the mixing time of the corresponding quantum
Markov chain, which is roughly the time required for ρt to approach the Gibbs state ρβ .
This in turn is bounded by the spectral gap λgap(Lβ) of the Lindbladian by

tmix(Lβ) ≤ O(β∥H∥ + log(n))
λgap(Lβ) .

The spectral gap is defined here to be λmin, the smallest eigenvalue of −Lβ for any eigenvector
other than the fixed point ρβ . Bounding the spectral gap, therefore, proves not only that Lβ

has a unique fixed point, but also quantifies the rate of convergence. The mixing time varies
based on the quantum system in question. Bounding this mixing time is challenging without
access to fault-tolerant quantum computers, as we cannot run and benchmark the algorithm
directly, making theoretical analysis essential. However, such analysis is hindered by a lack
of technical tools for two key reasons. Firstly, the theory of convergence of quantum Markov
chains is new, unlike the very mature twin field for classical Markov chains. Secondly, the
Markov chain described by the algorithm is considerably complex, and depends on several
parameters that we will discuss in more detail shortly: an energy resolution σE , a series of
jump operators Aa for a ∈ [M ], and the inverse temperature β. The space of possibilities
makes the algorithm’s performance more difficult to characterize.
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This motivates the identification of quantum systems whose mixing times are tractable for
analysis yet exhibit rich features that provide insights into the performance of the quantum
Gibbs sampler for more general non-commuting Hamiltonians. In line with this, the mixing
time of the CKG algorithm has recently been bounded for local Hamiltonians, showing a
polynomial scaling with system size at high enough temperatures [33].

Mixing time of sparse Hamiltonians. In this work, we consider an alternative approach by
characterizing the mixing time of a family of sparse Hamiltonians of the form

H =
∑

i,j∈[n]

Hij |ei⟩ ⟨ej | . (1)

Such an operator can be understood as the Hamiltonian on a graph G = (V, E) with n = |V |
vertices indexed by basis states |ei⟩, i ∈ [n] and a set of edges E connecting vertices with
Hij ̸= 0. When non-zero entries Hij are all equal to 1, the Hamiltonian H corresponds to
the n × n adjacency matrix of the n-vertex graph. We define the degree d of the graph G

as the sparsity of the underlying Hamiltonian and refer to Hamiltonians with constant or
slowly increasing degrees d = polylog(n) as sparse. Note that any log(n)-qubit Hamiltonian
that consists of m = polylog(n) terms each acting locally on κ = O(1) qubits is a sparse
Hamiltonian with degree d ≤ m2κ ≤ polylog(n). However, not all sparse Hamiltonians admit
local qubit encodings.

Having defined sparse Hamiltonians, we now consider the dissipative dynamics of the
system induced by a set of M jump operators Aa =

∑
i,j∈[n] Aa

ij |ei⟩ ⟨ej | , a ∈ [M ]. We
will soon explain how the jump operators Aa relate to the Lindbladian Lβ . Briefly, the
resulting dynamics can be understood as a combination of two processes: a continuous-time
quantum walk of a single particle on the graph of states due to the coherent evolution of the
Hamiltonian H, which is combined with stochastic jumps on the graph determined by the
jump operators Aa.

Our interest in bounding the mixing time of the sparse Hamiltonians is multifaceted:
(1) Single-particle dynamics. As stated earlier, bounding the mixing time of general

interacting multipartite Hamiltonians is a challenging task. However, for simple choices
of graphs G, the mixing time of the quantum Gibbs sampler may be easier to analyze,
potentially leading to relevant techniques for tackling the case of interacting particles. In
fact, we can think of the dynamics induced by the Hamiltonian H (1) as the dynamics
of a single-particle hopping on the graph G. This single-particle evolution on path
graphs or grids is commonly analyzed in the tight-binding model in condensed matter
physics. That being said, even in the simplified case of a single particle, the Hamiltonian
H is non-commuting, characterizing a continuous-time quantum walk that can yield
exponential quantum advantage for certain oracular problems on graphs such as the
glued trees [13].

(2) Chaotic Hamiltonians. Our additional motivation for studying random sparse Hamilto-
nians stems from the fact that their spectra exhibit many of the same characteristics
as chaotic Hamiltonians, such as the SYK model [34, 25, 26] and random p-spin mod-
els [37, 41]. Understanding whether chaotic Hamiltonians have a fast mixing time as they
approach their thermal and low-energy states is a fundamental question in the study of
quantum chaos [8, 1]. As a concrete step toward addressing this problem, we identify key
spectral properties of random sparse Hamiltonians that can ensure a fast mixing time.

(3) Algorithmic applications. Preparing quantum Gibbs states, and more broadly
computing the matrix exponential of sparse matrices such as the adjacency or Laplacian
of a graph, is a fundamental subroutine in solving various graph and optimization
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problems. For instance, the Estrada index – defined as the trace of the matrix exponential
of a graph’s adjacency matrix – measures subgraph centrality and provides structural
insights [18]. Computing the matrix exponential is also related to matrix inversion
and linear system solvers [35]. Moreover, quantum Gibbs sampling has been applied
to solving semidefinite programs (SDPs) in optimization problems [21, 7, 6, 3], offering
quantum speedups for these problems.

2 Our main results

Motivated by these considerations, we investigate the mixing time of quantum Gibbs samplers
for sparse Hamiltonians and different choices of jump operators. Our study addresses two key
questions regarding the performance of the quantum Gibbs sampler for sparse Hamiltonians.
First, we ask

What choices of jump operators lead to a fast mixing time?

After exploring the effects of different jump operators Aa, we then focus on the spectral
properties of sparse Hamiltonians to understand:

What spectral property of the Hamiltonian determines its mixing time?

Answering these questions allows us to provide broad and intuitive insights on how the
quantum Gibbs sampler operates for general families of sparse Hamiltonians.

2.1 Choice of jumps: graph-local vs unitary design
A natural set of jump operators for a given n × n Hamiltonian on a graph G are Aa =

1√
n

|ea⟩⟨ea| or similar operators supported on a few neighboring vertices of G. Importantly,
these are not “local” in the sense of multi-particle Hamiltonians, which refers to being
composed of terms that act on a small number of qubits – often also geometrically close to
one another. Utilizing graph-local jump operators also significantly simplifies the structure
of the Lindbladian and the analysis of mixing times for certain graph families.

Moving beyond graph-local jumps, the Lindbladian Lβ of the quantum Gibbs sampler
can still be efficiently implemented on a quantum computer with a much broader class of
jumps. This is possible as long as each jump Aa is efficiently implementable, the set of
jumps M includes both Aa and its adjoint Aa†, and

∑
a∈[M ] ∥Aa†Aa∥∞ = 1 (due to this

normalization condition, we will sometimes speak of the jumping distribution A, from which
the jump operators Aa are sampled with probability ∥Aa†Aa∥). This raises the question of
whether there is an advantage in using non-local jumps that have a bounded spectral norm,
or if more structured local jumps are sufficient to achieve a fast-mixing quantum MCMC.
After all, classical continuous-time random walks are typically considered with local jumps
on the graph vertices. However, in the context of graphs, we will see that the structured
nature of graph-local jumps offers no advantage, but rather seems to cause a slowdown of
the resulting algorithm.

Graph-local jumps. To this end, in the next theorem, we establish tight bounds on the
spectral gap of the Lindbladian for cyclic graphs for graph-local jumps Aa, with an approach
similar to the one used in [38] to bound the spectral gap of a Davies generator.

▶ Theorem 2.1 (Spectral gap of cyclic graphs with local jumps). Fix temperature β−1. There
exists some constant energy resolution σE for which the spectral gap of the CKG Lindbladian
Lβ for a cyclic graph with n vertices with jump operators Aa = 1√

n
|ea⟩⟨ea| is asymptotically

Θ(n−3).
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Figure 1 Linear (above) and log-log (below) graphs of spectral gap with respect to system size.
Gaps of ten random 4-regular graphs were averaged for each data point. For the cyclic graphs
(one-dimensional lattices), the proven asymptotic decay aligns closely with the data.

In addition to theoretical analysis, we also generated data for cyclic graphs, path graphs,
and random d-regular graphs with n vertices, as shown in Figure 1. These numerical results
suggest spectral gaps of o(n−1) for generic sparse graphs with graph-local jumps. We observed
that increasing the constant d does improve the spectral gap decay, though it never improved
past the asymptotic decay O(n−1).

These results are all suboptimal, since for an n × n Hamiltonian H , we expect an efficient
result would be polynomial in the number of qubits, i.e. polylog(n) rather than poly(n). The
poor performance can be attributed to two factors. (1) The operators Aa†Aa have L1 norm
1
n . (2) In the energy basis, many entries of Aa are highly correlated.

The first drawback effectively scales the Lindbladian down by 1
n , since the L1 norm of

A†A can be as high as 1 when the operator norm ∥A†A∥ = 1
n . However, the chosen jump

operators are projectors, so their L1 and operator norms are equal. In both Theorem 2.1
and in the data, a spectral gap even worse than 1

n is observed. This is due to the second
drawback. The aforementioned correlations lead to off-diagonal terms in the Lindbladian,
which in general have the potential to dampen the spectral gap, and in the case of the cyclic
graph provably do so. It appears that more generally, the biases of an ensemble of local
jumps can introduce off-diagonal terms to the Lindbladian that decrease the spectral gap.
The same harmful correlations appear to exist in higher degree graphs in addition to cyclic
ones, though to a lesser extent as evidenced by the improved spectral gap.

Unitary design jumps. To address some of these shortcomings, we next consider non-local
jump operators, each independently drawn (along with its adjoint pair) according to a unitary
1-design D(U(n)) on n vertices. More precisely, we define

▶ Definition 2.2. A set of jump operators {Aa : a ∈ [M ]} is drawn from a 1-design
jumping distribution if it is obtained by sampling M/2 jump operators i.i.d from a unitary
1-design D(U(n)), normalizing each by 1√

M
, and including these operators along with their

adjoint.

We include the adjoint of each randomly chosen jump since the CKG Lindbladian requires
the set of jump operators to be closed under adjoint, {Aa : a ∈ [M ]} = {Aa† : a ∈ [M ]}.
When n is a power of 2, the unitary 1-design can be constructed as a tensor product of
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3:6 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

random Pauli operators on log2(n) qubits, in which case the jumps are self-adjoint and can
be sampled and implemented efficiently. The efficiency of our results on a general system
relies on the ability to efficiently implement some unitary 1-design.

As we will see, in our application, this 1-design sampling is effectively equivalent to
sampling from a Haar-random distribution. This approach improves on the results given for
graph-local jumps, and is able to achieve an efficient algorithm in the number of qubits for a
graph (running time polylog(n)) for Gibbs sampling. This improved performance is in part
because all the eigenvalues of a Haar random unitary have magnitude 1. Hence, it avoids the
problem of A†A having a relatively small L1 norm given the constraint on its operator norm
∥A†A∥. These jumps also avoid the second problem encountered for the graph-local jumps:
Since the number of degrees of freedom of randomness is very large over the ensemble, any
form of bias is mitigated. Indeed, the resulting Lindbladian over the full ensemble has no
off-diagonal terms resulting from correlated elements of the jump operator.

Our results extend beyond cyclic graphs to any graph of bounded degree d = O(1) where
∥H∥ ≤ d at constant temperature, or more generally when β∥H∥ = O(1). We refer to these
sparse Hamiltonians as bounded degree and formally define them as:

▶ Definition 2.3. A bounded degree system is a sequence of temperatures β(n)−1 and
Hamiltonians H(n) for which β(n)∥H(n)∥ is bounded from above by a constant independent
of system size.

▶ Theorem 2.4 (Constant spectral gap of Lindbladian in bounded degree systems). Let
β(n)−1 be a sequence of temperatures and H(n) a sequence of n × n Hamiltonians such that
β(n)∥H(n)∥ = O(1).

With any constant probability 1 − ξ, the spectral gap of a Lindbladian Lβ with σE = β−1

and M jump operators sampled from a 1-design jumping distribution for some M = Θ(log(n)),
is bounded below by a constant, i.e. λgap = Ω(1).

Assume access to an efficient block-encoding of H(n). Then as a consequence and in
the same setup, the Gibbs state of H can be prepared with error ϵ in trace distance, in time
poly(log(n), log(ϵ−1)).

While the examples of bounded degree Hamiltonians we consider are mostly graphs, the
above theorem applies to preparing the Gibbs state for any Hamiltonian at a temperature
β−1 such that β−1 = O(∥H∥).

2.2 Mixing time from spectral profile
Theorem 2.4 demonstrates that bounded-degree Hamiltonians with non-local jumps exhibit
fast mixing times. However, it leaves open the case of Hamiltonians with unbounded degrees,
such as those with d ≤ polylog(n). More formally, we define

▶ Definition 2.5. An unbounded degree system is a sequence of temperatures β(n)−1 and
Hamiltonians H(n) for which limn→∞ β(n)∥H(n)∥ = ∞. However, we still assume that
β∥H∥ = polylog(n), polynomial in the number of qubits.

In our next result, we show that again selecting the jumping distribution (including
adjoints) to be M samples from a unitary 1-design for sufficiently large M and choosing
the energy resolution σE = β−1 yields an algorithm whose efficiency depends on its low-
energy spectrum. In particular, the runtime scales inverse polynomially with the fraction of
eigenvalues δ(n) of H that are within O(β−1) of the minimum eigenvalue.
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▶ Theorem 2.6 (Spectral gap of Lindbladian in unbounded degree systems). Let β(n)−1 be a
sequence of temperatures and H(n) a sequence of n × n Hamiltonians, and let δ(n) be the
fraction of eigenvalues of H(n) within O(β−1) of λmin.

With any constant probability 1 − ξ, the spectral gap of a Lindbladian Lβ with σE =
β−1 and M jump operators sampled from a 1-design jumping distribution for some M =
Θ(δ(n)−2 log(n) log(β∥H∥)), is lower bounded by Ω(δ(n)).

Assume access to an efficient block-encoding of H(n). As a consequence, and in the
same setup, the Gibbs state of H can be prepared with error ϵ in trace distance, in time
poly(δ(n)−1, log(n), log(ϵ−1)).

Note that if β∥H∥ is bounded, then δ(n) = 1. This result therefore generalizes Theorem 2.4.

2.3 Explicit examples of random sparse Hamiltonians
Having established a sufficient spectral condition for the fast mixing of random ensembles
of sparse Hamiltonians, we now give explicit examples that satisfy this criterion. We also
give one example, the hypercube, which does not, and for which local jumps in place of
unitary design jumps achieve an exponential speedup. This example elucidates the potential
of structured local jumps for speedups, in contrast to the case of the cyclic graph in which
structured graph-local jumps yielded a slowdown.

Random regular graphs. The first example is when H is the adjacency matrix of a randomly
selected log(n)-regular graph, with polylog(n) random 1-design jumps. In Section 4.4.1, we
prove using Theorem 2.6 that this ensemble has a Lindbladian spectral gap of Ω(log(n)−3/4)
at constant temperature. This yields a polynomial algorithm to prepare the Gibbs state,
given access to an efficient block-encoding of H.

Random signed Pauli ensemble. The second example is the family of sparse Hamiltonians
considered in [9], composed of random Pauli strings with random sign coefficients given by
HP S =

∑m
j=1

rj√
m

σj , where σ is a random Pauli string on n0 qubits (such that the size of

Hamiltonian is n×n for n = 2n0), each rj is sampled randomly from {−1, 1}, and m = O( n5
0

ϵ4 )
for a parameter 1 ≥ ϵ ≥ 2−o(n0). We show in Section 4.4.2 that the CKG Lindbladian has a
spectral gap of Ω(ϵ−3/2) when we choose M = Õ

(
n2

0ϵ−3) unitary 1-design jumps, inverse
temperature β = O(ϵ−1), and σE = β−1.

Hypercubes. The final example is the family of hypercubes. A hypercube with 2d vertices
and degree d can be interpreted as a Hamiltonian on d qubits

∑
i Xi. At constant temperature,

only an exponentially small fraction of eigenvalues lie near the minimum eigenvalue. As a
result, the spectral profile implies a poor mixing time with unitary design jumps.

However, we show in Theorem 4.5 that by choosing local jumps 1√
d
Zi, the spectral gap

is 1
d , yielding an efficient algorithm for Gibbs sampling. Hypercubes therefore provide an

example where not graph-local jumps, but rather local jumps on the qubits, ensure fast
mixing. The crucial feature of local jumps that improves mixing time is that a local jump
Aa on a local Hamiltonian H satisfies ∥[Aa, H]∥ = O(1) – i.e., the jump operator only
jumps between nearby eigenstates. This property is not held by graph-local jumps in general,
so they displayed no improvement in the studied cases. In general, local jumps are the
strongest candidates for fast-mixing on local Hamiltonians, though for which classes of local
Hamiltonians fast-mixing can be achieved is still largely open. For most interesting classes of
local Hamiltonians, the condition of Theorem 2.6 is unlikely to hold.
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3 Proof sketch

3.1 Graph-local jumps
The proof of the mixing time for graph-local jumps in the cyclic graph involves two steps:
First, in Appendix A, we derive a general expression for the CKG Lindbladian in the energy
basis given by equation (5).

We then utilize this expression along with the fully known spectrum of the cyclic graph to
show that the Lindbladian is block-diagonal in the energy basis of this graph, as demonstrated
in Appendix B. One of these blocks corresponds to a classical Markov chain on the diagonal
entries of the state in the energy basis, for which we establish a spectral gap lower bound
using the canonical path method. For the remaining n − 1 blocks, we apply the Gershgorin
circle theorem to bound their eigenvalues.

3.2 Unitary design jumps
Bounded-degree systems. To establish a lower bound on the spectral gap of the Lindbladian
Lβ with unitary 1-design jumps, we consider a decomposition of the form Lβ = Lµ+δL, where
Lµ = EA∼D(U(n))[Lβ ] is the expected Lindbladian with the expectation taken over a single
jump operator sampled from a unitary 1-design distribution D(U(n)), and δL represents the
remainder term. Due the quadratic form of the Lindbladian given in expression (3) we see
that EA∼H(U(n))[Lβ ] = EA∼D(U(n))[Lβ ]. Here, H(U(n)) is a Haar random distribution over
jump operators.

Note that a CKG Lindbladian must have jump operators in adjoint pairs, so a Lindbladian
with a single jump operator will not satisfy detailed balance. However, the expected
Lindbladian over one Haar random jump operator is equal to the expected Lindbladian over
the adjoint pair of a Haar random jump operator, by linearity of expectation.

The proof of Theorem 2.4 proceeds by first showing that this expected Lindbladian
EA∼H(U(n))[Lβ ] has a constant spectral gap, as long as β(n)∥H(n)∥ is bounded by a constant
as a function of system size. As before, we call such systems bounded degree, since for constant
β bounded degree graphs satisfy the required property. Indeed, if such a system has degree
bounded by d, it must have spectrum in [−d, d] by Gershgorin’s circle theorem, since every
row consists of zeros and at most d ones. Adding phases to the edges of these bounded degree
graphs remains feasible by a similar argument, so there is no constraint of stoquasticity.

The result is stated formally as follows:

▶ Lemma 3.1 (Constant spectral gap of average Lindbladian for bounded degree systems). Let
β(n)−1 be a sequence of temperatures and H(n) be a sequence of n × n Hamiltonians such
that β∥H∥ = O(1). The spectral gap of Lµ = EA∼D(U(n)) [Lβ ], the expected CKG Lindbladian
with energy resolution σE = β−1 over the ensemble of one jump operator sampled from a
unitary 1-design, is asymptotically Ω(1).

To establish Lemma 3.1, we show that for any system, the average Lindbladian over a
Haar random ensemble of jump operators decomposes as Lµ = Lclassical + Ldephasing. For a
density matrix in the energy basis, the evolution of Lclassical is a classical continuous Markov
chain of the diagonal. The evolution of this classical Lindbladian maps the diagonal, in the
limit, to the Gibbs distribution. The spectral gap of Lclassical can be analyzed with the large
suite of techniques for classical Markov chains.

Meanwhile, Ldephasing damps the off-diagonal terms of the density matrix. In the limit as
t → ∞, the state therefore converges to a classical distribution on the diagonal in the energy
basis, with no off-diagonal terms, as desired. The operator Ldephasing diagonalizes in the
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energy basis of density matrices, with each off-diagonal element decaying at an independent
rate. It is therefore simple to analyze as well. In summary, Lemma 3.1 establishes that the
λgap(Lµ) = min(λgap(Lclassical), λmin(Ldephasing)) = Ω(1).

However, this result does not imply that any given jump sampled from the unitary
1-design (with its adjoint pair) would yield a gapped Lindbladian. As a result, it does not
yet yield an efficient Gibbs sampling algorithm. To obtain such a result in Theorem 2.4,
we demonstrate that the remainder term δL = Lβ − Lµ has a small spectral norm when a
Lindbladian is constructed from a sufficiently large number of jumps M , rather than just one.
In particular, a Lindbladian sampled with Θ(log(n)) normalized jumps from any 1-design
concentrates closely to its expectation, thereby establishing a spectral gap lower bound. Since
this lower bound applies to any graph at constant temperature β−1 with bounded degree, it
applies to the periodic lattices, path graphs, and k-regular graphs discussed in the previous
section.

Unbounded degree systems. In the context of unbounded degree systems, 1-design unit-
aries can no longer, in general, achieve an algorithm that is efficient in log(n) at constant
temperature. Indeed, Lµ = EA∼D(U(n)) [Lβ ] = Lclassical + Ldephasing does not necessarily
have a constant spectral gap in general, as it did in the case of bounded degree systems.
However, we may establish a condition on the spectrum of H, with which we can recover a
lower bound for the spectral gap:

▶ Lemma 3.2 (Spectral gap of average Lindbladian for unbounded systems). Let H(n) be a
sequence of n × n Hamiltonians. For some C, let δ(n) be the proportion of eigenvalues λj of
H such that β−1(λj − λmin) ≤ C. The spectral gap of Lµ = EA∼D(U(n)) [Lβ ], the expected
CKG Lindbladian over the Haar random unitary ensemble of its jump operator at temperature
β−1 with σE = Θ(β−1), is asymptotically Ω (δ(n)).

The lemma expresses that if λmin is within O(β−1) of δ(n) of the eigenvalues, the spectral
gap is at least δ(n). Similarly to Theorem 2.4, using this result to obtain an efficient Gibbs
sampling algorithm amounts to showing that a Lindbladian with enough independently
sampled jump operators shares a similar asymptotic spectral gap to the average Lindbladian,
using a concentration bound. When the average spectral gap from the above lemma is δ(n),
the number of jump operators to concentrate around the expectation increases to δ(n)−2,
along with an overhead of log(n) log(β∥H∥)2. This result is captured in Theorem 2.6, and
results in an algorithm with runtime poly(δ(n)−1, log(n), log(ϵ−1)) for Gibbs sampling, where
ϵ is the error in trace distance. This runtime bound relies on the standing assumption in this
paper that log(β∥H∥) = poly(log(n)).

4 Technical details

4.1 The quantum Gibbs sampler

4.1.1 Lindbladian evolution
The recently proposed CKG quantum MCMC algorithm addresses the problem of finding
thermal states by imitating thermodynamic processes [11, 10]. In this process, a system of
particles evolves in contact with a thermal bath at some fixed temperature β−1. Due to
interactions with the bath, the system is described by a probabilistic mixture of quantum
states ρ. This state evolves in time, by approximation, with Markovian dissipative dynamics,
dρ
dt = Lβ [ρ], given in terms of an operator Lβ known as the Lindbladian. This operator
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3:10 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

involves a coherent term B that describes the interaction among the particles in the system.
There is also a term in Lβ that is specified by a series of Lindblad operators Lj that drive
the dissipative transitions. The dynamics of the coherent term B are reversible, while the
dissipative transitions drive all states toward some “stationary state”. These transitions can
be understood as perturbations from the bath, and as all states converge to the Gibbs state,
the information of the system is leaking via these perturbations to the bath. The expression,
in terms of B and Lj , is:

Lβ [·] = −i[B, ·] +
∑

j

(
Lj(·)Lj† − 1

2{Lj†Lj , ·}
)

.

The summands Lj(·)Lj† are termed the transition part of the Lindbladian, and − 1
2 {Lj†Lj , ·}

are the decay part of the Lindbladian. The choice of the Lindbladian operator Lβ can vary
depending on the precise nature of interactions between the system and the bath. However,
to prepare the Gibbs (thermal) state at temperature β−1, the Lindbladian should satisfy

dρβ

dt
= Lβ [ρβ ] = 0 where ρβ := e−βH/Tr(e−βH), (2)

and moreover ρβ should be the unique stationary state of the Lindbladian. The long-term
evolution of the system under this Lindbladian, as a result, would converge to the Gibbs
state of the Hamiltonian H at temperature 1/β.

4.1.2 Detailed balance
To ensure that the Lindbladian Lβ converges to a state ρβ , [11] designs a Lindbladian that
satisfies Kubo-Martin-Schwinger (KMS) detailed balance with respect to ρβ . KMS detailed
balance is one of several ways of quantizing the notion of classical detailed balance for Markov
chains. KMS detailed balance of Lβ is self-adjointness with respect to the inner product

⟨σ1, σ2⟩ρ−1
β

= Tr(σ†
1ρ

−1/2
β σ2ρ

−1/2
β ). (KMS Inner Product)

In particular, it is equivalent to the relation that

Lβ [·] = ρ
1/2
β L†

β

[
ρ

−1/2
β (·)ρ−1/2

β

]
ρ

1/2
β (Detailed Balance)

where L†
β is the adjoint Lindbladian with respect to the Hilbert-Schmidt inner product

⟨σ1, σ2⟩ = Tr(σ†
1σ2). The adjoint operator L†

β , in the Heisenberg picture, describes the
dynamics of observables under evolution by Lβ . The Lindbladian evolution is described by
some quantum channel and therefore the observable I must always be fixed by exp(L†

β). This
implies that L†

β [I] = 0. The detailed balance formula thereby implies that Lβ [ρβ ] = 0, as
desired. Note that KMS detailed balance can be dually described as the self-adjointness of
L†

β with respect to the inner product ⟨σ1, σ2⟩ρβ
= Tr(σ†

1ρ
1/2
β σ2ρ

1/2
β ).

4.1.3 Construction and parameters
The quantum Gibbs sampler in [11] constructs a Lindbladian that satisfies two properties:
1. Lβ satisfies detailed balance with respect to ρβ , and therefore Lβ [ρβ ] = 0.
2. The dynamics of Lβ can be efficiently implemented.
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Their Lindbladian, which we term the CKG Lindbladian, can be simulated on a quantum
computer with a cost per unit time t = 1 roughly equal to that of simulating the Hamiltonian
dynamics of H . The CKG Lindbladian is closely related to the Davies generator, which is a
physically motivated Lindbladian that satisfies detailed balance, but that is not efficiently
implementable in general. A full description of both Lindbladians are given in the Appendix.

The Gibbs sampling algorithm evolves an initial state ρ0 according to the efficiently
implemented Lindbladian Lβ , and produces the state ρt = eLβt[ρ0] after time period t. The
mixing time is roughly the time that it takes for the state ρt to approach the Gibbs state ρβ .
That is, eLβtmix [ρ0] ≈ ρβ . The efficiency of the algorithm therefore scales linearly with the
unit time simulation cost and the mixing time. The algorithm has several parameters in the
Lindbladian’s construction. In addition to the inverse temperature β, the algorithm specifies
an energy resolution σE . A salient feature of [11]’s construction is that it can achieve detailed
balance even though the algorithm only probes the energies of the Hamiltonian H with
approximate precision. σE quantifies this level of precision. The cost of the Lindbladian
simulation depends linearly on σ−1

E , but increasing the precision may also improve the
mixing time. Taking σE → 0 for absolute precision recovers the Davies generator – when
distinguishing the energies of the system exactly is infeasible, this Lindbladian cannot be
simulated efficiently.

A set of jump operators Aa must also be specified for the Lindbladian. These operators
are decomposed by frequency and reassembled in a particular way to construct the Lindblad
operators that help Lβ satisfy detailed balance. They must appear in adjoint pairs: i.e., if
A ∈ {Aa}, then A† ∈ {Aa}. The cost of simulation scales with the cost of implementing
the oracle |a⟩ → |a⟩ ⊗ Aa. In particular, the jump operators must be normalized when
implemented for the algorithm, satisfying

∑
a ∥Aa†Aa∥ ≤ 1. CKG Lindbladians are linear

in their jump operators – if L1 has one jump operator A1 and L2 has one jump operator
A2, then a Lindbladian L with jump operators A1 and A2 satisfies L = L1 + L2. If Lβ

was constructed from jumps Aa, then jump operators
√

sAa produce the Lindbladian sLβ ,
scaling the mixing time by s. So we may therefore assume that

∑
a ∥Aa†Aa∥ = 1 exactly,

since renormalizing can only improve the spectral gap. In its normalized form, the set of
jump operators can be understood as a jumping distribution over Aa which we will notate
a ∼ A, where each is sampled with probability ∥Aa†Aa∥.

4.2 Mathematical description
We begin with a description of the Davies generator, which is the limit of the CKG Lindbladian
as σE → 0. This generator was developed from a physical approximation of an open
thermalizing quantum system, but at low temperatures it is unphysical and can be hard to
implement. We then generalize the notions to the implementable CKG Lindbladian.

4.2.1 Davies generator
In the description of the Davies generator for a given system H, there is a coherent term
and there are jump operators Aa. The Aa terms must appear in adjoint pairs in the Davies
generator. The dissipative part of the Lindbladian is expressed as follows:

Lβ [·] =
∑

a∈[M ]

∫ ∞

−∞
γ(ω)

(
Aa

ω(·)A†
ω − 1

2{A†
ωAω, ·}

)
dω, (3)

where Aa
ω is the Operator Fourier Transform (OFT) of jump operator Aa:

Aa
ω = 1√

2π

∫ ∞

−∞
eiHtAae−iHte−iωtdt.
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The Davies’ generator chooses Lindblad operators
√

γ(ω)Aa
ω, each of which selects the energy

transitions, or Bohr frequencies, in Aa that are precisely ω. Because it requires certainty
in energy, by Heisenberg’s uncertainty principle of energy and time, in the general case
simulating the evolution of the Davies generator efficiently is infeasible. In the above, γ

is some function satisfying γ(ω) = γ(ω) = e−βωγ(−ω). The Lindblad operators are scaled
by γ(ω) precisely to satisfy KMS detailed balance. Since Aa

ω represents jumps with Bohr
frequency ω, the functional equation of γ ensures a desired ratio of jumps with Bohr frequency
ω and −ω. We choose the Metropolis filter, γ(ω) = min(1, e−βω), though another common
filter γ(ω) = 1

1+e−βω for “Glauber dynamics” could also be used for the same results.
The Davies generator satisfies detailed balance with respect to ρβ , the thermal state.

In some presentations of the Davies generator, it contains a coherent term −i[H, ·]. If this
term is included, the generator does not satisfy detailed balance, so we do not follow this
convention. However, the term does not affect the fixed point of the generator, since ρβ

commutes with H and therefore −i[H, ρβ ] = 0.

4.2.2 CKG Lindbladian
The CKG Lindbladian is defined almost identically to the Davies generator, but is altered
slightly so that it still obeys detailed balance, but is efficiently implementable.

Lβ [·] = −i[B, ·]︸ ︷︷ ︸
coherent term

+
∑

a∈[M ]

∫ ∞

−∞
γ(ω)

Âa(ω)(·)Âa(ω)†︸ ︷︷ ︸
transition term

− 1
2{Âa(ω)†Âa(ω), ·}︸ ︷︷ ︸

decay term

 dω,

where Âa(ω) is now the Gaussian-supported OFT of jump operator Aa:

Âa(ω) = 1√
2π

∫ ∞

−∞
eiHtAae−iHte−iωtf(t)dt.

To ensure that the jump operators do not have infinite precision in energy, a Gaussian
supported OFT is performed instead to obtain Âa(ω), which selects a Gaussian band energies
of around ω.

Here, f(t) = e−σ2
Et2
√

σE

√
2/π, with Fourier transform f̂(ω) = 1√

σE

√
2π

exp(− ω2

4σ2
E

). As

a result, the operator Âa(ω) can be shown to be equal to
∑

ν f̂(ω − ν)Aa
ν . The function f(t)

was chosen so that its squared Fourier transform f̂2(ω) is a Gaussian with standard deviation
σE , which features prominently in the Lindbladian (since it consists of quadratic terms in
Âa(ω)). Taking σE = Θ(β−1) yields an efficient simulation algorithm with the assumption
of a block-encoding of H and a block-encoding for the jump operators

∑
a∈[M ] |a⟩ ⊗ Aa, so

σE is taken to be on the order of β−1 in this paper.
Since Aa(ω) is a noisy decomposition of Aa into frequencies, it is not immediately clear

whether there is a choice of function γ(ω) for which they can be recombined to achieve
detailed balance. Indeed, as shown in [11], there is! The choice of γ(ω) is such that the
transition part of Lβ , the summand

∑
a∈[M ]

∫∞
−∞ γ(ω)Âa(ω)(·)Âa(ω)†dω, still satisfies KMS

detailed balance. [11] proved that there is a unique choice of B, up to translation by a scalar,
such that −i[B, ·] − 1

2
∑

a∈[M ]
∫∞

−∞ γ(ω){Âa(ω)†Âa(ω), ·}dω also satisfies detailed balance.
For the Davies generator, this coherent term B is simply 0 (or corresponds to a Lamb shift
that commutes with the Hamiltonian), and the decay term by itself already satisfies detailed
balance. B can be expressed in general as:

B =
∑

a∈[M ]

∑
ν1,ν2

tanh(−β(ν1 − ν2)/4)
2i

(Aa
ν2

)†Aa
ν1

.
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The choice of γ for this algorithm, for which the filter is efficiently implementable, is
γ(ω) = exp

(
−β max

(
ω + βσ2

E

2 , 0
))

. As σE → 0 it converges to the Metropolis filter of the
Davies generator. In particular, this γ is precisely Metropolis filter for the Davies generator
shifted by βσ2

E . The CKG Lindbladian requires a choice of γ for which α = γ ∗ g satisfies
the functional equation that was originally satisfied by γ in the Davies generator.

We also note that Lβ is bounded in operator norm.

▶ Lemma 4.1. Consider the CKG Lindbladian Lβ with temperature β−1, using the Metropolis
filter, and with jump operators Aa for which

∑
a ∥Aa†Aa∥ ≤ 1. This Lindbladian satisfies

∥Lβ∥∞→∞ = O(log(β∥H∥)), where ∥·∥∞→∞ is the operator norm of Lβ, with respect to the
operator norm on the input and output vector spaces.

Proof. The result follows from citing Proposition B.2 in [11] to bound the operator norm of
the coherent term, and bounding the transition and decay terms manually. This proof is
described in the arXiv version [32]. ◀

4.3 Spectral gap
Since the quantum MCMC algorithm was proposed recently, numerical and analytic charac-
terizations of algorithm are limited. As for classical Markov chains, it has been shown that
the mixing time of the algorithm can be characterized by the spectral gap λgap(Lβ) of the
Lindbladian. If the first eigenvalue λ1 = 0 corresponds to eigenvector ρβ , then the spectral
gap is λgap(Lβ) = minj>1 |λj | [11]. Lindbladians are in general negative semidefinite like
classical Markov chain generators, so λgap(Lβ) = minj(−λj). More precisely, it holds that

Ω(1)
λgap(Lβ) ≤ tmix(L) ≤

log
(∥∥∥ρ

−1/2
β

∥∥∥)
λgap(Lβ) ≤ O(β∥H∥ + log(dim(H)))

λgap(Lβ) . (4)

In particular, analytically bounding this spectral gap from below is sufficient to prove
that ρβ is the unique fixed point, and for obtaining an upper bound on the mixing time.
For so-called rapid mixing, in which the mixing time is logarithmic in the number of qubits,
the spectral gap bound often does not suffice. For our purposes of proving efficiency in the
number of qubits, however, this issue is moot.

4.4 Unbounded degree systems
We now prove efficient Gibbs sampling results for certain unbounded sparse Hamiltonians.

4.4.1 Random log(n)-regular graphs
With high probability at constant temperature, a randomly selected d = log(n)-regular graph,
with poly(d) random 1-design jumps, has a Lindbladian spectral gap of Ω(d−3/4). This
gives a polynomial algorithm to prepare the Gibbs state for most such graphs at constant
temperature.

The gap of Ω(d−3/4) arises because a random d-regular graph, for d → ∞, has one
eigenvalue at d and the rest distributed from −2

√
d − 1 to 2

√
d − 1 in a distribution that

converges to a (normalized) semicircle. This semicircular distribution frequently appears in
random matrix theory, for instance in the Gaussian unitary ensemble (GUE), which models
the spectrum of many chaotic quantum systems. When the spectrum of a quantum system
indeed follows this distribution, it implies that δ(n) = Ω(d−3/4) of the eigenvalues lie within
a constant of the minimum eigenvalue.
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▶ Theorem 4.2. With any constant probability 1 − ξ, for a randomly selected d = log(n)-
regular graph, there are δ = Ω(d−3/4) eigenvalues within O(1) of the minimum eigenvalue.

As an immediate result of Theorem 4.2 and Theorem 2.6, we obtain an algorithm polynomial
in d to prepare the Gibbs state of a d-regular graph. To prove the corollary, we use Theorem 2
in [17]. For this context, the following statement suffices.

▶ Theorem 4.3. Let degree d = log(n). For sufficiently large n, there exists some D > 0
such that for any interval I ⊂ R, 0 < α < 1, and 0 < ϵ < α such that |I| > Dd−α+ϵ,
with probability 1 − o(n−1) over all random d-regular graphs, |δ(n) − µ| < d−ϵ|I|, where
µ =

∫
I

ρsc(x)dx and δ(n) is the fraction of eigenvalues of the d-regular graph in I
√

d − 1.

In the above, ρsc is the asymptotic distribution as d → ∞ of a random d-regular graph is the
semicircular distribution with radius 2

√
d − 1, ρsc(x) = 1

2π(d−1)
√

4(d − 1) − x2. From this
result, Theorem 4.2 follows. As described more explicitly in [32], the estimated density ρsc

near the bottom of the semicircle can be estimated. Then, using the theorem, this can be
related to the fraction of eigenvalues near the minimum eigenvalue as well, proving the result.

4.4.2 Pauli String Ensemble
We now mention another ensemble of Hamiltonians studied by [9] in the context of low-energy
state preparation. In [9], efficient low energy state preparation with phase estimation is
demonstrated under the same conditions as our efficient Gibbs sampling in Theorem 2.6.
Indeed, if many eigenvectors are close to the ground-state energy, as we require, then
performing phase estimation on the maximally mixed state has a high probability of measuring
a low-energy state, so low-energy state preparation is possible as well. They study the
following ensemble of Hamiltonians on n0 qubits, HP S =

∑m
j=1

rj√
m

σj , where σ is a random

Pauli string on n0 qubits, each rj is sampled randomly from {−1, 1}, and m =
⌊
c2

n5
0

ϵ4

⌋
. The

parameter ϵ satisfies ϵ ≥ 2−n0/c1 , and c1, c2 are absolute constants. The resulting spectrum
is again close enough to a semicircular distribution to obtain an efficient Gibbs sampler for
certain temperatures that depend on ϵ. As ϵ decreases, Gibbs sampling becomes efficient for
even larger values of β (lower temperatures), since the ensemble’s spectrum converges closer
to a perfect semicircular distribution at the edge of the spectrum.

Using the results in their paper, we establish that Gibbs sampling is efficient in n0 for
certain values of ϵ and corresponding temperatures β−1.

▶ Theorem 4.4. Say that H(n0) is sampled from the ensemble HP S on n0 qubits, with
ϵ = 2−o(n0) and ϵ ≤ 1. With any constant probability 1 − ξ, for sufficiently large n0,
δ = Ω(ϵ3/2) fraction of the eigenvalues lie within O(ϵ) of the minimum eigenvalue.

Proof. We utilize two results from [9]. Firstly, they argue that Pr[∥H(n0)∥ ≥ 2(1 + ϵ)] ≤
exp(−c2n0) when m ≥ n3

0
ϵ4 , which is satisfied in this case. With an arbitrary constant

probability for sufficiently large n0, therefore, ∥H(n0)∥ ≤ 4, since ϵ ≤ 1. The second
result is that with probability 1 − exp(−c3n

1/3
0 ), at least Ω(ϵ3/2) of the eigenvalues satisfy

λi ≤ (1 − ϵ)λmin where c3 is an absolute constant. With any large constant probability, we
therefore have that |λi − λmin| ≤ ϵλmin ≤ 4ϵ = O(ϵ) for Ω(ϵ−3/2) of the eigenvalues. ◀

By Theorem 2.6, we obtain a Gibbs sampling algorithm that is poly(ϵ−1, n0) to prepare
the Gibbs state at inverse temperature ϵ−1. We may rephrase this result in terms of β. For
any polynomially large β, it provides a Pauli string ensemble of Hamiltonians, HP S with
ϵ = β−1, for which with high likelihood preparing the Gibbs state is efficient in n0, assuming
access to a block-encoding of the Hamiltonian of interest.
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4.4.3 Hypercube graphs
For hypercube with varying dimension at a constant temperature, using unitary 1-design
jumps would yield an exponentially large runtime. The spectrum of a hypercube with
dimension d and 2d vertices consists of the integers −d, −d + 2 . . . , d − 2, d. The eigenvalue j

has multiplicity
(

d
d+j

2

)
. In particular, for any constant C, only an exponentially small fraction

of the eigenvalues δ(d) lie below −d + C. This leads to a naive algorithm with at worst
exponential complexity in d.

However, a better result can be obtained considering the hypercube as a system of d

qubits. The graph with dimension d has 2d vertices, which can be considered length d

bitstrings. Then, the adjacency matrix is the sum of Pauli X operators on each qubit,∑d
i=1 Xi, since the hypercube has an edge between any two bitstrings of Hamming distance 1.

Choosing d jump operators as 1√
d
Za, the mixing time can be improved to poly(d, log(ϵ−1)):

▶ Theorem 4.5 (Spectral Gap for Hypercube with Local Jumps). For fixed β−1, there exists
some energy resolution σE such that the spectral gap of the CKG Lindbladian Lβ for a
d-dimensional hypercube with jump operators Aa = 1√

d
Za, is asymptotically Ω(d−1).

Proof. The proof of this statement is given in the arXiv version [32] by showing that the
Lindbladian, with this choice of jump operators, is the product of independent Lindbladians
on each qubit. Each of their spectral gaps can then be calculated explicitly. ◀

In the case of the hypercube, the local jump operators 1√
d
Zi only jump between eigenstates

whose eigenvalues differ by 1. This vastly improves the performance of the classical Markov
chain and dephasing Markov chain within the Lindbladian. However, the Lindbladian does
not consist only of these two terms, as it did in the limit of independently sampled 1-design
jumps. Off-diagonal terms do exist, and the presence of Za for every index is necessary to
ensure that these off-diagonal terms do not completely eliminate the spectral gap. In some
way, there must be “enough uncorrelated” local energy jumps to dampen these off-diagonal
terms. For more complicated local Hamiltonians, it is not clear how correlations may be
suppressed while still maintaining locality.

5 Connection to previous work

Our results show that for a Hamiltonian H with temperature β−1 such that some δ(n)
fraction of the eigenstates are within O(β−1) of the ground-state energy, the CKG quantum
Gibbs sampler with 1-design jumps efficiently prepares the Gibbs state with trace distance
at most ϵ. The running time scales polynomially with δ(n)−1, β∥H∥, log(ϵ−1), and the
complexity of the block encoding of H. This result is a baseline test that shows the CKG
algorithm performs as well as other methods for preparing low-energy states of Hamiltonians.
Indeed, our spectral condition is precisely the same as a condition that ensures easy quantum
phase estimation of a near-ground state. Namely, performing quantum phase estimation on
the maximally mixed state can prepare a random eigenstate, and with probability δ(n) it is
within O(β−1) of the minimum eigenvalue. Obtaining O(δ(n)−1) samples and taking the
minimum energy can therefore prepare a near ground-state eigenvector. This approach is
the basis of the previous analysis of random sparse Hamiltonians in [9].

Moreover, in [14], a quantum algorithm is presented that prepares the Gibbs state with a
complexity that scales as poly( n

Z(β) , log(ϵ−1)). If δ(n) of the eigenstates are within O(β−1)
of the ground-state energy, then n

Z(β) = Ω(δ(n)−1), and therefore under such conditions, this
algorithm efficiently prepares the Gibbs states as well. Effectively, the CKG Gibbs sampler
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with “generic” 1-design jumps performs the same as previously developed algorithms – the
algorithm is at least as powerful, but a potential advantage in cooling must arise from a
smart (i.e., local and unbiased) choice of jump operators.

After completing our work, we also became aware of [12], where, among other contributions,
the authors derive a new, efficient quantum Gibbs sampler algorithm that utilizes jump
operators sampled from a Clifford-random circuit. This Gibbs sampler is shown to exhibit
a spectral gap bound under the same condition on the spectral density considered in
Theorem 2.6. In comparison, we show that under the conditions of Theorem 2.6, the spectral
gap of the CKG Lindbladian with an ensemble of 1-design jumps is bounded with high
probability.

Finally, our conditions on the spectrum and the structure of random unitary design jumps
resemble previous works on chaotic Hamiltonians that apply the Eigenstate Thermalization
Hypothesis (ETH) to prove the fast mixing of dissipative dynamics [8, 15]. In particular,
in [8], the proposed algorithm implements a “rounded” Davies generator, yielding a physical
Lindbladian that block-diagonalizes into components consisting of small-energy transitions.
They propose their own version of ETH that relies on jump operators, for small Bohr
frequencies ω, having independent Gaussian-distributed entries. The assumption that these
entries are independent for the result is very strong, allowing them to conclude that their jump
operators are both local and that distinct energy transitions are completely uncorrelated.

Our work shows fast mixing unconditionally for quantumly easy Hamiltonians, replacing
the local jumps and ETH assumption for the rounded Davies generator with 1-design jump
operators for the CKG Lindbladian. A similar ETH assumption to [8] would also yield
fast-mixing for the CKG Lindbladian with local jumps, but more generally some approach
must be taken to provably mitigate the correlations induced by implementing local jumps, in
contrast with 1-design jump operators.
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A CKG Lindbladian in the energy basis

We consider a quantum system consisting of basis states |ei⟩ and a Hamiltonian H. We
choose some jump operators Aa and denote Aa

lm = ⟨l| Aa |m⟩. Notate the energy eigenstates
as |j⟩ with energy Ej . We independently calculate the three parts of the Lindbladian: the
transition term Lt, the decay term Ld, and coherent term Lc so that Lβ = Lc +Lt +Ld. First,
as mentioned above, the OFT of the jump operator Aa is Âa(ω) =

∑
lm Aa

lmf̂(ω −νlm)|l⟩⟨m|,
where νlm = El − Em. To represent superoperators as linear maps, we vectorize operators
with respect to the basis of operators |m1⟩⟨m2|. In particular, |m⟩ with m = (m1, m2) will
notate the basis operator |m1⟩⟨m2|. Now, we may expand Lt, Ld, Lc. The full calculations
are performed in the arXiv version of this paper [32], yielding the following expressions:

⟨l| Lt |m⟩ =
∑

a

Aa
l1m1

Aa
l2m2

θ(νl1m1 , νl2m2),

⟨l| Ld |m⟩ = −1
2

δl1m1

∑
a,j

Aa
jm2

Aa
jl2

θ(νjm2 , νjl2) + δl2m2

∑
a,j

Aa
jl1

Aa
jm1

θ(νjl1 , νjm1)

 ,

⟨l| Lc |m⟩ = 1
2

(
δl1m1 tanh(βνm2l2/4)

∑
a,j

Aa
jm2

Aa
jl2

θ(νjm2 , νjl2)−

δl2m2 tanh(βνl1m1/4)
∑
a,j

Aa
jl1

Aa
jm1

θ(νjl1 , νjm1)
)

. (5)

Note that they can all be taken in terms of α(ν) = θ(ν, ν) using the identity θ(ν1, ν2) =
α( ν1+ν2

2 ) exp
(

− (ν1−ν2)2

8σ2
E

)
.

B Graph-Local Jumps for Cyclic Graphs

In this section we prove Theorem 2.1. Consider a cyclic graph with n vertices with adjacency
matrix H, and eigenvectors |j⟩.

The eigenbasis of a cyclic graph consists of vectors |j⟩ = n−1/2∑
a ζ−aj

n |ea⟩ with ei-
genvalues 2 cos

( 2πj
n

)
. The jump operators on the graph are chosen to be graph-local

Aa = n−1/2|ea⟩⟨ea|, and therefore have coefficients Aa
lm = n−3/2ζ

a(l−m)
n . Now we observe

that
∑

a ζ
a(i−j)
n = nδij . We therefore have the relation that∑

a

Aa
l1m1

Aa
l2m2

= n−3
∑

a

ζa((l1−m1)−(l2−m2))
n = n−2δ(l1−m1)(l2−m2).

As computed more explicitly in the arXiv version [32], we compute the components of the
Lindbladian with these jump operators:

⟨l| Lt |m⟩ = n−2θ(νl1m1 , νl2m2)δ(l1−m1)(l2−m2).

⟨l| Ld |m⟩ = −n−2

2 δl1m1δl2m2(α(νjm2) + α(νjm1))

⟨l| Lc |m⟩ = 0.

The above formulae imply that the Lindbladian is block diagonal in the eigenbasis. The
coherent term vanishes and the decay term is fully diagonal. Setting k = m1 − m2 and
k′ = l1 − l2, the transition term ⟨l| Lt |m⟩ is nonzero only if k = k′, due to the factor
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3:20 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

δ(l1−m1)(l2−m2) = δ(l1−l2)(m1−m2). There is therefore one block corresponding to each k,
which we will denote Lk. The block for k = 0 is the classical block of the Markov chain
on the diagonal entries of the state. Finding its spectral gap, and then lower bounding
the eigenvalues of the remaining n − 1 blocks, yields a bound for the spectral gap of the
Lindbladian.

B.1 Spectral Gap Lower Bound
We will first show that the spectral gap of the classical block is asymptotically Ω(n−1). We
have by explicit calculation that

⟨l| L0
t |m⟩ = 1

n2 α(νlm)

⟨l| L0
d |m⟩ = − 1

n2 δlm

∑
j

α(νjm).

We will use the canonical path bound, a standard technique in the theory of classical Markov
chains, to establish lower bounds on their spectral gaps. The canonical path lemma fixes
a “canonical” path between each pair of vertices on a graph and obtains a corresponding
spectral graph bound. For our purposes we let the canonical path between any two vertices
to be the edge joining them, which obtains the following statement:

▶ Lemma B.1. Say L0 is a Markov chain generator with stationary state σ. Then, the
spectral gap satisfies the following bound:

λ ≥ min
(l,m)

L0
lm

σl
.

Applying this bound in this case, and noting that the stationary state of this Markov chain
is ρll, we obtain the lower bound

λ ≥ min
l ̸=m

α(νlm)n−2

ρll
. (6)

The first equality holds because every canonical path is length 1, so the only path containing
the edge (l, m) is γlm. We may upper bound ρll with ρll ≤ e2β∑

i
Ei

≤ n−1 e2β

e−2β = n−1e4β .
Moreover, |νlm| ≤ 4 since all energies lie in [−2, 2], so α is bounded below by a positive
constant C that is independent of n. We conclude that λ ≥ minl ̸=m

α(νlm)n−2

ρll
≥ Cn−2

e4βn−1 =
Ω(n−1), as desired.

Now, for the blocks with k ̸= 0, we utilize the Gershgorin bound on the columns of
the kth block of −Lβ , −Lk, which states that the eigenvalues of Lk must be larger than
minm

[
⟨m|Lk|m⟩ −

∑
l̸=m | ⟨l|Lk|m⟩ |

]
. This approach is very similar to the one outlined

in [38] for the Davies generator. By explicitly calculating and bounding this term in the
arXiv version of this paper-[32], we obtain that the eigenvalues of Lk are Ω(n−3). This
completes the lower bound, showing that all the spectral gap in full must be Ω(n−3).

B.2 Spectral Gap Upper Bound
To prove the upper bound on the spectral gap, we consider the row vector v of length
n2, that is 1 on the indices that correspond to the block k = 1, and 0 elsewhere. As an
operator, it takes the value 1 on one offdiagonal with a fixed l1 − l2 = k. When calculating
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(vLβ)m = (L†
βv)m, we obtain the same formula as found in the Gershgorin bound calculation

above – indeed, the values on the diagonal are all positive, while the off-diagonal values are
negative:

(L†
βv)m = 1

n2

∑
l

(
α(νl1m1) + α(νl2m2)

2 − α

(
νl1m1 + νl2m2

2

))
+ 1

n2

∑
l

α

(
νl1m1 + νl2m2

2

)(
1 − exp

(
−(νl1m1 − νl2m2)2

8σ2
E

))
. (7)

The previous lower bound shows that each of these values is nonnegative. Since l1 − l2 =
m1 − m2 = 1, νl1m1 − νl2m2 = νl1m1 − νl2m2 is O(n−1). The first term in the expression,
since it is composed of summands that are second differences in α, is n terms that are O(n−2)
scaled by n−2 – it is therefore O(n−3). The summands of the second term can be similarly
estimated to be O(n−2), so it is also O(n−3). The terms of (L†

βv)m are therefore nonnegative
and are at most Cn−3 for some constant C.

To prove the upper bound, we make use of the inner product ⟨ , ⟩ρ−1
β

with respect

to which L†
β is self-adjoint. Note that ⟨|i1⟩⟨i2|, |j1⟩⟨j2|⟩ρ−1

β
= δi2j1δi1j2(ρβ)1/2

i1i1
(ρβ)1/2

i2i2
≥ 0.

Hence, when ⟨ , ⟩ρ−1
β

is expressed in the energy basis as vMw for a matrix M , M has

nonnegative elements. We therefore may upper bound ⟨(L†
βv), v⟩ρ−1

β
by Cn−3⟨v, v⟩, since

the coefficients of (L†
βv) and v are nonnegative and (L†

βv) is dominated by Cn−3v for some

C > 0. We conclude that
⟨(L†

β
v),v⟩

ρ
−1
β

⟨v,v⟩
ρ

−1
β

is O(n−3). Since L†
β is self-adjoint with respect to this

inner product, we obtain that v has Rayleigh quotient O(n−3). v is also orthogonal to I,
since ⟨v, ρβ⟩ρ−1

β
= Tr(vρ

1/2
β Iρ

1/2
β ) = Tr(vρβ) = 0, where the last equality holds since as an

operator v is zero along the diagonal. v has no overlap with I, the fixed point of L†
β , and

therefore its Rayleigh quotient is an upper bound on the spectral gap. The spectral gap
must therefore also be O(n−3). This completes the proof of Theorem 2.1.

C Bounded Degree Systems with 1-Design Jumps

In this section we prove Lemma 3.1 and Theorem 2.4, demonstrating an improvement over
the result in Theorem 2.1 for local jumps in cyclic graphs.

Proof of Lemma 3.1. To prove Lemma 3.1, we make use of the expressions (5) for the
transition, decay, and coherent parts of a general Lindbladian, but with simply one Haar
random jump (or equivalently any 1-design since the second moments of the operators are
equal). The transition term is

⟨l| Lt |m⟩ = Al1m1Al2m2θ(νl1m1 , νl2m2).

The expectation of the product Al1m1Al2m2 is zero if l1 ̸= l2 or m1 ̸= m2. The expectation
of the norm squared of an element, on the other hand, is n−1. By explicit calculation, we
therefore obtain

E [⟨l| Lt |m⟩] = δl1l2δm1m2

n
α(νl1m1)

E [⟨l| Ld |m⟩] = −1
2

δl1m1δl2m2

n

∑
j

(α(νjm2) + α(νjm1))

 ,

E [⟨l| Lc |m⟩] = 0.
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3:22 Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

The final Lindbladian Lµ is therefore completely diagonal except for a “classical block” L0 of
indices |(m, m)⟩, whose off-diagonal terms are populated by the elements of Lt. The spectral
gap of this Lindbladian is therefore the minimum of the values along the diagonal, which are
all positive, and the spectral gap of the classical block.

As in Section B, we use the Lemma B.1 to bound the spectral gap of the classical block.
Using this lemma, with the canonical path being the edge between a pair of vertices, we
obtain the bound

λ ≥ min
l ̸=m

α(νlm)n−1

ρll
. (8)

We may upper bound ρll with ρll ≤ e−Eminβ∑
i

Ei
≤ n−1 e−Eminβ

e−Emaxβ = n−1e−O(1) = O(n−1) due to
the fact that β∥H∥ = O(1). Similarly, since α is the convolution of a Gaussian of radius
σE = β−1 with γ(ω) = exp

(
−β max

(
ω + βσ2

E

2 , 0
))

, the assumption that β∥H∥ = O(1)
again yields that α evaluated at νlm is Ω(1). Indeed, within O(β−1) of any value of νlm,
γ(ω) is Ω(1), and as a consequence α(νlm) = Ω(1). This yields a lower bound on λ of
minl ̸=m

Ω(n−1)
O(n1) = Ω(1).

Now, we lower bound the diagonal elements outside of the classical block. Since each
such element is of the form

E [⟨m| Ld |m⟩] = −1
2

 1
n

∑
j

α(νjm2) + 1
n

∑
j

α(νjm1)


and we have already established that each α term is Ω(1), so the resulting diagonal values
are all Ω(1). We conclude that the spectral gap of the Lindbladian is Ω(1). ◀

Proof of Theorem 2.4. We construct our Lindbladian by sampling M = Θ(log(n)) unnor-
malized jumps Aa from the 1-design D(U(n)) as in Definition 2.2, each with a corresponding
Lindbladian La (which has one jump Aa along with its adjoint, normalized by 2). Then,
we want to prove that with high probability, Lβ = 2

M

∑M/2
a=1 La, the Lindbladian with all

M of these jumps now normalized by the number of jumps, has spectral gap bounded by a
constant.

To prove the result, we shall make use of the matrix Bernstein’s inequality for our
concentration bound:

▶ Lemma C.1 (cf. [39]). Say X1, . . . , XN are independent random d × d Hermitian matrices,
such that E[Xi] = 0 and ∥Xi∥ ≤ R. Define Y = 1

N

∑N
i=1 Xi, and say that NE[Y 2] ≤ T .

Then Pr(∥Y ∥ ≥ t) ≤ 2d exp(− 3
2

Nt2

3T +Rt ).

Call δLa = La −Lµ, where Lµ = EA∼D[Lβ ]. Each of these operators has zero expectation.
We have that δL = 2

M

∑M/2
a=1 δLa is precisely the discrepancy between our Lindbladian

Lβ = 2
M

∑M/2
a=1 La and the expected Lindbladian Lµ. We will apply Bernstein’s inequality

for Xa = δLa, Y = δL, and N = M
2 . By Lemma 4.1, the CKG Lindbladian has operator

norm O(log(β∥H∥)), which is O(1) in this regime. We denote this upper bound R
2 . We can

now verify the condition NE[Y 2] ≤ T in the statement of Lemma C.1, since we have that
∥δLa∥ ≤ ∥La∥ + ∥Lµ∥ ≤ R = Θ(1), and

M

2

∥∥∥∥∥∥E
(∑M/2

a=1 δLa

M/2

)2
∥∥∥∥∥∥ ≤ 2

M

M/2∑
a=1

∥δLa∥2 ≤ R2.
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Every operator that satisfies detailed balance is Hermitian in some fixed basis, and
therefore each La, as well as Lµ, can be considered Hermitian. By linearity, the same holds
true for δLa = La − Lµ. The operators δLa therefore satisfy the conditions of the matrix
Bernstein inequality, and so their average δL satisfies

Pr (∥δL∥ ≥ t) ≤ 2n2 exp
(

−3
4

Mt2

3R2 + Rt

)
,

where the n2 is due to an overhead of the dimension of the Lindbladian.
For any constant t, there exists an M = Θ(log(n)) such that the term inside the

exponential is at least 3 log(n), since R is a constant. The probability that ∥δL∥ ≤ t is then
arbitrarily close to 1 for sufficiently large n and choice of M = Θ(log(n)). By Lemma 3.1, Lµ

has a constant spectral gap bounded below by some C. By Weyl’s theorem, the eigenvalues
of Lµ + δL may differ by at most t from those of Lµ. Choosing t ≤ C

2 , it follows that La,
with any constant probability, has constant spectral gap. ◀

D Unbounded Degree Systems with 1-Design Jumps

Proof of Lemma 3.2. We follow the proof of Lemma 3.1. As in Lemma 3.1, we may obtain
the following bound on the classical block:

λ ≥ min
l ̸=m

α(νlm)n−1

ρll
=

α(νlm)
(

1
n

∑
j exp(−βEj)

)
exp(−βEl)

. (9)

An explicit calculation, as in [32], therefore yields that

λ = Ω(δ(n))

by assumption that δ(n) of the eigenvalues are within O(β−1) of λmin. Now bounding the
diagonal elements outside of the classical block, we see that

E [⟨m| Ld |m⟩] = −1
2

 1
n

∑
j

α(νjm2) + 1
n

∑
j

α(νjm1)

 .

Again, since δ(n) of eigenvalues are within O(β−1) of λmin, the above sum is Ω(δ(n)), as
desired. ◀

Proof of Theorem 2.6. We follow the proof of Theorem 2.4. Defining once again La to be
the Lindbladian with one jump operator Aa and its adjoint (normalized by 2), and defining
δLa = La − Lµ, we can apply the matrix Bernstein’s inequality to obtain

Pr (∥δL∥ ≥ t) ≤ n2 exp
(

−3
4

Mt2

3R2 + Rt

)
,

since all the conditions of the inequality are again satisfied.
By Lemma 3.1, Lµ has a constant spectral gap bounded below by some Cδ(n). Selecting

t to be C
2 δ(n), there exists an M = Θ(δ(n)−2 log(β∥H∥)2 log(n)) for which the value inside

the exponential is at least 3 log(n). The probability that ∥δL∥ ≤ t is therefore above any
constant probability for sufficiently large n. By Weyl’s theorem, the eigenvalues of Lµ + δL
may differ by at most t ≤ C

2 δ(n). It follows that La, with any constant probability, has
spectral gap Ω(δ(n)). ◀
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Abstract
We study the tradeoffs between the locality and parameters of subsystem codes. We prove lower
bounds on both the number and lengths of interactions in any D-dimensional embedding of a
subsystem code. Specifically, we show that any embedding of a subsystem code with parameters
[[n, k, d]] into RD must have at least M∗ interactions of length at least ℓ∗, where

M∗ = Ω(max(k, d)), and ℓ∗ = Ω
(

max
(

d

n
D−1

D

,

(
kd

1
D−1

n

)D−1
D
))

.

We also give tradeoffs between the locality and parameters of commuting projector codes in D-
dimensions, generalizing a result of Dai and Li [8]. We provide explicit constructions of embedded
codes that show our bounds are optimal in both the interaction count and interaction length.
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1 Introduction

Quantum computing necessitates the manipulation of fragile states of information. The most
promising way towards large-scale fault-tolerant quantum computing involve the extensive
use of quantum error-correcting codes (QECCs). Physical implementations of quantum
computing hardware naturally favor architectures which are local in 2 or 3 spatial dimensions –
architectures where the qubits are embedded in 2 or 3 dimensions, and interactions occur
only between qubits that are spatially nearby. On the other hand, it has long been known
that the constraint of spatial locality places severe limitations on the parameters of QECCs.
For example, the Bravyi-Terhal [7] and Bravyi-Poulin-Terhal (BPT) [6] bounds state that a
commuting projector code whose constraints are local in D-dimensions necessarily have code
parameters satisfying, respectively,

d = O(n
D−1

D ), and kd
2

D−1 = O(n). (1)
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4:2 Optimal Locality and Parameter Tradeoffs for Subsystem Codes

These bounds suggest that there are tradeoffs between better code performance and the cost
of non-local implementation. Consequently, the locality of a QECC becomes another key
factor to consider when choosing a code for applications.

What is the quantitative tradeoff between locality and code quality? This problem was
initially investigated by Baspin and Krishna [3], who asked, for a quantum low-density
parity-check (qLDPC) code in D-dimensions, how many “long-range” interactions must
there be, and how long must those interactions be? Baspin and Krishna gave bounds for D-
dimensional codes which are nearly optimal in certain parameter settings. For 2-dimensional
codes, Dai and Li [8] improved the bounds to be tight across all parameter regimes and also
gave matching constructions that saturate the upper bounds (see also Hong, et al. [11], who
considered the special case k = 1, d =

√
n for 2-dimensional codes). Dai and Li showed that

an [[n, k, d]] quantum code embedded in 2 spatial dimensions must have Ω(M∗) interactions
of length Ω(ℓ∗), where

M∗ = max(k, d), and ℓ∗ = max( d√
n
,

4

√
kd2

n
). (2)

Both the interaction count M∗ and interaction length ℓ∗ are tight in strong ways.
In this paper, we study the locality versus parameter tradeoffs for quantum subsystem

codes. Bravyi [5] showed that the BPT bound could be violated by the use of local subsystem
codes, providing 2D-local subsystem codes with parameters k, d = Θ(

√
n). Subsystem codes

are nevertheless constrained by locality. Bravyi [5] showed that a [[n, k, d]] subsystem code
whose gauge generators are local in a D-dimensional lattice embedding satisfies

d = O(n
D−1

D ), and kd
1

D−1 = O(n). (3)

While previous work has made it clear that outperforming local quantum codes requires
copious amounts of long-ranged interactions, it is not a priori clear whether the same
requirements hold for subsystem codes. Is it possible that small violations of locality in the
gauge generators suffice to define subsystem codes parametrically better than those allowed
by Bravyi’s bound? More concretely:

▶ Question 1. How much non-locality is required for a subsystem code to exceed Bravyi’s
bound?

We address Question 1 by demonstrating that subsystem codes, like their commuting
projector counterparts, require an extensive number of long-ranged interactions to surpass
Bravyi’s bound. We also provide constructions of subsystem codes that show our lower
bounds are tight in strong ways. Additionally, we also generalize the results of Dai and Li [8]
from 2-dimensions to D-dimensions. Our work establishes optimal bounds on interaction
lengths and counts for embeddings of both commuting projector codes and subsystem codes
in any number of dimensions.

1.1 Main Result
We study subsystem codes whose gauge generators are not necessarily local. Our main result
is a lower bound on the number and length of interactions in any D-dimensional embedding
of a [[n, k, d]] subsystem code. Formally, a D-dimensional embedding is a mapping of the
code’s n physical qubits into RD, such that any two qubits are at distance at least 1.
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▶ Theorem 2 (Main Result for Subsystem Codes). For any D ≥ 2, there exist constants
c0 = c0(D) > 0 and c1 = c1(D) > 0 such that the following is true: Any D-dimensional
embedding of a nontrivial1 [[n, k, d]] subsystem code with kd

1
D−1 ≥ c1n or d ≥ c1n

D−1
D must

have at least M∗ interactions of length ℓ∗, where

M∗ = c0 · max(k, d), and ℓ∗ = c0 · max
(

d

n
D−1

D

,

(
kd

1
D−1

n

)D−1
D
)
. (4)

Prior to this work, no such bounds of this form were known for subsystem codes aside from
Bravyi’s original bound. While such bounds were known for commuting projector codes, our
bound shows that a locality versus parameter trade-off also holds for subsystem codes. Our
result also generalizes Bravyi’s bound [5], not only in that we (optimally) address the number
and length of long-range interactions, but also in that we handle more general embeddings.
Bravyi’s bound [5] considers only embeddings onto a n1/D ×· · ·×n1/D lattice, but our bound
applies to arbitrary embeddings, even those not constrained to a O(n1/D) × · · · ×O(n1/D)
box (see Section 3 for further discussion).

Like for stabilizer codes, subsystem codes beyond the “local regime” – above the BPT
bound for stabilizer codes, or above the Bravyi bound for subsystem codes – need copious
amounts of non-locality. In particular, the number of required long-range interactions
Ω(max(k, d)) is the same for both subsystem and stabilizer codes. Additionally, for codes
with a large number k of logical qubits, the required length of the long range interactions is
similar. For example, a 2-dimensionally embedded asymptotically good subsystem code (with
k, d = Ω(n)) needs M∗ = Ω(n) interactions of length ℓ∗ = Ω(

√
n) – the worst possible case –

just as for stabilizer codes. Our results show that, compared to stabilizer codes, subsystem
codes do not offer substantial improvements in locality outside of the “local regime,” though
they can offer some quantitative improvements in the interaction length.

We also provide matching constructions that show M∗ and ℓ∗ are optimal in strong ways
(see Figure 2). An asymptotically good qLDPC code [14, 12] has O(M∗) = O(max(k, d))
interactions of any length (see Theorem 1.3 of [8]). Since a stabilizer code can also be trivially
regarded as a subsystem code, this shows that our bounds are tight in terms of interaction
count. For optimality in the interaction length, we exhibit subsystem codes embedded in
D-dimensions where all interactions are of length at most O(ℓ∗) (Theorem 21).

1.2 Generalizing [8] to D-dimensions
We also show that the bounds in [8] can be generalized to D-dimensional embeddings and to
commuting projector codes.

▶ Theorem 3 (Generalization of [8] to D-dimensions). For any D ≥ 2, there exist constants
c0 = c0(D) > 0 and c1 = c1(D) > 0 such that the following is true: Any D-dimensional
embedding of a nontrivial [[n, k, d]] commuting projector code with kd

2
D−1 ≥ c1n or d ≥ c1n

D−1
D

must have at least M∗ interactions of length ℓ∗, where

M∗ = c0 · max(k, d), and ℓ∗ = c0 · max
(

d

n
D−1

D

,

(
kd

2
D−1

n

)D−1
2D
)
. (5)

1 Nontrivial here simply means that k > 0.
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M∗ = n0.4

M∗ = n0.6

M∗ = n0.8

M∗ = n

logn k

logn d

0
0

1/2

1/2

1

1

M∗ = 0
[5]

M∗: Optimal Interaction Count

ℓ∗ = n0.1

ℓ∗ = n0.2

ℓ∗ = n0.3

ℓ∗ = n0.4

ℓ∗ = n0.5

logn k

logn d

0
0

1/2

1/2

1

1

ℓ∗ = 1

ℓ∗ =
√

kd
n

ℓ∗ = d√
n

[5]

ℓ∗: Optimal Interaction Length

Figure 1 The (asymptotically) optimal interaction count and length for subsystem codes in 2D:
A [[n, k, d]] subsystem code need at least Ω(M∗) interactions of length Ω(ℓ∗), where M∗ is plotted
on the left and ℓ∗ is plotted on the right. Above, we plot the contours of k vs. d tradeoffs for various
values of the Interaction Count or Interaction Length. Everywhere, big-O is suppressed for clarity.

M : interaction count

ℓ: interaction length

Θ(1)
Θ(1)

ℓ∗ = max
(√

kd
n , d√

n

)

M∗ = max(k, d)

Concatenated
Code

Good CodeThm. 2

Interaction Count vs Length for Subsystem Codes

Figure 2 Schematic diagram illustrating the optimality of our lower bounds for all n, k, d: A
point (M, L) represents that there is a code with O(M) interactions of length ω(L). Blue shaded
region is achievable, red lined region is unachievable. Our lower bound shows that (M, ℓ) with
M ≤ o(M∗) and ℓ ≤ o (ℓ∗) is impossible, where M∗ and ℓ∗ are the optimal interaction count and
length, respectively, given by Theorem 2. There is a construction (good qLDPC code) with O(M∗)
interactions of any length, and another construction (concatenated local code, Theorem 21) with
zero interactions of length ω (ℓ∗).

We now compare our works to prior works. First, we note that, when setting D = 2, our
bound matches the bounds in [8] up to the implied constant. For D > 2 dimensions, the only
prior bounds we are aware of are due to Baspin and Krishna [3]. Theirs match our bounds
up to polylog factors when d ≥

√
kn and when k = Θ(n), and we improve their bounds in

the remaining parameter regimes. We also generalize their results; our results hold for all
commuting projector codes, whereas theirs hold only for qLDPC codes.
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Similar to Theorem 2 and [8], our M∗ and L∗ in Theorem 3 are optimal up to constant
factors. Any asymptotically good qLDPC code [14, 12] is a commuting projector code with
at most O(M∗) = O(max(k, d)) interactions of any length. Further, we exhibit stabilizer
codes embedded in D dimensions, all of whose interactions are of length at most O(ℓ∗); see
Theorem 23.

1.3 Organization of the Paper

We divide the proof of Theorem 2 into two parts:

▶ Theorem 4 (Main Result – Part 1). For all D ≥ 2, there exist constants c0 = c0(D) > 0
and c1 = c1(D) > 0 such that the following is true: Any D-dimensional embedding of a
nontrivial [[n, k, d]] subsystem or commuting projector code with d ≥ c1n

D−1
D must have at

least c0d interactions of length at least c0
d

n
D−1

D

.

▶ Theorem 5 (Main Result – Part 2). For all D ≥ 2, there exist constants c0 = c0(D) > 0
and c1 = c1(D) > 0 such that the following is true: Any D-dimensional embedding of a
[[n, k, d]] subsystem code with kd

1
D−1 ≥ c1n must have at least c0k interactions of length at

least c0( kd
1

D−1

n ) D−1
D .

Theorem 4 implies Theorem 2 in the regime where d ≥ k, and Theorem 5 implies
Theorem 2 in the regime when d ≤ k. Note that Theorem 4 also implies Theorem 3 when
d ≥

√
kn. The remaining case of Theorem 3 is when d ≤

√
kn, which we prove in Theorem 6.

▶ Theorem 6 (Generalization of [8] when d ≤
√
kn). For all D ≥ 2, there exist constants

c0 = c0(D) > 0 and c1 = c1(D) > 0 such that the following is true: Any D-dimensional
embedding of a [[n, k, d]] commuting projector code with kd

2
D−1 ≥ c1n must have at least c0k

interactions of length c0( kd
2

D−1

n ) D−1
2D .

2 Preliminaries

Notation and Definitions

We use standard Landau notation O(·),Ω(·),Θ(·), o(·), ω(·). We also use the notations
Õ(·), Ω̃(·), which are variants of O(·) and Ω(·), respectively, that ignore logarithmic factors.
For example, f(n) = Õ(h(n)) means that there exists an integer k such that f(n) =
O(h(n) logk n). For a set S, we write S≤D def= S ∪ S2 ∪ · · · ∪ SD.

In RD, distance refers to Euclidean (ℓ2) distance unless otherwise specified. We sometimes
also use the ℓ∞-distance of two points (x, y), (x′, y′) ∈ RD, which is max(|x− x′|, |y − y′|).
A grid tiling is a division of Rd given by axis aligned hyperplanes equally spaced at a fixed
distance w. Throughout, a box is always a set of the form [a1, b1] × · · · × [aD, bD]. In
particular, boxes contain their boundary and are axis-parallel. A cube is a box all of whose
side lengths are equal: b1 − a1 = b2 − a2 = · · · = bD − aD.

An embedded set in RD is a finite set Q ⊂ RD with pairwise (ℓ2) distance at least 1.
A function f : RD → N is finitely supported if f(x) ̸= 0 for finitely many x ∈ RD. For a
finitely supported function f : RD → N and a region R ⊂ RD, define, by abuse of notation,
f(R) =

∑
i∈R;f(i)̸=0 f(i). We will be primarily concerned with the finitely supported function

given by Definition 8.
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2.1 Quantum codes
We associate the pure states of a qubit with unit vectors in C2 and pure n-qubit states with
unit vectors in (C2)⊗n. Let P denote the (single-qubit) Pauli group, which consists of the
Pauli matrices I,X,Y,Z, and their scalar multiples by {±1,±i}. The n-qubit Pauli group is
Pn = P⊗n. Given P ∈ Pn, its weight |P | is the number of tensor components not equal to I.

A quantum error-correcting code C is a subspace of (C2)⊗n. The parameter n is called
the (block) length of the code. We define the dimension k of the code to be k = log2(dim C).

Stabilizer Codes

A stabilizer group S is an abelian subgroup of the n-qubit Pauli group Pn that does not
contain −I. A stabilizer code Q = Q(S) ⊆ (C2)⊗n is defined to be the subspace of states left
invariant under the action of the stabilizer group S, i.e. Q = {|ψ⟩ : S |ψ⟩ = |ψ⟩ , ∀S ∈ S}.
Being an abelian group, we can describe S by n− k independent generators {S1, ...,Sn−k},
where k is the dimension of the code. The distance d is the minimum weight of an error
E ∈ Pn that maps a codeword in Q to another codeword. A quantum code Q with distance
d can correct up to d− 1 qubit erasures.

Subsystem Codes

A subsystem code is a choice of decomposition of a stabilizer code C into a tensor product
C = A ⊗ B, where A ∼= (C2)⊗k and B ∼= (C2)⊗g are the logical and gauge parts of C,
respectively. The dimension k of a subsystem code is defined as the number of qubits encoded
in its logical subsystem A. One can view a subsystem code as a stabilizer code that can
encode k + g logical qubits, but only k of the logical qubits are actually used to protect
information.

We can define a subsystem code by starting with a stabilizer code S given by n− k − g

independent stabilizer generators, with k + g logical qubits associated with k + g pairs
of logical operators X̄1, Z̄1, . . . , X̄k+g, Z̄k+g. The first k logical qubits are used to encode
information, and the last g logical qubits are called gauge qubits. The gauge group of the
subsystem is the group G = ⟨S, X̄k+1, Z̄k+1, . . . , X̄k+g, Z̄k+g⟩. Given the gauge group G, the
code’s stabilizer group S can be recovered as the center of G, so a subsystem code is uniquely
defined by its gauge group. Any stabilizer code can be equivalently regarded as a subsystem
code whose gauge group is abelian, so stabilizer codes form a subset of subsystem codes.

For subsystem codes, we make a distinction between bare logical operations, which act
trivially on the gauge qubits, and dressed logical operators, which may not. Formally, (non-
trivial) bare logical operators are elements of C(G) \ G, where C(G) denotes the centralizer
of G, and (non-trivial) dressed logical operators are elements of C(S) \ G. Note that for
stabilizer codes there is no distinction. The distance d of a subsystem code is defined as the
minimum weight of a non-trivial dressed logical operator, i.e., d = minP ∈C(G)\G |P |. We will
sometime denote a subsystem code C with n physical qubits, k logical qubits, distance d, and
g gauge qubits by C = [[n, k, d, g]].

Commuting Projector Codes

A commuting projector code C ⊆ (C)⊗n is a subspace defined by a set of pairwise commuting
projections {Π1, . . . ,Πm}. The code C is the subspace of states left invariant by all projections
Πi. Every stabilizer code is also a commuting projector code where the defining projections
are of Pauli type, i.e., Πi = (I + Pi)/2, for some Pauli operator Pi ∈ Pn. For the purposes of
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establishing our locality bounds, the only properties we need of commuting projector codes
is the fact that all the properties of correctable sets for stabilizer codes, i.e., those listed
in Lemma 11, continue to hold without modification for commuting projector codes [10].
Finally, we note that while stabilizer codes can be considered a subset of both subsystem and
commuting projector codes, there is no direct relation between subsystem and commuting
projector codes themselves.

Quantum codes in D dimensions

Given a finite set S, an embedding of S into RD is a map ι : S → RD such that ∥ι(si)−ι(sj)∥ ≥
1 for all distinct si, sj ∈ S. The image ι(S) is then said to be an embedded set. Throughout,
the embedding map will usually be implicit. We identify the qubits Q of a quantum code
with a D-dimensional embedded set, which we continue to call Q ⊂ RD by abuse of notation.
By further abuse of notation, we refer to Q ⊂ RD as the embedding of the qubits Q. When
the set of qubits Q is understood, given a subset V ⊂ Q, we write V def= Q \ V to denote the
complement of V in Q.

▶ Definition 7 (Interactions). Given an embedding Q ⊂ RD of a quantum code C, either
a commuting projector code or a subsystem code, interactions of the code are defined with
respect to a specific set of generators for that code. In the case that C is a commuting
projector code with defining projections {Π1, · · · ,Πm}, we say that a pair of qubits q, p ∈ Q

define an interaction if p and q are both in the support of some projection Πi. Similarly, if C
is a subsystem code with a set of generators {G1, · · · , Gm} for its gauge group, we say that
p, q ∈ Q define an interaction if p and q are both in the support of some gauge generator Gi.
In both cases, the length of an interaction (p, q) is defined to be the ℓ2 distance between p

and q.
Interactions are always defined with respect to a particular set of generators (either

projector or gauge), but throughout we assume that the generator set is fixed (but otherwise
arbitrary), and thus the set of interactions is fixed as well. Note that for subsystem codes,
interactions are always defined with respect to gauge generators and not stabilizer generators.
In particular, since each stabilizer generator is generally a product of multiple gauge generators,
it is possible for a subsystem code to have local gauge generators, but non-local stabilizer
generators. Indeed, it is only in such cases that a separation in the locality bounds for
stabilizer and subsystem codes is possible.

In the proofs of our results, we typically consider a fixed interaction length ℓ. We then
refer to an interaction as bad if the length is at least ℓ and as good if the length is less than ℓ.
Intuitively, good interactions are easier to deal with for our proof; they are effectively local,
and can be treated in a similar to how local interactions are treated in the original proofs
of the BPT and Bravyi bounds. To control the number of bad interactions, we introduce
the following function that counts the number of bad interactions that a particular qubit
participates in:

▶ Definition 8 (Interaction counter). Given a quantum code with a D-dimensional embedding
Q ⊂ RD, let f≥ℓ : RD → N denote the interaction counting function, where f≥ℓ(q) for
q ∈ Q equals the number of interactions of length at least ℓ that qubit q participates in, and
f≥ℓ(·) = 0 outside of Q.
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Correctable sets

Like in previous works [2, 3, 1, 8], we analyze the limitations of quantum codes using
correctable sets. Intuitively, a subset U ⊂ Q of qubits is correctable if the code can correct
the erasure of the qubits in U . We state the definition of a correctable set for completeness,
though we only interface with the definition indirectly using Lemmas 11, 12, and 13.

▶ Definition 9 (Correctable set). Let U ⊂ Q be a subset of qubits in a quantum code, and let
U = Q\U . Let D[U ] and D[Q] denote the space of density operators associated with the sets
of qubits U and Q respectively. The set U is correctable if there exists a recovery channel
R : D[U ] → D[Q] such that for any code state ρ, we have R(TrU (ρ)) = ρ.

For an embedded set of qubits Q ⊂ RD, we will say that a region R ⊂ RD is correctable
if the subset of all qubits contained in R is a correctable subset. As an abuse of terminology,
we will often refer to subsets of qubits as regions. For stabilizer and commuting projector
codes, a region being correctable is equivalent to having no non-trivial logical operators
supported on that region. For subsystem codes, a region U ⊂ Q is correctable if and only if
no non-trivial dressed logical operators are supported on U . Note that U being correctable
also implies that no non-trivial bare logical operators are supported on U , but the converse
does not necessarily hold. This motivates the following definition.

▶ Definition 10 (Dressed-Cleanable). If there are no non-trivial bare logical operators
supported on a region U ⊂ Q, then we say that U is dressed-cleanable [15].

We use the following notions in Lemma 11 to reason about correctable sets in subsystem
codes and commuting projector codes. In a quantum code with qubits Q, say sets U1, . . . , Uℓ ⊂
Q are decoupled if there are no interactions between two distinct Ui’s. For a set U ⊂ Q,
let ∂U = ∂+U ∪ ∂−U be the boundary of U , where ∂+U denotes the outer boundary of U ,
the set of qubits outside U that have an interaction with U , and ∂−U = ∂+U is the inner
boundary of U .

▶ Lemma 11 ([7, 10, 15]). Let Q be the qubits of a [[n, k, d]] commuting projector or subsystem
code C.
1. Subset Closure: Let U ⊂ Q be a correctable set. Then any subset W ⊂ U is correctable.
2. Distance Property: Let U ⊂ Q with |U | < d. Then U is correctable.
3. Union Lemma: Let U1, . . . , Uℓ be decoupled, and let each Ui be correctable. If C is a

subsystem code, then
⋃ℓ

i=1 Ui is dressed-cleanable. If C is a commuting projector code,
then

⋃ℓ
i=1 Ui is correctable.

4. Expansion Lemma: Let U, T ⊂ Q be correctable sets such that T ⊃ ∂U . Then T ∪U is
correctable.

A key point in Lemma 11 is that the union lemma differs for commuting projector and
subsystem codes. For subsystem codes, the union of decoupled and correctable sets is not
necessarily correctable – only dressed-cleanable [15]. In general, being dressed-cleanable is
weaker than being correctable. One of the major problems with generalizing Theorem 3 from
commuting projector codes to subsystem codes is that the union lemma for subsystem codes
only allows the conclusion that the union of correctable sets is dressed-cleanable. This version
of the union lemma is too weak to adapt the original proof of Theorem 3 to subsystem codes.
Instead, we take an alternative approach in proving Theorem 4 which is based solely on the
expansion lemma.

The usefulness of reasoning about correctable sets is that the sizes of the correctable sets
in a quantum code directly give bounds on the parameters:



S. Dai, R. Li, and E. Tang 4:9

▶ Lemma 12 (AB Lemma – Implicit in [5], Section VIII). Suppose that the qubits Q of a
[[n, k, d]] subsystem code can be partitioned as Q = A ⊔ B. If A is dressed-cleanable, then
k ≤ |B| .

▶ Lemma 13 (ABC Lemma [6]). Suppose that the qubits Q of a [[n, k, d]] commuting projector
code can be partitioned as Q = A ⊔B ⊔ C. If A and B are correctable, then k ≤ |C|.

2.2 Geometric Lemmas
In this section, we give two lemmas about D-dimensional embeddings of sets. The first,
Lemma 14, allows us to generalize our results from lattice embeddings to arbitrary embeddings.

▶ Lemma 14 (Point Density). Let R ⊆ RD be a box with side lengths L1 ≥ · · · ≥ LD. Suppose
Q ⊆ RD is an embedded set. Then

|R ∩Q| ≤ 2D

vol(BD)

D∏
i=1

(1 + Li) (6)

where BD is the unit ball in RD.

We refer the reader to [9] for the proof.
The second lemma, Lemma 15, utilizes the probabilistic method to generate a grid tiling

that allows us to maintain a convenient distribution of the qubits and bad interactions in
our embeddings (see Figure 3).

▶ Lemma 15 (Tiling Lemma). Let X,Y ⊆ RD be two multi-sets. Let w and ℓ be positive
integers with w ≥ 4ℓ. There exists a tiling of RD using hypercubes of side length w such that:
1. at most a (4ℓD/w)2 fraction of points in X are within ℓ∞-distance 2ℓ of a codimension-2

face of some hypercube,
2. at most a 8ℓD/w fraction of points in Y are within ℓ∞-distance 2ℓ of a codimension-1

face of any hypercube.

We refer the reader to [9] for the proof.

3 Proof of Theorem 4

We now prove Theorem 4, which covers the d ≥ k case of Theorem 2, our lower bound for
subsystem codes. This also covers the d ≥

√
kn case of Theorem 3, our generalization of [8]

to D-dimensions.

▶ Theorem (Theorem 4, restated). For all D ≥ 2, there exist constants c0 = c0(D) > 0 and
c1 = c1(D) > 0 such that the following is true: Any D-dimensional embedding of a nontrivial
[[n, k, d]] subsystem or commuting projector code with d ≥ c1n

D−1
D must have at least c0d

interactions of length at least c0
d

n
D−1

D

.

As mentioned after the statement of Lemma 11, the Union Lemma for subsystem codes is
substantially weaker than the corresponding result for commuting projector codes. Without
the ability to conclude that the union of correctable sets remains correctable, we cannot
directly generalize the techniques previously employed in the proofs of the generalized BPT
bound, which required alternating applications of the expansion and union lemmas [2, 8].

TQC 2025



4:10 Optimal Locality and Parameter Tradeoffs for Subsystem Codes

· · ·

· · ·

···

···
w

2ℓ

O(ℓ2/w2) fraction hereO(ℓ/w) fraction here

Figure 3 Tiling Lemma: for fixed sets of points X and Y and a random width-w grid tiling, we
expect a O(ℓ2/w2) fraction of X to be within a O(ℓ) of a grid codimension-2 face, and a O(ℓ/w)
fraction of Y to be within O(ℓ) of a codimension-1 face.

This poses a challenge for subsystem codes since we only obtain a dressed-cleanable set after
the union lemma, and there is no straightforward way to continue with the expansion lemma,
which requires correctable sets.

In view of these challenges, we take an alternative approach to the proof of Theorem 4
by repeatedly – and exclusively – applying the expansion lemma to a carefully crafted subset
of qubits in order to grow our correctable region. To do this, we grow our correctable region
by sweeping across our set of qubits Q ⊆ RD one dimension at a time, changing directions
and moving into a new dimension whenever the expansion process in unable to continue
in the previous dimensions. The brunt of the proof is showing that this process never gets
stuck, and that we are eventually able to grow our correctable set without obstruction to
encompass the entire set of qubits Q. In this way, we are able to bypass the usage of the
union lemma altogether.

We point out that the usual way of doing this expansion [7, 6, 8] – starting with a
d1/D × · · · × d1/D box and repeatedly adding the boundary – does not work for general
D-dimensional embeddings. For general embeddings, the qubits may not be constrained to
an O(n1/D) × · · · ×O(n1/D) box, so, at some step, the uncontrolled expansion boundaries
could contain more than d qubits, in which case we cannot apply the expansion lemma. For
example, consider qubits embedded in 2-dimensions in a n2/3 ×n2/3 square, with Ω(n) qubits
distributed within n1/3 of the box’s boundary, and the remainder randomly distributed
in the square. If we expand a rectangle from anywhere inside the square, applications of
the expansion lemma fail when we approach the boundary. The easiest D-dimensional
embeddings to realize are ones on a lattice structure contained in a O(n1/D) × · · · ×O(n1/D)
box; our general statement shows that more creative embeddings like the one above cannot
save on locality.

The general expansion process is quite involved in D-dimensions. We refer the reader to
Appendix A for an extended exposition of the 2-dimensional case as an illustration of the
basic idea of the proof, as well as the full proof in D−dimensions.
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4 Proof of Theorem 5

We now prove Theorem 5, which covers the k ≥ d case of Theorem 2, our lower bound for
subsystem codes.

▶ Theorem (Theorem 5, restated). For all D ≥ 2, there exist constants c0 = c0(D) > 0
and c1 = c1(D) > 0 such that the following is true: Any D-dimensional embedding of a
[[n, k, d]] subsystem code with kd

1
D−1 ≥ c1n must have at least c0k interactions of length at

least c0( kd
1

D−1

n ) D−1
D .

First, we state two lemmas that help us find large correctable sets in a D-dimensional
embedding of a quantum code. The first is a generalization of the “holographic principle” for
error correction in [5], which shows that the area, rather than the volume, governs the size of
correctable sets. Recall that f≥ℓ(V ) counts the number of interactions involving qubits in V
with length at least ℓ (see Definition 8).

▶ Lemma 16 (Holographic Principle). Suppose we have a [[n, k, d]] quantum code (either
commuting projector or subsystem) with an embedding Q ⊂ RD, and suppose ℓ ≤ 1

8
√

D
d1/D.

Let V ⊂ Q be the subset of qubits contained in a box with sides of length at most

w0
def=
(

vol(BD)
2 · 4D+1D

· d
ℓ

) 1
D−1

. (7)

If f≥ℓ(V ) ≤ d/10, then V is correctable.

We refer the reader to [9] for the formal proof.
If we divide RD into cubes using Lemma 15, most cubes will be “good” in that they

contain ≪ d long-ranged interactions (see footnote 5 of [8]). Lemma 16 then says that all the
good cubes are correctable. How do we handle the cubes with large numbers of bad qubits?
In [8], the solution was to further subdivide the bad cubes into sufficiently small rectangles,
most of which then contains a sufficiently small number of bad qubits. The same strategy
works in D-dimensions:

▶ Lemma 17 (Subdivision). Let w, ℓ and d1 be positive real numbers. Let f : RD → N be
a finitely supported function. Let R be a h× wD−1 box, with h ≥ 5ℓ and f(R) ≥ d1. Then
there exists a division of R by hyperplanes orthogonal to x1 into boxes R1, . . . , Rm such that:
1. Each box has dimensions hi × wD−1, with hi ≥ 5ℓ.
2. Each Ri satisfies either (i) f(Ri) ≤ d1 or (ii) has hi ≤ 10ℓ.
3. The number of boxes m is at most 2f(R)

d1
.

We refer the reader to [9] for the formal proof.
Finally, we collect a few inequalities that we will frequently use in the proof of Theorems 5

and 6.

▶ Lemma 18. Let

w0 =
(

vol(BD)
2 · 4D+1D

· d
ℓ

) 1
D−1

, and c = vol(BD) 1
D

400αD (8)

for some α ≥ 1. Suppose that ℓ satisfies ℓ ≤ cd
1
D . Then we have

1. 2D

vol(BD) (2w0)D−1ℓ = d

16D,
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2. w0 ≥ 100αDℓ,

3. w0 ≥ 1
90

√
D

(
d

ℓ

) 1
D−1

.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We give a proof by contradiction, where we first assume that we have
an embedding of a subsystem code with k logical qubits that has few long interactions, and
then show that the code’s dimension must actually be less than k. With hindsight, choose
c0 = vol(BD)

1
D

400D . Note that we have c0 ≤ 1/(200D) ≤ 1/400 for D ≥ 2. Choose c1 = (1/c0)
D

D−1 .
Suppose we have a [[n, k, d]] subsystem code with a D-dimensional embedding Q ⊂ RD

satisfying kd
1

D−1 ≥ c1n. Let

ℓ = c0

(
kd

1
D−1

n

)D−1
D

, (9)

and note that we have 1 ≤ ℓ ≤ c0d
1
D < 1

8
√

D
d

1
D , where the first upper bound follows from

k ≤ n, and the lower bound from kd
1

D−1 ≥ c1n.
Now assume for the sake of contradiction that the embedding Q ⊂ RD has at most

c0k interactions of length ≥ ℓ. Call an interaction long if its length is at least ℓ and short
otherwise. Call a qubit v ∈ Q bad if it participates in a long interaction and good otherwise.
Then the function f≥ℓ(v) counts the number of long interactions that the qubit v participates
in. By assumption, there are at most c0k long interactions, so the total number of bad qubits
is at most

∑
v∈Q f≥ℓ(v) ≤ 2c0k. Now we construct a division of RD into A ⊔ B that outlines

the partition of the qubits Q = A ⊔B. Let

w0 =
(

vol(BD)
2 · 4D+1D

· d
ℓ

) 1
D−1

(10)

as in Lemma 16. It follows from Lemma 18(2) that w0 ≥ 100Dℓ. Apply Lemma 15 with
Y = Q (and with X arbitrary). This produces a tiling of RD into cubes {Sm}m∈ZD of side
length w0, where at most 8Dℓ

w0
n qubits of Q are within ℓ∞ distance 2ℓ of some codimension-1

face of some cube. We call a cube Sm good if f≥ℓ(Sm) < d/10 and bad otherwise. Now apply
Lemma 17, with d1 = d/10, to decompose each bad cube Sm into boxes Rm,1, · · · , Rm,nm .
All boxes obtained in this way will also be called bad. This process results in a division of RD

into good cubes and bad boxes. It follows from Lemma 17 (item 3) that the total number of
bad boxes is no more than∑

m:Smbad

2f≥ℓ(Sm)
d/10 ≤

∑
m

2f≥ℓ(Sm)
d/10 ≤ 20

d

∑
m

f≥ℓ(Sm) ≤ 40
d
c0k <

k

10d . (11)

Now we define the division A ⊔ B as follows:
B is the set of all points within ℓ∞ distance 2ℓ of some codimension-1 face of either a
good cube Sm or a bad box Rm,i.
A is the set of points not in B.

Note that we can perturb the tiling slightly in order to ensure that no qubits lie on the
boundary of any subregion of A or B.

Having constructed the division, we will now construct a corresponding partition of qubits
Q = A ⊔ B such that A is dressed-cleanable and |B| < k. This will give us our desired
contradiction from Lemma 12. We define the partition Q = A ⊔B as follows:
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A is the set of all good qubits in region A.
B is the set of all remaining qubits. These are either good qubits in region B or bad
qubits.

It remains to check that A is dressed-cleanable and that |B| < k. We refer the reader to [9]
for the formal proof. ◀

5 Proof of Theorem 6

Case 1: k ≥ d

A Bad Rectangles

w

Θ(ℓ)

Case 2: d ≥ k

B B′ C

Figure 4 The division of the plane into regions A (lined blue), B (red and pink crosshatch), and
C (solid yellow) for the proof of Theorem 6. The region B′ (pink crosshatch) is also indicated in the
figure on the right. These regions inform our qubit division Q = A ⊔ B ⊔ C. We use this division in
different ways for the cases k ≥ d and d ≥ k. When k ≥ d (left), we ignore B′, and also subdivide
any bad squares into bad rectangles. When d ≥ k (right), there are no bad squares, but we need to
explicitly consider the region B′.

We now prove Theorem 6, which, together with Theorem 4, yields Theorem 3, our
generalization of the main result of [8] to case of D-dimensional embeddings.

▶ Theorem (Theorem 6, restated). For all D ≥ 2, there exist constants c0 = c0(D) > 0 and
c1 = c1(D) > 0 such that the following is true: Any D-dimensional embedding of a [[n, k, d]]
commuting projector code with kd

2
D−1 ≥ c1n must have at least c0k interactions of length

c0( kd
2

D−1

n ) D−1
2D .

Proof. For d ≥
√
kn, the result follows from Theorem 4, so it suffices to consider the case

where d ≤
√
kn. With hindsight, choose c0 = vol(BD)

1
D

800D2 , and let c1 = (1/c0)
2D

D−1 . Note that
c0 ≤ 1/(400D2) ≤ 1/400. Suppose we have a [[n, k, d]] commuting projector code with a
D-dimensional embedding Q ⊂ RD satisfying kd

2
D−1 ≥ c1n. Let

ℓ = c0

(
kd

2
D−1

n

)D−1
2D

. (12)
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Note that we have 1 ≤ ℓ ≤ c0d
1
D ≤ 1

8
√

D
d

1
D , where the lower bound follows from kd

2
D−1 ≥ c1n

and the first upper bound from the k ≤ n.
Now assume for the sake of contradiction that the embedding Q ⊂ RD has at most

c0 max(k, d) interactions of length ≥ ℓ. Call an interaction long if its length is at least
ℓ and short otherwise. Call a qubit v ∈ Q bad if it participates in a long interaction
and good otherwise. The function f≥ℓ(v) counts the number of long interactions that the
qubit v participates in. By assumption, the total number of long interactions is at most
c0 max(k, d), so the total number of bad qubits is at most

∑
v∈Q f≥ℓ(v) ≤ 2c0 max(k, d). We

will construct a division of RD into subsets A ⊔ B ⊔ C that will inform the partition of the
qubits Q = A ⊔B ⊔ C. Let

w0 =
(

vol(BD)
2 · 4D+1D

d

ℓ

) 1
D−1

, (13)

as in Lemma 16. Note that it follows from Lemma 18 that w0 ≥ 200D2ℓ and w0 ≥
1

90
√

D
(d/ℓ)

1
D−1 .

Apply Lemma 15 with X = Q and with Y as the multiset where each qubit v appears
with multiplicity f≥ℓ(v). This gives a partition of RD into a set of cubes {Sm}m∈ZD of side
length w0. By construction, at most 16D2ℓ2

w2
0

n qubits of Q are within ℓ∞ distance 2ℓ of a
codimension-2 face of some cube, and at most 8Dℓ

w0
· 2c0 max(k, d) bad interactions involve a

qubit within ℓ∞ distance 2ℓ of a codimension-1 face of some cube. We call a cube Sm good if
f≥ℓ(Sm) < d/10 and bad otherwise. Now apply Lemma 17 to decompose each bad cube into
boxes Rm,1, · · · , Rm,nm . All boxes obtained by subdividing a bad cube will also be called
bad. This process results in a division of RD into good cubes and bad boxes. By Lemma 17
(item 3), the total number of bad boxes is no more than∑

m:Smbad

2f≥ℓ(Sm)
d/10 ≤

∑
m

2f≥ℓ(Sm)
d/10 ≤ 20

d

∑
m

f≥ℓ(Sm) ≤ 40
d

c0 max(k, d) <
max(k, d)

10d
. (14)

Now we define the division A ⊔ B ⊔ C as follows:
C is the set of all points within ℓ∞ distance 2ℓ of some codimension-2 face of a good cube
Sm or a bad box Rm,i.
B is the set of all points not already in C and within ℓ∞ distance ℓ of some codimension-1
face of a good cube Sm or bad box Rm,i.
B′ ⊂ B is the set of all points not already in C and within ℓ∞ distance 2ℓ of some
codimension-1 face of a good cube Sm.
A is the set of points not in B or C.

Note that we can perturb the tiling slightly in order to ensure that no qubits lie on the
boundary of any subregion of A, B, B′, or C.

Having defined the division of RD, we will now construct our partition of qubits Q =
A⊔B⊔C. A sketch of the high-level ideas are as follows: We aim to define our qubit partition
with the goal of having A,B be correctable, and |C| < k. This will lead to the desired
contradiction using Lemma 13. There are two cases to consider, depending on whether k ≥ d

or k ≤ d. When k ≥ d, we have 2c0k ≪ k bad qubits, which can then be directly placed in C
without affecting the requirement that |C| < k. When k ≤ d, we have 2c0d ≪ d bad qubits,
and the set of all bad qubits is itself correctable. Our chosen division of RD implies that very
few bad qubits can interact with the qubits in B, so the union lemma suggests that we can
add almost all of the bad qubits to B while preserving its correctability. We now continue
with our proof, divided into the two cases k ≥ d and k ≤ d.
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Case 1: k ≥ d. We define the partition of qubits Q = A ⊔B ⊔ C as follows:
C is the set of qubits in region C, along with all bad qubits.
B is the set of all good qubits in region B
A is the set of all good qubits in region A.

It’s clear that this is indeed a partition of Q. It remains to show that A,B are correctable,
and that |C| < k. This gives us a contradiction with the fact that A and B are correctable
through Lemma 13. We refer the reader to [9] for the formal proof.

Case 2: d ≥ k. From equation (13), the total number of bad boxes is at most
max(k, d)/(10d) = 1/10, which is less than 1. It follows that there are no bad boxes
in this case, only good cubes. We define the partition of qubits Q = A ⊔B ⊔ C in this case
as follows:

C consists of the set of qubits in region C, together with all qubits participating in a long
interaction with a qubit in B′ (including the bad qubits in B′).
B is the set of good qubits in region B, together with the bad qubits not in C.
A is the set of good qubits in region A.

It’s clear that this is a partition of the qubits in Q. It remains to check that A,B are
correctable and |C| < k. This gives us our desired contradiction using Lemma 13. We refer
the reader to [9] for the formal proof.

We have obtained a contradiction in both the d ≤ k and d ≥ k cases, and this completes
the proof of the theorem. ◀

6 Construction for Upper Bounds

The bounds derived in Theorems 2 and 3 are tight in both the interaction count M∗ and
the interaction length ℓ∗. Tightness is shown by constructing explicit examples of embedded
codes which saturate the interaction count or length. For the interaction count, it suffices to
consider an asymptotically good quantum low-density parity-check (qLDPC) code [14, 12],
which has O(M∗) = O(max(k, d)) interactions of any length. Since a stabilizer code can also
be regarded as a subsystem code with zero gauge qubits, this shows that both Theorem 2
and 3 are tight in terms of interaction count. This is covered by Theorem 1.3 of [8].

We now describe constructions that show the interaction length is optimal in Theorem 2
and Theorem 3. In both cases, we construct a code that saturates the bound for interaction
length by concatenating an asymptotically good qLDPC code with a geometrically local code
which saturates the Bravyi and BPT bounds, respectively.

6.1 Subsystem codes
We start by showing the interaction length for subsystem codes (Theorem 2) is optimal. We
will define a concatenated subsystem code composed of an asymptotically good qLDPC code,
together with a subsystem code which is geometrically local in D-dimensions and saturates
the Bravyi bound. For the local subsystem code, we employ the “wire code” construction of
Baspin and Williamson [4].

▶ Theorem 19 (Wire code [4]). For all D ≥ 2, there exists an ε > 0 such that, for all positive
integers n there exists a subsystsem code with parameters [[n,≥ εn

D−1
D ,≥ εn

D−1
D ]] that has a

set of gauge generators that are O(1)-local in a D-dimensional embedding.

The concatenation procedure for subsystem codes is formally identical to the process for
stabilizer codes. Namely, if C1 = [[n1, k1]] and C2 = [[n2, k2]] are subsystem codes, then their
concatenation C2 ◦ C1 is defined using n2 blocks of the inner code S1 and k1 copies of the
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outer code C2. Let qij be the ith logical qubit of the jth S1 block. Then the concatenated
code is defined by replacing the jth physical qubit of the ith C2 block with qij .

▶ Lemma 20 (Concatenated Subsystem Codes). Let C1 = [[n1, k1, d1, g1]] and C2 =
[[n2, k2, d2, g2]] be two subsystem codes. Then there exists a subsystem code C = C2 ◦ C1 =
[[n1n2, k1k2, d ≥ d1d2, k1g2 + n2g1]], called the concatenation of C2 and C1

Theorems 19 and 20 together give the desired construction. We state the result below
and refer the reader to [9] for the formal proof.

▶ Theorem 21 (Optimality of Interaction Length for Subsystem Codes). For all D ≥ 2, there
exists a constant c1 = c1(D) > 0 such that the following holds: for all n, k, d > 0 with
k, d ≤ n satisfying kd

1
D−1 ≥ c1n or d ≥ c1n

D−1
D , there exists an [[n,≥ k,≥ d]] subsystem

code with a D-dimensional embedding containing no interactions of length at least

ℓ = max
(

d

n
D−1

D

,

(
kd

1
D−1

n

)D−1
D
)
. (15)

6.2 Commuting Projector Codes
We now show the interaction length in Theorem 3 is optimal. The construction is very
similar to the one used in Theorem 1.3 of [8], except generalized to D-dimensions. In 2D,
the surface code offers a simple and natural candidate for a geometrically local code that
saturates the BPT bound. In higher dimensions, we instead use the family of “subdivided
codes” constructed by Lin, Wills and Hsieh [13].

▶ Theorem 22 (Subdivided code [13]). For all D ≥ 2, there exists an ε > 0 such that, for all
positive integers n there exists a stabilizer code with parameters [[n,≥ εn

D−2
D ,≥ εn

D−1
D ]] that

has a set of stabilizer generators that are O(1)-local in a D-dimensional embedding.

The optimality of the interaction length follows by concatenating a good qLDPC code with
the subdivided code. We refer the reader to [9] for the formal proof.

▶ Theorem 23 (Optimality of Interaction Length for Stabilizer Codes). For all D ≥ 2, there
exists a constant c1 = c1(D) > 0 such that the following holds: for all n, k, d > 0 with k, d ≤ n

satisfying either kd
2

D−1 ≥ c1 · n or d ≥ c1 · nD−1
D , there exists a [[n,≥ k,≥ d]] quantum

stabilizer code with a D-dimensional embedding containing no interactions of length at least

ℓ = max
(

d

n
D−1

D

,

(
kd

2
D−1

n

)D−1
2D
)
. (16)

References
1 Nouédyn Baspin, Venkatesan Guruswami, Anirudh Krishna, and Ray Li. Improved rate-

distance trade-offs for quantum codes with restricted connectivity. Quantum Science and
Technology, 10(1):015021, 2024.

2 Nouédyn Baspin and Anirudh Krishna. Connectivity constrains quantum codes. Quantum,
6:711, 2022.

3 Nouédyn Baspin and Anirudh Krishna. Quantifying nonlocality: How outperforming local
quantum codes is expensive. Physical Review Letters, 129(5):050505, 2022.



S. Dai, R. Li, and E. Tang 4:17

4 Nouédyn Baspin and Dominic Williamson. Wire codes. arXiv preprint arXiv:2410.10194,
2024.

5 Sergey Bravyi. Subsystem codes with spatially local generators. Physical Review A, 83(1),
January 2011. doi:10.1103/physreva.83.012320.

6 Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeoffs for reliable quantum in-
formation storage in 2D systems. Physical Review Letters, 104(5):050503, 2010. doi:
10.1103/PhysRevLett.104.050503.

7 Sergey Bravyi and Barbara Terhal. A no-go theorem for a two-dimensional self-correcting
quantum memory based on stabilizer codes. New Journal of Physics, 11(4):043029, 2009.
doi:10.1088/1367-2630/11/4/043029.

8 Samuel Dai and Ray Li. Locality vs quantum codes. In Proceedings of the 57th Annual ACM
Symposium on Theory of Computing, pages 677–688, 2025.

9 Samuel Dai, Ray Li, and Eugene Tang. Optimal locality and parameter tradeoffs for subsystem
codes. arXiv preprint arXiv:2503.22651, 2025.

10 Jeongwan Haah and John Preskill. Logical-operator tradeoff for local quantum codes. Physical
Review A, 86(3), September 2012. doi:10.1103/physreva.86.032308.

11 Yifan Hong, Matteo Marinelli, Adam M Kaufman, and Andrew Lucas. Long-range-enhanced
surface codes. Physical Review A, 110(2):022607, 2024.

12 Anthony Leverrier and Gilles Zémor. Quantum tanner codes. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 872–883. IEEE, 2022.

13 Xingjian Li, Ting-Chun Lin, and Min-Hsiu Hsieh. Transform arbitrary good quantum ldpc
codes into good geometrically local codes in any dimension. arXiv preprint arXiv:2408.01769,
2024.

14 Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable
classical ldpc codes. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing, pages 375–388, 2022.

15 Fernando Pastawski and Beni Yoshida. Fault-tolerant logical gates in quantum error-correcting
codes. Physical Review A, 91(1), January 2015. doi:10.1103/physreva.91.012305.

A Proof of Theorem 4

In this appendix, we first give a detailed sketch of the proof of Theorem 4 for the case of
2-dimensional embeddings. This is meant as a simplified illustration of the proof idea in the
general D-dimensional case, which may be difficult to visualize. We then give the full proof
in D-dimensions.

A.1 Detailed Sketch of Theorem 4 in 2-dimensions
Let Q be a 2-dimensional embedding of a subsystem code C = [[n, k, d]] satisfying d ≥ 32

√
n.

Without loss of generality, we may assume that all of our qubits are contained in the interior
of a large square [ℓ, A− ℓ] × [ℓ, A− ℓ], for some integer A ∈ N. We remove a border of width
ℓ so that we do not have to worry about edge cases later in our proof. Suppose for the sake
of contradiction that there exists at most d/4 interactions of length at least ℓ = d

32
√

n
. Note

that our choice of code parameters ensures that we have 1 ≤ ℓ ≤
√
n/32. We will call any

qubit participating in a length ≥ ℓ interaction a bad qubit. Let B be the set of all bad qubits.
Then by assumption, |B| ≤ d/2. Given any region R ⊂ R2, we will say that R is correctable
if and only if Q ∩R is correctable.

The basic idea of the proof is as follows. We wish to show that, given our assumption on
the number of long interactions, a small correctable region can be iteratively grown without
bound using the expansion lemma. Eventually the correctable region will encompass the
entire set of qubits Q, which is a contradiction with our initial assumption that the code is
non-trivial. We do this by first expanding along the x1-direction, and then switching to the
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x2-direction whenever we are unable to continue in the x1-direction. The details for the two
cases are given below.

A.1.1 Expansion in the x1-direction
Let us imagine starting with a region of the form of a vertical strip V [a1] = [0, a1] × R, for
some a1 > 0. If a1 < ℓ, then V [a1] contains no qubits by assumption, so it is vacuously
correctable. Now, given an existing correctable region of the form V [a1], we wish to apply
the expansion lemma to obtain a larger correctable set of the form V [a1 + ℓ]. This will be
possible provided that the number of qubits in the boundary of V [a1] is sufficiently small so
that the boundary set itself is correctable. We will formalize this requirement by saying that
a number a1 ∈ R is “good” if the density of qubits around the line x = a1 is low. Formally,
a1 ∈ R is a good x1-coordinate if the set [ai − ℓ, a1 + ℓ] × R contains at most ℓ

√
n qubits,

and bad otherwise.
The boundary of V [a1] consists of all qubits within a distance ℓ of the line x = a1, together

with a subset of the bad qubits. Therefore the boundary is a subset of B ∪ [a1 − ℓ, a1 + ℓ] ×R.
If a1 is good, then by definition this subset contains at most

d/2 + ℓ
√
n = d/2 + d/32 < d (17)

qubits, and is hence correctable. It follows by expansion and subset closure that if V [a1] is
correctable and a1 is good, then V [a1 + ℓ] ⊂ V [a1] ∪ ∂V [a1] is also correctable. This gives us
an easy way to grow the sets V [a1]. However, this process cannot continue indefinitely, since
there is no guarantee at each step that the new coordinate a1 + ℓ is good. When a1 + ℓ is a
bad coordinate, our expansion process gets stuck. To get unstuck, we will fill in the stretch
around the bad coordinate a1 + ℓ by expanding in the x2-direction. After this gap containing
bad x1-coordinates has been filled, we can continue expanding in the x1-direction until we
reach our next obstacle.

A.1.2 Stuck in the x1-direction, expand along the x2-direction
Now we formalize the process of expanding in the x2 direction. Given a bad coordinate a1,
we will define Next(a1) to be the “next available” good coordinate. More precisely, we define

Next(a1) = inf G>a1 + γ, (18)

where G>a1 is the set of all good coordinates larger than a1, and γ > 0 is a sufficiently small
value so that we actually have Next(a1) ∈ G>a1 .2 Given a set V [a1] where a1 is good but
a1 + ℓ is bad, let us define V [a1, a2] to be

V [a1, a2] = V [a1] ∪ ([a1, Next(a1 + ℓ)] × [0, a2]) = ([0, a1] × R) ∪ ([a1, Next(a1 + ℓ)] × [0, a2]).
(19)

We will call sets V [a1, a2] defined this way legal sets. Our goal is to show that given a
correctable legal set V [a1, a2], we can always apply expansion in the x2-direction to obtain a
new correctable legal set V [a1, a2 + ℓ].

2 The small constant γ is necessary since the set of good coordinates is an open set, and as such does
not contain its own infimum. A bit of thought reveals that it is sufficient to take γ smaller than the
minimum element of

⋃
q ̸=q′ {|q1 − q′

1|, ||q1 − q′
1| − 2ℓ|}, where q1, q′

1 denote the x1-coordinates of qubits
q, q′ ∈ Q.
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The key observation now is that the additional block [a1,Next(a1 +ℓ)]× [0, a2] in V [a1, a2]
must be thin in the x1-direction. Indeed, the entire interval [a1 + ℓ,Next(a1 + ℓ) − γ] consists
of bad coordinates. Any strip of width 2ℓ centered around a bad coordinate contains at least
ℓ
√
n qubits, and since we only have a total of n qubits, the set [a1 + ℓ,Next(a1 + ℓ) − γ] × R

can fit at most ⌊
√
n/ℓ⌋ such strips inside. It follows that we have

Next(a1 + ℓ) − γ − a1 − ℓ < 2ℓ
⌊√

n

ℓ

⌋
+ 2ℓ, (20)

which implies

Next(a1 + ℓ) − a1 < 2
√
n+ 4ℓ. (21)

Now, consider the boundary of a correctable legal set V [a1, a2]. This will be a subset of

B ∪ [a1 − ℓ, a1 + ℓ] × R︸ ︷︷ ︸
S1

∪ [Next(a1 + ℓ) − ℓ,Next(a1 + ℓ) + ℓ] × R︸ ︷︷ ︸
S2

∪ [a1,Next(a1 + ℓ)] × [a2 − ℓ, a2 + ℓ]︸ ︷︷ ︸
S3

. (22)

Since a1 and Next(a1 + ℓ) are good coordinates, we have

|Q ∩ S1| + |Q ∩ S2| ≤ 2ℓ
√
n (23)

by assumption. By Lemma 14, the number of qubits in the subset S3 is bounded above by

|Q ∩ S3| ≤ 4
π

(2ℓ+ 1)(2
√
n+ 4ℓ+ 1) ≤ 9ℓ

√
n. (24)

Therefore the boundary of V [a1, a2] contains at most

|B| + |Q ∩ S1| + |Q ∩ S2| + |Q ∩ S3| ≤ d

2 + 11ℓ
√
n = 27

32d < d (25)

qubits, and is hence correctable. It follows by expansion and subset closure that if V [a1, a2]
is a correctable legal set, then V [a1, a2 + ℓ] is again a correctable legal set. We can therefore
continue expanding in the x2-direction until we reach V [a1, A] = V [Next(a1 + ℓ)]. This is
a vertical strip with a good boundary coordinate Next(a1 + ℓ). We can therefore return to
the previous case and proceed to expand along the x1-direction again. This process can now
continue indefinitely, alternating between the x1 and x2-directions whenever we get stuck
again. In this way, starting from an initial correctable set, say the vacuously correctable
region V [ℓ/2], we can iteratively grow our correctable region without bound to encompass
the entire set of qubits Q. Thus we arrive at our desired contradiction.

A.2 Proof of Theorem 4 in D-dimensions
For notational convenience, we grow the correctable region from low coordinates to high
coordinates for this proof. For a set S, we write S≤D = S ∪ S2 ∪ · · · ∪ SD.
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Next(a1 + ℓ)a1

Figure 5 Sketch of the expansion process in 2 dimensions. The blue region is V [a1] and the pink
region is [a1, Next(a1 + ℓ)] × [0, a2]. The crosshatched region (labeled F in the proof of Theorem 4)
contains the boundary of V [a1, a2].

Proof. With hindsight, set c1 = 2(6DD/ vol(BD))D/(D−1). Suppose n, k, d are code para-
meters with d ≥ c1n

D−1
D . With hindsight, choose

ℓ = vol(BD)
6DDn(D−1)/D

d, (26)

so that 1 < ℓ < n1/D

4DD
. Let Q be a D-dimensional embedding of a [[n, k, d]] subsystem code C

with d ≥ k, and suppose there are at most d/4 interactions of length at least ℓ.
Let B denote the set of qubits participating in long range interactions, so that |B| ≤ d/2.

Without loss of generality, we may assume all the qubits are in the box [ℓ, A− ℓ]D for some
large integer A. Choose a sufficiently small constant γ > 0. With hindsight, γ less than the
minimum nonzero element of

⋃
i∈[D],q ̸=q′{|qi − q′

i|, ||qi − q′
i| − 2ℓ|} suffices.

For i = 1, . . . , D − 1, call real number xi ∈ R i-good if Ri−1 × [xi − ℓ, xi + ℓ] × RD−i has
at most ℓn(D−1)/D qubits and i-bad otherwise. By convention, we will consider every real
number to be i-good when i = D. An i-bad number represents an i-th-coordinate-value
where we would “get stuck” and need to start expanding in a different direction.

For i = 1, . . . , D − 1 and an i-bad real number x, let Nexti(x) be the maximum value
such that all values in the interval [x,Nexti(x) − γ] are i-bad (Nexti(x) is undefined if x is
i-good). Note, as γ is sufficiently small, that Nexti(x) is always i-good when it is defined.

For a1, . . . , ai ∈ R, with i ≤ D, let

V [a1, . . . , ai] = [0, a1] × RD−1

∪ [a1,Next1(a1 + ℓ)] × [0, a2] × RD−2

∪ [a1,Next1(a1 + ℓ)] × [a2,Next2(a2 + ℓ)] × [0, a3] × RD−3

...
...

...
∪ [a1,Next1(a1 + ℓ)] × · · · × [ai−1,Nexti−1(ai−1 + ℓ)] × [0, ai] × RD−i.

(27)

Call such a set V [a1, a2, . . . , ai] legal if (i) aj is j-good for all j ∈ {1, . . . , i} and (ii) aj + ℓ

is j-bad for j ∈ {1, . . . , i− 1}. We grow a large correctable set of the above form using the
following four properties:
1. (If possible, expand in ith dimension): If i ≤ D, the set V [a1, . . . , ai] is correctable and

legal, and V [a1, . . . , ai−1, ai + ℓ] is legal, then V [a1, . . . , ai−1, ai + ℓ] is correctable.
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We apply the expansion lemma. Note that the boundary is a subset of

F
def= B

∪
(
[a1 − ℓ, a1 + ℓ] × RD−1)

∪
(
[Next1(a1 + ℓ) − ℓ,Next1(a1 + ℓ) + ℓ] × RD−1)

...
...

...
∪
(
Ri−2 × [ai−1 − ℓ, ai−1 + ℓ] × RD−i+1)

∪
(
Ri−2 × [Nexti−1(ai−1 + ℓ) − ℓ,Nexti−1(ai−1 + ℓ) + ℓ] × RD−i+1)

∪
(
Ri−1 × [ai − ℓ, ai + ℓ] × RD−i

)
. (28)

Since V [a1, . . . , ai] is legal, the values aj and Next(aj +ℓ) are j-good for j ∈ {1, . . . , i} and
j ∈ {1, . . . , i− 1}, respectively. By definition of i-good, each set in the above union, other
than B, has at most ℓn(D−1)/D qubits. Thus, F has at most d/2 + (2D − 1)ℓn1/D < d

qubits, so F is correctable. It follows that V [a1, . . . , ai] ∪ F is correctable, and by Subset
Closure, V [a1, . . . , ai−1, ai + ℓ] is correctable.

2. (Stuck in i-th dimension, start in (i+ 1)-th-dimension): If V [a1, a2, . . . , ai] is correctable
and legal, and V [a1, . . . , ai−1, ai + ℓ] is not legal, then V [a1, . . . , ai, 0] is correctable and
legal.
The set V [a1, . . . , ai, 0] is correctable by definition as V [a1, . . . , ai, 0] = V [a1, . . . , ai]. It
is legal also by definition, as we assume ai is i-good but ai + ℓ is i-bad, and 0 is trivially
(i+ 1)-good.

3. (Expand in D-th dimension): If V [a1, a2, . . . , aD] is correctable and legal, then
V [a1, . . . , aD−1, aD + ℓ] is correctable and legal.
It is legal as every real number is D-good by definition. For correctable, we again use the
expansion lemma. Following part 1, the boundary is a subset of

F
def= B

∪
(
[a1 − ℓ, a1 + ℓ] × RD−1)

∪
(
[Next1(a1 + ℓ) − ℓ,Next1(a1 + ℓ) + ℓ] × RD−1)

...
...

...
∪
(
RD−2 × [aD−1 − ℓ, aD−1 + ℓ] × R

)
∪
(
RD−2 × [NextD−1(aD−1 + ℓ) − ℓ,NextD−1(aD−1 + ℓ) + ℓ] × R

)
∪ [a1,Next1(a1 + ℓ)] × · · · × [aD−1,NextD−1(aD−1 + ℓ)] × [aD − ℓ, aD + ℓ]. (29)

As in part 1, we have |B| ≤ d/2, and all but the last set in the union above has size at most
ℓn(D−1)/D. We now bound the size of the last set in F . Since [aj + ℓ,Nextj(aj + ℓ) − γ]
is j-bad for all j, a counting argument yields

Nextj(aj + ℓ) − (aj + ℓ) ≤ 2n1/D + 2ℓ. (30)

To see this, pack strips of width 2ℓ in the jth dimension into Rj−1 × [aj + ℓ,Nextj(aj +
ℓ)] × RD−j . Each strip has at least ℓn1/D qubits by definition of being j-bad. There are
at most n qubits, so there are at most n/(ℓn(D−1)/D) packed strips, so the total width
satisfies

Nextj(aj + ℓ) − (aj + ℓ) ≤ 2ℓn
ℓn(D−1)/D

+ 2ℓ = 2n1/D + 2ℓ. (31)
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We conclude Nextj(aj + ℓ) − aj ≤ 2n1/D + 3ℓ. Hence, the last box has at most

(2n1/D + 3ℓ+ 1)D−1(2ℓ+ 1) < 6D

vol(BD)ℓn
(D−1)/D (32)

qubits inside by Lemma 14. The total boundary thus has at most

d

2 + (2D − 2)ℓn(D−1)/D + 6D

vol(BD)ℓn
(D−1)/D < d (33)

qubits. It follows that F is correctable, so V [a1, . . . , aD] ∪F is correctable, and by Subset
Closure, V [a1, . . . , aD−1, aD + ℓ] is correctable.

4. (Finish (i+ 1)-th-dimension, get unstuck in i-th dimension): If V [a1, . . . , ai+1] is correct-
able and legal, and A− ℓ ≤ ai+1 < A, then V [a1, . . . , ai−1,Nexti(ai + ℓ)] is correctable.
The set is correctable because V [a1, . . . , ai−1,Nexti(ai + ℓ)] equals V [a1, . . . , ai,∞], which
equals V [a1, . . . , ai+1]. It is legal because Nexti(ai) is not j-bad by definition of Nexti.

We can repeatedly apply these properties to get that the set of all qubits is correctable
by induction. Here are the details. Let t⃗1, t⃗2, . . . , be the enumeration of the Atot =
(A + 1) + (A + 1)2 + · · · + (A + 1)D tuples in {0, 1, 2, . . . , A}≤D, in lexicographical order.
Define the lexicographical index of a region V [a1, . . . , ai] as the largest α such that tα is
lexicographically less than or equal to (a1, . . . , ai) ∈ R≤D. We prove by induction that, for
all r ≤ Atot, there exists a correctable and legal set with lexicographical index at least r.
For the base case, V [0] = ∅ is clearly correctable and legal. For the induction step, suppose
we have a correctable and legal set V [a1, . . . , ai] with lexicographical index r. The above
items shows that we can find a region with strictly larger lexicographical index: If ai ≥ A,
either i = 1, in which case we are done, or i ≥ 2 and we apply item 4 – the lexicographical
index increases because Nexti(ai + ℓ) − ai ≥ ℓ ≥ 1. Otherwise, if i = D, we apply item 3.
Otherwise, if V [a1, . . . , ai + ℓ] is legal, we apply item 1, and if not, we apply item 2. This
completes the induction.

Since the entire set of qubits Q is correctable, an application of the AB Lemma (12) with
A = Q and B = ∅ implies that k = 0. This contradicts our assumption that the code is
nontrivial. ◀
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1 Introduction

1.1 Main results

Quantum computation – especially topological quantum computation – motivates a number
of complexity-theoretic questions concerning TQFT invariants of manifolds, particularly
in dimensions 2 and 3. One of the most central is to classify “anyonic systems” according
to whether or not they are powerful enough to (approximately) encode arbitrary quantum
circuits over qubits. Anyons that are powerful in this way are important because (in theory)
it should be possible to build fault tolerant quantum computers using them [12, 10]. We
refer the reader to [23, 19] for a broad review of the mathematical side of these matters and
Subsection 1.3 for more discussion. For now, we simply note that the Property F conjecture
of Naidu and Rowell is currently the only concrete, published formulation of a proposed
(partial) answer to this classification question that we know. The conjecture is surprisingly
easy to formulate: the possible braidings of n copies of a simple anyon X in a unitary
modular tensor category B generate only finitely many unitaries for each n (and, hence, are
not “braiding universal” for quantum computation) if and only if the square of the quantum
dimension of X is an integer d2

X ∈ Z [17].
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5:2 Towards a Complexity-Theoretic Dichotomy for TQFT Invariants

In this work, we will not attack the Property F conjecture directly. However, our main
result has a similar spirit and shares the same motivations. See Subsection 1.3 for some
discussion of these points.

▶ Theorem 1.
(a) Fix a spherical fusion category C over C, presented skeletally with all data given as

algebraic numbers over Q. Then #CSP(FC)–the problem of contracting tensor networks
defined from C – is either solvable in polynomial time or #P-hard. Moreover, if M is a
closed, oriented, triangulated 3-manifold (treated as computational input), then either the
problem of computing the Turaev-Viro-Barrett-Westbury invariant |M |C ∈ C is solvable
in (classical) polynomial time or #CSP(FC) is #P-hard.

(b) Fix a modular fusion category B over C, presented skeletally with all data given as
algebraic numbers over Q. Then #CSP(FB)–the problem of contracting tensor networks
built from B – is either solvable in polynomial time or #P-hard. Moreover, if M is
a closed, oriented 3-manifold encoded via a surgery diagram (treated as computational
input), then either the problem of computing the Reshetikhin-Turaev invariant τB(M) ∈ C
is solvable in (classical) polynomial time or #CSP(FB) is #P-hard.

Two routine points of clarification are due.
First, we note that all fusion and modular categories over C admit finite skeletal presenta-

tions using algebraic numbers over Q. This is because the defining equations for the skeletal
data are all algebraic over Q. In particular, since we are interested in how the complexity of
|M |C or τB(M) depends on variable M for fixed C or B, there is no harm in assuming that C
and B are encoded in this way.

Second, as usual in computational 3-manifold topology, to say that a problem whose
input is a triangulated 3-manifold is solvable in polynomial time means that there exists an
algorithm to solve the problem that runs in time polynomial in the size of the triangulation.
For a 3-manifold presented via integral surgery on a link diagram in S3, the algorithm must
run in time jointly polynomial in the crossing number of the link diagram, the number of
components of the link, and the absolute values of the surgery coefficients.1

We refer the reader to [7] for further elaboration of both of these matters.
We now explain briefly the meaning and importance of dichotomy theorems within

complexity theory. Of course, it is an infamous open problem to show that P ̸= NP (the two
complexity classes might be equal, but most experts do not expect this to be the case). To
establish this inequality it is necessary and sufficient to show that there exists an NP-complete
problem with no polynomial-time algorithm. Intriguingly, Ladner showed that if P ̸= NP,
then there exist problems in NP that are neither in P nor NP-complete [16]. These are usally
referred to as NP-intermediate. In other words, an NP-intermediate problem is a problem
in NP that is neither in P nor NP-hard. Intuitively, Ladner’s theorem shows that if one
considers a family of decision problems, then it need not be the case that every problem
in the family is either “easy” (that is, in P) or “hard” (that is, NP-hard)–there could be
problems that have intermediate complexity. When a given family of problems has the
property that none of the problems has intermediate complexity, then one says that the
family satisfies a dichotomy theorem. The archetypical dichotomy theorem was established
by Schaefer, who showed that Boolean satisfiability problems in generalized conjunctive form
(where the clauses are taken from a finite set of constraints) satisfy a dichotomy theorem
(with respect to the set of constraints) [21].

1 In particular, we might understand the surgery coefficients as being expressed in unary, not binary.
(If we used the latter, then we would not be able to build a triangulation from a surgery diagram in
polynomial time.)
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In the case of our Theorem 1, we interpret (2+1)-d TQFT invariants as generalized (i.e.
C-valued instead of N-valued) counting problems parametrized by spherical fusion categories
C and modular fusion categories B (the categories are analogs of the allowed local constraints
in Schaefer’s dichotomy). Our results establish the dichotomy that either a function of the
type M 7→ |M |C ∈ C or M 7→ τB(M) ∈ C is “easy” to compute (polynomial time) or else it
is “hard” to contract certain tensors built from the category C or B (#P-hard). In this way,
there are no (2+1)-d TQFTs whose tensors are of “intermediate” complexity. In fact, we
conjecture that the same can be said directly of the TQFT’s invariants of 3-manifolds per se.
Let us expound on these points now.

1.2 Mapping the dichotomy
Whether or not M 7→ |M |C or M 7→ τB(M) is computable in polynomial time depends on C
and B. Having established Theorem 1 – which only asserts the existence of a dichotomy – it is
natural to wonder where one should draw the line between easy and hard. Better yet, ideally,
one would like to be able to prove that the dichotomy of Theorem 1 is effective, meaning,
given C or B, there exists a polynomial-time algorithm to decide precisely when the category
falls into the easy case (here “polynomial-time” means in the size of the skeletalization of C
or B). Our proof of Theorem 1 relies on the main result of Cai and Chen’s work [2], which
establishes a dichotomy theorem for a generalized type of “solution counting” to constraint
satisfaction problems #CSP(F) with a fixed “C-weighted constraint family” F . We carefully
define #CSP(F) in Subsection 2.1, but here we note that not only do Cai and Chen prove
that for every choice of constraint family F , #CSP(F) is either #P-hard or computable in
polynomial time – they also provide three necessary and sufficient conditions that characterize
precisely which F allow for polynomial time solutions to #CSP(F). These conditions are
called “block orthogonality,” “Mal’tsev” and “Type Partition”. Our proof of Theorem 1
consists in converting a spherical fusion category C or modular fusion category B into an
appropriate constraint family FC or FB such that computing |M |C or τB(M) is equivalent
to computing an instance (depending on M) of a problem in #CSP(FC) or #CSP(FB),
respectively. In particular, for the constraint families FC and FB we shall build, it should be
possible to interpret the three conditions of Cai and Chen directly in terms of the categories C
and B. It is beyond the scope of the present work to attempt to accomplish this. However, we
believe this is an important problem, since it should shed light on variations of the Property
F conjecture related to anyon classification, as we explain in the next subsection.

Let us now address the more important deficiency of Theorem 1, alluded to at the end
of the previous subsection: it would be better to get an outright dichotomy for 3-manifold
invariants, and not just general tensors derived from a fusion category. To this end, Theorem 1
can be understood as a first step towards proving the following more desirable result.

▶ Conjecture 2.
(a) Fix a spherical fusion category C over C, presented skeletally with all data given as

algebraic numbers over Q. If M is a closed, oriented, triangulated 3-manifold (treated
as computational input), then computing the Turaev-Viro-Barrett-Westbury invariant
|M |C ∈ C is either solvable in (classical) polynomial time or is #P-hard.

(b) Fix a modular fusion category B over C, presented skeletally with all data given as
algebraic numbers over Q. If M is a closed, oriented 3-manifold encoded via a surgery
diagram (treated as computational input), then the problem of computing the Reshetikhin-
Turaev invariant τB(M) ∈ C is either solvable in (classical) polynomial time or is
#P-hard.
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See Subsection 3.4 for some discussion of how we expect one might get started on proving
this conjecture – in particular, the relevance of holant problems [3].

1.3 Implications for “anyon classification”
Theorem 1 and Conjecture 1 assert that for certain precise formulations of the problem of
“anyon classification,” whatever the “type” is for a given modular fusion category B, it can only
be one of two things, with no “intermediate” cases. In order to explain this more carefully,
we pause to note the many ways one can make the problem of anyon classification precise,
and situate our result exactly in this milieu. Moving from the more “purely mathematical”
to the more “applied” end of the spectrum, “anyon classification” could mean any of the
following precise problems:
1. Algebraic classification of unitary modular fusion categories (MFCs) up to ribbon tensor

equivalence.
Much of the literature on fusion categories can be considered as contributing to this
problem.
Presumably one would be satisfied with a solution to this problem “modulo finite
group theory.”

2. Algebraic classification of simple objects X in unitary MFCs B according to whether
or not the braid group representations Bn → U(EndB(X⊗n)) have finite image, dense
image, or something else.

The Property F conjecture is of course directly related to this matter.
One can generalize this question to consider mapping class group representations of
higher genus surfaces with different types of anyons on them.

3. Complexity-theoretic classification of MFCs according to how easy or hard it is to exactly
compute their Reshetikhin-Turaev 3-manifold invariants (as algebraic numbers over Q).

Our Theorem 1 is situated here – almost! We have established a dichotomy of
the form either “3-manifold invariants easy” or “tensors in the category are hard to
contract”. Our results represent a non-trivial step towards the desired dichotomy of
Conjecture 2: “invariants easy” or “invariants hard”.
One can ask this question for restricted classes of 3-manifolds (such as “knots in S3”
or “links in S3” or “integer homology spheres”), and the classification may change [7].

4. Complexity-theoretic classification of MFCs according to how easy or hard it is to
“approximate” their Reshetikhin-Turaev 3-manifold invariants.

There are different types of approximations one might ask for. A priori, each type
should be understood as giving a different version of this question.
“Exactly compute” is one way to “approximate.”
Pioneering works of Freedman, Kitaev, Larsen and Wang show that for certain approx-
imation schemes, there exists unitary MFCs B for which the ability to approximate
their 3-manifold invariants is equivalent in power to BQP (bounded-error quantum
polynomial time) [9, 10]. In particular, their work established the original paradigm
for topological quantum computation via anyon braiding.
Kuperberg showed that results for one type of approximation can have important
implications for other types of approximations [13]. In particular, the kinds of ap-
proximations that a quantum computer can efficiently make for Reshetikhin-Turaev
invariants are (in general/worst case) not precise enough to do anything useful for
distinguishing 3-manifolds even if their invariants are promised to be unequal by a
large amount.
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5. Complexity-theoretic classification of MFCs according to whether or not they support
universal quantum computation with braiding and adaptive anyonic charge measurements.

Quantum computation using braidings and charge measurements of anyons in a fixed
unitary MFC is often called “topological quantum computing with adaptive charge
measurement.”
Our entirely subjective opinion is that this is the most important flavor of anyon
classification, at least when considered from the perspective of the goal of actually
building a universal, fault-tolerant quantum computer.
Even unitary MFCs whose anyons all have Property F (and, hence, are not universal
via braiding alone) can be universal when braiding is supplemented with charge
measurements, see e.g. [6].
While adaptive charge measurement is generally considered fault-tolerant for topo-
logical reasons, unlike the case of braiding-only topological quantum computing, the
amplitudes with which one performs a quantum computation in this paradigm are not
(normalizations of) Reshetikhin-Turaev invariants of 3-manifolds.

There are known relations between these different classification problems. For example, on
one hand, if X is an anyon such that Bn → U(EndB(X⊗n)) is dense, then the Solovay-Kitaev
theorem implies that B supports universal topological quantum computation via braiding
(without needing adaptive charge measurement). On the other hand, if X has Property F,
then it is known that braiding with X is never powerful enough to encode all of BQP in its
braidings. This latter point was the main motivation for the Property F conjecture in the
first place, since one would like to rule out the “obviously” un-useful anyons easily.

To understand the potential usefulness of Theorem 1 or Conjecture 2, it is perhaps helpful
to pull on the thread of these motivations for the Property F conjecture a bit more so that
we can compare and contrast.

On one hand, there is no “unconditional” implication known between classification
problems (2) and (4) above in either direction, except if we condition on properties in a way
we have already mentioned, namely: if an anyon has Property F, then it is definitely not
braiding universal, while if an anyon has dense braidings, then it is universal. This is not
“unconditional” in the sense that as far as problem (2) is concerned, there is a third case that
remains to be addressed: anyons with braidings that are neither dense nor have Property
F. Do they even exist? If so, what are we to make of them? Are they universal or not?
Maybe sometimes they are and sometimes they are not? Conversely, if an anyon is braiding
universal, does it necessarily have dense braid group representations? These are interesting
questions worth pursuing, but it could require quite a bit of effort to resolve each of them.

On the other hand, there is an “unconditional” connection between (3) and (4) in at least
one direction: (3) is simply the special case of (4) where the type of “approximation” is chosen
to be “exact computation.” So classification problem (3) might be understood as a warm-up
to the version of problem (4) where the type of approximation is not “exact”, but is instead
the kind of approximation relevant to topological quantum computing. (For the sake of space,
we refrain from precisely defining this type of approximation here; see the intro discussions
of [13] or [20].) The key technical issue that this perspective highlights is the following: even
categories whose anyons all have property F (and thus are not braiding universal) can have
#P-hard invariants [11, 14, 15]. Hence, more work needs to be done to properly understand
the relationship between the BQP-universality of anyon braidings in a given modular fusion
category B and #P-hardness of (exactly) computing τB(M) on 3-manifolds M . At the end
of the day this is not so different from the situation between (2) and (4).

TQC 2025



5:6 Towards a Complexity-Theoretic Dichotomy for TQFT Invariants

However, we conclude this discussion by noting that it is conceivable there exists a very
tight connection between anyon classification problems (3) and (5) (while there is essentially
no way to relate (2) and (5)). Indeed, one might reasonably guess that #P-hardness for the
exact calculation of invariants implies that topological quantum computing with adaptive
charge measurements is always sufficient to generate BQP-universal topological gates. This
guess would be consistent with all known examples. We plan to explore these matters in
future work.

1.4 Outline
Subsection 2.1 briefly reviews the definiton of #CSP(F), as well as Cai and Chen’s dichotomy
theorem for these problems. Subsection 2.2 contains the proof of part (a) of Theorem 1.
Subsection 2.3 contains some preliminary results about the graphical calculus in fusion
categories needed for the proof of part (b). The proof of part (b) itself is relegated to
Appendix A for the sake of space. Section 3 contains some further discussion.

2 Proof of Theorem 1

2.1 Cai and Chen’s dichotomy for weighted CSPs
Before proving either part of our main theorem, we review the definition of #CSP(F),
following [2]:

We fix a finite set D = {1, . . . , d} called the domain (which, by an abuse of notation, we
will suppress from the notation #CSP(F)).
We fix a (C-valued) weighted constraint family F = {f1, . . . , fh}, where each fi is a
C-valued function fi : Dri → C for some ri ≥ 1 called the arity of fi. We assume all the
values that the fi assume are encoded as algebraic numbers over Q.
An instance I of #CSP(F) consists of a tuple x = (x1, . . . , xn) of variables over D (which
will be suppressed in our notation) and a set I of tuples (f, i1, . . . , ir) in which f is an
r-ary function from F and i1, . . . , ir ∈ {1, . . . , n} are indices of the variables in x.
The output of #CSP(F) on instance I is the algebraic number Z(I) ∈ C given by

Z(I) def=
∑

x∈Dn

FI(x),

where

FI(x) def=
∏

(f,i1,...,ir)∈R

f(xi1 , . . . , xir ).

The main result of [2] is

▶ Theorem 3 (Thm. 1, [2]). Given any constraint set F as above, #CSP(F) is either
computable in polynomial time or #P-hard.

2.2 Proof of Theorem 1(a)
Proof. Let C be a spherical fusion category over C. To prove part (a) of Theorem 1, it
suffices – thanks to Theorem 3 – to build a domain DC and weighted constraint set FC with
the following property: there exists a polynomial time algorithm that converts a triangulated
3-manifold M into an instance IM of #CSP(FC) such that

Z(IM ) = |M |C .
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ϕ(j1, j2, j3; k) =
k

k

j1 j2 j

Figure 1 A 3j+1k-symbol.

Readers already familiar with the state-sum formula for TVBW invariants will notice that
the definition of Z(I) is quite similar in spirit. The goal of the present proof is simply to
make this similarity precise.

To this end, let us recall the state-sum formula for |M |C :

|M |C = D−2|VM |
∑

L:EM →Irr(C)
FL:FM →N consistent w/ L

∏
e∈EM

dim(L(e))2 ∏
t∈TM

|tL|∏
f∈FM

|fL|

where our notation is as follows:

VM is the ordered list of vertices in the triangulation M and D is the total quantum
dimension of C.

EM is the set of edges in the triangulation M and Irr(C) is set of simple objects in the
given skeletalization of C.

FM is the set of faces in the triangulation M and N is the set of labels of the trivalent
Hom spaces

Hom(k, i ⊗ j) = span
{ i j

k

α

}
α=1,...,Nk

ij

and |fL| is the 3j+1k-symbol obtained by evaluating the face f with a given labeling L

of the edges and faces of M (See Figure 1).

TM is the set of tetrahedra in the triangulation M , and |tL| is the 6j+4k-symbol obtained
by evaluating the tetrahedron t with a given labeling L of the edges and faces of M ,
where we take into account whether the orientation of t given by the orientation of M

matches the induced orientation given by the ordering of the vertices. This will be made
more precise below.

Since we assume C is not necessarily multiplicity-free, then instead of 6j-symbols, we will

be using so-called 6j+4k-symbols
[
j1 j2 j3 k1,2 k2,3
j j12 j23 k12,3 k1,23

]±

, which are defined by the

contraction of a specific colored graph.
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[
j1 j2 j12 k1,2 k2,3
j3 j j23 k12,3 k1,23

]+
def=

j1

j23

j2
j3

j12

j

k1,23

k12,3

k2,3

k1,2

This defines the “positive” 6j+4k-symbols. We also define a “negative” version of the 6j+4k-
symbols. We will call them negative 6j+4k-symbols since they correspond to negatively-
oriented tetrahedra with respect to the standard orientation on R3:

[
j1 j2 j12 k1,2 k2,3
j3 j j23 k12,3 k1,23

]−
def=

j1

j23

j2

j3

j12

j

k12,3

k1,23

k1,2

k2,3

Here, j1, j2, j3, j, j12, j23 are simple objects, k1,2 ∈ {0, . . . , N j12
j1j2

}, k2,3 ∈ {0, . . . , N j23
j2j3

},
k12,3 ∈ {0, . . . , N j

j12j3
}, and k1,23 ∈ {0, . . . , N j

j1,j23
}.

We now have enough to identify our domain and weighted constraint set. Define

DC
def= Irr(C) ⊔ N ⊔ {∗}.

Now extend the 6j+4k symbols to be 10-ary functions on our domain DC in the “trivial” way:

∆+(x1, . . . , x10) def=


[
x1 x2 x5 x7 x8
x3 x4 x6 x9 x10

]+

if x1, . . . , x6 ∈ Irr(C), x7, . . . , x10 ∈ N ,

0 otherwise,

and

∆−(x1, . . . , x10) def=


[
x1 x2 x5 x7 x8
x3 x4 x6 x9 x10

]−

if x1, . . . , x6 ∈ Irr(C), x7, . . . , x10 ∈ N ,

0 otherwise.
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We similarly define 4-ary functions on our domain using the 3j+1k-symbols ϕ by taking

Φ−1(x1, x2, x3, x4) def=
{

ϕ(x1, x2, x3; x4)−1 if x1, x2, x3 ∈ Irr(C), x4 ∈ N ,

0 otherwise.

And we define 1-ary functions using the quantum dimensions of simple objects:

d2(x) def=
{

dim(x)2 if x ∈ Irr(C),
0 otherwise.

Finally, we define a 1-ary function to encode the total quantum dimension of C:

D−2 def= D−2(x) def=


(∑

j∈Irr(C) dim(j)2
)−1

if x = ∗,

0 otherwise.

Using these functions, we define our weighted constraint family

FC
def= {∆±, Φ−1, d2, D−2}.

Our next goal is to describe how to convert a triangulation M of an oriented manifold
into an instance IM of #CSP(FC).

The data of M is comprised of:
An ordered list of vertices {v1, . . . , va}.
A list of oriented edges {e1(v11 , v21), . . . , eb(vb1 , vb2)} where ei(vi1 , vi2) means that ei is
an edge connecting vi1 to vi2 . (Note that these orientations are chosen arbitrarily.)
A list of oriented faces {f1(e11 , e21 , e31), . . . fc(ec1 , ec2 , ec3)} where fi(ei1 , ei2 , ei3) means
that fi is a face whose boundary consists of the edges ei1 , ei2 , and ei3 . (Note that the
orientations of the faces need to be consistent with the edge orientations in any way.)
A list of tetrahedra {t1, . . . , td} where ti = ti(fi1 , . . . , fi4) means that ti is a tetrahedron
with faces given by fi1 , . . . , fi4 .
To encode the orientation of M , each tetrahedron ti is endowed with a sign + or − to
indicate the local orientation inside that tetrahedron.2

For a given triangulation M as described, define a tuple

xM
def= (x1, . . . , xa, y1, . . . , yb, z1, . . . , zc)}

that has a variable for each vertex, edge and face in M . We now describe how to build the
desired instance IM of #CSP(FC). It will be clear from the construction that the mapping
M 7→ IM can be done in polynomial time in the size of M .

First we put the functions D−2(x1), . . . , D−2(xa) and d2(y1), . . . , d2(yb) in IM for every
vertex and edge of M . For each face fj(ej1 , ej2 , ej3), we include Φ−1(yj1 , yj2 , yj3 , zj). Finally,
for each tetrahedron ti, we include either

∆+(yj1 , . . . , yj6 , zi1 , . . . , zi4)),

2 These signs must assemble to give a {±}-valued 0-cocycle on the dual cellulation. This condition could
be easily checked, but for our purposes it is simply part of the data structure of M , and so this condition
can be assumed to be met as a promise. This condition is not necessary for our proof (although it is
necessary for the proof that |M |C is an invariant of M).
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or

∆−(yj1 , . . . , yj6 , zi1 , . . . , zi4)),

where ti has faces fi1(ej1 , ej2 , ej5), fi2(ej5 , ej3 , ej4), fi3(ej3 , ej2 , ej6), and fi4(ej6 , ej1 , ej4). To
determine whether we should include ∆+ or ∆− for ti, we check if the orientation of ti given
by the orientation of M matches the induced orientation by the ordering of the vertices; if
they match, then we use ∆+, and otherwise we use ∆−.

This IM defines an instance of #CSP(FC) that computes the Turaev-Viro invariant for
M . Indeed, plugging in the definitions of our constraint functions, we get

Z(IM ) =
∑

x∈Da+b+c

a∏
v=1

D−2(xv)
b∏

e=1
d2(ye)

∏
Fi=(Ei1 ,Ei2 ,Ei3 )

Φ−1(yi1 , yi2 , yi3 , zi)

∏
Ti=(Fi1 ,...,Fi4 )

∆ηi(yj1 , . . . , yj6 , zi1 , . . . , zi4))

where ηi = + if the orientation of Ti given by the orientation of M matches the induced
orientation by the ordering of the vertices, and ηi = − otherwise. A priori, Z(IM ) includes a
sum over more types of labelings than the state-sum formula for |M |C . However, because of
how we have chosen to define the functions in the constraint family FC , all of these additional
terms in the sum vanish. To see this, first note that when x1, . . . , xv ≠ ∗, the entire term is 0.
In particular, this means all non-zero terms have a common factor of the global quantum
dimension to the −a power, and hence we can pull it out as the normalizing factor. Similarly,
when the edges are not labeled by elements of the domain DC that are not simple objects of
C, or the faces are not labeled with multiplicities, the terms are zero. We have furthermore
arranged so that when the labeling of the edges and faces is not admissible, the 6j+4k-symbol
for that term vanishes. Therefore, the only surviving terms in the sum Z(IM ) are the x
which define admissible labelings of the edges and faces of M . It is then straightforward to
see Z(IM ) = |M |C recovers the Turaev-Viro invariant. ◀

2.3 Graphical calculus preliminaries
Before proving part (b) of Theorem 1, we establish a technical result about the graphical
calculus in a spherical fusion category. The result is likely well-known to experts, but does
not appear in the literature anywhere that we are aware. We begin by reviewing what we
need of closed trivalent graphs in S2.

For our purposes, a (closed) trivalent graph Γ in R2 (or S2 = R2 ∪ {∞}) has:
A finite collection V of vertices v1, v2, . . . , vn, where vi ∈ R × {i}
A collection E of directed edges e1, e2, . . . , ek in S2

subject to the conditions that
Each edge ei is either a loop disjoint from V or an arc connecting two (not necessarily
distinct) vertices, with an interior that is disjoint from all vertices in V .
If v is a vertex, then there is an open disk neighborhood D(v) so that D(v) ∩ Γ has three
arcs (coming from intersections of D(v) with E, not necessarily distinct) emanating from
v with one arc parallel to the vector ⟨0, 1⟩, one arc parallel to the vector ⟨1, 1⟩, and one
arc parallel to the vector ⟨−1, 1⟩.

Such a graph Γ is closed in the sense that there are no vertices that are involved in precisely
one half-edge.
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Figure 2 A trivalent graph in R2 which exhibits all three types of edges.

We will also need to consider closed trivalent graphs which have crossings. We will call
these crossed (closed) trivalent graphs. Crossed trivalent graphs are trivalent graphs where
they are allowed to have finitely many double points in the interior of its edges. These double
points must indicate which segment of the edge crosses “over” or “under” the other.

Recall that computing the Reshetikhin-Turaev invariant τB(M) of a 3-manifold M

presented by a surgery diagram involves a process where we interpret a coloring of the
components of the diagram by simple objects of B as an endomorphism of the tensor unit 1
of B. Since 1 is itself simple, such a coloring gives rise to an endomorphism 1 → 1, which in
turn can be identified with a complex number because End(1) = C. The invariant τB(M) is
then (roughly) the sum of all of these numbers over all choices of colorings of the surgery
diagram of M . For any single coloring, the complex number associated to it can generally be
understood as the result of a sequence of tensor contractions on a tensor induced by that
coloring. Moreover, this sequence of tensor contractions can be represented diagramatically,
using a small number of standard diagrammatic operations that are determined from the
data of the modular fusion category B. We call these operations Circle Removal, Tadpole
Trim, Bubble Pop, F -Move, and Vertex Spiral (aka “bending” moves); see Figures 3-5. We
also allow ourselves to reverse edge orientations. To compute the complex number associated
to a colored surgery link, one must identify a sequence of these operations that simplifies
the diagram to the empty diagram. The desired number will then be a product of numbers
determined from the operations in the sequence and the given coloring.

Our proof of Theorem 1(b) essentially revolves around two key observations.
First, a kind of uniformity: given a surgery description of M , there exists a single sequence

of diagrammatic operations that can be used to evaluate all colorings of the surgery link
to complex numbers. This uniformity is, more-or-less, what will make it possible to encode
M 7→ τB(M) as an instance IM of #CSP(F) for an appropriately chosen F .

Second: such a uniform sequence of operations can be identified in polynomial time from
the surgery description of M . This will imply that the reduction M 7→ IM can be performed
in polynomial time. We make this point more precise now.

▶ Lemma 4. If Γ ⊂ S2 is a closed trivalent graph embedded in S2, then there is a polynomial
time algorithm (in the size of the encoding of Γ) to construct a sequence of embedded graphs
Γ0, Γ1, . . . , Γl where Γ0 = Γ, Γl = ∅ such that each Γi+1 is related to Γi by one of the
diagrammatic operations in Figures 3-5 or edge orientation reversals.
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→ ∅

→
→

Figure 3 A circle removal, tadpole trim, and bubble pop, respectively.

↔ ↔

Figure 4 The F -moves.

↔↔

Figure 5 Vertex spiral (aka “bending”).

Proof. A simple greedy algorithm suffices. We sketch the idea.
Begin by greedily choosing a complementary region R of Γ, i.e. a connected component

R of S2 \ Γ. Note that we may identify the boundary edges and vertices of R in polynomial
time. Suppose R has k unique edges and l unique vertices on its boundary. Now simplify
and update Γ according to the following cases.
1. If (k, l) = (0, 0), then Γ = ∅, and so we terminate.
2. If (k, l) = (1, 0), then the boundary of R is a circle in Γ, which we remove as in Figure 3.
3. If (k, l) = (1, 1), then the boundary of R is part of a tadpole, which we trim as in Figure 3,

but possibly only after first applying an appropriate set of vertex spirals as in Figure 5
and edge orientation reversals.

4. If (k, l) = (2, 2), then the boundary of R is part of a bubble, which we pop as in Figure 3,
but possibly only after first applying an appropriate set of vertex spirals and edge
orientation reversals.

5. Otherwise, k = l > 2. Greedily pick an edge e on the boundary of R. After perhaps first
applying up to two vertex spirals and 5 edge orientation reversals, we can arrange so that
around e, Γ looks like one of the four diagrams in Figure 4, with e the edge in the middle.
Apply the available F -move around e. The complementary regions of the resulting graph
are naturally in bijection with the regions of the previous graph (see Figure 6 for an
example). Let R′ be the region of the new graph associated with R. If R′ has k = l > 2
edges on its boundary, then repeat what we just did, but with R′ and the new graph,
instead of R; otherwise, R′ has k = l = 2 edges, and we pop the bubble as in case (3).

Repeat this process of greedily picking a region R and proceeding as in the above cases. Each
step of identifying an R and carrying through the appropriate case takes polynomial time,
and, moreover, reduces the number of complementary regions of Γ by 1. Since there are at
most a polynomial number of complementary regions to begin with, the entire procedure
takes place in polynomial time. ◀
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bubble pop−−−−−−−→ F -move−−−−−→R R′

Figure 6 An example of a portion of the algorithm.

→

Figure 7 Inserting trivalent vertices to resolve the identity. Following up with R-moves reduces
us to planar diagrams.

Lemma 4 only involves planar trivalent graphs, while the proof of part (b) of Theorem 1
needs crossings. Indeed, when we compute Reshetikhin-Turaev invariants, a 3-manifold is
encoded by a framed link diagram L (which can be assumed to be in plat position, as in
Figure 8). Fortunately, for modular fusion categories we have “R-moves” that – together
with a “resolution of the identity” trick shown in Figure 7 – allow us to reduce to the planar
case, and thereby use Lemma 4. The basic strategy is then not so different from the proof of
part (a), but it requires that we introduce new variables for every crossing and then every
step of the algorithm of the lemma. The details are found in Appendix A.

β

· · ·

· · ·

Figure 8 A blackboard-framed link L in standard plat position is determined by a braid word
β ∈ B2k.
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3 Discussion

3.1 Unitarity
We note that none of our results depend on the unitarity of the spherical fusion category C or
the modular fusion category B. This is not surprising, since a choice of unitary structure is
not necessary to define the TQFT invariants of closed 3-manifolds from C or B, and so, as far
as exact calculation of invariants is concerned, such a choice will not affect any dichotomies.
Nevertheless, a unitary structure is certainly needed in order to do topological quantum
computation with the TQFT determined by C or B, since, for such applications, one needs
the TQFT to be unitary. A priori, a specific choice of unitary structure might affect the
BQP-universality of braiding (with or without adaptive measurement); however, a posteriori,
this is not the case because Reutter showed that unitarizable fusion categories admit unique
unitary structures [18] (we thank Milo Moses for reminding us of this reference).

3.2 TQFTs in other dimensions
We furthermore note that the same strategy we used for the proof of Theorem 1(a) should work
more generally to prove that any fully-extended (d + 1)-dimensional TQFT in any dimension
will satisfy a similar dichotomy involving its invariants of closed (d+1)-dimensional manifolds,
so long as the TQFT is defined using a state-sum formula based on finite combinatorial-
algebraic data. In particular, similar dichotomies should be possible for (3 + 1)-dimensional
TQFTs based on spherical fusion 2-categories [8] or lattice gauge theories based on finite
groups (sometimes called Dijkgraaf-Witten theories) in arbitrary dimension.

3.3 Alternative proof strategies
Building on the previous point, one might try to give an alternative proof of Theorem 1(b) by
using the (3+1)-dimensional Crane-Yetter TQFT based on the modular fusion category B [5].
To put it more carefully, it is known that the Reshetikhin-Turaev invariant τB(M) can
be computed by choosing a triangulated 4-manifold Y whose boundary is ∂Y = M , and
computing an appropriate state-sum invariant of Y (similar to the Turaev-Viro invariant of a
triangulated 3-manifold) [4]. So one could try to prove a dichotomy for the (2+1)-dimensional
surgery-invariant case of Reshetikhin-Turaev in a simpler way by instead proving a dichotomy
for the (3 + 1)-dimensional triangulation-invariant case of Crane-Yetter. Accomplishing this
requires using the fact that given a surgery diagram for a 3-manifold M , one can build a
triangulated 4-manifold Y with ∂Y = M in polynomial time (for example, cf. [1]).

In the opposite direction, it is known that for a spherical fusion category C, |M |C =
τZ(C)(M), where Z(C) is the Drinfeld center of C. If one were able to efficiently convert
a triangulation of a 3-manifold M into a surgery presentation of the same manifold, then
part (b) of Theorem 1 (or Conjecture 2) would immediately imply part (a) of the same.

3.4 Towards Conjecture 2
The current gap between Theorem 1 and Conjecture 2 is explained by a rather simple and
undesirable property of our proof of the former: our reductions M 7→ IM are not “surjective”
from 3-manifold encodings to instances of #CSP(FC) or #CSP(FB). For example, it would
be consistent with our results for there to exist a spherical fusion category C such that |M |C is
computable in polynomial-time, and yet, the problem #CSP(FC) is still #P-hard (although
we consider this unlikely).
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To establish an outright dichotomy theorem for TQFT invariants via Cai and Chen’s
Theorem 3, we would need to arrange our choices of FC and FB with more care so that every
instance I of #CSP(FC) or #CSP(FB) that is not of the form IM satisfies two properties:
first, it can be identified in polynomial time as an instance that is not of the form IM , and,
second, Z(I) can be computed in polynomial time. This seems difficult to arrange, as it is
not clear how to choose the constraint families FC and FB so that instances can “self-report”
as not being of the form IM .

It is instructive to compare TQFT invariants with “holant problems” as defined in [3] and
inspired by the “holographic reductions” of [22]. Holant problems are a kind of generalization
of counting CSPs that impose more structure on the way in which the individual functions
comprising an instance are “wired together.” Intuitively, an instance of #CSP(F) has no
locality constraints on its variables, other than that the constraint functions f ∈ F have
bounded arity (assuming F is finite). An instance of a holant problem, on the other hand,
has a set of variables that are determined by the edges of a graph with constraint functions
assigned to the vertices. The Turaev-Viro-Barrett-Westbury invariant of closed 3-manifolds
determined by a spherical fusion category C can be seen as generalization of this idea,
with variables assigned to both the edges and faces of a 3-dimensional triangulation, and
constraints assigned to the tetrahedra. We expect it should be possible to formulate TVBW
invariants of triangulated 3-manifolds directly as instances of holant problems using a similar
construction as in the proof of Theorem 1(a). Of course, even if one could achieve this, such
a reduction from TVBW invariants to holant problems would – a priori – suffer in the same
way as our current reduction to #CSP(FC). Thus, it seems likely that proving Conjecture 2
will require substantially new ideas. Nevertheless, it appears that there could be much to
gain by attempting to import what has been learned about holant problem dichotomies to
TQFT invariants of 3-manifolds.
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A Proof of Theorem 1(b)

Proof. Let B be a modular fusion category over C. As in our proof of part(a) of Theorem
1, it suffices to build a domain DB and weighted constraint set FB for which there is a
polynomial time algorithm to encode a surgery diagram for a 3-manifold M into an instance
IM of #CSP(FB) such that

Z(IM ) = τB(M)

Let us recall the formula for τB(M):

τB(M) = p
σ(L)−m−1

2
− p

−σ(L)−m−1
2

+
∑

col:{1,...,m}→Irr(B)

 m∏
j=1

dim(col(j))

 |Lcol|

where our notation is as follows:
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L is the surgery link diagram that defines the 3-manifold M . L consists of m components
(labeled 1, 2, . . . , m) and, for convenience is endowed with the blackboard framing.3 We
will also assume, for convenience, that L is in “standard plat position.” This means that
all of the local minima of the diagram (which, recall, is a picture in the xy-plane) occur
below all crossings, all local maxima of the diagram occur above all crossings, and the
sets of cups and caps have no “nesting”.4 This means L is entirely determined by a braid
word. See Figure 8.
σ(L) is the signature of L: the number of positive eigenvalues of the linking matrix minus
the number of negative eigenvalues. (This can be computed in polynomial time from L.)
p± =

∑
i∈Irr(B) θ±

i (dim(i))2 are the Gauss sums of B.
|Lcol| is the evaluation of the colored ribbon graph defined by coloring the components of
L by a function col : {1, . . . , m} → Irr(B).

We now define

DB
def= Irr(B) ⊔ N ⊔ {∗}

where N is the set of labels of the trivalent Hom space as in the proof of Theorem 1(a).
As hinted at in Lemma 4, we need C-valued constraint functions on the domain DB that
implement bubble pops, tadpole removals, F -moves, etc. We define them as follows.

BP (i, j, k, k′, α, β)

k

def=

β

α

k

k′

i j

where i, j, k, k′ ∈ Irr(B), α ∈ {1, . . . , Nk
ij}, and β ∈ {1, . . . , Nk′

ij }. These implement the
bubble pop.

TT (i, j, k, k′, α, β)
k

def=

β

α

kk′

i

j

where i, j, k, k′ ∈ Irr(B), α ∈ {1, . . . , N j
k′∗k}, β ∈ {1, . . . , N j

i∗i}. These implement tadpole
trims. There is an upside-down version of the tadpole trim, which we denote T̃ T .

3 To justify this convenience, simply apply a Reidemeister move of type 1 to each the components of L so
that the blackboard framing agrees with the desired integral surgery coefficients. This can be done in
polynomial time because we encode the surgery coefficents in unary.

4 This convenience can be justified by the fact that any link diagram can be put in standard plat position
in polynomial time by simply applying a sequence of Reidemeister 2 moves.
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We define functions V Sleft by requiring

α

i

jk

=
∑

β∈{1,...,Ni
kj∗ }

V Sleft(i, j, k, α, β)
β

i

jk

where i, j, k ∈ Irr(B) and α ∈ {1, . . . , Nk
ij}. These implement the “left” vertex spin. We

similarly define V Sright coefficients to implement the right vertex spin. There are upside-down
versions of these vertex spirals. We denote them by Ṽ S

left
and Ṽ S

right
, respectively.

We need the F -matrices, which have coefficients F + that satisfy the equation

α

β

a b c

n

d

=
∑

m∈Irr(B)
δ∈{1,...,Nm

bc }
γ∈{1,...,Nd

am}

F +(a, b, c, d, m, n, α, β, δ, γ)
δ

γ

a b c

m

d

where a, b, c, d, m ∈ Irr(B), α ∈ {1, . . . , Nn
ab}, and β ∈ {1, . . . , Nd

mc}. The inverse F -matrix
has coefficients that we denote by F −. We also need to include the matrix coefficients
implementing the upside-down version of this picture. We call these G±, respectively.

We then extend the above to functions on our domain:

F ±(x1, x2, . . . , x10) def=
{

F ±(x1, x2, . . . , x10) if x1, . . . , x6 ∈ Irr(B) and x7, . . . , x10 ∈ N
0 otherwise

G±(x1, x2, . . . , x10) def=
{

G±(x1, x2, . . . , x10) if x1, . . . , x6 ∈ Irr(B) and x7, . . . , x10 ∈ N
0 otherwise

BP (x1, x2, . . . , x6) def=
{

BP (x1, x2, . . . , x6) if x1, x2, x3, x4 ∈ Irr(B) and x5, x6 ∈ N
0 otherwise

TT (x1, x2, . . . , x6) def=
{

TT (x1, x2, . . . , x6) if x1, x2, x3, x4 ∈ Irr(B) and x5, x6 ∈ N
0 otherwise

T̃ T (x1, x2, . . . , x6) def=
{

T̃ T (x1, x2, . . . , x6) if x1, x2, x3, x4 ∈ Irr(B) and x5, x6 ∈ N
0 otherwise

V S∗(x1, x2, x3, x4, x5) def=
{

V S∗(x1, x2, x3, x4, x5) if x1, x2, x3 ∈ Irr(B) and x4, x5 ∈ N
0 otherwise

Ṽ S
∗
(x1, x2, x3, x4, x5) def=

{
Ṽ S

∗
(x1, x2, x3, x4, x5) if x1, x2, x3 ∈ Irr(B) and x4, x5 ∈ N

0 otherwise

for ∗ ∈ {left, right}.
We also need to implement braidings, which are described diagrammatically via R-moves.

Recall the definition of the R-symbols: for i, j, k ∈ Irr(B) and α ∈ {1, . . . , Nk
ji}, they satisfy
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α

i j

k

=
∑

β∈{1,...,Nk
ij

}

R+(i, j, k, α, β)
β

i j

k

The inverse R-symbol R−(i, j, k, α, β) is similarly defined to describe the inverse braiding.
We turn these R-symbols into 5-ary functions on the entire domain DB in the same trivial
way as before, namely

R±(x1, x2, x3, x4, x5) def=
{

R±(x1, x2, x3, x4, x5) if x1, x2, x3 ∈ Irr(B) and x4, x5 ∈ N
0 otherwise

Finally, we define 1-ary dimension functions, 1-ary Gauss sum functions (and their
inverses), 1-ary dual functions, and 2-ary Kronecker delta functions as follows (respectively):

d(x) def=
{

dim(x) if x ∈ Irr(B)
0 otherwise

p
1/2
± (x) def=


(∑

j∈Irr(B) θ±1
j dim(j)2

)1/2
if x = ∗

0 otherwise

p
−1/2
± (x) def=

{
(p±(x))−1 if x = ∗
0 otherwise

δ(x1, x2) def=
{

δx1,x2 if x1, x2 ∈ Irr(B)
0 otherwise

With all of this, we define our weighted constraint family FB to be

FB
def= {F ±, G±, BP, TT, T̃T , V Sleft, V Sright, Ṽ S

left
, Ṽ S

right
, R±, d, p

1/2
± , p

−1/2
± , δ}.

We reiterate that all of this is computed independently of M , and can simply be considered
as part of what it means to “have the data” of B.

We conclude our proof by describing how to encode a surgery presentation of M into an
instance IM of #CSP(FB). In addition to the conveniences described above, we assume that
the surgery link diagram L is oriented, embedded in R × [−1, 2], and is given by plat closure
of a braid word b1b2 · · · bn so that each crossing corresponding to bi lies in R × ( i−1

n , i
n ) and

the only maxima or minima lie in R × ([−1, 0) ∪ (1, 2]).
In order to describe the variables that will be involved in the instance IM we want, we first

describe a polynomial time algorithm to replace L with a planar trivalent graph ΓL ⊂ S2:
1. At each crossing bi, insert trivalent vertices to resolve the identity (see Figure 7) so that

there is a vertex directly adjacent to the crossing, resulting in a crossed trivalent graph.
2. Perform an R-move for each crossing, resulting in a trivalent graph in R2 ⊂ S2 (after

potentially scaling so the vertices lie in R × Z).

We can now identify the tuple of variables (valued in the domain DB) that will be involved
in our desired instance IM . Recall that m is the number of components of L, σ(L) is the
signature, and n is the number of crossings. Let Γ0 = ΓL, Γ1, . . . , Γl = ∅ be the sequence of
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graphs provided by Lemma 4, and define Nv to be the sum of the number of vertices in all
of these graphs. Similarly, define Ne to be the sum of the number of edges in the graphs.
Then define a tuple of variables associated to the instance IM by

xM
def= (x0, x1, . . . , xm, y1, . . . , y|σ(L)|, z1, . . . , zn, u1, . . . , uNv , w1, . . . , wNe).

To determine the functions involved in IM , we simply need to keep appropriate account
of the sequence of diagrammatic operations involved in taking L to ΓL and then taking ΓL to
∅. For each diagrammatic operation in the algorithms above, we will define a list of functions
in FB which account for the contribution of those operations to τB(M).

The first operations are those involved in step (1) of the process of taking L to ΓL, and
involve the insertion of “resolutions of the identity” at every crossing of L. To account for
these operations, we define a set Init that is a list of Kronecker delta functions, each of which
pairs up edges which used to belong to the same link component before the operation. For
example, in Figure 7, the top-right edge of the upper vertex and the bottom-right edge of the
lower vertex were a part of the same link component before the operation, so we introduce a
Kronecker delta function between the associated variables. The middle edge is free to vary,
as in the original algorithm there is a sum over this edge.

We then account for the operations in step (2) of the process of taking L to ΓL, all of
which are R-moves. Each operation happens locally on the diagram, so we define lists Ri

for 1 ≤ i ≤ n that are given by R±(wi1 , wi2 , wi3 , ui4 , ui5), where we use + or − depending
on the strand that crosses over. The variables wi1 , wi2 , wi3 are the edges in the trivalent
vertex in the relevant order, ui4 is the labeling of the vertex before the R-move, and ui5 is
the labeling of the vertex after the operation.

The next operations are given using the algorithm of Lemma 4. The algorithm provides
an ordered list of operations O1, . . . , Ol, where upon completion of the final operation Ol, the
graph Γl is empty. Each operation here is local, so we need only consider the local changes
when defining our list. Consider operation Oi in this sequence:

If Oi is a circle removal, define a list Ci which contains the relevant d function.
If Oi is a tadpole trim, define a list Ti which contains the relevant TT or T̃ T function.
If Oi is a bubble pop, we define a list Bi which contains the relevant BP function.
If Oi is a vertex spiral, we define a list Vi which contains the relevant V Sleft or V Sright

(or their upside-down versions).
If Oi is an F -move, we define a list Fi which contains the relevant F ± or G± functions.
if Oi is an orientation reversal where wi1 is the variable associated to the edge before the
operation, and wi2 is the variable associated to the edge after the operation, then define
a list Oi which contains the Kronecker delta function δ(w∗

i1
, wi2).

For each list, we append Kronecker delta functions δ on all edges or vertices which are
held constant before and after performing the given operation. E.g. if the edge associated
to w22 will be held constant after an F -move, and will then be associated with w100 in the
trivalent graph associated to after the operation, then we introduce δ(w22, w100) to the list
F associated to the operation. If σ(L) ≥ 0, we then define the set IM by:

IM = {p
−1/2
+ (x0), p

−1/2
− (x0), p

−1/2
+ (x1), . . . , p

−1/2
+ (xm), p

−1/2
− (x1), . . . , p

−1/2
− (xm),

p
1/2
− (y1), . . . , p

1/2
− (y|σ(L)|), p

−1/2
+ (y1), . . . , p

−1/2
+ (y|σ(L)|), d(x1), . . . d(xm)}

∪Init ∪ R1 ∪ · · · ∪ Rn ∪
⋃

p1,...,p6

Cp1 ∪ Tp2 ∪ Bp3 ∪ Vp4 ∪ Fp5 ∪ Op6
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where p1, p2, . . . , p6 each run over all 1, . . . , l which were defined by the algorithm above. If
σ(L) < 0, then replace the elements p

1/2
− (y1), . . . , p

1/2
− (y|σ(L)|) with the inverses p

−1/2
− (y1),

..., p
−1/2
− (y|σ(L)|). By virtue of Lemma 4, the construction of IM can be carried out in

polynomial time in the size of M .
We now explain why this choice of instance IM defines an output which computes the

Reshetikhin-Turaev invariant τB(M). The p
±1/2
+ and p

±1/2
− functions at the beginning

implement the normalizing factor since these functions are constant. This guarantees they
may be factored out of the sum as global factors. The d functions implement the product of
dimensions we see in the sum.

Notice that if at any point a coloring is not admissible, the term in IM is 0. It is thus
clear that all circle removals, edge orientation reversals, bubble pops, and tadpole trims are
correctly implemented, so we just need to check that the F -moves, R-moves, and vertex
spirals are correct.

In the standard algorithm, when an F -move occurs, there are three additional variables
introduced in the summation: one for the interior edge and two for each interior vertex.
These additional variables are introduced here as well, since we are summing over all edges
that occur throughout the algorithm, the new edge which is created in the F -move will
contribute to the sum, while the rest are held constant due to the inclusion of the Kronecker
delta functions.

Similarly, we see that R-moves and vertex spirals are correctly implemented. Note that
also there are no extraneous variables in the sum since the algorithm guarantees that the
graph will become empty, and our instance is completely determined by how the algorithm
behaves. ◀
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6:2 QSAT Problems Are Complete for a Plethora of Classes

1 Introduction

Many of the interesting and puzzling phenomena in many-body physics occurs at the ground
state of materials. One way to study quantum systems in this state is through their ground
state energy, as this quantity can be used to provide information about physical and chemical
properties of the system. It is thus of great interest to calculate or even estimate this quantity.
This task is embodied by the k-Local Hamiltonian (k-LH) problem. Specifically, given a
k-local (k-body) Hamiltonian – an operator of the form H =

∑
i hi where each hi acts on at

most k qubits – and two numbers a, b ∈ R with b− a ≥ 1/poly(n), this problem consists of
distinguishing between the cases where H has an eigenvalue less than a or greater than b.
Kitaev [30] showed that k-LH with k ≥ 5 (and later improved to k ≥ 2 [28]) is unlikely to be
decided efficiently with a classical or quantum computer. In complexity theory terms, k-LH
with k ≥ 2 is QMA-complete.1

The LH problem is considered a “weak” quantum constraint satisfaction problem (QCSP)
as states with energy less than a do not necessarily minimize the energy of each hi. For this
reason, LH is often compared to MAX-k-SAT instead of the “strong” CSP k-SAT. Due to the
immense importance of SAT in classical complexity and other hard sciences, Bravyi [6] defined
the Quantum k-SAT (k-QSAT) problem. Given a set of k-local projectors (also referred as
clauses or constraints) and a number b ∈ R, this problem consists of distinguishing between
the cases where there exists a state that simultaneously lies in the null space of all projectors,
or for all states, the penalty incurred by violations of the constraints is greater than b.2
Bravyi showed that 2-QSAT on qubits is in P while k-QSAT with k ≥ 4 (and later improved
to k ≥ 3 [22]) is QMA1-complete when using the Clifford+T gate set G8 = {H,CNOT, T}.3

Interestingly, these two problems have in common that they are in P for a certain k but
appear to become much harder for k + 1: LH is in P for k ≤ 1 and becomes QMA-complete
for k > 1, while QSAT is in P for k ≤ 2 and QMAG8

1 -complete for k > 2. This is not entirely
surprising since the Hamiltonians considered in the problems have no restriction other than
their locality, and perhaps the difficulty lies in deciding “unphysical” Hamiltonians. Following
this line of thought, others have considered variations of these problems where the hi are
drawn from more realistic and relevant sets that satisfy some property or correspond to a
physical model. To name a few, these may be stoquastic [7], commuting [9], fermionic [31],
bosonic [41], or from models like the Heisenberg [39] and Bose-Hubbard [15]. In addition, one
might also consider placing restrictions on the geometry of the problem [33, 23, 2, 26, 36].

In a landmark result, Cubitt and Montanaro [18] showed that any LH problem where the
hi are drawn from a finite set of at most 2-local qubit Hermitian matrices can be classified as
being either in P, NP-complete, StoqMA-complete, or QMA-complete.4 As decision problems
in the latter three classes are not known to be efficiently solvable in either classical or
quantum computers, they showed that the only Hamiltonians of this type for which the
LH problem can be solved efficiently are those with only 1-local terms. This is significant,

1 The class QMA can be thought of as the quantum analog of NP, or more accurately MA since the class
has probabilistic acceptance and rejection.

2 Alternatively, this problem can be defined with local Hamiltonians instead of projectors, in which case,
the problem is equivalent to determining whether the Hamiltonian is frustration-free.

3 QMA1 is the one-sided error variation of QMA with perfect completeness, i.e. instances for which the
answer is “yes” (in this case frustration-free Hamiltonians) are accepted with certainty. The notation
G8 stems from Ref. [4] and denotes the Clifford-cyclotomic gate set of degree of 8. The reason why it is
necessary to specify the gate set for classes with perfect completeness is discussed in Section A.2.

4 StoqMA is the class of problems equivalent to estimating the ground state energy of the transverse-field
Ising model [8].
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as many relevant Hamiltonians in nature can be approximated by 2-local Hamiltonians of
this type (e.g. all those supported on Pauli operators like Heisenberg and Ising spin glass
models), and it is then likely that estimating their ground state energy efficiently lies outside
of reach. Moreover, their result has led to a much larger repertoire of problems from which to
construct reductions and potentially show the complexity of other computational problems.

Prior to our work, all known QSAT problems with finite or infinite sets of local interactions
could be classified as being either in P, NP-complete, MA-complete, or QMA1-complete, but
this list is not known to be exhaustive in either case. The fact that QSAT has resisted
classification can be attributed to two factors. First, is that since most relevant instances of
QSAT can be decided classically (2-QSAT is in P), there is a lack of interest to search for a
classification of QSAT problems with k > 2. This is unlike in the LH problem where most
relevant instances were hard (2-LH is QMA-complete), motivating the study of Cubitt and
Montanaro. Second, is the fact that QSAT problems are usually complete for classes that
are harder to work with as they seem to depend on gate sets. In this work, it is our goal to
concretize the implications that such a theorem may have, and hence motivate its study.

1.1 Summary of results
Our main result establishes that the QSAT problem SLCT-QSAT is BQPG8

1 -complete. How-
ever, as the construction and analysis of this problem is contrived, we first show that the
simpler and less optimized version of this problem, LCT-QSAT, is also complete for this
class.

▶ Theorem 1. The problem Linear-Clock-Ternary-QSAT (LCT-QSAT) with 4-local
clauses acting on 17-dimensional qudits is BQPG8

1 -complete.

An interesting feature of this problem, and one that may be of independent interest, is that
this problem makes clever use of the principle of monogamy of entanglement to strongly
constrain the structure of input instances, facilitating the task of deciding whether they are
frustration-free.5 Unfortunately, this trick comes at a price of high qudit dimensionality. Our
main result shows that by relaxing the constraint on the instance’s structure and instead
study the instances more closely, we can obtain a similar problem with the same complexity
but with reduced qudit dimensionality.

▶ Theorem 2. The problem Semilinear-Clock-Ternary-QSAT (SLCT-QSAT) with
4-local clauses acting on 6-dimensional qudits is BQPG8

1 -complete.

Recently, among many other interesting results, Rudolph [37] demonstrated that BQPG2i

1 =
BQPG2j

1 for any i, j ∈ N. In other words, any problem in BQP1 using a Clifford-cyclotomic
gate set of degree 2i can be perfectly simulated with one of degree 2j for all i, j ∈ N. For us,
this then implies that:

▶ Corollary 3. The problems LCT-QSAT and SLCT-QSAT are BQP1-complete with any
gate set G2l with l ∈ N.

Subsequently, by performing slight modifications to the clauses of SLCT-QSAT, we also
obtain QCMA-complete and coRP-complete problems:

▶ Theorem 4. The problem Witnessed SLCT-QSAT with 4-local clauses acting on
8-dimensional qudits is QCMA-complete.

5 This construction is the most faithful to those considered by Meiburg in Ref. [32].
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▶ Theorem 5. The problem Classical SLCT-QSAT with 5-local clauses acting on 8-
dimensional qudits is coRP-complete.

Then, using a similar application of monogamy of entanglement as in LCT-QSAT, we
demonstrate that we can reduce any QCSP on qudits to another one on qubits.

▶ Theorem 6 (informal). Every QCSP C on qudits is equivalent in difficulty to some other
QCSP C′ on qubits.

▶ Corollary 7. Together, Theorems 2 and 4–6 imply:
1. SLCT-QSAT2 is a BQPG8

1 -complete problem on qubits with 48-local clauses.
2. Witnessed SLCT-QSAT2 is a QCMA-complete problem on qubits with 48-local clauses.
3. Classical SLCT-QSAT2 is a coRP-complete problem on qubits with 60-local clauses.

We refer to these problems by the same name as before, except that we now add a
subindex to represent that the problem refers to the qubit version, e.g. SLCT-QSAT2 is the
QSAT problem that results from the reduction of SLCT-QSAT.

Finally, there is a notion of direct product “⊗” and direct sum “⊕” (Definitions 17 and 18)
for both CSPs and QCSPs, which we use to show that there are six new QSAT problems
that are complete for classes PI(A,B) and SoPU(A,B), where A and B are themselves
complexity classes. PI(A,B) stands for the pairwise intersection of classes (Definition 11),
and SoPU(A,B) for the star of pairwise union of classes (Definition 12). Roughly, these
two classes correspond to the sets of problems that can be expressed as the intersection and
union (respectively) of a problem in A and a problem in B.6 We show:

▶ Theorem 8. Let “⊗” and “⊕” denote the direct product and direct sum for quantum
constraint satisfaction problems. Pairwise combinations of the four QSAT problems – 3-SAT,
Classical SLCT-QSAT2, SLCT-QSAT2, and Stoquastic 6-SAT – yield the following
complete problems:
1. Classical SLCT-QSAT2 ⊗ 3-SAT is PI(coRP,NP)-complete.
2. Classical SLCT-QSAT2 ⊕ 3-SAT is SoPU(coRP,NP)-complete.
3. SLCT-QSAT2 ⊗ 3-SAT is PI(BQPG8

1 ,NP)-complete.
4. SLCT-QSAT2 ⊕ 3-SAT is SoPU(BQPG8

1 ,NP)-complete.
5. SLCT-QSAT2 ⊗ Stoquastic 6-SAT is PI(BQPG8

1 ,MA)-complete.
6. SLCT-QSAT2 ⊕ Stoquastic 6-SAT is SoPU(BQPG8

1 ,MA)-complete.

Finally, given that the QSAT problems in Corollary 7 and Theorem 8 consist of finite sets
of projects with O(1)-local qubit clauses, and similarly 2-SAT, 3-SAT, Stoquastic 6-SAT,
and 3-QSAT (which are respectively in P, NP-complete, MA-complete and QMAG8

1 -complete),
our results imply that:

▶ Corollary 9. A complete classification theorem for strong QCSPs with O(1)-local clauses
acting on qubits must either include at least 13 classes, or otherwise indicate that some of
these are equal.

The relationship between the 13 classes mentioned here is shown in Figure 1.

6 These classes are not to be confused with A ∩ B and A ∪ B. A ∩ B corresponds to the set of problems
that are in both A and B, while A ∪ B corresponds to those that are in either A or B.



R. Rivera Cardoso, A. Meiburg, and D. Nagaj 6:5

P

coRP NP

BQPG8
1 PI(coRP, NP)

SoPU(coRP, NP)

MA
PI(BQPG8

1 , NP)

SoPU(BQPG8
1 , NP) PI(BQPG8

1 , MA)

SoPU(BQPG8
1 , MA)

QCMA

QMAG8
1

Figure 1 The classes for which we now have a complete strong QCSP, and their corresponding
inclusions. In this work, we show completeness for quantum complexity classes with perfect
completeness using the Clifford+T gate set G8 = {H, T, CNOT}. Rudolph’s result [37] further
strengthens ours by showing that BQPG8

1 = BQPG2l

1 for all l ≥ 1. We discuss some of the inclusions
in this figure in Section 2.6 and Section A.2.

2 Contributions

In this section, we summarize the main ideas and proof techniques related to the results
presented in Section 1.1. In particular, we detail the main roadblocks in the construction of
each QSAT problem, and how we overcome them. The full proofs of the statements here can
be found in the full version of the text [14].

Section A covers the notation and background information used here. For the rest of this
section, we fix the gate set G8 and omit the superscript when referring to BQP1 and QMA1,
except when needed for emphasis.

2.1 BQP1-complete problem
The goal of the construction is to design a QSAT problem that can encode the computation of
any quantum circuit in BQP1, while keeping all its instances solvable in quantum polynomial-
time with perfect completeness and bounded soundness. We define the problem using
projectors Πinit, Πprop,U , and Πout similar to Pinit, Pprop,U , and Pout defined in Equation (6).7
To see why our projectors must differ from the original ones, consider the QSAT problem
built with {Pinit, Pprop,U , Pout, Pstart, Pclock, Pend}. Showing that the problem is BQP1-hard
is straightforward, as we can encode the circuit that computes the answer to a BQP1 problem
in a similar way as that shown in Section A.3. This time however, all data particles in the
instance should be initialized, instead of having free particles whose role is to accommodate
a witness state. The difficulty lies in demonstrating that every instance generated with a
polynomial number of these projectors can also be decided in BQP1. There is a fundamental
and a practical limitation for this:

7 The projectors Pstart, Pclock, and Pstop associated with the clock encoding remain unchanged and are
integrated into the definitions of Πinit, Πprop, and Πout.
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(a)

(b)

(c)

Figure 2 (a) A typical instance that encodes the computation of a BQP1 circuit UL . . . U1. The
satisfiability of the instance can also be decided in BQP1. (b) Examples of troublesome instances
whose satisfiability is not known to be decidable with a BQP1 algorithm. (c) The above instances
recast with the new set of projectors {Πinit, Πprop,U , Πout}. The bold blue arrows represent the
Πprop,U clauses which now also indicate the particles should be maximally entangled, and the
dotted red arrows those that are connected to undefined logical qudits. With these projectors, their
satisfiability can be more easily decided. The left instance is satisfiable due to the undefined clauses,
while the one on the right is unsatisfiable, as any potential satisfying state violates monogamy of
entanglement. The instance in (a) has the same meaning/satisfiability with either set of projectors.

Instances which encode the computation of a QMA1 problem, e.g. the instance in Figure 4
and the left instance in Figure 2b, are valid inputs. This is problematic since it is unknown
how to decide these instances in BQP1 (and doing so would show that BQP1 = QMA1).

Input instances may form intricate structures complicating the task of deciding if a
satisfying state exists, e.g. the right instance in Figure 2b.

We define the projectors Πinit, Πprop, and Πout to address these two difficulties (see
Figure 2c). Importantly, these projectors do not significantly alter the proof that the problem
is BQP1-hard and can proceed as mentioned. Now, let us briefly discuss how we overcome
both difficulties.

Instances like those in Figure 4, which have a proper structure and uninitialized data
particles, are prototypical examples of QMA instances. These “free” particles give one the
freedom to guess if there exists a state they can be in such that the instance can be satisfied
(or equivalently be provided with such a state which we verify). To address this issue, we
remove the need to guess a satisfying state by introducing a new undefined basis state |?⟩
(making the data particles 3-dimensional), such that setting the free data particles to this
state always results in a satisfiable instance. More specifically, we achieve this by defining
Πprop,U so that if any data particle in the clause is in state |?⟩, the clause is satisfied without
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needing to apply the associated unitary.8 Then, for these instances, the satisfying state is
given by a truncated version of the history state (without a witness) since the computation
is no longer required to elapse past the first Πprop,U clause acting on an undefined state. We
say the instance is now “trivially satisfiable” as its structure alone suffices to determine its
satisfiability.

To determine the satisfiability of intricate instances, the projectors are now also defined
to leverage the principle of monogamy of entanglement. Each clock particle is equipped with
two 2-dimensional auxiliary subspaces CA and CB (making them 12-dimensional) and the
Πprop,U clauses are then defined to require that the CB subspace of the predecessor clock
particle forms a |Φ+⟩ Bell pair with the CA subspace of its successor. Then, if a CA or
CB subspace is required to form more than one Bell pair, the principle of monogamy of
entanglement states that only one of these clauses can be satisfied, and so the instance is
unsatisfiable. Therefore, instances that are not deemed unsatisfiable because of this reason
must form one-dimensional chains with a unique “time” direction. Finally, to guarantee
that Πinit and Πout only act on the ends of the chain, these make use of a new endpoint
particle consisting of a single two-dimensional space EC and require that it also forms a
Bell pair with either the CA (for Πinit) or CB (for Πout) subspace of a clock particle. These
modifications thus yield a 17-dimensional local Hilbert space: a 3-dimensional data subspace,
plus a 2-dimensional endpoint subspace, plus a 12-dimensional clock subspace.

Although these modifications do not get rid off all difficulties, a comprehensive analysis
of the resulting instances can be used to demonstrate that a hybrid algorithm can determine
the satisfiability status of all input instances. Briefly, the classical part of the algorithm
evaluates the structure of the clauses in the instance and concludes whether it is trivially
unsatisfiable, trivially satisfiable, or is one requiring the assistance of a quantum subroutine.
Trivially unsatisfiable instances are those whose clause arrangement imply one or several
clauses cannot be simultaneously satisfied, like those that violate monogamy of entanglement.
On the other hand, trivially satisfiable instances are those whose clauses do not create any
conflicts but whose structure is simple enough that the satisfying state can be inferred, like
those with a proper structure and uninitialized data particles. We show that the only type
of instances that are not in either one of these cases, are those like Figure 2a which express
the computation of a quantum circuit on initialized ancilla qubits. For these instances,
the classical algorithm makes use of a quantum subroutine that executes the quantum
circuit expressed by the instance, while simultaneously measuring the eigenvalues of relevant
projectors. The measurement outcomes indicate whether the instance should be accepted or
rejected.

2.2 Reducing the qudit dimensionality

This section argues that even by removing the projectors that demand successive clock (or
endpoint) particles must be entangled with each other, the satisfiability of instances remains
the same. Specifically, we argue that the propagation rules, the choice of clock encoding,
and the requirement to maintain a consistent clock register state at all times suffice to show
that any instance in which the clock particles are not arranged linearly and do not point
in the same direction is unsatisfiable. Consequently, there is no longer a need for auxiliary

8 Although the data particles are 3-dimensional and the unitaries are gates from a set designed to act on
qubits, these cause no conflicts as the gates will never act on undefined data particles.
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(a)

|0⟩

U
|0⟩|ψwit⟩

(b)

Figure 3 (a) Toy example of an input “quantum” instance with a TACC of length L = 4, acting
on four logical qudits and two witness qudits. Although not illustrated, the Πprop clauses are
assumed to have unitaries U1, . . . , U4 which act only on the logical qudits of the instance. These
unitaries define a circuit U = U4U3U2U1. (b) Quantum circuit representing the instance on the left.

subspaces or endpoint particles. Together, these results show that while the use of monogamy
of entanglement in the construction does facilitate some proofs, it is not crucial for the
construction. Removing these elements reduce the local dimension from 17 down to 6.

The main challenge in this construction stems from the weaker constraints that the Πinit

and Πout clauses set instead of the endpoint particles. In summary, instances with more than
a single Πinit/Πout pair may now be satisfiable. Part of the proof of this section requires
showing that if such sub-instances are potentially satisfiable, they can be further separated
into smaller linear instances, each with a single Πinit/Πout pair. Each of these smaller pieces
is then satisfied by a history state, while the clauses connecting them together (arranged in
any shape) can be satisfied trivially. For this reason, we have used the term semilinear in
the name of the resulting problem.

2.3 QCMA-complete problem
The construction from Section 2.2 can be modified to generate a QCMAG8

1 -complete problem.
Moreover, since QCMAG8

1 = QCMA [27], this results in a QCMA-complete problem. Although
there are already many problems known to be complete for this class [19, 42, 21, 24, 40],
none of them are strong QCSPs.9

In Section 2.1, we argued that the unconstrained or “free” logical qudits of an instance
allowed one to guess what state of these qudits (the witness state) might satisfy the instance.
This freedom made the problem more difficult and thus not likely contained in BQP1. For
this reason, we introduced the undefined state |?⟩, which simplified these instances and made
them decidable in BQP1. In this construction, we seek to construct a problem that sits in
between these two classes so it is QCMA-complete. To accomplish this, we desire to have
“free” logical qudits to accommodate a witness state that helps verify whether the instance is
satisfiable, but have some sort of constraint to demand that the state is classical.10

In practice, creating these constraints is challenging since any superposition of two
satisfying states will also satisfy the clause. Instead, we set the constraints such that if there
exists a quantum witness state that is part of a satisfying state, there is also a classical

9 While Ref. [40] also defines a QCMA-complete QSAT problem, it requires additional promise conditions.
10We continue using the undefined state for logical qudits whose initial state is not constrained so the

difficulty of the problem does not become QMA.
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witness state. Loosely, we accomplish this by defining new witness qudits and create a new
constraint Π|00,11⟩

init that connects a witness qudit with a logical one, and require that they
are both either |00⟩, |11⟩, or in a superposition of the two.11 In this way, the two qudits are
partially “free” as there is some freedom to their state, yet posses some desired structure.
Importantly, we ensure that the witness qudits do not form part of the computation after
this initial point.

To see why this leads to the desired effect, consider the toy instance of Figure 3 and
suppose there exists a state |ψwit⟩ of the four “free” qudits that leads to a satisfying
state. Observe that to satisfy the Π|00,11⟩

init clauses, this state must be of the form |ψwit⟩ =
(α00 |0000⟩ +α01 |0011⟩ +α10 |1100⟩ +α11 |1111⟩)L1,W1,L2,W2 with

∑
b∈{0,1}2 |αb|2 = 1, which

we can rewrite in a more convenient form as |ψwit⟩ =
∑

b∈{0,1}2 αb |b⟩L ⊗ |b⟩W . Then, a state
that satisfies all clauses of the instance is the history state

|ψhist⟩ = 1√
5

4∑
t=0

[Ut . . . U0 |00⟩ ⊗ |ψwit⟩] ⊗ |d . . . d︸ ︷︷ ︸
t

at r . . . r︸ ︷︷ ︸
4−t

⟩

= 1√
5

4∑
t=0

∑
b∈{0,1}2

αb |ξt
b⟩ ⊗ |b⟩W ⊗ |d . . . d︸ ︷︷ ︸

t

at r . . . r︸ ︷︷ ︸
4−t

⟩ ,

(1)

where |ξt
b⟩ := Ut . . . U0 |00⟩ ⊗ |b⟩L. Now, let us argue that there is also a classical witness

that leads to a satisfying history state. First, observe that any basis state |b⟩L ⊗ |b⟩W with
|αb| > 0 from the decomposition of the witness satisfies the Π|00,11⟩

init clauses. Consequently,
the history state above but with initial state |00⟩ ⊗ |b⟩L ⊗ |b⟩W satisfies the Π|0⟩

init, Π|00,11⟩
init ,

and Πprop clauses of the instance. Finally, to show that this state also satisfies the Πout

clause, recall that this clause is satisfied if at time t = 4, the probability that the second
qubit yields outcome “1” when measured is 1. As shown in Equation (3), this probability
can be written as

Pr(outcome 1) =
∑

b,b′∈{0,1}2

αbα
∗
b′ ⟨ξ4

b′ | ⊗ ⟨b′| Π(1) |ξ4
b ⟩ ⊗ |b⟩ =

∑
b∈{0,1}2

|αb|2 ⟨ξ4
b | Π(1) |ξ4

b ⟩

where Π(1) := |1⟩⟨1|2 ⊗ Irest, and in the last equality we observed that ⟨b′|b⟩ = δb,b′ . Then, by
the assumption that the instance is satisfiable, it must be that ⟨ξ4

b | Π(1) |ξ4
b ⟩ = 1 for all basis

states |b⟩ with |αb| > 0. This can also be understood as the probability that at the end of
the circuit, the second qubit yields outcome “1” when the witness is the basis state |b⟩ ⊗ |b⟩.
Therefore, the history state of Equation (1) with classical witness |ψwit⟩ = |b⟩L ⊗ |b⟩W also
satisfies all clauses of the instance.

The remaining parts of the proof require showing that all new possible qudit connections
with new Π|00,11⟩

init clause can still be handled, as well as demonstrate perfect completeness and
bounded soundness of the hybrid algorithm. For the latter, the majority of the arguments
from the BQP1 construction also directly apply here.

2.4 coRP-complete problem
In Section 2.1, we mentioned that the satisfiability of some instances is decided through
a quantum circuit. In particular, this circuit was used to verify the satisfiability of the
simultaneous Πprop clauses and final Πout clauses. For the latter, the circuit executed

11 The local Hilbert space is then 8-dimensional, as it composed of a 3-dimensional data subspace, a
3-dimensional clock subspace, and a 2-dimensional witness subspace.
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the quantum circuit UT . . . U1 on input |0⟩⊗q, measured some of the qubits, and accepted
or rejected depending on the measurement outcomes. Intuitively, to generate the coRP-
complete problem, we would like to replace the universal quantum circuit by a universal
classical reversible circuit R = RT . . . R1 (reversibility is needed since the best potentially
satisfying state is still a quantum history state) and introduce randomness into the instance
by initializing p ancilla qubits to |+⟩. Then, for these new sub-instances, we could analogously
verify the Πout clauses by sampling a bitstring b ∈ {0, 1}p, evaluating the circuit R on input
(0q, b) and deciding on its satisfiability based on the final state of the bits. While this idea is
close to the actual construction, for reasons mentioned in the full version of the text, it is
not sufficient to decide all instances.

For the construction to work, we also incorporate elements of the QCMA problem from
the previous section. Namely, we modify the Π|00,11⟩

init clause so it initializes both a witness
(now referred to as auxiliary qudit as we remove the freedom) and a logical qudit to the
maximally entangled state |Φ+⟩. This new clause is denoted Π|Φ+⟩

init .
Again using the toy example of Figure 3 (replacing the Π|00,11⟩

init clauses by Π|Φ+⟩
init clauses

and the unitaries Ui by reversible classical gates Ri), let us illustrate how this construction
allows us to verify the satisfiability of Πout clauses. If the instance is satisfiable, the satisfying
state must be the history state

|ψhist⟩ = 1√
5

4∑
t=0

[
Rt . . . R0 |00⟩ ⊗ |Φ+⟩⊗2 ]

⊗ |d . . . d︸ ︷︷ ︸
t

at r . . . r︸ ︷︷ ︸
4−t

⟩

= 1√
5

4∑
t=0

∑
b∈{0,1}2

1
2 |ξt

b⟩ ⊗ |b⟩Aux ⊗ |d . . . d︸ ︷︷ ︸
t

at r . . . r︸ ︷︷ ︸
4−t

⟩ ,

where in the second line we observed that |Φ+⟩⊗p = 2− p
2

∑
b∈{0,1}p |b⟩L ⊗ |b⟩Aux for any

p ∈ N, and defined |ξt
b⟩ := Rt . . . R1 |00⟩ ⊗ |b⟩L. The Πout clause is satisfied if at time t = 4,

the probability that the second qubit yields outcome “1” when measured is 1. This probability
is given by

Pr(outcome 1) = 1
4

∑
b,b′∈{0,1}2

⟨ξ4
b′ | ⊗ ⟨b′| Π(1) |ξ4

b ⟩ ⊗ |b⟩ = 1
4

∑
b∈{0,1}2

⟨ξ4
b | Π(1) |ξ4

b ⟩ ,

from where it is evident that if the instance is satisfiable, ⟨ξ4
b | Π(1) |ξ4

b ⟩ = 1 for all b ∈ {0, 1}2.
Hence, it is possible to verify the Πout clause by sampling one of the strings b, running circuit
R on input (02, b), and measuring the state of the second qubit.

Another important consideration is that the classical reversible gate set must be chosen
with care. Although not covered in this version of the paper, we usually desire that G is
a gate set such that all gates in the set change the basis states upon application, and so
V (Πi) of Equation (2) can be implemented perfectly with gates from this set. Here, only the
first property is relevant. We choose G = {X, (X ⊗X ⊗X)Toffoli}, which clearly satisfies
this property and is also a universal gate set for reversible classical computation. As a
consequence, the QSAT problem of this section has 5-local clauses since the Πprop clauses
may use a Toffoli. This is the best locality we can achieve as it is also well known that any
universal gate set for reversible quantum computation must include a 3-bit gate.

2.5 Universality of qubits for QCSPs
In previous sections, we showed that there are QSAT problems acting on qudits that are
complete BQPG8

1 , QCMA, and coRP. Here, we refine these statements and show that there
are QSAT problems on qubits (albeit with higher locality) that are also complete for these
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classes. To achieve this, we show that any QCSP on qudits can be reduced to another QSAT
problem on qubits using little computational power. We note that this section, apart from
some changes in the exposition, stems directly from Ref. [32].

At first glance, this statement may seem trivial as operations on qubits are universal
for quantum computation, i.e. we can emulate a d-qudit with a ⌈log2(d)⌉ qubits and carry
out unitaries on those qubits. For our QSAT problems, it is true that any instance retains
its satisfiability status when expressed in terms of qubits. However, it is not clear if all
input instances generated with these new qubit clauses are contained within this class. For a
successful reduction, we must have both.

For an even more explicit example, let us first represent the basis clock states using
qubits as: |r⟩ := |00⟩, |a⟩ := |01⟩, and |d⟩ := |10⟩. The Πstart = |r⟩⟨r| clause (defined exactly
as Pinit in Equation (7)) can now be written as Πstart = |00⟩⟨00| + |11⟩⟨11|, where the
last term is to prevent the fourth basis state |11⟩, which did not exist before. The clause
(|00⟩⟨00| + |11⟩⟨11|)1,2 + (|00⟩⟨00| + |11⟩⟨11|)2,3 acting on three qubits is now valid and is
satisfied by the state |010213⟩. This state, however, presents some ambiguity: either we have
|r⟩ on qubits 1 and 2, or |a⟩ on qubits 2 and 3. In general, decomposing all clauses into qubits
and considering all input instances that may occur adds a significant level of complexity
to the problem, making it difficult to determine if it remains in the same class. Moreover,
we remark that this is not only particular to our QSAT problems, but in fact applies to all
CSPs and QCSPs defined on qudits or non-Boolean variables! In general, the issue is that we
cannot ensure that the new qubit clauses are applied to qubits in a consistent fashion based
on its parent qudit problem. For example, a qubit clause might treat a particular qubit
as “qubit 1” of a previous d-qudit, while another clause might refer to the same qubit as
“qubit 2”. Moreover, the qubit clauses could also “mix and match”, combining “qubit 1” from
one previous d-qudit with “qubit 2” from another d-qudit (as in the example with Πstart).
Overall, these lead to constraints that were unrealizable in the parent qudit problem.

Our main result of this section shows that with a more clever reduction than directly
decomposing a d-qudit into ⌈log2(d)⌉ qubits, we can guarantee that a satisfiable/unsatisfiable
instance on qubits maps to one on qudits with the same satisfiability status. This is something
that is not known to be possible classically! More formally, we show that

▶ Theorem 10 (Theorem 6; formal). For any QCSP C on d-qudits, there is another QCSP
C′ on qubits, and AC0 circuits f and g, such that f reduces C to C′, and g reduces C′ to C. If
C is k-local, then C′ can be chosen to be 4 · 2⌈log2(⌈log2(d)⌉)⌉k local (that is, O(log(d)) times
larger.)

The main idea behind the proof is that in the quantum world, we can fix the issues
mentioned above by again using monogamy of entanglement to bind together our constituent
qubits into ordered, entangled larger systems. Ultimately, each clause in the resulting qubit
problem incorporates new projectors that force a particular ordering of qubits, and any two
clauses that try to “mix and match”, or use the same set of qubits but with different ordering,
are necessarily frustrated.

If in Theorem 10 we do not require the reductions to be in AC0, and instead allow
P-reductions, a locality of 4⌈log2(d)⌉k suffices. This is used in Corollary 7.

2.6 Direct sum and direct product problems
There is a notion of direct sum (denoted by “⊕”) and direct product (denoted by “⊗”) on
CSPs and QCSPs that allow us to define the remaining six complete problems. To be clear,
these are operations on languages themselves, not on instances. For example, we can talk
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about the languages 3-Colorable ⊕ 4-SAT and 3-Colorable ⊗ 4-SAT. Although this
notion appears to be quite natural, we were unable to find many sources discussing such
ideas – possibly because the classical theory is not as exciting, for reasons we also discuss.
The relevant task here is to demonstrate that sum and product QCSPs inherit completeness
properties from their constituents. In this way, we are able to construct QCSPs that are
complete for PI and SoPU classes, defined as follows.

▶ Definition 11 (Pairwise intersection of classes). If C1 and C2 are two complexity classes
(any sets of languages), then PI(C1, C2) is the class that denotes the pairwise intersection of
C1 and C2. In other words, it is the class of languages that can be written as the intersection,
i.e. the logical AND, of a language in C1 and a language in C2.

▶ Definition 12 (Star of pairwise unions of classes). If C1 and C2 are two complexity classes,
then their star of pairwise unions, denoted SoPU(C1, C2), is a complexity class defined as
follows: for each language L1 ∈ C1 and L2 ∈ C2, let d be a fresh symbol that is not in the
alphabet of L1 or L2. Then, the language (dL1|dL2)∗ is in SoPU(C1, C2). SoPU(C1, C2) is the
closure of all such languages under L (logspace reductions).

Definition 12 merits a brief explanation. For a pair of languages L1 and L2, what
do the strings in the language L := (dL1|dL2)∗ look like? Given an input string like
d010011d101101d101001, it will belong to L if and only if each of the three bitstrings
{010011, 101101, 101001} belongs to either L1 or L2. If C is a complexity class powerful
enough to break apart the individual bitstrings from the d-delimited string, as well decide
both L1 and L2, then SoPU(C1, C2) ∈ C.

We begin discussing that there are CSPs that are complete for these classes, and then
extend this to the quantum setting since the latter follows almost identically.

2.6.1 Direct product of constraint satisfaction problems
To begin, it is useful to recall the precise definition of a CSP. A constraint satisfaction
problem is a triple (V,D,C), where V = {v1, . . . , vn} is a finite set of variables, each taking
a value from the domain D. If the domain is D = {0, 1}, then we have a Boolean CSP, and
can be generalized to dits if D is instead D = {0, . . . , d}. C is a set of constraints, where
each constraint c ∈ C restricts the values that a subset of the variables may take.

Now, let L1 and L2 be two CSPs with domains D1 and D2, and allowed constraints C1
and C2, respectively.

▶ Definition 13 (Direct product of CSPs). Given the CSPs L1 and L2, their direct product
L1 ⊗ L2 is a CSP whose domain is the Cartesian product D1 ×D2. Each constraint ci ∈ C1
(resp. C2) of locality k leads to a constraint c′

i in L1 ⊗ L2, also of locality k, as follows. A
tuple (v1, v2, . . . , vk) ∈ (D1 ×D2)k, where each entry vi = (vi,1, vi,2), belongs to c′

i if the tuple
(vi,1, . . . , vk,1) belongs to ci. Each constraint in L1 ⊗ L2 arises this way from a constraint in
L1 or L2.

The goal of this subsection is to show that when one CSP is complete for a complexity
class A, and another is complete for a class B, the product problem is complete for the
complexity class PI(A,B). Formally,

▶ Theorem 14 (Completeness of direct products for PI). Let M be a set of functions closed
under composition with local functions, and closed under concatenations (i.e. if some f, g :
Σ∗

1 → Σ∗
2 are each in M , then h : x → f(x)g(x) is as well). Let L1 be a CSP complete under
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M -reductions for a class C1, and likewise L2 be complete for C2. Assume that each of C1 and
C2 are closed under reductions by local functions, closed under intersections, and contain
the language All of all strings, Σ∗. Then, the direct product L1 ⊗ L2 is complete under
M -reductions for PI(C1, C2).

The assumptions in this theorem are mild and satisfied even for AC0-reductions and
most complexity classes. In other words, this theorem essentially states that if we have CSPs
complete for “reasonable” classes C1 and C2, the product CSP is complete for PI(C1, C2).

2.6.2 Direct sum of constraint satisfaction problems
If direct products let us express (informally) a “two-input logical AND” of two CSPs, then
direct sums let us express “unbounded-fanin AND of fanin-2 ORs”.

▶ Definition 15 (Direct sum of CSPs). Given the CSPs L1 and L2, their direct sum L1 ⊕L2
is a CSP whose domain is the disjoint union D1 ·∪D2. Each constraint in L1 ⊕ L2 is either
of the form ci ∪

(
Dk

2
)
, where ci ∈ C1 is a constraint of locality k; or it is ci ∪

(
Dk

1
)

for some
ci ∈ C2.

To better understand this definition, consider an instance of L1 ⊕ L2 with a single
connected component, and assume that it is satisfiable.12 The definition of the problem
and this assumption imply that any satisfying state must either have all variables set to
values from D1, or all of them must be from D2. Then, for a general instance of L1 ⊕ L2,
solving the problem amounts to identifying all of the connected components, and for each
one determine whether it can be satisfied entirely from values of D1 or D2. The instance is
satisfiable iff all components are as well.

One might expect that, by analogy with the direct product, the sum of CSPs should then
be complete for the pairwise union of two classes, PU(A,B). This would be true if we only
had to worry about problems that formed a single connected component, which is not the
case. This is why we must define the “star of pairwise unions” as in Definition 12. The goal
of this section is to demonstrate this fact formally.

▶ Theorem 16 (Completeness of direct sums for SoPU). Let be M a set of functions closed
under composition with logspace-computable functions (such as the set of logspace functions
themselves, FL). Let L1 be a CSP complete under M -reductions for a class C1, and likewise
L2 be M-complete for C2. Assume that each of C1 and C2 are closed under M-reductions,
and contain the language None of no strings, ∅. Then, the direct sum L1 ⊕ L2 is complete
under M -reductions for SoPU(C1, C2).

2.6.3 Quantum sums and products
The constructions above transfer in a very natural way to the quantum setting. Now, instead
of domains that are a Cartesian product or disjoint union, the Hilbert spaces are a tensor
product or direct sum. The clauses are accordingly built as tensor products and direct sums.

▶ Definition 17 (Direct product of QCSPs). Given the QCSPs L1 and L2, their direct product
L1 ⊗L2 is a QCSP whose domain is the tensor product Hilbert space D1 ⊗D2. Each operator
Hi in L1 leads to an operator Hi ⊗ I, a tensor product with the identity, and likewise for L2.

12 A connected component of a CSP is a connected component in the graph for that CSP, where the vertices
are variables, and there is an edge between variables if they share a constraint.
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▶ Definition 18 (Direct sum of QCSPs). Given the QCSPs L1 and L2, their direct sum
L1 ·∪ L2 is a QCSP whose domain is the direct sum Hilbert space D1 ⊕D2. Each operator
Hi in L1 leads to an operator Hi ⊕ 0, a direct sum with the 0 operator, requiring that a
frustration-free state lies in the null space of Hi or the right half of the direct sum (or a
linear combination). Likewise for operators in L2.

These have the same essential properties as the direct product and sum for classical CSPs,
where we can produce product and sum instances that are satisfiable iff both (resp. either)
of the original instances are satisfiable.

Given the discussion above on languages and strings of symbols, one might think that we
must talk about quantum states and concatenations of strings of qubits. This is not the case.
The strings of symbols are just the encoding of the constraints, which are classical data even
for a QCSP. The only quantum-specific requirements involve checking that tensor products
or embeddings of satisfying states yield another satisfying state; and the appropriate converse
properties. These follow directly from the definition of tensor products and direct sums.

2.6.4 Basic class properties
Here, we state some basic properties of general PI(A,B) and SoPU(A,B) classes.

▶ Lemma 19. If the class B includes the language All of all strings, then A ⊆ PI(A,B).
Similarly, if B includes the language None of no strings, then A ⊆ SoPU(A,B).

▶ Lemma 20. PI and SoPU respect the inclusion order of complexity classes. That is, A ⊆ C

and B ⊆ D implies PI(A,B) ⊆ PI(C,D) and SoPU(A,B) ⊆ SoPU(C,D).

SoPU generally leads to a more powerful class than PI, that is:

▶ Lemma 21. If classes A and B are closed under reductions by local functions, then
PI(A,B) ⊆ SoPU(A,B).

This is apparent from the definition of these classes since SoPU is also required to compute
the AND of multiple inputs. It is also true that PI and SoPU do not increase the power of
classes by combining a class A with something weaker. Formally:

▶ Lemma 22. If A is closed under intersection, and B ⊆ A, then PI(A,B) ⊆ A. More-
over, if A is closed under logspace reductions, unions, and delimited concatenation, then
SoPU(A,B) ⊆ A.

2.7 New complete problems
As mentioned previously, while the notion of product and sum of constraint problems seems
natural, classical constraint problems do not seem to offer such a rich theory. This is due to the
fact that most classes with complete CSPs are contained within each other. Indeed, Allender
et al.’s refinement of Schaefer’s dichotomy theorem states that all Boolean CSPs are either in
co-NLOGTIME; or are complete for L, NL, ⊕L, P or NP under AC0 reductions [3]. With the
exception of NL and ⊕L, all possible pairs from this list have an obvious containment relation,
so the only nontrivial consequence would be that there exists a CSP, on a domain of size
four, that is PI(⊕L,NL)-complete under AC0 reductions. However, under the more common
P -reductions, the complexity of these problems becomes either in P or NP-complete.13 Then,

13 The same is true for CSPs defined on qudits [43].
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since P ⊆ NP and these classes meet all properties discussed in Lemma 22, it follows that
products or sums of these problems result in complexity classes that are trivially equal to
NP. For example, 2-SAT ⊕ 3-SAT and 2-SAT ⊗ 3-SAT are complete problems for PI(P,NP)
and SoPU(P,NP), but these classes are trivially equal to NP.

This is no longer the case in this work. The seven classes we have discussed so far
which have complete CSPs are P, coRP, BQP1, NP, QCMA, and QMA1. Importantly,
these all have the closure properties discussed in this section so far: union, intersection,
logspace reductions, and delimited concatenation; and they all include the trivial problems
ALL and NONE. Among these classes, most pairs {A,B} have A ⊆ B, in which case
PI(A,B) = SoPU(A,B) = B. However, there are three pairs that are not known to contain

each other, these are: coRP
?
⊆ NP, BQP1

?
⊆ NP, and BQP1

?
⊆ MA. Each of these pairs leads

to two new classes PI(A,B) and SoPU(A,B), that are not obviously equal to some other
known class. Together, we obtain six more complexity classes with complete QCSPs.

2.7.1 Relations to other classes
Notably, the pair coRP and NP involves only classical classes, and accordingly there is more
theory already developed around them.

From the lemmas stated earlier in this section, one can show that NP ⊆ PI(coRP,NP) ⊆
SoPU(coRP,NP) ⊆ MA. In addition to this, we can relate PI(coRP,NP) to the class DP :=
PI(NP, coNP) studied in Ref. [34]. This class forms the second layer of the boolean hierarchy
BH, i.e. DP = BH2 [13]. Since coRP ⊆ coNP, Lemma 20 tells us that PI(coRP,NP) ⊆ DP.
On the other hand, SoPU(coRP,NP) does not obviously lie in the Boolean hierarchy. If the
class was a simple pairwise union (instead of the “star of pairwise unions”), it would lie in
BH3 – the pairwise union of DP and NP. However, it seems unlikely that SoPU(coRP,NP)
falls within this class, as doing so would require showing that one could condense the long
list of checks required to decide a SoPU problem down to only two queries. In this line
of thought, we know that queries to an NP oracle do not need to depend on each other
adaptively, so SoPU(coRP,NP) is contained in P||NP = PNP[log], studied in Refs. [11, 25].14

These classes are also related to two interesting collapse statements. First, observe
that if P = RP (derandomization), then coRP = P ⊆ NP and so NP ⊆ PI(coRP,NP) ⊆
SoPU(coRP,NP) = SoPU(NP,NP) = NP. Moreover, an even weaker version of derandom-
ization where NP = MA would also lead to a collapse. Here, since coRP ⊆ MA, we have
NP ⊆ PI(coRP,NP) ⊆ SoPU(coRP,NP) ⊆ SoPU(MA,NP) = SoPU(NP,NP) = NP. Second,
we see that if NP = coNP (concise refutations), then coRP ⊆ coNP = NP.

For the PI and SoPU classes that involve BQP1, NP, or MA, it seems difficult to state
other inclusions, besides the fact that they lie above BQP1 and below QCMA.

3 Discussion and open questions

Perhaps the most interesting points of discussion are the implications of Corollary 9. In the
latter case, if a complete classification theorem for QSAT problems shows that there are
fewer than 13 classes, this would present exciting implications as equalities between some
of these classes tackle many interesting and open questions (see Figure 1). This is true
even for adjacent classes. For instance, P = coRP would imply that probabilistic algorithms

14 P||NP is the class of problems that can be solved by a P machine with polynomially many nonadaptive
NP queries, or alternatively, logarithmically many adaptive queries.
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with perfect completeness can be derandomized, and QCMA = QMA1 would imply that any
quantum-verifiable problem (with perfect completeness) could be verified using a classical
witness state. Even for the PI and SoPU classes defined here, we have that if PI(A,B) = A,
then B ⊆ A. As mentioned in Section 2.7, it is expected through derandomization conjectures
that some of these classes are in fact equal to each other. Even if this classification theorem
proves any of these conjectures, it would be a great result since such proofs have eluded us
for many decades. In the former case of Corollary 9, a classification showing that there are
more than 13 classes would be a stark contrast with classical CSPs, which can be completely
classified as being either in P or NP-complete [38, 43]. This would highlight the more rich
and complex panorama of strong QCSPs, and establish a larger repertoire of problems from
which to construct reductions and potentially describe the complexity of other problems.

This last point also raises the question whether there could be other classes with complete
QSAT problems. Considering those corresponding to polynomial-time computation and
verification, we think that this is unlikely. For example, we have not mentioned complete
QCSPs for BPP, BQP, or QMA. Since coRP ⊆ BPP, BQP1 ⊆ BQP, and QMA1 ⊆ QMA,
there are clearly strong QCSPs in these classes. However, the challenge lies in proving their
hardness: as shown in Section A.3, these proofs usually require encoding a probabilistic
circuit into an instance of this problem. As is also shown there, perfect completeness is critical
for the construction, and thus does not work for a circuit with two-sided error. Adressing
this would require a different technique.15 A positive resolution could arise if these classes
admit a scheme that boosts their acceptance probabilities to 1. Jordan et al. [27] showed
that this was possible for QCMA (demonstrating that QCMA = QCMA1), but whether this
is possible for BPP, BQP, or QMA remains an open question. Another set of classes we have
not considered, are those with no error. Little is known about these classes as they appear to
be extremely difficult to work with since the perfect soundness requirement implies that no
incorrect instance is ever accepted. Besides classes related to polynomial-time computation
and verification, there could be other classes with complete QCSPs. After all, the complexity
class landscape is vast.

In Theorems 2 and 5, we describe two new types of QSAT problems that can be solved
efficiently with a quantum or probabilistic classical computer. Unfortunately, the projectors
used in these problems are artifacts built to achieve these results and do not immediately
correspond to QSAT problems of interest, even in the qubit case. Recent developments in
the fields of quantum chemistry [5], high-energy physics [35] and nuclear physics [10, 16, 17]
have shown that 3- or 4-local Hamiltonians are sometimes necessary to explain emergent
physics. The QSAT problems for these Hamiltonians are not immediately tractable as k ≥ 3,
so it would be exciting to determine if these problems, or others, fall within these complexity
classes. We hope that having demonstrated that such problems exist, our results inspire
others to search for more relevant cases.

Finally, Theorem 8 adds an additional six classes to the set of classes with strong QCSP
complete problems. Beyond the inclusions shown in Figure 1, little is known about them. It
would thus be interesting to investigate how these classes relate to others, and which other
problems fall within them.

15 Another technique is to reduce an already known hard problem into an instance of the target problem.
For the LH problem, this is done via perturbation theory gadgets [28, 39, 18]. However, these gadgets
rely on approximations and hence do not preserve perfect completeness.
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A Notation and background

A.1 Notation
For a bitstring x, let |x| denote the number of bits in x.

A promise problem A = (Ayes, Ano) is a computational problem consisting of two non-
intersecting sets Ayes, Ano ⊆ {0, 1}∗ where given an instance x ∈ {0, 1}∗ (promised to be in
one of the two sets), one is tasked to determine if x ∈ Ayes (x is a yes-instance) or x ∈ Ano

(x is a no-instance).16 If Ayes ∪Ano = {0, 1}∗, then A is called a language. For an instance
x, we let n = |x| denote the size of x.

For some complexity classes, we specify the gate set used. Here, we use the Clifford-
cyclotomic gate sets Gm defined in Ref. [4]. Specifically, we only consider those that are a
power of two. These are: G2 := {X,CNOT,Toffoli, H ⊗H}, G4 := {X,CNOT,Toffoli, ζ8H},
and for l ≥ 3, G2l := {H,CNOT, T2l}. Here, T2l = diag(1, ζ2l) where ζ2l = e2πi/2l is a
primitive 2l-th root of unity.

In all quantum circuits considered here, we let U0 = I be a dummy unitary used for
convenience. The same is true for classical circuits Q and classical reversible circuits R.
For circuits that decide computational problems, we let ans denote the qubit that when
measured provides this decision. We accept the instance if the qubit is measured and yields
outcome “1”, and reject otherwise. Usually, ans is the first ancilla qubit of the circuit.

For a circuit Un that decides an instance x with |x| = n, we denote Ux as the circuit
where the instance x is encoded into it and the inputs are only ancilla qubits in the |0⟩ state.

A.2 Classes with perfect completeness
This version of the paper assumes familiarity with basic complexity classes; for a detailed
introduction, we refer the reader to the full version of the paper [14]. Here, we only discuss a
variation of probabilistic complexity classes with perfect completeness.

These are the classes where the acceptance probability of yes-instances is equal to one,
and they are one of the two types of classes with one-sided error. Although these classes
appear to be similar to their two-sided error variation, quantum complexity classes with
one-sided error require a more precise treatment as they are not known to be independent

16 The asterisk over the set is known as the Kleene star and is used to represent strings of any finite size.
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of the gate set used. Indeed, the Solovay-Kitaev theorem [29] used to resolve this issue for
classes with two-sided error only works for approximate equivalence of universal gate sets
and not perfect equivalence. Thus, for classes with one-sided error (with some exceptions),
one must specify the gate set used by the quantum circuits. This is not the case for classical
complexity classes as it is known that every classical circuit using gate set G can be perfectly
simulated by another circuit using a universal gate set G′.

Given this discussion, we can then define one-sided error classes as follows:

▶ Definition 23 (Classes with perfect completeness). Let C be a complexity class with two-sided
error. The variant of this class with perfect completeness is defined in a similar way to C
except for the following differences:
1. For a promise problem A, the acceptance probability must be exactly 1 when x ∈ Ayes.
2. If C is a quantum complexity class, the gate set G used by the quantum circuits {Un} must

be specified.
The class is generally denoted as C1, or CG

1 if it is a quantum complexity class.

This sensibility to the gate set in quantum complexity classes is the reason why, in Theorems 1
and 2, we explicitly state that LCT-QSAT and SLCT-QSAT are complete for BQP1 with the
particular choice of gate set G8. It also presents other complications. To see this, consider
BQP. It is evident that BQPG

1 ⊆ BQP for any arbitrary gate set G, and also that P ⊆ BQP.
However, is it true that P ⊆ BQPG

1 ? Fortunately, one can show that for the Clifford+T gate
set (i.e. G8) used in this paper, the class BQPG8

1 follows the intuitive containment of classes.
Interestingly, Jordan et al. [27] showed that if the circuits that decide a QCMA problem

consist of gates with a succinct representation (e.g. G8), the acceptance probability of yes-
instances can be amplified additively to be exactly 1. In other words, they showed that
QCMA ⊆ QCMAG8

1 , concluding that QCMAG8
1 = QCMA. This explains why in Theorem 4

we state that the problem Witnessed SLCT-QSAT is QCMA-complete. To this day, it
remains an open question whether a similar scheme can also work for BQP and QMA. In the
case of QMA, it seems this is not the case as one can show that there exists an oracle for
which QMA ̸= QCMA1 [1]. However, a similar claim was made about QCMA and QCMA1.

A.3 k-QSAT & the Circuit-to-Hamiltonian transformation
Here, we introduce Quantum k-SAT (denoted here as k-QSAT) as presented by Gosset and
Nagaj in Ref. [22]. We present relevant parts of the proofs showing that k-QSAT is contained
in QMA1 for any constant k, and QMA1-hard for k ≥ 6. While Bravyi’s [6] original work
demonstrates hardness for k ≥ 4, we choose to present this slightly weaker result for brevity,
but also to introduce our clock encoding and notation useful for the rest of this paper.

As we are working to prove the inclusion and hardness of this problem for a class requiring
perfect completeness, it is necessary to specify the gate set used by the quantum circuits.
For reasons discussed below, we choose G8. In addition, we also have to be wary that
all operations can be performed with perfect accuracy using gates from this set and all
measurements are in the computational basis. For this purpose, Gosset and Nagaj introduce
the following set of projectors.

▶ Definition 24 (Perfectly measurable projectors). Let P be the set of projectors such that
every matrix element in the computational basis is of the form 1

4 (a+ ib+
√

2c+ i
√

2d) for
all a, b, c, d ∈ Z.

The (promise) problem k-QSAT can be defined as follows.
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▶ Definition 25 (k-QSAT). Given an integer n and an instance x consisting of a collection
of projectors {Πi} ⊂ P where each Πi acts nontrivially on at most k qubits, the problem
consists on deciding whether (1) there exists an n-qubit state |ψsat⟩ such that Πi|ψsat⟩ = 0
for all i, or (2) for every n-qubit state |ψ⟩, Σi ⟨ψ|Πi|ψ⟩ ≥ 1/poly(n). We are promised that
these are the only two cases. We output “YES” if (1) is true, or “NO” otherwise.

One can think of this problem as being presented with a list of constraints or clauses (the
projectors Πi) and tasked with distinguishing between the following cases: (1) there exists
a state that satisfies all constraints (a satisfying state), or (2) any possible state induces
a violation of the constraints greater than 1/poly(n). The promise sets the conditions for
classifying instances as either x ∈ Ayes or x ∈ Ano.17

A.3.1 In QMA1

Suppose we are presented with a witness state |ψwit⟩ and a k-QSAT instance composed
of projectors {Πi}. The quantum algorithm that decides whether this state satisfies all
projectors Πi consists of simply measuring the eigenvalues of all projectors on this state.
Then, if all measured eigenvalues are 0, we conclude that all projectors are satisfied by the
state and output “YES”. Otherwise, we reject.

Specifically, we measure the eigenvalue of a projector Πi by applying the unitary

V (Πi) = Πi ⊗X + (I − Πi) ⊗ I, (2)

to the witness and an additional ancilla qubit in the state |0⟩, followed by a measurement of
the ancilla in the computational basis. Here, X denotes the Pauli-X gate. The probability
that |ψwit⟩ does not satisfy projector Πi (obtain outcome “1”) is given by

pi = ⟨ψwit| Πi |ψwit⟩ . (3)

Defining the acceptance probability as the probability that all measurements produce outcome
“0”, and assuming V (Πi) can be implemented perfectly with gate set G, one can show that
this algorithm meets the completeness and soundness conditions of QMA1, concluding that
k-QSAT is contained in this class.

As mentioned, to support this claim, it is necessary to demonstrate that V (Πi) can be
implemented perfectly using gate set G8. This follows from the fact that the projectors Πi

are from the set P together with a theorem by Giles and Selinger [20].

A.3.2 QMA1-hard
Now, we discuss elements of the proof demonstrating that k-QSAT is QMA1-hard when k ≥ 6
and for any gate set G that is universal for quantum computation.

The idea is to demonstrate that any instance x of an arbitrary promise problem in QMA1
can be transformed or reduced in polynomial time into an instance x′ of k-QSAT, where the
answer to both problems is the same for all instances. Furthermore, we also need to show
that all projectors of the resulting k-QSAT instance act on at most 6 qubits.

17Without the promise, the problem seems to become harder, as it requires distinguishing between the
case where the projectors are satisfiable, and the case where they are not but the violation induced by
some states could be exponentially close to zero. Without the promise, the problem is most likely not
contained in QMA1.
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Let Ux = UL . . . U1 with Ui ∈ G and L = poly(n) be the QMA1 verification circuit where
given an instance x of a problem A = (Ayes, Ano), Ux decides whether x ∈ Ayes or x ∈ Ano.
The input to the circuit consists of the p-qubit witness state |ψwit⟩, and a q-qubit ancilla
register D (referred to as the data register) initialized to the state |0⟩⊗q, where p and q are
two polynomials in n = |x|. Additionally, let the answer be obtained by measuring the ancilla
qubit ans in the computational basis. The goal of the reduction is to engineer a set of 6-local
projectors such that they are uniquely satisfied by the state encoding the evaluation of the
circuit U on |ϕ0⟩ := |0⟩⊗q ⊗ |ψwit⟩ at all steps of the computation. This state is appropriately
known as the (computational) history state and is given by

|ψhist⟩ := 1√
L+ 1

L∑
t=0

Ut . . . U0 |ϕ0⟩D ⊗ |Ct⟩C . (4)

Here, we have introduced a clock register C acting on a new (not yet specified) Hilbert space
used to keep track of the current step in the computation. This history state can be defined
in many ways depending on the implementation of the states |Ct⟩. In this paper, we choose
a clock encoding acting on Hclock = (C3)⊗L+1, consisting of the ready state |r⟩, the active
state |a⟩, and the dead state |d⟩. The clock progresses as

|C0⟩ = |a0r1r2 . . . rL⟩ ,
|C1⟩ = |d0a1r2 . . . rL⟩ ,

...
|CL⟩ = |d0d1d2 . . . aL⟩ .

(5)

The projectors that allow us to build the required 6-QSAT instance act on both of these
Hilbert spaces and are given by

P
(i)
init := |1⟩⟨1|i ⊗ |a⟩⟨a|0 ,

P
(i)
out := |0⟩⟨0|i ⊗ |a⟩⟨a|L ,

P
(i)
prop,U := 1

2
[
I⊗2 ⊗ |ar⟩⟨ar| + I⊗2⊗ |da⟩⟨da| − U ⊗ |da⟩⟨ar| − U† ⊗ |ar⟩⟨da|

]
,

(6)

which receive an index to specify its action on a given particle. Moreover, Pprop,U acts on
clock qudits i− 1 and i. Observe that Pinit and Pout act on a single data and clock particle,
while Pprop,U acts on two data qubits and two clock particles. As each clock particle can be
represented by two qubits, albeit a bit wastefully, it is evident that these projectors are at
most 6-local (on qubits). Other clock encodings may lead to different locality.18

Each projector in Equation (6) penalizes states that do not meet certain requirements.
(Initialization) Pinit requires that when clock particle 0 is in the state |a⟩, data qubit i is
initialized to |0⟩. (Computational propagation) Pprop,U requires that as clock particles i and
i+ 1 transition from |ar⟩ to |da⟩, U is applied to two qubits of the data register. (Readout)

18 In Ref. [6], Bravyi employs a four-state clock encoding, 2L + 1 clock basis states, and an additional
propagation projector. This allows interactions between either two clock particles at a time or one clock
particle and two data qubits, resulting in 4-local projectors. However, this comes at a cost of increased
clock particle dimensionality.
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Figure 4 Representation of a 6-QSAT instance which encodes a QMA1 verification circuit
U = UL . . . U1. For simplicity, we let U act on four data qubits: two ancilla qubits (those present in
Pinit clauses), and two for the witness state (uninitialized ones). The ancilla measured at the end of
the computation is labeled ans. The leftmost and rightmost clock particles are marked with “start”
and “stop” icons, indicating the action of Pstart and Pstop clauses, respectively. The Pclock clauses
are shown as arrows on top of Pprop,U lines, representing the clock progression.

Finally, Pout requires that when clock qudit L is in the state |a⟩, data qubit i is in the state
|1⟩.19 Aside from these projectors, one also has to define

Pstart := |r⟩⟨r|0 ,
Pstop := |d⟩⟨d|L ,

P
(i)
clock := |r⟩⟨r|i ⊗ (I − |r⟩⟨r|)i+1 + |a⟩⟨a|i ⊗ (I − |r⟩⟨r|)i+1 + |d⟩⟨d|i ⊗ |r⟩⟨r|i+1 ,

(7)

which are at most 4-local projectors requiring that the clock states have the form described
in Equation (5). Furthermore, the six types of projectors of Equations (6) and (7) are of
the form given in Definition 24 and are hence projectors from P, as required. Finally, using
these projectors, the instance that encodes the verifier circuit U = UL . . . U1 is given by

Hinit :=
∑

b∈ancilla
P

(b)
init,

Hprop :=
L∑

t=1
P

(t)
prop,Ut

Hout := P
(ans)
out ,

Hclock := Pstart + Pstop +
∑
c∈C

P
(c)
clock.

We illustrate this instance in Figure 4. The set of projectors that define this k-QSAT instance
are the individual terms of the sum. They are often grouped into positive semi-definite
terms as above for historical reasons. Briefly, the Hinit term requires that all ancilla qubits
from register D are initialized to |0⟩, leaving the data qubits for the witness state “free”
or uninitialized. Hprop defines a clock register of L+ 1 particles and requires that as time
progresses from t− 1 to t, Ut is applied to the data qubits. Hout requires that at the end of
the computation ans is measured to be “1”. Finally, Hclock requires that we obtain a running
clock register progressing as shown in Equation (5). Together, Hinit, Hprop, and Hclock

require that if there exists a state satisfying all of their projectors, the state must mimic the
evaluation of the quantum circuit U = UL . . . U1 on the state |ϕ0⟩. This is the history state

19 Unlike Bravyi [6] and Meiburg [32], we define Pout so it is satisfied when the logical qubit is in the state
|1⟩, and not |0⟩.
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of Equation (4) with the clock encoding of Equation (5). Moreover, if the verification circuit
U accepts yes-instances with certainty, the history state also satisfies Hout and is thus the
unique ground state of the 6-local Hamiltonian H = Hinit +Hprop +Hout +Hclock.

This concludes the transformation of the circuit into local Hamiltonians. Completing
the proof that 6-QSAT is QMA1-hard requires showing that, if x ∈ Ayes, then x′ has a
frustration-free ground state, and if x ∈ Ano, then the ground state energy of H is not too
low. Proving these is beyond the scope of this section.
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1 Introduction

For 30 years we have known that quantum computers can solve certain problems significantly
faster than any known classical algorithm. Traditionally, most of the research in this area has
focused on decision problems (like SAT) or function problems (like Factoring), where for each
possible input there is a unique “correct” output. However, we have also found that quantum
computers can yield speedups for the task of sampling from certain probability distributions.
Prominent examples include boson sampling [1] and random circuit sampling [8]. Sampling
tasks have seemed more natural for NISQ-era quantum computation, and indeed many of the
first candidate experimental demonstrations of quantum advantage have been for sampling
problems [6].

One of the downsides of sampling problems is the challenge of verifying the output of an
algorithm, whether classical or quantum, that claims to sample from a certain distribution.
As a simple example, consider a classical or quantum algorithm that implements a supposed
hash function with output alphabet [d] := {1, . . . , d}. The algorithm designer claims that the
output distribution of this hash function is uniform on [d]. If p denotes the actual output
distribution of the algorithm, and ud denotes the uniform distribution on [d], then we would
like to test whether p = ud, and reject the claim if p is in fact ε-far from ud in total variation
distance, meaning 1

2∥p− ud∥1 > ε. (We will also consider other distance measures in this
work, since the complexity of the testing task is sensitive to this choice.)
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This verification task is called “uniformity testing” (in total variation distance) and its
complexity is well studied in the classical literature. If we only have access to samples from
p, but are not allowed to inspect the algorithm that produces these samples, it is known
that Θ(d1/2/ε2) samples are necessary and sufficient to solve this problem; there are various
classical algorithms that achieve this bound (starting with that of [28]; see, e.g., [11] for a
detailed survey and discussion), and it is also not possible to do better with a quantum
algorithm. But what if – as in the examples above – we do have access to the algorithm that
produces p? Can we improve on this complexity if we have access to the “source code” of
the algorithm?

Having the source code

To clarify, the “source code” for a classical randomized sampling algorithm means a random-
ized circuit (with no input) whose output is one draw from p. More generally, the “source
code” for a quantum sampling algorithm means a unitary quantum circuit (with all input
qubits fixed to |0⟩) which gives one draw from p when some of its output bits are measured in
the standard basis and the rest are discarded.1 The simplest way to use the code C for p is
to run it, obtaining one sample. If C has size S, then getting one sample this way has cost S.
Another way to use the code C is to deterministically compute all its output probabilities;
this gives one perfect information about p, but has cost bound 2S . But quantum computing
has suggested a third way to use the code: “running it in reverse”. For example, Grover’s
original algorithm [18] can be seen as distinguishing two possibilities for p on [2], namely
p1 = 0 or p1 = 1/N , while using only O(N1/2) forwards/backwards executions of C. The
total cost here is O(N1/2) · S, the same as the cost for O(N1/2) samples.

We suggest that the utility of “having the source code” for distribution testing problems
remains notably underexplored. Indeed, there is significant room for improvment in the
bounds for even the most canonical of all such problems: uniformity testing. Our main
theorem is the following:

▶ Theorem 1. There is a computationally efficient quantum algorithm for uniformity testing
with the following guarantees: given ε ≥ 1/

√
d, the algorithm makes O(d1/3/ε4/3) uses of “the

code” for an unknown distribution p over [d], and distinguishes with probability at least .99
between

(1) p = ud, and (2) dTV(p,ud) > ε. (1)

The main idea behind this theorem is to combine very careful classical probabilistic analysis
with a black-box use of Quantum Mean Estimation (QME) [19, 9, 21, 25, 20, 22]; see Section 2
for further discussion. Table 1 below compares our result to prior work on the problem.
Table 1 has two columns because it seems that different algorithms are necessary depending
on how d and ε relate. (Interestingly, this is not the case in the classical no-source-code
model.) Thus combining our new result with that of [24], the best known upper bound
becomes O(min{d1/3/ε4/3, d1/2/ε}). We remark that although [24]’s algorithm/analysis is
already simple, we give an alternative simple algorithm and analysis achieving O(d1/2/ε) in
Section A, employing the classical analysis + QME approach used in the proof of our main
theorem.

1 This is sometimes termed the “purified quantum query access model”, and is the most natural and
general model. The “quantum string oracle”, referenced later in Table 1, refers to a situation in which
one assumes a very specific type of source code for p (thus making algorithmic tasks easier). See
Section 3 for details and [7] for a thorough discussion.



C. L. Canonne, R. Kothari, and R. O’Donnell 7:3

Lower bounds?

As for lower bounds (holding even in the quantum string oracle model): complexity Ω(1/ε)
is necessary even in the case of constant d = 2, following from work of [26]; and, [12] showed
a lower bound of Ω(d1/3) even in the case of constant ε, by reduction from the collision
problem [2]. For reasons discussed in Section 2, we make the (somewhat bold) conjecture
that our new upper bound is in fact tight for all d and ε:

▶ Conjecture 2. Any algorithm that distinguishes p = ud from dTV(p,ud) > ε with success
probability at least .99 requires Ω(min{d1/3/ε4/3, d1/2/ε}) uses of the code for p. (Moreover,
we conjecture this lower bound in the stronger quantum string oracle model.)

Identity testing

Several prior works in this area have also studied the following natural generalization of
uniformity testing: testing identity of the unknown distribution p to a known hypothesis
distribution q. An example application of this might be when q is a Porter–Thomas-type
distribution arising as the ideal output of a random quantum circuit. Luckily, fairly recent
work has given a completely generic reduction from any fixed identity testing problem to the
uniformity testing problem; see [16], or [11, Section 2.2.3]. We can therefore immediately
extend our new theorem to the general identity-testing setting:

▶ Corollary 3. There is a computationally efficient quantum algorithm for identity testing
to a reference distribution q over [d] with the following guarantees: The algorithm makes
O(min(d1/3/ε4/3, d1/2/ε)) uses of “the code” for an unknown distribution p over [d], and
distinguishes with probability at least .99 between

(1) p = q, and (2) dTV(p,q) > ε. (2)

(For completeness, we verify in Section C that the blackbox reduction does indeed carry
through in our setting, preserving access to “the code”.)

More fine-grained results

In proving our main theorem, we will in fact prove a strictly stronger version, one which is
more fine-grained in two ways:
(1) Tolerance: Not only does our test accept with high probability when p = ud, it also

accepts with high probability when p is sufficiently close to ud.

Table 1 “Sample” complexity for uniformity testing with respect to total variation distance.

Reference Large ε regime Small ε regime Access model

[28, 4] Θ(d1/2/ε2) Classical, no source code
[10] O(d1/3) for ε = Θ(1)∗ Quantum string oracle
[12] O(d1/3/ε2) Quantum string oracle
[15] O(d1/2/ε) · log(d/ε)3 log log(d/ε) Source code
[24] O(d1/2/ε) Source code

This work O(d1/3/ε4/3) for ε ≥ 1√
d

Source code

*The work states a bound of O(d1/3/ε4/3), but adds that ε must be constant.
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(2) Stricter distance measure. Not only does our test reject with high probability when
dTV(p,ud) > ε, it also rejects with high probability when dH(p,ud) > ε. (This is
stronger, since dTV(p,q) ≤ dH(p,q) always.)

To elaborate, recall the below chain of inequalities, which also includes KL- and χ2-
divergence. (We review probability distance measures in Section 3.)

dTV(p,q)2 ≤ d2
H(p,q) ≤ KL(p || q) ≤ χ2(p || q). (3)

The strictly stronger version of Theorem 1 that we prove is:

▶ Theorem 4. There is a computationally efficient quantum algorithm for uniformity testing
with the following guarantees: For 1/d ≤ θ ≤ 1, the algorithm makes O(d1/3/θ2/3) uses
of “the code” for an unknown distribution p over [d], and distinguishes with probability at
least .99 between

(1) χ2(p || ud) ≤ .99θ and ∥p∥∞ ≤ 100/d, and (2) d2
H(p,ud) > θ. (4)

We remark that most prior works on uniformity testing [10, 12, 15, 24] also had some
additional such fine-grained aspects, beyond what is stated in Table 1.

Additional results

Speaking of χ2-divergence, we mention two additional results we prove at the end of our
work. These results additionally inform our Conjecture 2.

First, as mentioned earlier, in Section A we give an alternative proof of the O(d1/2/ε)
upper bound of [24], and – like in that work – our result is tolerant with respect to χ2-
divergence. That is, we prove the strictly stronger result that for θ ≤ 1/d, one can use
the code O(d1/2/θ1/2) times to distinguish χ2(p || ud) ≤ cθ from χ2(p || ud) > θ (for some
constant c > 0).

Second, recall that χ2(p || ud) can be as large as d. For example, χ2(uS || ud) = d
r − 1

for any set S ⊆ [d] of size r. Thus it makes sense to consider the uniformity testing problem
even with respect to a χ2-divergence threshold θ that exceeds 1. In Section B we show (albeit
only in the quantum string oracle model) that for θ ≥ 1, one can use the code O(d1/3/θ1/3)
times to distinguish χ2(p || ud) ≤ cθ from χ2(p || ud) > θ, and this is optimal.

2 Technical overview of our proof

Our main algorithm is concerned with achieving the best possible ε-dependence for uniformity
testing while maintaining a d-dependence of d1/3; in this way, it is best compared with
the older works of [10, 12], the latter of which achieves complexity O(d1/3/ε2), as well as
the classical (no-source-code) algorithm achieving complexity O(d1/2/ε2). In fact, all four
algorithms here are almost the same (except in terms of the number of samples they use).
Let us describe our viewpoint on this common methodology.
We consider the algorithm as being divided into two Phases, and we may as well assume
each Phase uses n samples. Phase 1 will have two properties:

It will make n black-box draws from p (i.e., the source code is not used in Phase 1).
Using these draws, Phase 1 will end by constructing a certain “random variable” – in the
technical sense of a function Y : [d]→ R.
The mean of this random variable Y , vis-a-vis the unknown distribution p, will ideally
be close to χ2(p || u) = d · ∥p− ud∥2

2. That is, ideally µ := Ep[Y ] =
∑d

j=1 pjY (j) ≈
χ2(p || ud).
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Phase 2 then performs a mean estimation algorithm on Y (vis-a-vis p) to get an estimate of µ
and therefore of χ2(p || ud). Ideally, the resulting overall algorithm is not just a uniformity
tester, but a χ2-divergence-from-uniformity estimator. This could then be weakened to a
TV-distance uniformity tester using the inequality dTV(p,ud)2 ≤ χ2(p || ud).

The mean estimation algorithm used in Phase 2 differs depending on whether one has
the source code or not. In the classical (no source code) model, one simply uses the
naive mean estimation algorithm based on n more black-box samples; by Chebyshev’s
inequality, this will (with high probability) give an estimate of µ to within ±O(σ/n1/2),
where σ := stddevp[Y ] =

√∑d
j=1(Y (j)− µ)2. In the case of a quantum tester with the

source code access, we can use a Quantum Mean Estimation (QME) routine; in particular,
the one from [22] will (with high probability) yield an estimate of µ to within ±O(σ/n).2

A subtle aspect of this overall plan is that the mean µ and standard deviation σ of Y
are themselves random variables (in the usual sense), where the randomness comes from
Phase 1. Thus it is natural to analyze EPhase 1[µ] and EPhase 1[σ]. Of course, these depend
on the definition of Y , which we now reveal: Y (j) = d

nXj − 1, where Xj denotes the number
of times j ∈ [d] was drawn in Phase 1. The point of this definition of Y is that a short
calculation implies

EPhase 1[µ] = χ2(p || ud); (5)

that is, the random variable µ is an unbiased estimator for our quantity of interest, the
χ2-divergence of p from ud. This is excellent, because although the algorithm does not see µ
at the end of Phase 1, it will likely get a good estimate of it at the end of Phase 2. . . so long
as (the random variable) σ is small.

We therefore finally have two sources of uncertainty about our final error (in estimating
χ2(p || ud)):
1. Although EPhase 1[µ] = χ2(p || ud), the random variable µ may have fluctuated around

its expectation at the end of Phase 1. One way to control this would be to bound
VarPhase 1[µ] (and then use Chebyshev).

2. The Phase 2 mean estimation incurs an error proportional to σ. One way to control this
would be to bound EPhase 1[σ2] (and then use Markov to get a high-probability bound
on σ2, and hence σ).

The quantities controlling the error here, VarPhase 1[µ] and EPhase 1[σ2], are explicitly calcul-
able symmetric polynomials in p1, . . . ,pd of degree at most 4, depending on n. In principle,
then, one can relate these quantities to χ2(p || ud) = d · ∥p− ud∥2

2 itself, and derive a bound
on how big n must be to (with high probability) get a good estimate of χ2(p || ud).

In the classical (no source code) case, this methodology is a way to obtain the O(d1/2/ε2)
sample complexity, adding to the number of existing classical sample-optimal algorithms
for the task. (This method in particular has some potential useful applications; e.g., one
could consider decoupling the number of samples used in Phases 1 and 2 to, e.g., obtain
tradeoffs for memory-limited settings). On one hand, with this method one can give a very
compressed proof of the O(d1/2/ε2) that, factoring out routine calculations, fits in half a

2 This QME routine was not available at the time of [10, 12] which had to make do with Quantum
Approximate Counting [9] – essentially, QME for Bernoulli random variables. But this is not the source
of our improvement; one can obtain our main theorem with only a (polylog d)-factor loss using just
Quantum Approximate Counting.
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page (see, e.g., [27, Sec. 10]). On the other hand, one has to execute the calculations and
estimations with great care, lest one would obtain a suboptimal result (there is a reason it
took 8 years3 to get the optimal quadratic dependence on ε [17, 28]).

In the case when source code is available, so that one can use the QME algorithm, how
well does this methodology fare? On one hand, QME gives a quadratic improvement over
naive classical mean estimation, meaning one can try to use signficantly fewer samples in
Phase 2. But when one balances out the sample complexity between the two Phases, it
implies one is using fewer samples in Phase 1, and hence one gets worse concentration of µ
around its mean in Phase 1. So the calcuations become more delicate.

2.1 Heuristic calculations
Instead of diving into complex calculations, let’s look at some heuristics. First, let’s consider
how the algorithm proceeds in the case when p really is the uniform distribution ud. In this
case, as long as we’re in a scenario where n≪ d1/2, we will likely get all distinct elements
in Phase 1, meaning that Xj will be 1 for exactly n values of j and Xj will be 0 otherwise.
Then Y (j) will be d

n − 1 for n values of j and will be −1 otherwise. This indeed means
µ = Ep[Y ] = 1

d

∑d
j=1 Y (j) = 0 = ∥p− ud∥2 with certainty in Phase 1. This is very good; we

get no error out of Phase 1. However QME in Phase 2 will not perfectly return the value µ = 0;
rather, it will return something in the range ±O(σ/n), where σ =

√
1
d

∑d
j=1(Y (j)− 0)2 =√

d
n − 1 ∼ d1/2/n1/2. Thus the value returned by QME may well be around d1/2/n3/2,

which from the algorithm’s point of view is consistent with χ2(p || ud) ≈ d1/2/n3/2. Thus
the algorithm will only become confident that dTV(p,ud)2 ⪅ d1/2/n3/2, and hence it can
only confidently accept in the case p = ud provided d1/2/n3/2 ⪅ ε2; i.e., n ⪆ d1/3/ε4/3. We
thereby see that with this algorithm, a uniformity testing upper bound of O(d1/3/ε4/3) is
the best we can hope for. If one also believes that this algorithm might be optimal (and it
has been the method of choice for essentially all previously known results), then this could
possibly be taken as evidence for our Conjecture 2.

At this point, one might try to prove that complexity O(d1/3/ε4/3) is achievable; so far
we have only argued that with this many samples, the algorithm will correctly accept when
p = ud (with high probability). Again, before jumping into calculations, one might try
to guess the “hardest” kind of ε-far distributions one might face, and try to work out the
calculations for these cases. The hardest distributions in the classical case (i.e., the ones that
lead to the matching Ω(d1/2/ε2) lower bound) are very natural: they are the p’s in which half
of the elements j ∈ [d] have pj = 1+2ε

d and half have pj = 1−2ε
d . Assuming this is the “worst

case”, one can calculate what VarPhase 1[µ] and EPhase 1[σ2] will be, and the calculations
turn out just as desired. That is, with n = O(d1/3/ε4/3), these two error quantities can be
shown to be suffciently small so that the overall algorthm will correctly become confident
that χ2(p || ud) = d · ∥p− ud∥2

2 ≤ 4d · dTV(p,ud)2 significantly exceeds ε2, and hence the
algorithm can correctly reject.

Everything therefore looks good, but there is a fly in the ointment. Even though this
particular p with its values of 1±2ε

d seems like the “hardest” distribution to face, one still
has to reason about all possible p’s with dTV(p,ud). And when one does the calculations
of Var[µ] and E[σ2] as prescribed by the standard methodology, the plan ends up failing.

3 Technically, it took more than 8 years, as the proof of [28] was later shown to have a flaw: so the tight
dependence had to wait until [4]. See [11, Section 2.3] for a discussion.
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Specifically one gets too much error for p’s that have somewhat “heavy” elements, meaning
pj ’s with pj ≫ 1/d. The prior works [10, 12] cope with this failure by taking more samples;
i.e., setting n = O(d1/3/εc) for c > 4/3 (specifically, [12] achieves c = 2). But our goal is to
show that this is unnecessary – that the algorithm itself works, even though the standard
and natural way of analyzing it fails.

In short, the reason the standard analysis of the algorithm fails is due to “rare events” that
are caused by heavy elements in p. These j’s with pj ≫ 1/d may well still have pj ≪ 1/n
(for our desired n = O(d1/3/ε4/3)), and thus be drawn only rarely in Phase 1. The major
difficulty is that when they are drawn, they generate a very large contribution to σ2, causing
EPhase 1[σ2] to be “misleadingly large”. That is, when there are heavy elements, σ2 may have
the property of typically being much smaller than its expectation. Thus controlling the QME
error using the expected value of σ2 is a bad strategy.

Perhaps the key insight in our analysis is to show: In those rare Phase 1 outcomes when
σ2 is unusually large, µ is also unusually large compared to its expectation. The latter
event is helpful, because if µ ends up much bigger than its expectation, we can tolerate a
correspondingly worse error-bar from QME. In short, we show that the rare bad outcomes
for σ2 coincide with the rare good outcomes for µ.

In order to make this idea work out quantitatively, we (seem to) need to weaken our
ambitions and get something a bit worse than a χ2-divergence-from-uniform estimation
algorithm, in two ways. (This is fine, as our main goal is just a non-tolerant uniformity tester
with respect to TV.) First, rather than insisting that we accept with high probability when
χ2(p || ud) ≤ .99θ and reject with high probability when χ2(p || ud) > θ, we need to only
require rejection when d2

H(p,ud) > θ. The reason is that the rare large values of σ2 that we
face are only comparable with the larger value d2

H(p,ud), and not with χ2(p || ud).4
As for the second weakening we need to make: We explicitly add to our tester a check

that the value of maxj{Xj} arising after Phase 1 is not too large. Roughly speaking, this
extra test ensures that there are no very heavy elements. (Of course, this is satisfied when
p = ud, so we don’t mind adding this test.) The reason we need to add this check is so
that we can bound the quadratic expression

∑d
j=1 X

2
j (which enters into the value of σ2) by

maxj{Xj} ·
∑d

j=1 Xj ; in turn, once maxj{Xj} is checked to be small, this expression can be
bounded by the linear quantity

∑d
j=1 Xj , which can be related to µ. It is by relating σ2 to

µ in this way that we are able to show the correlation between rare events – that when σ2 is
big, µ is also big.

To conclude, we apologize to the reader for writing a “technical overview” whose length
is nearly comparable to that of the actual proof itself. While we tried to make our argument
as streamlined and concise as possible, we felt that it was worth conveying the ideas and
detours which led us there, and which, while now hidden, motivated the final proof.

3 Preliminaries

3.1 Probability distances
Throughout, log and ln the binary and natural logarithms, respectively. We identify a
probability distribution p over [d] = {1, 2, . . . , d} with its probability mass function (pmf), or,

4 We remark that this χ2-versus-Hellinger-squared dichotomy is quite reminsicent of the one that occurs
in classical works on identity testing, such as [4].
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equivalently, a vector p ∈ Rd such that pi ≥ 0 for all i and
∑d

i=1 pi = 1. For a subset S ⊆ [d],
we accordingly let p(S) =

∑
i∈S pi. The total variation distance between two distributions

p,q over [d] is defined as

dTV(p,q) = sup
S⊆[d]

{p(S)− q(S)} = 1
2∥p− q∥1 ∈ [0, 1], (6)

where the last equality is from Scheffé’s lemma. By Cauchy–Schwarz, this gives us the
relation

1
2∥p− q∥2 ≤ dTV(p,q) ≤

√
d

2 ∥p− q∥2. (7)

We will in this paper also consider other notions of distance between probability distributions:
the squared Hellinger distance, defined as

d2
H(p,q) =

d∑
i=1

(√pi −
√qi)2 = ∥√p−√q∥2

2 ∈ [0, 2]. (8)

(Some texts normalize this by a factor of 1
2 ; we do not do so, as it makes our statements

cleaner.) The chi-squared divergence is then defined as

χ2(p || q) =
d∑

i=1

(pi − qi)2

qi
=
(

d∑
i=1

p2
i

qi

)
− 1 , (9)

while the Kullback–Leibler divergence (least relevant to us, but quite common in the literature),
in nats, is defined as

KL(p || q) =
d∑

i=1
qi ln qi

pi
. (10)

As mentioned in Equation (3), we have the following well known [14] chain of inequalities:

dTV(p,q)2 ≤ d2
H(p,q) ≤ KL(p || q) ≤ χ2(p || q). (11)

Moreover, for the special case of the uniform distribution ud over [d], we have

χ2(p || ud) = d · ∥p− ud∥2
2 . (12)

3.2 Distribution access models
For a probability distribution p on [d], we say a unitary Up is a synthesizer for p if for some
k

Up |0k⟩ =
∑
i∈[d]

√
pi |i⟩ |ψi⟩ , (13)

where the |ψi⟩’s are normalized states often called “garbage states”. Note that any classical
randomized circuit using S gates that samples from p can be converted to a synthesizer
Up in a purely black-box way with gate complexity O(S). (See [22] for details and a more
thorough discussion of synthesizers.)

In this paper, we say an algorithm makes t uses of “the code for p” to mean that we use
(as a black box) the unitaries Up, U†

p, and controlled-Up a total of t times in the algorithm.
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Each of these unitaries is easy to construct given an explicit gate decomposition of Up with
the same gate complexity up to constant factors.

The quantum string oracle, which is used in many prior works, is a specific type of source
code for p. Here we have standard quantum oracle access to an m-bit string x ∈ [d]m for
some m. For any symbol i ∈ [d], the probability pi is defined as the frequency with which
that symbol appears in x, i.e., pi = 1

m |{j : xj = i}|. Note that calling this oracle on the
uniform superposition over m gives us a synthesizer for p. When a randomized sampler for
p is converted to a synthesizer, we get a quantum string oracle, but quantum string oracles
are not as general as arbitrary synthesizers. For example, all probabilities described by a
quantum string oracle will be integer multiples of 1

m , whereas an arbitrary synthesizer has
no such constraint.

3.3 Quantum Mean Estimation
When we use QME, we will have the source code for some distribution p on [d], and we will
also have explicitly constructed some (rational-valued) random variable Y : [d] → Q (say,
simply as a table). From this, one can easily generate code that outputs a sample from Y

(i.e., outputs Y (j) for j ∼ [d]), using the code for p just one time. We will then use the
following QME result from [22]:

▶ Theorem 5. There is a computationally efficient quantum algorithm with the following
guarantee: Given the source code for a random variable Y , as well as parameters n and
δ, the algorithm uses the code O(n log(1/δ)) times and outputs an estimate µ̂ such that
Pr[|µ̂− µ| > σ/n] ≤ δ, where µ = E[Y ] and σ = stddev[Y ].

4 Algorithm in the Large Distance Regime

In this section, we establish Theorem 1, our main technical contribution. We do this by
proving the strictly stronger Theorem 4, which we restate more formally:

▶ Theorem 6. For any constant B > 0, there exists a computationally efficient quantum
algorithm (Algorithm 1) with the following guarantees: on input 1

d ≤ θ ≤ 1, it makes
O(d1/3/θ2/3) uses (where the hidden constant depends on B) of “the code” for an unknown
probability distribution p over [d], and satisfies
1. If χ2(p || ud) ≤ .99θ and ∥p∥∞ ≤ B/d, then the algorithm will accept with probability at

least .99.
2. If d2

H(p,ud) ≥ θ, then the algorithm will reject with probability at least .99.

Proof. Let us start by recording the following inequalities that we will frequently use:

n = ⌈cd1/3/θ2/3⌉, θ ≥ 1/d =⇒ c/θ ≤ n ≤ cd. (14)

We begin with a simple lemma regarding the check on Section 4:

▶ Lemma 7. If ∥p∥∞ ≤ B/d, then Section 4 will reject with probability at most .001.
Conversely, if ∥p∥∞ > 2L/n, then Section 4 will reject with probability at least .999.

Proof. Let Xj ∼ Bin(n, pj) denote the number of times j is drawn. The second (“conversely”)
part of of the proposition follows from a standard Chernoff bound. As for the first part,
suppose ∥p∥∞ ≤ B/d. Now on one hand, if n ≤ d.99/B, so that L = 100, we have

Pr[Bin(n, pj) ≥ 100] ≤
(
n

100

)
p100

j ≤ ((en/100)pj)100 ≤ (e/(100d.01))100 ≤ .001/d, (15)
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Algorithm 1 for the large distance regime.

Require: Parameter 1
d ≤ θ ≤ 1, constant B ≥ 1.

1: Let c = c(B) and let C = C(c) be sufficiently large, and let L be defined as

L :=
{

100 if n ≤ d.99/B,
Bc ln d if n > d.99/B.

2: Set n := ⌈cd1/3/θ2/3⌉.
3: Make n draws J1, . . . ,Jn, and let Xj =

∑n
t=1 1{Jt=j} be the number of times j ∈ [d] is

seen.
4: if Xj ≥ L for any j then reject
5: Do QME with Cn “samples” on the random variable Y defined by Y j = d

nXj − 1,
obtaining µ̂.

6: if µ̂ ≤ .995θ then accept
7: else reject

and thus Xj < 100 for all j except with probability at most .001, as desired. Otherwise,
L = Bc ln d, and since E[Xj ] ≤ Bn/d ≤ Bc, the desired result follows from a standard
Chernoff and union bound (provided c is large enough). ◀

From this, we conclude:
In Case (1), Line 4 rejects with probability at most .001.
In Case (2), we may assume ∥p∥∞ ≤ 2L/n and ∥X∥∞ ≤ L, else Line 4 rejects with
probability ≥ .999. Call this observation (♢).

Now to begin the QME analysis, write pj = 1+εj

d , where εj ∈ [−1, d − 1], and let
µ =

∑d
j=1 pjY j , the mean of Y (from QME’s point of view). Writing η := d2

H(p,ud), our
first goal will be to show:

In Case (1), µ ≤ .991θ except with probability at most .001; (16)
In Case (2), µ ≥ .997η except with probability at most .002. (17)

Starting with Equation (16), a short calculation (using
∑d

j=1 εj = 0) shows

µ = navg
t=1
{εJt} =⇒ E[µ] = 1

d

d∑
j=1

ε2
j = χ2(p || ud) =⇒ E[µ] ≤ .99θ in Case (1).

(18)

Also in Case (1) we get from Equation (18) that

Var[µ] = 1
n

Varj∼p[εj ] ≤ 1
n
Ej∼p[ε2

j ] ≤ B

nd

n∑
j=1

ε2
j = B

n
χ2(p || ud) ≤ .99Bθ

n
≤ Bθ2

c
, (19)

the last inequality using Equation (14). Combining the preceding two inequalities and using
Chebyshev, we indeed conclude Equation (16) (provided c = c(B) is sufficiently large).

Towards Equation (17), let b ≥ 2 be a certain universal constant to be chosen later, and
say that j ∈ [d] is light if pj ≤ b/d (i.e., εj ≤ b− 1), heavy otherwise. We will write

µ1 = navg
t=1
{εJt : J t heavy} ≥ 0, µ2 = navg

t=1
{εJt : J t light} (so µ = µ1 + µ2), (20)
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and also observe

η = d2
H(p, ud) = 1

d

d∑
j=1

(
√

1 + εj−1)2 ≤ 1
d

d∑
j=1

min{|εj |, ε2
j } ≤ 1

d

∑
heavy j

εj+ 1
d

∑
light j

ε2
j =: η1+η2. (21)

Let us now make some estimates. First:

pheavy :=
∑

j heavy
pj = 1

d

∑
j heavy

(1 + εj) ≥ η1. (22)

Also, similar to our Case (1) estimates we have

E[µ2] = 1
d

∑
light j

(ε2
j + εj) = η2 − η1 (where we used

d∑
j=1

εj = 0), (23)

and

Var[µ2]

= 1
n

Varj∼p[1j light · εj ] ≤ 1
n
Ej∼p[1j light · ε2

j ] ≤ b

nd

∑
j light

ε2
j

= b

n
η2 ≤ b

c
θη2 ≤ b

c
η2η (in Case (2)). (24)

We will now establish Equation (17); in fact, we we even will show the following very slightly
stronger fact:

In Case (2), µ ≥ .997(η1 + η2) ≥ .997η except with probability at most .002. (25)

We divide into two subcases:

Case (2a): η1 ≤ .001η2. In this case we have η2 ≥ 1
1.001 (η1 + η2), and E[µ2] ≥ .999η2

from Equation (23). Since Equation (24) implies Var[µ2] ≤ 1.001 b
cη

2
2 , Chebyshev’s inequality

tells us that µ2 ≥ .998η2 except with probability at most .001 (provided c is large enough).
But then µ ≥ µ2 ≥ .998

1.001 (η1 + η2), confirming Equation (25).

Case (2b): η1 > .001η2. In this case we have η1 ≥ .001
1.001 (η1 + η2) ≥ .0009(η1 + η2). We

now use that heavy j have εj ≥ b− 1 to observe that

µ1 = navg
t=1
{εJt

: J t heavy} ≥ (b−1)·(fraction of J t’s that are heavy) = (b−1)·Bin(n, pheavy)
n

(26)

(in distribution). We see that E[µ1] ≥ (b−1)pheavy, and moreover concentration of Binomials
and Equation (22) imply that

µ1 ≥
1
2(b− 1)pheavy ≥

1
2(b− 1)η1 except with probability at most .001, (27)

provided that pheavyn is a sufficiently large constant. But we can indeed ensure this by taking
c sufficient large: by Equation (22), being in Case (2b), and Equation (14), it holds that

pheavyn ≥ η1n ≥ .0009(η1 + η2)n ≥ .0009ηn ≥ .0009θn ≥ .0009c. (28)
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At the same time, Equation (23) certainly implies E[µ2] ≥ −η1, and Equation (24) implies
Var[µ2] ≤ b

cη2(η1 + η2) ≤ 1000·1001b
c η2

1 (using Case (2b)). Thus Chebyshev implies

µ2 ≥ −1.1η1 except with probability at most .001, (29)

provided c is large enough. Combining Equations (27) and (29) yields

µ = µ1+µ2 ≥ ( b−1
2 −1.1)η1 ≥ .0009( b−1

2 −1.1)(η1+η2) except with probability at most .002,
(30)

which verifies Equation (25) provided b is a large enough constant.

We have now verified the properties of µ claimed in Equations (16) and (25). Next we
analyze the random variable σ2 that represents the variance of Y (from QME’s point of
view). Our goal will be to show:

In Case (1), σ2/(Cn)2 ≤ 10−6 · θ2 except with probability at most .001, (31)
In Case (2), σ2/(Cn)2 ≤ 10−6 · µ2 except with probability at most .001. (32)

Together with Equations (16) and (25), these facts are sufficient to complete the proof of the
theorem, by the QME guarantee of Theorem 5.

We have:

σ2 :=
d∑

j=1
pjY 2

j − µ2 = (d/n)2
d∑

j=1
pjX2

j − (µ + 1)2 ≤ (d/n)2
d∑

j=1
pjX2

j = σ2
S + σ2

Sc , (33)

where we’ve defined σ2
S := (d/n)2∑

j∈S pjX2
j and Sc = [d] \ S. We will be making two

different choices for S later, but we will always assume

S ⊇ {j : j light}, which implies
∑
j∈S

εj ≤ 0 (34)

(the implication because
∑d

j=1 εj = 0 and Sc contains only j’s with εj ≥ b− 1 ≥ 0). Now
since E[X2

j ] = npj(1− pj) + (npj)2 ≤ npj + (npj)2, we have

E[σ2
S ] ≤ (d2/n)

∑
j∈S

p2
j + d2

∑
j∈S

p3
j (35)

≤ d/n + (2/n)
∑
j∈S

εj + (1/n)
∑
j∈S

ε2
j + 1/d + (3/d)

∑
j∈S

εj + (3/d)
∑
j∈S

ε2
j + (1/d)

∑
j∈S

ε3
j

(36)

≤ (5cd/n)

(
1 + 1

d

∑
j∈S

εj + 1
d

∑
j∈S

ε2
j

)
+ 1

d

∑
j∈S

ε3
j (37)

(where the last inequality used 1/d ≤ c/n ≤ (c − 1)d/n from Equation (14)). Using
Equation (34) to drop the term of Equation (37) that’s linear in the εj ’s, we thereby conclude

E[σ2
S/(Cn)2] ≤ E[σ2

S/n
2] ≤ (5cd/n3)

1 + 1
d

∑
j∈S

ε2
j

+ (d1/2/n2)

1
d

∑
j∈S

ε2
j

3/2

(38)

≤ (5θ2/c2)(1 + ηS) + θ4/3

c2d1/6 η
3/2
S , (39)
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where ηS := 1
d

∑
j∈S ε

2
j . In Case (1) we select S = [d], so ηS = χ2(p || ud) ≤ .99θ ≤ θ ≤ 1,

and the above bound gives

Case (1) =⇒ E[σ2/(Cn)2] ≤ 10θ2/c2 + θ17/6

c2d1/6 ≤ ·10−9 · θ2 (40)

(provided c is large enough). Now Equation (31) follows by Markov’s inequality.
In Case (2) we select S = {j : j light}, so ηS = η2 and we conclude (using obvious

notation)

Case (2) =⇒ E[σ2
light/(Cn)2] ≤ (5θ2/c2)(1 +η2) + θ4/3

c2d1/6 η
3/2
2 ≤ .4 ·10−9 · (η1 +η2)2, (41)

(provided c large enough), where we used θ ≤ η ≤ η1 + η2 and also θ ≤ 1. We now complete
the bounding of σ2 in Case (2) by two different strategies:

Case (2.i): n > d.99/B. In this case, L = Bc ln d, and (♢) tells us ∥p∥∞ ≤ 2L/n, so we
have

∥p∥∞ ≤
2Bc ln d

n
≤ 2B2c ln d

d.99 . (42)

Now returning to Equation (37), we get

E[σ2
heavy/(Cn)2] ≤ 5cd

C2n3 + 5cd
C2n3

(
1 + εmax + n

5cdε
2
max

)
· 1
d

∑
j heavy

εj (43)

≤ 5θ2

(Cc)2 + 5cd2

C2n3

(
∥p∥∞ + n

5c · ∥p∥
2
∞

)
η1 ≤

5θ2

(Cc)2 + 14B6c2 ln2 d

C2d1.96 η1,

(44)

where we used Equation (42) and n > d.99/B. We can again bound the first expression in
Equation (44) as 5θ2

(Cc)2 ≤ 10−6 · (η1 + η2)2. As for the second expression, either η1 = 0 (there
are no heavy j’s) or else η1 ≥ b−1

d (there is at least one heavy j). In either case, we have
η1 ≤ d

b−1η
2
1 ≤ dη2

1 , so we can bound this second expression by

14B6c2 ln2 d

C2d.96 η2
1 ≤ .4 · 10−9 · (η1 + η2)2 (45)

where we used C = C(c) sufficiently large (and we could have taken C = 1 were willing to
assume d sufficiently large). Putting this bound together with Equation (41) we obtain:

Case (2.i) =⇒ E[σ/(Cn)2] ≤ .8 · 10−9 · (η1 + η2)2 ≤ .8
.997 · 10−9 · µ2 ≤ ·10−9 · µ2, (46)

using Equation (25). Equation (32) now follows (in this Case (2.i)) by Markov’s inequality.

Case (2.ii): n ≤ d.99/B. In this case we use a different strategy. Recall from Equation (33)
that

σ2 ≤ (d/n)2
d∑

j=1
pjX2

j ≤ (d/n)2∥X∥∞

d∑
j=1

pjXj = (d/n)∥X∥∞(1 + µ). (47)

By (♢) we may assume ∥X∥∞ ≤ L = 100, the equality because we are in Case (2.ii). Thus

σ2/(Cn)2 ≤ σ2/n2 ≤ 100(d/n3)(1 + µ) ≤ 100θ2

c3 + 100θ2

c3 µ ≤ 10−6 · µ2. (48)

(provided c large enough), where we used θ ≤ η ≤ 1
.997 µ (from Equation (25)) and also θ ≤ 1.

This verifies Equation (32) in Case (2.ii), completing the proof. ◀
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unknown probability distribution p over [d], and distinguishes with probability at least 2/3
between (1) χ2(p || ud) ≤ ε2

144 , and (2) χ2(p || ud) > ε2.

This in turn will follow from the more general result on tolerant ℓ2 closeness testing, where
one is given access to the source code for two unknown probability distributions p,q over [d],
and one seeks to distinguish ∥p− q∥2 ≤ c · τ from ∥p− q∥2 ≥ τ .

▶ Theorem 9. There is a computationally efficient quantum algorithm (Algorithm 2) for
closeness testing with the following guarantees: it takes O(1/τ) “samples” from two unknown
probability distributions p,q over [d], and distinguishes with probability at least 2/3 between
(1) ∥p− q∥2 ≤

τ
12 , and (2) ∥p− q∥2 > τ .

Theorem 8 can then be obtained as a direct corollary by setting τ = ε/
√
d, recalling that

when q is the uniform distribution ud, ℓ2 distance and χ2 divergence are equivalent:

∥p− ud∥2
2 =

d∑
i=1

(pi − 1/d)2 = 1
d

d∑
i=1

(pi − 1/d)2

1/d = 1
d
χ2(p || ud)

We emphasize that the result of Theorem 9 itself is not new, as a quantum algorithm achieving
the same sample complexity (in the same access model) was recently obtained by [24].5
However, our algorithm differs significantly from the one in [24], and we believe it to be of
independent interest for several reasons:

it is conceptually very simple: (classically) hash the domain down to two elements, and
use QME to estimate the bias of the resulting Bernoulli;
it neatly separates the quantum and classical aspects of the task, only using QME (as a
blackbox) in a single step of the algorithm;
in contrast to the algorithm of [24], it decouples the use of the source code from p and
q, allowing one to run our algorithm when the accesses to the two distributions are on
different machines, locations, or even will be granted at different points in time (i.e., one
can run part of the algorithm using the source code for p, and, one continent and a year
apart, run the remaining part on the now-available source code for q without needing p
anymore).

The idea behind Theorem 9 is relatively simple: previous work (in the classical setting)
showed that hashing the domain from d to a much smaller d′ ≪ d could yield sample-optimal
testing algorithms in some settings, e.g., when testing under privacy bandwidth, or memory
constraints. Indeed, while this “domain compression” reduces the total variation distance by a
factor Θ(

√
d′/d), this shrinkage is, in these settings, balanced by the reduction in domain size.

The key insight in our algorithm is then to (1) use this hashing with respect to ℓ2 distance,
not total variation distance, and show that one can in this case get a two-sided guarantee in
the distance (low-distortion embedding) instead of a one-sided one; and (2) compress the
domain all the way to d′ = 2, so that one can then invoke the QME algorithm to simply
estimate the bias of a coin to an additive ±τ , a task for which a quantum quadratic speedup
is well known.

Proof of Theorem 9. As mentioned above, a key building block of our algorithm is the
following “binary hashing lemma,” a simple case of the domain compression primitive of [3]:

5 Technically, [24]’s result can be seen as slightly stronger, in that it allows to test ∥p − q∥2 ≤ (1 − γ)τ
vs. ∥p − q∥2ud > τ , for arbitrarily small constant γ > 0.
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▶ Lemma 10 (Random Binary Hashing (Lemma 2.9 and Remark 2.4 of [11]). Let p,q ∈ ∆(d).
Then, for every α ∈ [0, 1/2],

Pr
S

[ |p(S)− q(S)| ≥ α∥p− q∥2 ] ≥ 1
12(1− 4α2)2 ,

where S ⊆ [d] is a uniformly random subset of [d].

Given our goal of tolerant testing, we also require a converse to Lemma 10, stated and proven
below:

▶ Lemma 11. Let p,q ∈ ∆(d). Then, for every β ∈ [1/2,∞),

Pr
S

[ |p(S)− q(S)| ≥ β∥p− q∥2 ] ≤ 1
4β2 ,

where S ⊆ [d] is a uniformly random subset of [d].

Proof. As in the proof of Lemma 10, we write δ := p−q ∈ Rd and p(S)−q(S) = 1
2Z, where

Z :=
∑d

i=1 δiξi for ξ1, . . . , ξd i.i.d. Rademacher. We will use the following fact established in
the proof of this lemma, which we reproduce for completeness:

E
[
Z2] =

∑
1≤i,j≤d

δiδjE[ξiξj ] =
d∑

i=1
δ2

i = ∥δ∥2
2 . (49)

By Markov’s inequality, we then have

Pr
S

[ |p(S)− q(S)| > β∥p− q∥2 ] = Pr
S

[
Z2 > 4β2E

[
Z2] ] ≤ 1

4β2

concluding the proof. ◀

While the above two lemmas allow us to obtain a slightly more general result than in the
theorem statement by keeping α, β as free parameters, for concreteness, set α := 1/(2

√
2)

and β = 4. This implies the following:
If ∥p− q∥2 ≥ τ , then

Pr
S

[ ∣∣∣∣p(S)− |S|
d

∣∣∣∣ ≥ τ√
8

]
≥ 1

48

If ∥p− q∥2 ≤
τ
12 , then

Pr
S

[ ∣∣∣∣p(S)− |S|
d

∣∣∣∣ ≥ τ√
9

]
≤ 1

64 .

where S ⊆ [d] is a uniformly random subset of [d]. This allows us to distinguish between the
two cases with only O(1) repetitions:

Algorithm 2 QME+Binary Hashing Tester.

1: Set T = O(1), δ := 1
600 , τ := 1/48+1/64

2 . ▷ δ ≤ 1
3
( 1

48 −
1

64
)
.

2: for t = 1 to T do
3: Pick a u.a.r. subset St ⊆ [d] (independently of previous iterations)
4: Estimate p(St),q(St) by p̂t, q̂t to within ± τ

100 with error probability δ. ▷ QME
5: if |p̂t − q̂t| ≤ ε√

8d
then bt ← 0

6: else bt ← 1
return accept if 1

T

∑T
t=1 bt ≤ τ ▷ Estimate of the probability accept
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A standard analysis shows that, for T a sufficiently large constant, with probability at
least 2/3 the estimate 1

T

∑T
t=1 bt will be within an additive δ + 1

1000 of the corresponding
value (either 1/48 or 1/64), in which case the output is correct. The total number of samples
required is T times the sample of the Quantum Mean Estimation call on Line 4, which
is O(1/τ): the complexity of getting a O(τ)-additive estimate of the mean of a Bernoulli
random variable with high (constant) probability. This concludes the proof. ◀

B Algorithm in the Giant Distance Regime

In this appendix, we show that, in the (stronger) quantum string oracle model, one can
perform tolerant uniformity testing with respect to χ2 divergence in the “very large parameter
regime,” that is, to distinguish χ2(p || ud) ≤ cθ from χ2(p || ud) > θ for θ ≥ 1:

▶ Theorem 12. There is a computationally efficient quantum algorithm for uniformity
testing with the following guarantees: For θ ≥ 1, the algorithm makes O(d1/3/θ1/3) calls to
the quantum string oracle for an unknown distribution p over [d], and distinguishes with
probability at least .99 between

(1) χ2(p || ud) ≤ c · θ, and (2) χ2(p || ud) > θ , (50)

where c > 0 is an absolute constant. Moreover, this query complexity is optimal.

Note that, as discussed in the introduction, this result does not imply anything in terms of
total variation distance, as the latter is always at most 1; however, we believe this result
to be of interest for at least two reasons: (1) it is in itself a reasonable (and often useful)
testing question, when total variation distance is not the most relevant distance measure,
and implies, for instance, testing χ2(p || ud) ≤ c · θ from KL(p || ud) > θ; and (2) one can
show that this complexity is tight, by a reduction to the θ-to-1 collision problem, which
provides additional evidence for Conjecture 2.

Proof. The main ingredient of the proof is the following lemma, which guarantees that
taking N = Θ(d/θ) from the unknown distribution p is enough to obtain (with high constant
probability) a multiset of elements with, in one case, no collisions, and in the other at least
one collision:

▶ Lemma 13. For θ ≥ 1, there exists a constant c ∈ (0, 1) such that taking N i.i.d. samples
from an unknown p over [d] results in a multiset S satisfying the following with probability
at least .99:

If χ2(p || ud) ≤ c · θ, then all elements in S are distinct;
If χ2(p || ud) ≥ θ, then at least two elements in S are identical;

as long as 1601 · d
θ ≤ N ≤

1
10c ·

d
θ . (In particular, taking c := 1

16010 suffices to ensure such a
choice of N is possible.)

Before proving this lemma, we describe how it implies our stated complexity upper bound.
Lemma 13 guarantees that we can reduce our testing problem to that of deciding if, given
oracle access to a string of size N = Θ(

√
d/θ), whether all the elements in it are distinct.

This problem is solved by Ambainis’ element distinctness quantum-walk algorithm [5] using
O(N2/3) = O(d1/3/θ1/3) quantum queries.

Proof of Lemma 13. Suppose we take N i.i.d. samples X1, . . . , XN from p, and count the
number Z of collisions among them:

Z :=
∑

1≤i<j≤N

1{Xi=Xj}
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Letting δ := p− ud and powt(x) :=
∑d

i=1 x
t
i for all integer t ≥ 0 and vector x ∈ Rd (so that

δi = pi − 1/d for all i), we have, pow1(δ) = 0, and

pow2(δ) = ∥p− ud∥2
2 = 1

d
χ2(p || ud)

Now, it is not hard to verify that E[Z] =
(

N
2
)
∥p∥2

2 =
(

N
2
)
(pow2(δ) + 1/d), and

Var[Z] =
(
N

2

)
∥p∥2

2

(
1− ∥p∥2

2

)
+ 6
(
N

3

)(
∥p∥3

3 − ∥p∥
4
2

)
≤ E[Z] + 6

(
N

3

)(
pow3(δ) + 3

d
pow2(δ)

)
(51)

From this, we get, setting τ :=
√
θ/d ≥ 1/

√
d:

If χ2(p || ud) ≤ c · θ, then pow2(δ) ≤ c2 · τ2, and as long as N ≤ 1
10cτ we have

(
N
2
)
(c2 ·

τ2 + 1/d) ≤ 1/100, so that by Markov’s inequality

Pr[Z ≥ 1 ] ≤ Pr[Z ≥ 100E[Z] ] ≤ 1
100

If χ2(p || ud) ≥ θ, then pow2(δ) ≥ τ2, and by Chebyshev’s inequality and Equation (51)

Pr[Z = 0 ] ≤ Pr[ |Z − E[Z]| ≥ E[Z] ] ≤ 1
E[Z] + 4

N
·

pow3(δ) + 3
d pow2(δ)

(pow2(δ) + 1/d)2

≤ 2
N(N − 1)τ2 + 4

N
·

pow2(δ)3/2 + 3
d pow2(δ)

pow2(δ)2

≤ 3
N2τ2 + 4

Nτ
+ 12
Ndτ2

≤ 3
N2τ2 + 4

Nτ
+ 12
N

(τ ≥ 1/
√
d)

≤ 3
N2τ2 + 16

Nτ

which is at most 1
100 for N ≥ 1601

τ .

This proves the lemma. ◀

This concludes the proof of the upper bound part of Theorem 12. To conclude, it only
remains to show that this is, indeed, optimal. For this, we need a lower bound of [23], which
generalized a lower bound of Aaronson and Shi [2]:

▶ Theorem 14 ([23]). Let d > 0 and r ≥ 2 be integers such that r|d, and let f : [d]→ [d] be
a function to which we have quantum oracle access. Then deciding if f is 1-to-1 or r-to-1,
promised that one of these holds, requires Ω((d/r)1/3) quantum queries.

When we view this function as a quantum string oracle for a probability distribution, the
function being 1-to-1 corresponds to the uniform distribution on [d]. In the other case, the
distribution is uniform on a subset of size [d/r], for any r ≥ θ + 1 dividing d. An easy
calculation shows that the second distribution is at χ2 divergence

χ2(p || ud) =
∑
i∈[d]

(
p2

i

1/d

)
− 1 = d · r

2

d2 ·
d

r
− 1 = r − 1 ≥ θ, (52)

from uniform, which completes the proof. ◀
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C Reduction from Identity to Uniformity Testing

As mentioned in the introduction, there is a known reduction from identity to uniformity
testing, due to Goldreich [16] and inspired by [13]: which, in a blackbox way, converts an
instance of uniformity testing (in total variation distance) with reference distribution q over
[d] and distance parameter ε to an instance of uniformity testing over [4d] and distance
parameter ε/4. (Here, we follow the exposition and parameter setting of [11, Section 2.2.3].)

To be able to use it in our setting, all we need to check is that this blackbox reduction
Φq preserves access to “the code”: that is, given the code Cp for a probability distribution
p over [d], that we can efficiently have access to the code Cp′ for the resulting distribution
p′ = Φq(p) over [4d]. To do so, note that Φq is the composition of 3 successive mappings,

Φq = Φ(1)
q ◦ Φ(2)

q ◦ Φ(3)
q

where Φ(3)
q : [d]→ [d], Φ(2)

q : [d]→ [d+ 1], and , Φ(2)
q : [d+ 1]→ [4d]. So it suffices to show

that each of these 3 mappings does preserve access to the code generating a sample from the
resulting distribution.

The first, Φ(3)
q , is the easier, as it consists only in mixing its input with the uniform

distribution:

Φ(3)
q (p) = 1

2p + 1
2ud

for which a circuit can be easily obtained, given a circuit for p.
The second, Φ(2)

q , “rounds down” the probability of each of the d elements of the domain,
and sends the remaining probability mass to a (d+ 1)-th new element:

Φ(2)
q (p)i =

{
⌊4dqi⌋
4dqi

· pi, i ∈ [d]
1−

∑d
i=1

⌊4dqi⌋
4dqi

· pi, i = d+ 1

This corresponds to adding to the circuit Cp for p a “postprocessing circuit” which, if
the output of Cp is i, outputs i with probability ⌊4dqi⌋

4dqi
(and d+ 1 otherwise).

The third, Φ(1)
q , assumes that the reference distribution q is “grained” (namely, all its

probabilities are positive multiples of 1/(4d)), which will be the case after the first two
mappings6 fully known). Having partitioned [4d] in sets S1, . . . , Sd where

|Si| = 4d · qi ≥ 1

and Φ(1)
q is given by

Φ(3)
q (p)i =

d∑
j=1

pi

|Si|
1{j∈Si}, i ∈ [4d] .

This corresponds to adding to the circuit Cp for p a “postprocessing circuit” which, if
the output of Cp is i, outputs an element of Si uniformly at random. (Importantly,
S1, . . . , Sd are uniquely determined by q, and do not depend on p or Cp at all.)

To summarize, each of these three mappings can be implemented to provide, given a circuit
Cp for p, a circuit Cp′ for the output p′, so that altogether the reduction can be implemented
in a way which preserves access to “the code.”

6 Specifically, when chaining the three mappings, the reference distribution called q here is actually
Φ(2)

q ◦ Φ(3)
q (q).
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8:2 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

local quantum measurements, called a bipartite (quantum) model, then certain correlations
have no realization by a classical (or local hidden-variable) model [7]. The distinction
between quantum and classical correlations is often explored through Bell inequalities. A
Bell inequality is a linear inequality on the set of correlations which is satisfied by all
classical correlations. Hence, these inequalities can be violated by certain models using
quantum entanglement, realizing correlations that are not classical. The quantum value of
a Bell inequality refers to the largest violation achievable by a bipartite (quantum) model.
A prominent example is the Clauser-Horne-Shimony-Holt (CHSH) inequality, where the
classical bound is 2, but the quantum value is 2

√
2 [11].

Due to their ability to witness these non-classical effects, Bell inequality violations play
a major role in areas like device-independent cryptography [1, 15, 30, 31, 33], protocols
for verifiable delegated quantum computation [32, 17, 14], and in the study of multiprover
interactive proofs (MIPs) and the variant MIP∗ with entangled provers [12], also called
nonlocal games. Many of the key applications of Bell inequalities rely on a remarkable
property known as self-testing [22, 23, 35, 34]. Informally, a Bell inequality is a self-test for
an ideal bipartite (quantum) model Q if there exist local isometries which transform any
employed bipartite model Q′ achieving maximum Bell violation into the ideal model Q. It
is well-known that the CHSH inequality is a self-test for the bipartite model employing a
maximally entangled state on two qubits, along with the Pauli σx and σz measurements,
among others [22]. Another prominent example is the family of tilted-CHSH inequalities [2,
35, 4], which self-test partially entangled two-qubit states, and were integral in the work of
Coladangelo, Goh, and Scarani who employed them as part of a protocol to self-test any
pure bipartite entangled state [13].

Despite the enormous success of self-testing, a practical drawback is the requirement
of multiple non-communicating quantum provers. Recently, a number of cryptographic
approaches have been proposed that replace the non-communication assumption with com-
putational assumptions [19, 26, 18]. This makes the setting more practical by having a
single quantum prover, rather than multiple. One new and prominent approach is the
Kalai-Lombardi-Vaikuntanathan-Yang (KLVY) compilation procedure introduced in [19],
which transforms a 2-prover 1-round Bell scenario into a 1-prover 2-round scenario with
a single computationally bounded prover. The core ingredient in the KLVY compilation
procedure is quantum homomorphic encryption (QHE), which emulates, to a certain extent,
the non-communication between the rounds of interaction. In the compiled game, the inputs
to the prover happens sequentially. In the first round, the prover obtains an encryption
χ of the input x from the verifier. Without breaking the security, the prover cannot dis-
tinguish between encryptions of different inputs. The prover performs a polynomial time
quantum circuit on χ, and then returns an output α to the verifier. In the second round,
the information about x has already been “hidden” from the prover, so the verifier can send
input y in the plain (i.e. unencrypted) to the prover, upon which the prover can perform a
measurement and return outcome b to the verifier. The verifier checks for a Bell inequality
violation (across many such interactions) using the values of x, the decryption of α, along
with (y, b). QHE has two key features that makes this resemble the bipartite setting. Firstly,
it allows the first round quantum prover to perform measurements as they would have in
the bipartite setting, without knowing the input. Secondly, the encryption ensures that no
classical polynomial-time prover can violate a Bell inequality by more than an negligible
amount (see Section 3 details). Both of these are non-trivial and were the subject of [19].

In a follow-up work, Natarajan and Zhang showed that the maximal quantum violation
of the CHSH inequality in the compiled setting is bounded by the maximal violation in
the bipartite setting, up to negligible factors in the security parameter [27]. Subsequent
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works have analyzed the quantum soundness of the KLVY compilation procedure for other
multiprover scenarious, including all 2-player XOR nonlocal games [16], Bell inequalities
tailored to maximally entangled bipartite states [6], delegated quantum computation with a
single-device [27, 25], and even in the study of contextuality [3]. Despite these advancements,
many results have yet to be reproduced in the compiled setting. Our work takes another
step in growing the list of protocols that will function as desired in the compiled setting.

Upper bounding compiled Bell violations

As mentioned, the compiled value of a Bell inequality is always at least the quantum value.
This is because any bipartite (quantum) model can be implemented with homomorphic
encryption via a correctness property of the QHE scheme used in the procedure. On the
other hand, establishing upper bounds on the largest violation possible in the compiled
setting is challenging, as general techniques for bounding these violations depend on the
spatial separation between the two provers. Nonetheless, upper bounds on the violations of
a certain Bell inequalities in the compiled setting can be verified using the sum-of-squares
(SOS) technique [27, 16, 6]. The SOS approach is a powerful method and has been used
extensively to upper bound Bell inequality violations and the values of nonlocal games in
the bipartite setting. Informally, this technique relates the maximum compiled value η, of a
Bell functional I, to a decomposition of the Bell operator or Bell polynomial S as a sum
of Hermitian squares, ηI− S =

∑
i P
†
i Pi. Before our work, progress was made on realizing

this approach in the compiled setting, however, there were some limitations. In particular,
it was required that the polynomials Pi involved in the decomposition were at most degree
two in both Alice’s and Bob’s observables, restricting the technique to Bell inequalities with
an SOS decomposition of this form; this excludes, for example, the family of tilted-CHSH
inequalities.

Our first result extends the SOS technique to a larger family of Bell polynomials. More
specifically, we extend the pseudo-expectation techniques in [27, 16] to allow for evaluations
on polynomial terms Pi that consist of arbitrary monomials in the algebra generated by
Bob’s observables. In Theorem 3 we prove that an extended pseudo-expectation will be
positive on the corresponding Hermitian square P †i Pi for any such term Pi. Consequently,
we show that for any Bell inequality with an SOS decomposition in which Pi are of the form
Pi =

∑
j γj(Ax)kjwj(B) for some γj ∈ C, kj ∈ {0, 1} and wj(B) being arbitrary monomials

in Bob’s observables, η is an upper-bound on the maximum compiled quantum value. Our
extension captures a wide class of Bell inequalities including tilted-CHSH, enabling us to
bound the compiled value of the tilted-CHSH inequalities, by the quantum value and a
negligible function of security parameter, see Theorem 5 for details.

A compiled self-testing result

Our second contribution is a concept of self-testing in the compiled setting. One of the main
obstacles to deriving self-testing results in the compiled setting is the lack of techniques for
extracting any algebraic relations on the measurement operators acting under the encryption.
Nevertheless, it remains possible to derive relations on the observables in the second round.
With this in mind, we consider a partial notion of self-testing that applies to the measurements
made by the prover in the second round. In particular, our definition only requires the
existence of an isometry robustly certifying the ideal post-measurement state after the first
round, and the action of the measurements made in the second.
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8:4 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

As our final result, we provide an example by showing violations of the compiled tilted-
CHSH inequalities satisfy this notion of partial self-testing. This family of inequalities
was introduced by Acín, Massar, and Pironio [2], and the Bell functionals take the form
αθ⟨A0⟩+ ⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩, where ⟨AxBy⟩, ⟨Ax⟩ denote the expectation
of measurements corresponding to settings X = x, Y = y, and αθ ∈ R. Notably, they
are tailored to robustly self-test the two qubit states cos(θ)|00⟩ + sin(θ)|11⟩ [35, 4], and
were used as part of a more complex protocol to obtain self-testing for all pure bipartite
entangled states [13]. The work of Barizien, Sekatski, and Bancal [5] extended this family to
include extra degrees of freedom in Bob’s measurements, which we will refer to as “extended”
tilted-CHSH inequalities.

We apply Theorem 3 to the SOS decomposition for the extended tilted-CHSH inequalities
presented in [5]. Specifically, in Theorem 5 we prove that the maximum quantum value
achieved for any of the extended tilted-CHSH functionals is preserved by the KLVY compil-
ation procedure. Then in Theorem 12 we use this same decomposition to prove that this
family of games is a compiled self-test according to Definition 11.

Related work

A recent work of [20] implies that the compiled value of any 2-prover Bell scenario is bounded
by the largest violation possible among so-called commuting operator models. However,
unlike some previous results, such as [6, 16], the upper bound in [20] lacks a dependence on
the security parameter λ, making it unclear how the compiled value is related to the quantum
value at fixed security parameters. Hence, results such as ours, which obtain a bound on the
compiled value that depends negligibly on the security parameter, remain of great importance.
Furthermore, [20] also considers a notion of self-testing in the compiled setting, however, due
to their methods the results are in terms of commuting operator self-tests (as defined in [29,
Proposition 7.8]) and only hold in the limit of the security parameter λ→∞.

Another related work is [26], which presents a protocol for certifying that an unknown
computationally bounded device has prepared a maximally entangled pair of qubits, and
whether a measurement was performed on each qubit in either the computational or Hadamard
basis. The techniques used to prove our compiled self-test have similarities to those of [26],
particularly in the choice of isometry (see Definition 11) and proof structure, which in turn
resembles self-testing techniques in the bipartite setting [4]. There are however some key
differences. Firstly, [26] certifies the preparation of a maximally entangled state by the
device before any measurements are made. While our results are tailored to the more general
class of partially entangled states, we only make statements about the post-measurement
states after each round. It is an interesting open question if our results can be extended
in this way (see Section 4.1 for more details), and statements weaker than certifying the
prepared state could also be possible. For example, can a compiled self-test be used to show
the prepared state must have been entangled? Another significant difference to [26] is that
the self-testing protocol in this work strongly resembles the bipartite case, owing to the
compilation procedure mapping bipartite nonlocal scenarios to single prover scenarios. Our
main result can therefore be interpreted as translating a self-testing statement in the Bell
scenario to one in the compiled Bell scenario. On the other hand, the authors of [26] describe
their approach as more “custom”, guided by the available cryptographic primitives, and pose
the open question of finding a general procedure for translating self-testing results from the
nonlocal setting. We showed this is possible for the special case of titled-CHSH inequalities.
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Future outlook

Moving forward, we consider several natural directions for following up on this work:
1. Tilted-CHSH inequalities were an integral component of the self-testing for all pure

bipartite entangled states [13]. Building off of our work on compiled tilted-CHSH
inequalities, a natural question is whether similar results can be obtained in the compiled
setting.

2. It would be desirable to understand the fundamental limitations of our notion of self-
testing and other similar notions such as the computational self-testing given in [26].
Furthermore, is a finer notion of self-testing in the compiled setting that characterizes
both Alice’s and Bob’s operators and the initial state possible without specifying the
underlying QHE scheme? Moreover, is every self-test in the standard Bell scenario also a
compiled self-test, and vice-versa?

3. Many current techniques for bounding the value of compiled nonlocal games/Bell inequal-
ities can be obtained using some variant of the sum-of-squares decomposition approach.
Given our improvements to this approach outlined in Theorem 3, it is possible to search
for valid decompositions which include arbitrary words in Bob’s operators. Is it possible
to use this approach to give a limited variant of the NPA hierarchy [28] in the compiled
setting?

2 Background

2.1 Mathematical notation
Throughout the article, Hilbert spaces are denoted by H, and are assumed to be finite-
dimensional unless explicitly stated otherwise. Elements of H are denoted by |v⟩ ∈ H,
where the inner product ⟨u|v⟩ for |v⟩, |u⟩ ∈ H is linear in the second argument and defines
the vector norm ∥|v⟩∥ =

√
⟨v|v⟩. Quantum pure states are the norm 1 elements of H. In

this work, B(H) denotes the unital †-algebra of bounded linear operators on H with norm
∥M∥2

op = sup|v⟩∈H,|v⟩̸=0⟨v|M†M |v⟩/⟨v|v⟩. We also write ∥A∥2 =
√

tr(A†A) to denote the
Schatten 2-norm for A ∈ B(Cd) ∼= Md(C). The unit in B(H) is denoted by I, and we write
|M | =

√
M†M for the positive part of M ∈ B(H). Given a finite set A, a collection of

positive operators {Ma ≥ 0 : a ∈ A} with the property that
∑

a∈AMa = I, is called a POVM
over A. When the operators in a POVM are orthogonal projections, we call it a PVM. Given
a random variable X, which takes values X = x ∈ X according to a distribution µ : X → R≥0
such that

∑
x∈X µ(x) = 1, we denote the expectation of X by E[X] =

∑
x∈X µ(x) · x. For

a, b ∈ R and δ > 0, a ≈δ b is short for |a− b| ≤ δ. A function negl : N→ R is called negligible
if for all k ∈ N there exists N ∈ N such that for every n ≥ N it holds that negl(n) ≤ 1

nk .

2.2 Bell scenarios, inequalities, and violations
Before we discuss compiled Bell inequalities, let us recall the bipartite case. Here we let
A,B,X , and Y be finite sets, with |A| = mA, |B| = mB, |X | = nA, and |Y| = nB. A
bipartite Bell scenario is described by the tuple S = (A,B,X ,Y, π), where π : X ×Y → R≥0
is a distribution over the measurement settings. In a scenario, each party receives an input
x ∈ X (resp. y ∈ Y) sampled according to π, and returns outputs a ∈ A (resp. b ∈ B).
The parties are non-communicating, and therefore cannot coordinate their outputs. The
behaviour of the provers is characterized by a correlation, a set of conditional probabilities
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8:6 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

p = {p(a, b|x, y) : a ∈ A, b ∈ B, x ∈ X , y ∈ Y}, which is realized by an underlying physical
theory or model. In the quantum setting, we allow the provers to share a bipartite quantum
state, and say the correlation p is realized by a bipartite (quantum) model

Q =
(
HA,HB , {{Ma|x}a∈A}x∈X , {{Nb|y}b∈B}y∈Y , |Ψ⟩AB

)
, (1)

where HA and HB are Hilbert spaces, {Ma|x}a∈A and {Nb|y}b∈B are POVMs on HA and
HB respectively, and |Ψ⟩AB is a vector state in HA ⊗HB. More generally, a correlation p
is quantum (or an element of Cq(nA, nB ,mA,mB)) if there exists a bipartite model Q for
which p can be realized via the Born rule as p(a, b|x, y) = ⟨Ψ|Ma|x ⊗Nb|y|Ψ⟩. We denote the
class of bipartite (quantum) models by Q(nA, nB ,mA,mB). From now on we will refer to
such models simply as bipartite models.

In contrast to the set of quantum correlations, we have the collection of local correlations
Cloc(nA, nB ,mA,mB). These are the correlations {p(a, b|x, y)} for which there exists a
classical model, that is a probability distribution µk and a local distributions pA

k (a|x) and
pB

k (b|y) such that p(a, b|x, y) =
∑

k µk p
A
k (a|x) pB

k (b|y). We let C = (µk, {pA
k }, {pB

k }) denote
a classical model and let L(nA, nB ,mA,mB) denote the class of all classical models. In
what follows we consider Bell scenarios where nA = nB = n, and mA = mB = m. With this
notation Bell’s theorem [7] states that Cloc(2, 2) is a strict subset of Cq(2, 2).

Given a Bell scenario S, one can consider a linear (or Bell) functional on the set of
correlations

I =
∑

a∈A,b∈B,x∈X ,y∈Y

wabxy p(a, b|x, y), (2)

for coefficients wabxy ∈ R. A Bell inequality is a functional I and a bound η > 0
such that I ≤ η for all p ∈ Cloc(n,m). Given a functional I, the classical value is the
maximal value achieved by the classical correlations p ∈ Cloc(n,m). We denote this value
by ηL := supp∈Cloc(m,n) I. The quantum value for I is the maximal value achieved by
the set of quantum correlations p ∈ Cq(m,n), and we denote the quantum value on I by
ηQ := supp∈Cq(m,n) I. Hence, a Bell violation occurs whenever there is a p ∈ Cq(m,n) for
which I > ηL. A violation of a Bell inequality by non-communicating provers employing a
quantum model is an indication of entanglement between provers.

Typically when ηL is known for a given I, the main challenge is finding an upper bound
on ηQ. In this case, one often considers the Bell operator1 S =

∑
abxy wabxy Ma|x ⊗Nb|y,

and ⟨S⟩ = ⟨Ψ|S|Ψ⟩ its quantum expectation with respect to |Ψ⟩ ∈ HA ⊗ HB. Since
bipartite models with separable quantum states generate the classical correlations Cq(m,n),
⟨Ψ|S|Ψ⟩ ≤ ηL whenever |Ψ⟩ is separable (unentangled). However, it’s possible that there could
be entangled states for which ⟨Ψ′|S|Ψ′⟩ > ηL. Hence, given a Bell operator S, we can recover
the maximum classical and quantum values ηL = supC∈L(n,m)⟨S⟩ and ηQ = supQ∈Q(n,m)⟨S⟩
respectively. Technically, we have not fixed the dimensions of the Bell operator as we
want to consider any finite-dimensional model. Hence, the supremum is implicitly over all
finite-dimensional Hilbert spaces HA ⊗HB .

An approach to establishing upper bounds on ⟨S⟩ is using sum-of-squares techniques.
Let S be a Bell operator and η′ > 0. The shifted Bell operator η′I − S admits a sum-of-
squares (SOS) decomposition if there exists a set of polynomials {Pi}i∈I in the elements
{Ma|x, Nb|y : a ∈ A, b ∈ B, x ∈ X , y ∈ Y} satisfying η′I− S =

∑
i∈I P

†
i Pi. The existence of

1 For a more mathematically rigorous treatment of Bell operators and the SOS approach consult [16].
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an SOS decomposition for the operator η′I− S implies that η′I− S is positive, and therefore
η′ is an upper bound on the maximum quantum value of ⟨S⟩. Additionally, if η′ is achievable
by a bipartite model, then we write η′ = ηQ. In this case, the shifted Bell operator is
S̄ = ηQI−S, and observing ⟨Ψ|S̄|Ψ⟩ = 0 implies the constraints Pi|Ψ⟩ = 0 for all i ∈ I; these
constraints can often be used to infer the algebraic structure (rigidity) of the measurements
{Ma|x}a∈A,x∈X , {Nb|y}b∈B,y∈Y which achieve ⟨S⟩ = ηQ.

3 Compiled Bell scenarios

The compilation procedure of a Bell scenario is essentially the same as the procedure for
compiling nonlocal games outlined in [19]. Let S = (X ,Y,A,B, π) be a 2-prover Bell
scenario and fix a quantum homomorphic encryption scheme with security against quantum
distinguishers and correctness with respect to auxiliary input. Readers unfamiliar with QHE
schemes and these properties can refer to Definition 14 found in the appendix.

A compiled Bell scenario is the following 2-round single-prover scenario. To setup,
the verifier samples a secret key sk← Gen(1λ). Then, the verifier samples a pair of inputs
(x, y) ∈ X × Y according to the distribution π : X × Y → R≥0, and encrypts the first input
as the ciphertext χ← Enc(sk, x).
1. The verifier sends the ciphertext χ to the prover. The prover replies with a ciphertext α

encoding their output. The verifier decrypts obtaining outcome a← Dec(sk, α) from A.
2. The verifier sends the sampled (plaintext) input y ∈ Y to the prover, who replies with

another outcome b ∈ B.

In the compiled scenario, for a chosen security parameter λ, the prover prepares an initial
quantum polynomial time (QPT) preparable state |Ψ(λ)⟩ ∈ H̃(λ) where H̃(λ) is a single
Hilbert space (see Definition 13 for details on efficient quantum procedures). Then, the
first round of the protocol is characterized by a family of POVMs {{M̃ (λ)

α|χ}α∈Ā}χ∈X̄ and
unitaries {U (λ)

α,χ}α∈Ā,χ∈X̄ , where X̄ and Ā are the set of all valid ciphertexts of the first round
input and output, respectively. Unlike in the bipartite setting, we must account for unitary
operations applied to the post-measurement state in the first round. With this in mind, we
denote the sub-normalized post-measurement state given the measurement over ciphertext χ
and encrypted outcome α by

U (λ)
α,χM̃

(λ)
α|χ|Ψ

(λ)⟩ =: |Ψ(λ)
α|χ⟩. (3)

Note that these vectors are sub-normalized. In particular, the probability of obtaining α ∈ Ā
given χ ∈ X̄ is given by ⟨Ψ(λ)

α|χ|Ψ
(λ)
α|χ⟩. In the second round, the device makes a POVM

measurement {{N (λ)
b|y }b∈B}y∈Y , where the resulting conditional probability is given by

⟨Ψ(λ)|M̃ (λ)†
α|χ U (λ)†

α,χ N
(λ)
b|y U

(λ)
α,χM̃

(λ)
α|χ|Ψ

(λ)⟩ = ⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩, (4)

for a fixed, λ ∈ N, sk← Gen(1λ), ciphertexts χ ∈ X̄ , α ∈ Ā, and plaintexts y ∈ Y, b ∈ B.
To summarize, for a fixed QHE scheme, λ ∈ N, a compiled (quantum) model is given

by a tuple

Q̃(λ) = (H̃(λ), {|Ψ(λ)
α|χ⟩}α∈Ā,χ∈X̄ , {{N

(λ)
b|y }b∈B}y∈Y), (5)

where all the relevant measurements and states are obtained by some QPT procedure. We
remark that one can consider a description of the model which includes the initial state |Ψ(λ)⟩
and the operators {U (λ)

α,χM̃
(λ)
α|χ}α∈Ā,χ∈X̄ , rather than the post-measurement states |Ψ(λ)

α|χ⟩.
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8:8 Self-Testing in the Compiled Setting via Tilted-CHSH Inequalities

Hence, Q̃(λ) is really a coarse description of a quantum model in the compiled setting. The
joint distribution of the outcomes after both rounds is given by

p(λ)(a, b|x, y) = E
sk←Gen(1λ)

E
χ:Enc(x)=χ

∑
α:Dec(α)=a

⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩. (6)

Note that the marginal distribution p(λ)(a|x) obtained from Equation (6) will be in-
dependent of the second input y due to the sequential nature of the protocol. However,
the marginal p(λ)(b|y, x) currently depends on x. The aim of what follows is to establish
a computational independence between this distribution and the inputs x. To do so we
will need to consider the distributions of the decrypted outputs and appeal to the security
promise of the QHE scheme. Specifically, we require a key lemma which has appeared in
several works [27, 16, 6]. We borrow a version from [20] and we refer the reader to the
reference for the proof.

▶ Lemma 1 ([20], Proposition 4.6). Let Q̃(λ) be a compiled quantum model, and N (λ) =
w({N (λ)

b|y }b∈B,y∈Y) be a monomial in the measurement operators {N (λ)
b|y }b∈B,y∈Y , where λ ∈ N

is the security parameter for a fixed QHE scheme. Then, for any two QPT sampleable
distributions D1,D2 over plaintext inputs x ∈ X there exists a negligible function negl(λ) of
the security parameter λ such that the following holds∣∣∣∣∣ E

sk←Gen(1λ)
E

x←D1
E

χ:Enc(x)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)|Ψ(λ)

α|χ⟩ − E
sk←Gen(1λ)

E
x←D2

E
χ:Enc(x)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)|Ψ(λ)

α|χ⟩

∣∣∣∣∣
≤ negl(λ).

The approximate no-signalling conditions from Alice to Bob can then be seen by applying
Lemma 1 to the monomials of degree 1 in the QPT measurement operators {N (λ)

b|y }b∈B,y∈Y ,
since

∣∣∣ E
sk←Gen(1λ)

E
χ:Enc(x)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)

b|y |Ψ(λ)
α|χ⟩ − E

sk←Gen(1λ)
E

χ:Enc(x′)=χ

∑
α∈Ā

⟨Ψ(λ)
α|χ|N (λ)

b|y |Ψ(λ)
α|χ⟩
∣∣∣ ≤ negl(λ)

(7)

holds for all b ∈ B, y ∈ Y and x, x′ ∈ X with x ̸= x′.
In the above statements, the measurements are completely general, and the states are

sub-normalized vectors. The following lemma shows that when considering the compiled
value, we can assume that the states and measurement operators in the compiled strategy
are pure and projective.

▶ Lemma 2. Let H′(λ) be the Hilbert space of the device, and {{ρ(λ)
α|χ}α∈Ā}χ∈X̄ be a family of

QPT-preparable sub-normalized states on H′(λ) after the first round. Let {{N
′(λ)
b|y }b∈B}y∈Y be a

family of QPT-implementable POVMs on H′(λ), which induce the behaviour p(λ)(α, b|χ, y) =
tr[N

′(λ)
b|y ρ

(λ)
α|χ]. Then there exists a Hilbert space H(λ), a family of QPT-preparable sub-

normalized states {{|Ψ(λ)
α|χ⟩}α∈Ā}χ∈X̄ in H(λ), and a family of QPT-implementable PVMs

{{N (λ)
b|y }b∈B}y∈Y on H(λ) which satisfy

⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩ = p(λ)(α, b|χ, y), ∀α ∈ Ā, χ ∈ X̄ , b ∈ B, y ∈ Y. (8)

See Section A.2 for the proof of Lemma 2.
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We say a compiled model Q̃(λ) = (H̃(λ), {|Ψ(λ)
α|χ⟩}α∈Ā,χ∈X̄ , {{N

(λ)
b|y }b∈B}y∈Y) is pure and

projective whenever the states |Ψ(λ)
α|χ⟩ are all pure and the measurements N (λ)

b|y are all projective
(i.e. PVMS).

3.1 Quantum bounds for compiled inequalities
A compiled (quantum) model Q̃(λ) describes the correlations p(λ) =
{p(λ)(a, b|x, y)}a∈A,b∈B,x∈X ,y∈Y observed in a compiled Bell scenario. A compiled
Bell functional is a linear functional I(λ) evaluated on correlations realized by compiled
models. That is

I(λ) =
∑
abxy

wabxy E
sk←Gen(1λ)
χ:Enc(x)=χ

∑
α:Dec(α)=a

⟨Ψ(λ)
α|χ|N

(λ)
b|y |Ψ

(λ)
α|χ⟩. (9)

By the properties of the compilation procedure [19, Theorem 3.2], Bell inequalities are pre-
served under compilation (up to negligible error). In particular, for large security parameter,
efficient classical provers cannot violate a Bell inequality by much more than they could
in the (bipartite) scenario. From now on, we will suppress the security parameter λ ∈ N
along with the expectation over secret keys Esk←Gen(1λ) and simply write the expectation for
a fixed key. In particular, we express the compiled model as Q̃ and Equation (9) as

I =
∑
abxy

wabxy E
χ:Enc(x)=χ

∑
α:Dec(α)=a

⟨Ψα|χ|Nb|y|Ψα|χ⟩.

We now turn our attention to the maximum value I can take in the compiled setting
with an efficient quantum prover. The results of [19] imply that an efficient quantum prover
can achieve the same violation in the bipartite setting. However, the existence of a quantum
compiled behavior which exceeds the maximal quantum Bell violation in the bipartite case
(by more than negligible factors) has not been ruled out. Nonetheless, in several cases (like
the CHSH inequality and more generally all XOR games [16]) we know that the quantum
compiled behavior cannot exceed the value ηQ by more than negligible amounts. One
technique for establishing such bounds was introduced in [27] and uses SOS techniques to
bound the quantum violation of the compiled Bell functional.

3.2 Extending the pseudo-expectations
Our approach builds off the methods used in [27] and [16]. To explain this approach we recall
that a pseudo-expectation is a unital, linear map from a subspace T of the algebra generated
by {Ma|x, Nb|y}a∈A,x∈X ,b∈B,y∈Y to the complex numbers, ẼQ̃ : T → C, which is determined
by a compiled quantum model Q̃. In the case n = m = 2, it suffices to define the pseudo-
expectation ẼQ̃ on the observables Ax =

∑
a∈{0,1}(−1)aMa|x, By =

∑
b∈{0,1}(−1)bNb|y and

require that they are mapped to their expectations in the compiled scenario2. We further
assume that all measurements are projective (cf. Lemma 2). In previous works, the definition
of the pseudo-expectation had been restricted to monomials consisting of at most one Alice
and one Bob observable as outlined below:

2 Though in the following we define ẼQ̃
for n = m = 2, this can be directly extended to arbitrary Bell

scenarios by defining ẼQ̃
on the POVM elements Ma|x, Nb|y in an analogous way.
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ẼQ̃[AxBy] := E
χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|By|Ψα|χ⟩,

ẼQ̃[AxAx′ ] := δx,x′ ,

ẼQ̃[ByBy′ ] := E
x∈X

E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|ByBy′ |Ψα|χ⟩,

ẼQ̃[Ax] := E
χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|Ψα|χ⟩,

ẼQ̃[By] := E
x∈X

E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|By|Ψα|χ⟩,

ẼQ̃[I] := 1,

(10)

where Ex∈X denotes the expectation according to an arbitrary fixed distribution over X .
This is already sufficient to handle known SOS decompositions for a variety of well-studied
Bell inequalities whenever the polynomials are expressed in the basis {I, Ax, By}x∈X ,y∈Y .
However, there are Bell inequalities, such as the tilted-CHSH inequality [4, 5], for which no
known SOS decomposition exists in the basis {I, Ax, By}x∈X ,y∈Y .

The contribution of this section is to expand the definition of the pseudo-expectation
to the basis encompassing all monomials in Ax, B0, B1, for a fixed x ∈ X , in a way that is
approximately non-negative on Hermitian squares. This allows us to handle more general
SOS decompositions, and in particular, the tilted-CHSH inequalities. Let w(Ax, B0, B1) be
a monomial in the elements {Ax, B0, B1}. Importantly, x is fixed, and we do not consider
monomials of the form A0A1By for example. Let w̄ be the canonical form of w under the
relations [Ax, By] = 0, (By)2 = (Ax)2 = I, where all Ax terms are commuted to the left.
Since we only consider one value of x, these will all be of the form (Ax)iw̄(B0, B1) for some
i ∈ {0, 1}, where the monomial w̄(B0, B1) cannot be reduced further. We then define the
pseudo-expectation

ẼQ̃

[
w(Ax, B0, B1)

]
:= ẼQ̃

[
(Ax)iw̄(B0, B1)

]
. (11)

For the case i = 0, we define

ẼQ̃

[
w̄(B0, B1)

]
:= E

x∈X
E

χ:Enc(x)=χ

∑
α

⟨Ψα|χ|w̄(B0, B1)|Ψα|χ⟩, (12)

and for the case i = 1,

ẼQ̃

[
Axw̄(B0, B1)

]
:= E

χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|w̄(B0, B1)|Ψα|χ⟩. (13)

From the above definitions, we next state the main result of this section, which can be applied
generally to any polynomial expressible in the basis {Ax, B0, B1}.

▶ Theorem 3. Let {Ax}x∈X and {By}y∈Y be binary observables, and let

P =
∑

i

γi(Ax)kiwi(B0, B1), (14)

where γi ∈ C, ki ∈ {0, 1} and each wi(B0, B1) is any monomial in the algebra of {B0, B1}.
Then there exists a negligible function negl(λ) of the security parameter λ ∈ N such that

ẼQ̃[P †P ] ≥ −negl(λ). (15)

Furthermore, for a given Bell functional I, and a compiled model Q̃, ẼQ̃(I) is the expected
value of the compiled model Q̃ on I.

The proof can be found in Section A.2.
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3.3 Quantum bounds for compiled tilted-CHSH expressions
We now present the family of extended tilted-CHSH type expressions and their SOS decom-
positions discovered in [5]. Let θ ∈ (0, π/4], ϕ ∈

(
max{−2θ,−π+ 2θ},min{2θ, π−2θ}

)
\{0},

and tθ,ϕ ∈ R such that

1
t2θ,ϕ

= sin2(2θ)
tan2(ϕ)

− cos2(2θ). (16)

From here, we define the following expressions:

Sθ,ϕ := A0 ⊗
B0 +B1

cos(ϕ) + t2θ,ϕ

[
sin(2θ)A1 ⊗

B0 −B1

sin(ϕ) + cos(2θ) I⊗ B0 +B1

cos(ϕ)

]
,

ηQ
θ,ϕ := 2(1 + t2θ,ϕ).

(17)

We also let Iθ,ϕ denote the corresponding Bell functional, and recall the following result.

▶ Lemma 4 ([5], Section 3.2.1). Let θ ∈ (0, π/4], ϕ ∈
(

max{−2θ,−π + 2θ},min{2θ, π −
2θ}
)
\ {0}, tθ,ϕ be given by Equation (16) and Sθ,ϕ, η

Q
θ,ϕ be defined in Equation (17). Define

the following polynomials:

N0 := A0 ⊗ I− I⊗ B0 +B1

2 cos(ϕ) ,

N1 := A1 ⊗ I− sin(2θ) I⊗ B0 −B1

2 sin(ϕ) − cos(2θ)A1 ⊗
B0 +B1

2 cos(ϕ) .
(18)

Then the shifted Bell operator S̄θ,ϕ = ηQ
θ,ϕI− Sθ,ϕ admits the SOS decomposition

S̄θ,ϕ = N†0N0 + t2θ,ϕN
†
1N1. (19)

Using the decomposition in Lemma 4, it was shown in [5] that the inequality ⟨Sθ,ϕ⟩ ≤ ηQ
θ,ϕ

self-tests the partially entangled state |ψθ⟩ = cos(θ)|00⟩+ sin(θ)|11⟩ and the measurements

A0 = σZ , A1 = σX ,

By = cos(ϕ)σZ + (−1)y sin(ϕ)σX , y ∈ {0, 1},
(20)

where σZ , σX are the Pauli operators. Notably, by setting ϕ = µθ where tan(µθ) = sin(2θ),
this family encompasses what are most commonly referred to as “tilted-CHSH inequalities”
given by the Bell operator

Tθ = αθA0 ⊗ I +A0 ⊗ (B0 +B1) +A1 ⊗ (B0 −B1), (21)

where αθ = 2/
√

1 + 2 tan2(2θ) [2, 35, 4]. Compared to the SOS decompositions for Tθ

from [4], the decomposition of [5] is expressed in the basis for which our extended pseudo-
expectation is well defined (cf. Theorem 3), allowing us to provide bounds on the compiled
value of Tθ, and more generally the family Sθ,ϕ.

▶ Theorem 5. Let θ ∈ (0, π/4], ϕ ∈
(

max{−2θ,−π + 2θ},min{2θ, π − 2θ}
)
\ {0}, and let

Sθ,ϕ be the extended tilted-CHSH expression with quantum bound ηQ
θ,ϕ, given by Equation (17).

Then the maximum quantum value of the corresponding compiled Bell inequality is given by
ηQ

θ,ϕ + negl(λ)′, where negl(λ)′ is a negligible function of the security parameter.
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Proof. We evaluate the pseudo-expectation on the shifted Bell expression S̄θ,ϕ:

ẼQ̃[S̄θ,ϕ] = ẼQ̃[N†0N0] + λ2
θ,ϕẼQ̃[N†1N1], (22)

where we used the decomposition in Lemma 4. The polynomial N0 is expressed in the basis
{A0, B0, B1}, and we find by Theorem 3 that

ẼQ̃[N†0N0] ≥ −negl(λ). (23)

Similarly, N1 is expressed in the basis {A1, B0, B1}, and we see by Theorem 3 that
ẼQ̃[N†1N1] ≥ −negl(λ). Putting these together, we obtain

ẼQ̃[S̄θ,ϕ] ≥ −negl(λ)(1 + λ2
θ,ϕ) =: −negl(λ)′, (24)

which implies ẼQ̃[Sθ,ϕ] ≤ ηQ
θ,ϕ + negl(λ)′ as desired, where ẼQ̃[Sθ,ϕ] is the expected value of

the compiled Bell inequality. ◀

▶ Remark 6. The extension of the Sθ,ϕ family presented in [5, Section 3.2.3] self-tests the
state |ψθ⟩ along with the more general measurements

A0 = σZ , A1 = σX ,

B0 = cos(ϕ)σZ + sin(ϕ)σX ,

B1 = cos(ω)σZ + sin(ω)σX ,

(25)

for ϕ ∈ (−2θ, 0) and ω ∈ (0, 2θ). This family of Bell inequalities can also be compiled under
our definition of the pseudo-expectation. This is because each SOS polynomial is given in
the basis {Ax, B0, B1} for a fixed x, and we can apply Theorem 3 directly as was done in
Theorem 5. We omit the explicit proof of this for brevity.

4 Self-testing in the compiled setting

Recall that a bipartite (quantum) model Q, consists of a shared state |Ψ⟩, along with local
POVM measurements {Ma|x} and {Nb|y} for Alice and Bob, respectively. Given a Bell
expression I, the inequality I ≤ ηQ self-tests an ideal bipartite model Q∗ if any optimal
bipartite model is essentially the same as Q∗, modulo some physically irrelevant degrees of
freedom. This is more formally stated in terms or the existence of local isometries which
maps the employed model to the ideal one. When small errors are permitted, one considers
the following definition of robust self-testing.

▶ Definition 7 (Bipartite self-test). The inequality I ≤ ηQ is a self-test for a bipartite model
Q∗ =

(
{Pa|x}, {Qb|y}, |ϕ⟩

)
if there exist a non-negative function f(ϵ) such that f(ϵ)→ 0 as

ϵ→ 0, such that for any bipartite model Q =
(
{Ma|x}, {Nb|y}, |Ψ⟩

)
achieving I ≥ ηQ − ϵ for

ϵ ≥ 0, there exists a Hilbert space Haux, an auxiliary state |ζ⟩ ∈ Haux and local isometries
VA and VB, such that defining V : HA⊗HB → Cd⊗Cd⊗Haux, V = VA⊗VB, the following
is satisfied for all x, y, a, b:∥∥VA ⊗ VB(Ma|x ⊗Nb|y)|Ψ⟩ − (Pa|x ⊗Qb|y)|ϕ⟩ ⊗ |ζ⟩

∥∥ ≤ f(ϵ).

In the bipartite setting, one could consider the situation where Alice measures first using
a POVM {Pa|x}, collapsing the state to a post-measurement state ρa|x on Bob’s subsystem
HB , upon which Bob performs his measurement, resulting in the application of the POVM
element Qb|y. With this in mind, we consider the setting where the only relevant features of
the model are those from Bob’s (resp. Alice’s) perspective. In particular, subsystem A is
traced out following the recorded measurement of outcome of a given x.
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▶ Definition 8 (Partial model). Given a bipartite model Q =
(
{Ma|x}, {Nb|y}, |Ψ⟩

)
, we define

the partial model of Q by Q′ = ({Nb|y}, {ρa|x}) where

ρa|x = trA[(Ma|x ⊗ IB)|Ψ⟩⟨Ψ|]. (26)

We note that ρa|x will generally be mixed. When each ρa|x is pure, we say that Q has a pure
partial model, denoted by Q′ = ({Nb|y}, {|ϕa|x⟩}).

Symmetrically, given a bipartite model one can consider a (pure) partial model on HA by
tracing out subsystem B. However, because our motivation is the compiled setting, we will
focus on the partial models on HB . Furthermore, we remark that the notion of pure partial
models is not vacuous. In particular, the optimal bipartite model for the CHSH inequality
has a pure partial model on HB [10]. With the notion of a partial quantum model, we define
the notion of a partial (or one-sided) self-test for a bipartite model.

▶ Definition 9 (Partial self-test). The inequality I ≤ ηQ is a partial self-test for a bipartite
model Q∗ =

(
{Pa|x}, {Qb|y}, |ϕ⟩

)
with a pure partial model

(
{Qb|y}, {|ϕa|x⟩}

)
if there exists

a non-negative function f(ϵ) such that f(ϵ)→ 0 as ϵ→ 0, such that for any partial quantum
model Q =

(
{Nb|y}, {ρa|x}

)
achieving I ≥ ηQ − ϵ for ϵ ≥ 0, there exist a Hilbert space Haux,

a collection of auxiliary states {σa|x} and an isometry V : HB → Cd ⊗Haux such that the
following is satisfied for all x, y, a, b:∥∥V Nb|yρa|xNb|yV

† −Qb|y|ϕa|x⟩⟨ϕa|x|Qb|y ⊗ σa|x
∥∥

2 ≤ f(ϵ)
and

∥∥V ρa|xV
† − |ϕa|x⟩⟨ϕa|x| ⊗ σa|x

∥∥
2 ≤ f(ϵ),

Give the symmetry of HA and HB in the bipartite case, one can define a notion of partial
self-test for either subsystem. Given a bipartite self-test, one can check that tracing out
either subsystem results in a partial self-test. We leave it as an open question as to whether a
partial self-test (say over HA and over HB) implies that the correlation is a bipartite self-test.

4.1 Compiled self-tests from partial models
There are two main difficulties with self-testing in the compiled setting. Firstly, the correctness
with respect to auxiliary systems property of the compiler (see Property (1) in Definition 14)
only guarantees that a QPT prover can prepare states (possibly mixed) ρa|x over HB that
are negligible in trace distance from the post measurement states Pa|x|Ψ⟩⟨Ψ|Pa|x/p(a|x) of
the ideal bipartite model Q. This puts a fundamental constraint on our ability to exactly
describe the set of ideal models in the compiled setting. Secondly, unlike in the nonlocal
setting, it is not clear how to extract information about the measurements and states in
the first round due to the homomorphic evaluation of the measurements and preparation of
the states. To address these challenges we introduce the compiled counter-part of a partial
quantum model.

Recall that a compiled (quantum) model Q̃ consists of a family of post-measurement
states for “Alice” |ϕ̃α|χ⟩, which correspond to the state of the device following the encrypted
question χ, and encrypted answer α, and a POVM {Nb|y} employed by “Bob”. One could
also consider a more general compiled quantum model, which includes a description of the
initial state and Alice’s operators. The point of taking the coarser model is that it allows us
to introduce the notion of the compiled-counterpart of a bipartite model Q, which relates
the post-measurement information in the bipartite setting with another bipartite model that
resembles a compiled model.
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▶ Definition 10 (Compiled-counterpart model). Given a pure partial model Q′, the compiled-
counterpart model of Q′ is the pure partial model Q̃(λ) = ({|ϕ̃(λ)

α|χ⟩}, {Q
(λ)
b|y }) satisfying the

following conditions for all λ ∈ N:

|ϕ̃(λ)
α|χ⟩ = |ϕa|x⟩, for all sk : Gen(1λ) = sk, χ : Enc(x, sk) = χ, α : Dec(α, sk) = a.

N
(λ)
b|y = Qb|y, for all b, y.

We remark that the compiled counterpart need not be an actual compiled model. For
example, it is not required to satisfy the QPT conditions needed of a compiled model. Instead
it is a model that resembles an idealized version of an honest implementation of a partial
model under homomorphic encryption. We proceed with a definition of self-testing in the
compiled setting that resembles partial self-testing in the bipartite setting in the context of
these compiled-counterparts.

▶ Definition 11 (Compiled self-test). Let I denote a Bell expression with an optimal pure
partial model Q∗. The inequality I ≤ ηQ is a compiled self-test for the corresponding
compiled-counterpart Q̃∗ = ({|ϕ̃α|χ⟩}, {Qb|y}), if there exists a non-negative function f(ϵ)
such that f(ϵ) → 0 as ϵ → 0, such that for every pure and projective compiled model
Q̃ =

(
{|Ψα|χ⟩}, {Nb|y}

)
that achieves I ≥ ηQ − ϵ for some ϵ ≥ 0, there exists a negligible

function negl(λ), an isometry V : H̃ → Cd ⊗ Haux, and auxiliary states |auxα|χ⟩ ∈ Haux,
which satisfy the following for all x, b, y:

E
χ:Enc(x)=χ

∑
α

∥∥V |Ψα|χ⟩ − |ϕ̃α|χ⟩ ⊗ |auxα|χ⟩
∥∥2 ≤ negl(λ) + f(ϵ), and (27a)

E
χ:Enc(x)=χ

∑
α

∥∥V Nb|y|Ψα|χ⟩ −Qb|y|ϕ̃α|χ⟩ ⊗ |auxα|χ⟩
∥∥2 ≤ negl(λ) + f(ϵ). (27b)

Equation (27a) is a statement about the provers state after the first round. It asserts that,
given a question x and answer a, the post-measurement state is negligibly close to that of an
ideal prover implementing the honest bipartite model. To see this concretely, suppose the right
hand side was exactly equal to zero. Then we have the equality V |Ψα|χ⟩ = |ϕ̃α|χ⟩ ⊗ |auxα|χ⟩
for all χ such that Enc(x) = χ and all α. Substituting |ϕ̃α|χ⟩ for the states |ϕa|x⟩ from
Definition 10, we obtain

V |Ψα|χ⟩ = |ϕa|x⟩ ⊗ |auxα|χ⟩ (28)

whenever Enc(x) = χ and Dec(α) = a. That is, the post-measurement states are equal to
the target states up an isometry. Therefore, we interpret (27a) as an approximate version of
Equation (28), which accounts for a finite size security parameter λ and small errors in the
Bell violation ϵ. Equation (27b) is the analogous statement including the measurements in
the second round. We remark that if V could depend on the question x and answer a, (27a)
would trivially hold regardless of the compiled Bell violation, since the states |ϕa|x⟩ could
be prepared directly. It is therefore essential to enforce the same isometry is applied for all
a and x. Furthermore, (27b) captures several existing self-testing results in the compiled
setting. For example those presented in [27, Lemma 34], [16, Theorem 3.6] and [16, Eqs. 98
and 103]. Our proposed definition then goes further by also certifying the states after the
first round but before Bob’s measurements, as captured by (27a).

It is natural to ask if Definition 11 is the strongest form of self-testing possible in this
scenario, or if one can also certify the initial state |Ψ⟩ before Alice’s measurements. An
initial guess would be to show there exists an isometry V satisfying

V |Ψ⟩ ≈negl(λ) |ϕ⟩ ⊗ |aux⟩, (29)
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where |ϕ⟩ is the ideal bipartite entangled state. However, on its own this statement is not
very useful: such an isometry always exists, namely, one which ignores |Ψ⟩ and prepares |ϕ⟩
directly. A possible way around is to demand the same V also satisfies (27). At a glance, this
suggests certifying the initial state alone is not meaningful in the single prover setting; one
always needs to also consider the measurements. This contrasts the two prover setting, where
self-testing statements made only about the state are known [34] and non-trivial due to the
space-like separation of the provers. Another question worth asking is if the assumption of
having a pure projective models Q̃ can be relaxed in the definition Definition 11.

4.2 Compiled self-test for tilted-CHSH inequalities
Our final result is that the extended tilted-CHSH Bell inequalities are compiled self-tests
according to Definition 11. In particular, we have the following result.

▶ Theorem 12. Let θ ∈ (0, π/4], ϕ ∈
(

max{−2θ,−π + 2θ},min{2θ, π − 2θ}
)
\ {0}, and

let Iθ,ϕ be the generalized tilted-CHSH functional with quantum bound ηQ
θ,ϕ according to

Equation (17). Then the inequality Iθ,ϕ ≤ ηQ
θ,ϕ is a compiled self-test for the compiled-counter

part of (20) according to Definition 11.

The proof is reminiscent of the approach in [4], and includes similar calculations to those
used in [27, 6] which establish rigidity statements in the compiled setting. Given the length
of the proof, we refer the reader to the longer version of this work [24] for all the details.
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A Appendix

A.1 Efficient quantum circuits and homomorphic encryption
To define a quantum homomorphic encryption scheme we require the following concepts from
quantum cryptography.

▶ Definition 13. A procedure P is quantum polynomial time (QPT) if:
1. there exists a uniform logspace family of quantum circuits that implement P, and
2. the runtime of the circuit is polynomial in the number of qubits and the security parameter

λ ∈ N.
A family of quantum states F is QPT (preparable) if there is a QPT P for preparing F .

We now define a quantum homomorphic encryption (QHE) scheme. A formal definition
of QHE first appeared in [9]. We follow the description of QHE outlined in [19, 8]:

▶ Definition 14. A quantum homomorphic encryption scheme Q for a family of circuits C
consists of a security parameter λ ∈ N and the following algorithms:

(i) A PPT algorithm Gen which takes as input a unary encoding 1λ of the security parameter
λ ∈ N and outputs a secret key sk.

(ii) A PPT algorithm Enc which takes as input the secret key sk and a plaintext x ∈ {0, 1}n

and produces a ciphertext χ ∈ {0, 1}k.
(iii) A QPT algorithm Eval which takes as input a classical description of a quantum circuit

C : H⊗ (C2)⊗n → (C2)⊗m from C, a quantum plaintext |Ψ⟩ ∈ H on a Hilbert space, a
ciphertext χ, and evaluates a quantum circuit EvalC(|Ψ⟩ ⊗ |0⟩poly(λ,n), χ) producing a
ciphertext α ∈ {0, 1}ℓ.

(iv) A QPT algorithm Dec which takes as input ciphertext α, and secret key sk, and produces
a quantum state |Ψ′⟩.

Although the existence of algorithms (i)-(iv) defines a QHE scheme, we consider several
additional important properties a scheme may or may not possess:
1. (Correctness with auxiliary input). For every security parameter λ ∈ N, secret key sk←

Gen(1λ), classical circuit C : HA ⊗ (C2)⊗n → {0, 1}m, quantum state |Ψ⟩AB ∈ HA ⊗HB ,
plaintext x ∈ {0, 1}n ciphertext χ← Enc(x, sk), the following procedures produce states
with negligible trace distance with respect to λ:
a. Starting from the pair (x, |Ψ⟩AB), run the quantum circuit C on register A, outputting

the classical string a ∈ {0, 1}m along with the contents of register B.
b. Starting from (χ, |Ψ⟩AB), run the circuit EvalC(·) on register A, obtaining ciphertext

α ∈ {0, 1}ℓ, output a′ = Dec(α, sk) along with the contents of register B.
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2. (Security against efficient quantum distinguishers). Fix a secret key sk← Gen(1λ). Any
quantum polynomial time adversary A with access to Enc(·, sk) (but does not know sk)
cannot distinguish between ciphertexts χ← Enc(x0, sk) and χ′ ← Enc(x1, sk) with non-
negligible probability in λ, where x0 and x1 are any plaintexts chosen by the adversary.
That is

|Pr[AEnc(x0,sk)(x0) = 1]− Pr[AEnc(x0,sk)(x1) = 1]| ≤ negl(λ),

for all pairs (x0, x1).

The KLVY compilation procedure requires schemes that satisfy (1) and (2). QHE schemes
satisfying (1) and (2) have been described in [21, 8].

A.2 Proofs
Proof of Lemma 2. Let V (λ)

y : H′(λ) → C|B| ⊗H′(λ) be the isometry defined by

V (λ)
y |ϕ⟩ =

∑
b∈B

|b⟩ ⊗
√
N

′(λ)
b|y |ϕ⟩, ∀|ϕ⟩ ∈ H

′(λ). (30)

Furthermore, let U (λ)
y be the unitary which satisfies U (λ)

y (|0⟩ ⊗ |ϕ⟩) = V
(λ)

y |ϕ⟩ for all |ϕ⟩ ∈
H′(λ). Define the projectors,

Ñ
(λ)
b|y := U (λ)†

y (|b⟩⟨b| ⊗ I)U (λ)
y . (31)

Since |B| is constant with respect to λ and each N
′(λ)
b|y is QPT, the resulting PVMs {Ñ (λ)

b|y }b∈B

are QPT for every y ∈ Y. For the sub-normalized states, let |Ψ̃α|χ⟩ ∈ H
′(λ) ⊗ H̃(λ) be any

purification3 of ρ(λ)
α|χ with H′(λ) ∼= H̃(λ), and define

|Ψ(λ)
α|χ⟩ := |0⟩ ⊗ |Ψ̃(λ)

α|χ⟩ ∈ C|X | ⊗H
′(λ) ⊗ H̃(λ) =: H(λ). (32)

Again, since |X | is constant with respect to λ the (sub-normalized) states |Ψ(λ)
α|χ⟩ are QPT-

preparable. Now, extend each Ñ (λ)
b|y to act trivially on the purifying system H̃(λ) by defining

N
(λ)
b|y := Ñ

(λ)
b|y ⊗ I. We observe

tr
[
N

(λ)
b|y |Ψ

(λ)
α|χ⟩⟨Ψ

(λ)
α|χ|

]
= tr

[
Ñ

(λ)
b|y trQ̃[|Ψ(λ)

α|χ⟩⟨ψ
(λ)
α|χ|]

]
= tr[Ñ (λ)

b|y (|0⟩⟨0| ⊗ ρ(λ)
α|χ)]

= tr
[(
|b⟩⟨b| ⊗ I

)
U (λ)

y

(
|0⟩⟨0| ⊗ ρα|χ

)
U (λ)†

y

]
= tr

[√
N

′(λ)
b|y ρ

(λ)
α|χ

√
N

′(λ)
b|y

]
= p(λ)(α, b|χ, x),

(33)

where Q̃ denotes the purifying system H̃(λ). Since H̃(λ) has the same dimensions as H(λ),
the PVMs N (λ)

b|y are indeed QPT. ◀

3 Strictly speaking, since ρ
(λ)
α|χ is sub-normalized, |Ψ̃(λ)

α|χ⟩ is equal to the purification of ρ
(λ)
α|χ/tr[ρ(λ)

α|χ]
weighted by tr[ρ(λ)

α|χ], whenever tr[ρ(λ)
α|χ] > 0.
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Proof of Theorem 3. To begin, we write

ẼQ̃[P †P ] =
∑

ij

γ∗i γjẼQ̃[(Ax)kiwi(B0, B1)(Ax)kjwj(B0, B1)]

=
∑

ij

γ∗i γjẼQ̃[(Ax)ki+kj w̄ij(B0, B1)],
(34)

where we used the linearity of ẼQ̃[·] in the first line, and in the second line we used the fact
that ẼQ̃[w] = ẼQ̃[w̄] (where w̄ is the canonical form of the monomial w), and defined w̄ij to
be the canonical form of wiwj . We now need to consider two types of terms. First, when
ki ⊕ kj = 0, we apply the definition in Equation (12) in conjunction with Lemma 1 to write∑

ij:ki⊕kj=0
γ∗i γjẼQ̃[w̄ij(B0, B1)]

= E
x′∈X

E
χ:Enc(x′)=χ

∑
α

⟨Ψα|χ|

( ∑
ij:ki⊕kj=0

γ∗i γjw̄ij(B0, B1)
)
|Ψα|χ⟩

≈negl(λ) E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|

( ∑
ij:ki⊕kj=0

γ∗i γjw̄ij(B0, B1)
)
|Ψα|χ⟩

=
∑

ij:ki⊕kj=0
γ∗i γj E

χ:Enc(x)=χ

∑
α

⟨Ψα|χ|w̄ij(B0, B1)|Ψα|χ⟩.

(35)

When ki ⊕ kj = 1, we can apply Equation (13) directly. Putting these two together, we
observe∑

ij

γ∗i γjẼQ̃[(Ax)ki+kj w̄ij(B0, B1)]

=
∑

ij:ki⊕kj=0
γ∗i γjẼQ̃[w̄ij ] +

∑
ij:ki⊕kj=1

γ∗i γjẼQ̃[Axw̄ij ]

≈negl(λ)
∑

ij:ki⊕kj=0
γ∗i γj E

χ:Enc(x)=χ

∑
α

⟨Ψα|χ|w̄ij(B0, B1)|Ψα|χ⟩

+
∑

ij:ki⊕kj=1
γ∗i γj E

χ:Enc(x)=χ

∑
α

(−1)Dec(α)⟨Ψα|χ|w̄ij(B0, B1)|Ψα|χ⟩

= E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|
∑

ij

(−1)Dec(α)·(ki+kj)γ∗i γjwi(B0, B1)wj(B0, B1)|Ψα|χ⟩

= E
χ:Enc(x)=χ

∑
α

⟨Ψα|χ|
∣∣∣∑

i

(−1)Dec(α)·kiγiwi(B0, B1)
∣∣∣2|Ψα|χ⟩ ≥ 0.

(36)

Where in the fifth line, we used the fact that Bob’s observables satisfy the canonical relations,
so we can always replace the canonical monomial w̄ij with wiwj . The final line is obtained by
noting the square inside the expectation. We therefore conclude ẼQ̃[P †P ] ≈negl(λ) h for some
h ≥ 0, which implies |ẼQ̃[P †P ] − h| ≤ negl(λ), and ẼQ̃[P †P ] ≥ h − negl(λ) ≥ −negl(λ) as
required. Lastly, it is straightforward to verify from the definition that for any Bell functional
I we have ẼQ̃(I) recovers the expected value under Q̃. ◀
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1 Introduction

Pseudorandomness [34, 68] is ubiquitous in theoretical computer science and has found
applications in many areas, ranging from cryptography, to computational complexity, to the
study of randomized algorithms, and even to combinatorics. The celebrated result of Håstad,
Impagliazzo, Levin, and Luby [44] shows that one can construct a pseudorandom generator
from any one-way function – a function that is easy to evaluate but computationally hard
to invert. Pseudorandom generators can then in turn be used to construct more advanced
cryptographic primitives, such as pseudorandom functions [35], i.e., keyed families of functions
that appear random to any computationally bounded observer. This fact has elevated the
notion of a one-way function as the minimal assumption in all of theoretical cryptography.
One-way functions are typically built from well-studied mathematical conjectures, such as the
hardness of factoring [61] and discrete logarithms [54], decoding error correcting codes [13, 4],
or finding short vectors in high-dimensional lattices [59]. More advanced cryptographic
primitives (which are believed to lie beyond what is generically possible to construct from
any one-way function), such as public-key encryption, tend to require highly structured
assumptions which are more susceptible to algorithmic attacks – particularly by quantum
computers [65], which has led to the design of post-quantum assumptions [3].

In quantum cryptography, there has recently been a significant interest in so-called
“fully quantum” cryptographic primitives (occasionally referred to as MicroCrypt primitives)
which are potentially weaker than the conventional minimal assumptions used in classical
cryptography. Here, the notion of quantum pseudorandomness has emerged as the natural
quantum analogue of pseudorandomness in the classical world [46, 50, 2]. In particular, Ji, Liu
and Song [46] proposed the notion of pseudorandom states [46] and pseudorandom unitaries
as the natural quantum analogues of pseudorandom generators [44] and pseudorandom
functions [35], respectively. The work of Kretschmer [50, 51] has shown that such fully
quantum cryptographic primitives can exist in a world in which no classical cryptography
exists – including one-way functions. At the same time, quantum pseudorandomness has
applications in many areas of quantum information, ranging from entanglement theory [2, 16,
32], quantum learning theory [70], to models of scrambling phenomena in chaotic quantum
systems [49, 31], and, more generally, even in the foundations of quantum cryptography [46,
50, 51, 57, 5, 17, 15, 48, 10].

Limitations of existing constructions. Despite strong evidence that MicroCrypt primitives
such as pseudorandom quantum states and pseudorandom unitaries lie “below” one-way
functions [50, 51], all known constructions implicitly make use of one-way functions (or other
assumptions which are themselves synonymous with the existence of one-way functions) [46,
19, 55]. This naturally begs the question:

Is it possible to construct fully quantum primitives, including quantum pseudorandomness,
from quantum rather than classical hardness assumptions?

Instantiating fully quantum primitives from a concrete and well-founded quantum hardness
assumption (rather than from the existence of one-way functions) has remained a long
standing open problem [6, 57].

Moreover, the fact that quantum pseudorandom states and unitaries are built from
classical one-way functions makes them nearly impossible to realize on realistic quantum
hardware. In some sense, this is inherent because cryptographic pseudorandom functions
are highly complex by design [11], and therefore require a massive computational overhead
to implement coherently. As a result, this severely limits the potential of using quantum
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pseudorandomness in practical applications; for example in the context of entanglement
theory [2, 16], or when studying the emergence of thermal equilibria in isolated many-body
systems [32], or when modeling scrambling phenomena in chaotic quantum systems [49].
A second limitation of existing pseudorandom constructions is therefore also the notion of
quantum efficiency, which begs the question:

Are there more efficient constructions of quantum pseudorandomness which can be
implemented on realistic quantum hardware?

Making progress on both of these questions would not only lead to new insights in the
foundations of quantum cryptography and the study of quantum hardness assumptions more
generally, but also make quantum pseudorandomness more useful in practice. To this day,
however, no concrete fully quantum hardness assumption has been explored in an attempt
to answer this question.

Towards a fully quantum assumption. In order to plausibly claim that quantum pseu-
dorandomness and other fully quantum cryptographic primitives exist in a world in which
classical cryptography does not, we must construct these primitives from new assumptions
that do not themselves imply classical cryptography.

The history of cryptography has taught us that finding good and well-founded crypto-
graphic assumptions is not at all an easy task – even entirely plausible assumptions have
often found surprising attacks [66, 26, 12]. What makes a new cryptographic assumption
reasonable? While no widely agreed upon standards exist [36], the conventional belief is to
use assumptions

which are rooted in a well-studied problem (ideally, a problem that has already been
analyzed for many years) and which seems intractable in the worst case;
for which there is a natural notion of what constitutes a “random instance” of the problem;
moreover, such an instance can always be efficiently generated;
for which there is evidence of average-case hardness, ideally in the form of a worst-case
to average-case reduction;
which can be connected to other assumptions or computational tasks that have been
studied over the years, and
which have enough structure to enable interesting cryptographic primitives.

A natural candidate for constructing quantum pseudorandomness (and other fully
quantum cryptographic primitives) is via random quantum circuits. In fact, the com-
putational pseudorandomness of random quantum circuits appears to be a folklore conjecture
and is widely believed among many quantum computer scientists. As we are unaware of a
concrete technical conjecture, we provide such a formulation here.

▶ Conjecture 1 (Random quantum circuits give rise to pseudorandom unitaries). Consider
n-qubit random quantum circuits with m gates defined by repeating the following process m
times independently at random: Draw a random pair (i, j) of qubits and apply a gate from
a universal gate set G ⊂ SU(4) to the qubits i and j. Then, there exist univeral constants
c > 0 and CG > 0 (depending on the gate set G) such that random quantum circuits with
m ≥ CGn

c gates form ensembles of pseudorandom unitaries.

We note that many other possible formulations (e.g. with specific geometric architectures or
only regarding pseudorandom states) are also possible. Indeed, if Conjecture 1 holds even
with exponential security, then Ref. [63] implies that a simple ensemble of random quantum
circuits in a 1D architecture of depth polylog(n) is also pseudorandom.

TQC 2025
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Conjecture 1 can be seen as a direct quantum analogue of a claim that was first proposed
by Gowers [37] who conjectured that random reversible quantum circuits form pseudorandom
permutations on bitstrings. This conjecture has inspired multiple recent works in classical
cryptography. For instance, it was recently proven by He and O’Donnell [42] that the
Luby-Rackoff [52] construction of pseudorandom permutations from pseudorandom functions
can be implemented with reversible permutations. Random reversible circuits have recently
also inspired entirely new approaches for constructing program obfuscation schemes [25].

Gowers originally conjectured the emergence of pseudorandomness when attempting to
prove that random quantum circuits converge quickly to ensembles of t-wise independent
permutations [37] (this bound was further improved later on towards an optimal scaling [43,
24, 28]. In fact, this property can itself be viewed as evidence for pseudorandomness. It
turns out that random quantum circuits satisfy an analogous property by converging nearly
optimally towards approximate t-designs [28, 20, 40, 63].

However, we currently do not have rigorous evidence for Conjecture 1; for example, in
terms of a worst-to-average reduction for a corresponding learning problem. Moreover, and
maybe more importantly, it is unclear how one would use unstructured random quantum
circuits to construct more advanced quantum cryptographic primitives. A similar situation
arises for general one-way functions, which require additional structure to build more advanced
cryptographic applications, such as public-key encryption. It could very well be the case that
random quantum circuits are simply too mixing to be a useful in the context of quantum
cryptography. A natural way forward is to search for a sweet spot – an ensemble of random
quantum circuits that is sufficiently structured to permit the construction of interesting
cryptographic primitives but which, at the same time, is sufficiently mixing to guarantee
security.

2 Our contributions

In this work, we simultaneously address the two major open problems in the field of quantum
pseudorandomness and propose the first well-founded and fully quantum hardness assumption.
To this end, we follow the strategy sketched above, and propose a family of quantum states
which we call Hamiltonian Phase States. These states are a family of quantum states which
are “maximally quantum” in the sense that the state has support on all bitstrings with
amplitudes equal in magnitude, but varying phases. Hamiltonian Phase States are generated
by a family of commuting instantaneous quantum polynomial-time (IQP) circuits which
generalize the X programs proposed by Shepherd and Bremner [64]. The corresponding
circuits are highly structured in that they are generated by a Hamiltonian with only Z-type
terms applied to the all-|+⟩ state. This structure makes them amenable to rigorous analysis
[47, 22, 38]. At the same time, these circuits are also believed to be sufficiently mixing and
hard to simulate classically [64, 21, 23, 41]. Moreover, since Hamiltonian phase states can be
generated by a commuting Hamiltonian, they admit an efficient implementation in practice.

Phase states are a natural direction to look at in the search for a fully-quantum crypto-
graphic assumption with sufficient amounts of structure. On the one hand, this is because
of their quantum advantage properties. On the other hand, the (quantum) learnability of
different ensembles of phase states has been studied extensively in recent work [7].

There, the authors give optimal bounds for the sample complexity of learning many
families of phase states from quantum samples, as well as upper bounds on the time complexity.
Importantly, there are families of phase states generated using a small number of (long-range)
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Figure 1 Hamiltonian Phase States (HPS) are generated by sequentially applying Ising-type
rotations around angles θi to the state |+n⟩ = H⊗n |0n⟩. (a) Example of a HPS on 4 qubits.
Connected boxes at sites i, j, k with angle θ represent the unitary exp(iθZiZjZk). (b) HPS can be
implemented using only single-qubit Z rotations interlaced with CNOT circuits.

gates, which cannot be learned from polynomially many samples. Following this, our proposed
cryptographic assumption is that Hamiltonian Phase States are hard to learn, given quantum
samples and classical side information.

Moreover, the known constructions for pseudorandom states with useful cryptographic
applications are based on phase states [46]. These are generated using a single-bit output
quantum-secure pseudorandom function family {fk}k with

|ϕk⟩ ∝
∑

x

ωfk(x)
q |x⟩ , (1)

where ωq is a q-th root of unity, for example q = 2 [19]. Because these states are based
on a classical assumption, they require the reversible implementation of a classical PRF
which requires a large number of Toffoli gates. These are extremely expensive in standard
fault-tolerant constructions. However, the results of Refs. [46, 7] suggest that a more natural
family of phase states which is generated by a quantum circuit with a small number of
expensive gates can also yield quantum pseudorandomness. This would require gates affecting
a large number of qubits, since low-degree phase states can be learned efficiently. As we
show below, in spite of having terms with high support, the Hamiltonian Phase States can
be generated highly efficiently using only local Z-rotations and CNOT gates.

2.1 Hamiltonian Phase States
Let A ∈ Zm×n

2 be a binary matrix and let θ = (θ1, . . . , θm) be a set of uniformly random
angles in the interval [0, 2π) according to some discretization into q = poly(n) parts. We
consider phase states of the form

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

H⊗n |0n⟩ . (2)

where, for i ∈ [m], we denote the i-th row of A by (Ai1, . . . ,Ain) and let
n⊗

j=1
ZAij = ZAi1 ⊗ · · · ⊗ ZAin for Z0 = I, Z1 = Z.

We call these states Hamiltonian Phase States since they can naturally be prepared as
the result of a time evolution under a sparse Ising Hamiltonian. We also call the matrix
A the architecture of the states, as it specifies the overall structure/location of the Ising
terms. Hamiltonian Phase States with a single fixed angle θi ≡ θ have been studied as a
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9:6 Efficient Quantum Pseudorandomness from Hamiltonian Phase States

means to demonstrate verified quantum advantage, when measured in the X basis, under
the name X-programs [64]. A Hamiltonian Phase State is therefore a generalized version
of an X program parameterized by the pair (A,θ). X programs with θ = π/8 have the
interesting property that its Fourier coefficients can be computed efficiently classically, but
at the same time the simulation of such X-programs is believed to be classically intractable
[64, 21, 23, 41].

Our cryptographic assumption rests on the apparent hardness of learning Hamiltonian
Phase States (or generalized X programs), which was highlighted in recent work [7]. Con-
cretely, our quantum computational assumption amounts to the conjecture that our ensemble
of Hamiltonian phase states satisfies the following two properties:

Random Hamiltonian Phase States are hard to invert in the following sense: given |ΦA
θ ⟩
⊗t,

for any t = poly(n), it is computationally difficult to reverse-engineer the angles θ and
architecture A. This means that the ensemble {|ΦA

θ ⟩}θ,A gives rise to a so-called one-way
state generator (OWSG).
Random Hamiltonian Phase States are hard to distinguish from Haar random states in
the following sense: given |ΦA

θ ⟩
⊗t, for any t = poly(n), it is computationally difficult to

distinguish |ΦA
θ ⟩
⊗t from |Ψ⟩⊗t, where |Ψ⟩ is a Haar random state. This means that the

ensemble {|ΦA
θ ⟩}θ,A gives rise to a so-called pseudorandom state generator (PRSG).

We can call the two assumptions above the search (respectively, decision) variant of
Hamiltonian Phase State assumption (HPSn,m,q,χ). Here, n,m ∈ N are circuit parameters, q
is a discretization parameter for the interval [0, 2π), and χ is a distribution over the choice
of matrix A ∈ Zm×n

2 ; typically, χ is chosen to be the uniform distribution.
There is some evidence that HPSn,m,q,χ is a reasonable assumption for constructing

pseudorandom states. Brakerski and Shmueli [19] show that the states DH⊗n |0n⟩ form a
state t-design when the diagonal operator D consists of a 2t-wise independent binary phase
operator. Previously, Nakata, Koashi and Murao [58] also showed that the states DH⊗n |0n⟩,
where D is a diagonal operator composed of appropriate diagonal gates with random phases,
form a t-design. Starting from this intuition, we now provide rigorous evidence for the
hardness of the HPSn,m,q,χ assumption.

2.2 Overview of our Results

In this work, we establish HPSn,m,q,χ as a well-founded quantum computational assumption.
Specifically, we address each of the meta-criteria we mentioned before:

(Evidence of worst-case hardness) The learnability of ensembles of phase states has been
studied extensively in recent work [7], and has been found to have exponential time
complexity in the worst case (despite only having polynomial sample complexity).
(Notion of a random instance) A random Hamiltonian phase state |ΦA

θ ⟩, e.g., as in Equa-
tion (2), is naturally defined in terms of a random binary matrix A← Zm×n

q and a random
set of angles θ = (θ1, . . . , θm). Hence, it can be efficiently generated by a simple quantum
circuit comprising O(m/n · n2) CNOT gates, n Hadamard gates, and m single-qubit Z
rotations.
(Evidence of average-case hardness) Our learning task admits a worst-case to average-case
reduction. We separately show how to re-randomize the architecture and the set of angles.
Thus, the hardness of our problem reduces to a worst-case version.
(Relation to other problems) We draw a connection between the task of learning Hamilto-
nian Phase states and the security of classical Goppa codes and the well-known McEliece
cryptosystem.
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(Cryptographic applications) Hamiltonian Phase states have a sufficient amount of struc-
ture which suffices to construct a number of interesting cryptographic primitives which
we sketch in detail in Section 2.3.

Finally, we also provide evidence that HPSn,m,q,χ is plausibly fully-quantum and does not
allow one to construct one-way functions. In particular, we note that the result of [50]
indicates that the idealized versions of any assumption that yields only pseudorandom states
can not be used to build one-way functions in a black-box way. We further discuss the
implications of the fact that HPS states are state t-designs on this reduction, noting that
the resulting concentration properties by themselves rule out one-way function constructions
that do not simulateneously measure many copies of the HPS state. For all of the primitives
we construct, in addition to just constructing these primitives from our hardness assumption,
we argue that constructing them from our hardness assumption yields more efficient and
practical implementations of these primitives (if and when fault-tolerant quantum computers
become widely available).

2.3 Applications
In this section, we give an overview of all the applications which are enabled by the HPS
assumption. Besides the natural application of constructing efficient one-way state generators
and pseudorandom state generators, which essentially follow by definition of our assumption,
we also construct a number of other interesting applications that are relevant in quantum
information science more broadly.

Quantum Trapdoor Functions and Public-Key Encryption with Quantum Public Keys

Recent work of Coladangelo [29] introduced the notion of a quantum trapdoor function
(QTF). This primitive is essentially a variant of a one-way state generator that also features
a secret trapdoor which makes inversion possible. QTFs are interesting in the sense that
they almost enable public-key encryption: two parties can communicate classical messages
over a quantum channel without ever exchanging a shared key in advance – the only caveat
being that this requires the public keys to be quantum states [29]. Using a construction
based on binary-phase states, Coladangelo [29] showed that quantum trapdoor functions
exist, if post-quantum one-way functions exist. However, to this day, it remains unclear how
to construct QTFs from assumptions which are potentially weaker than one-way functions,
such as the existence of pseudorandom states.

In the full version, we show how to construct QTFs from our (decisional) HPS assumption,
which yields the first construction of QTFs from an assumption which is plausibly weaker
than that of one-way functions. We believe that this application strongly highlights the
versatility of Hamiltonian Phase states in the context of quantum cryptography; for example,
it is far less clear how to construct QTFs from other, less structured, assumptions such as
genuinely random quantum circuits via Conjecture 1.

Quantum Pseudoentanglement

The notion of pseudoentanglement [2, 16] has found many applications in quantum physics,
for example to study the emergence of thermal equilibria in isolated many-body systems [32].
Pseudoentangled states have also been viewed as a potential tool for probing computational
aspects of the AdS/CFT correspondence, which physicists believe may shed insight onto
the behavior of black holes in certain simplified models of the universe. We note that it
is currently not known how to construct these from any assumption other than one-way
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9:8 Efficient Quantum Pseudorandomness from Hamiltonian Phase States

functions. In the full version, we give a construction of pseudoentangled states from our HPS
assumption, which yields the first construction of pseudoentanglement from an assumption
which is plausibly weaker than that of one-way functions. Our proof sheds new light on
the entanglement properties of random IQP circuits more generally.1 Therefore, we believe
that this contribution is of independent interest. Moreover, as we point out in the next
section, our construction is also highly efficient and could enable implementations of quantum
pseudoentanglement in practical scenarios.

Pseudorandom Unitaries

Pseudorandom unitaries are families of unitaries that are indistinguishable from Haar random
unitaries in the presence of computationally bounded adversaries. They are widely considered
the most powerful fully-quantum primitive, and there has been a long line of work towards
constructing them from the existence of one-way functions [5, 18, 55, 27], eventually resulting
in the most recent breakthrough result by Ma and Huang [53].

The result of [53] show that the ensemble of unitaries, colloquially known as the PFC-
ensemble [55], form an approximation to a Haar random unitary. However, this construction
is not well suited for the HPS assumption, which, in some sense, provides a pseudorandom
diagonal unitary. In the full version, we provide a plausible construction of efficient pseudor-
andom unitaries from an natural assumption which is directly related to our HPS assumption:
alternating applications of HPS unitaries and Hadamards.

2.4 Physical Implementations
Hamiltonian Phase States with m terms on n qubits can be generated very efficiently
compared to phase states constructed from pseudorandom functions: to prepare a HPS, we
require only a layer of Hadamard gates, followed by ⌈m/n⌉ alternating layers of single-qubit
Z rotations and CNOT circuits. To see this, we observe two facts. First,

CNOTk,le
iθZl = eiθZkZlCNOTk,l, (3)

where CNOTk,l is controlled on qubit k and targeted on qubit l. Second,

CNOTk,l |+n⟩ = |+n⟩ . (4)

More generally, if C is a circuit comprised of CNOT gates, then C |x⟩ = |C · x⟩, where
C ∈ GL(n,Z2) is an invertible binary matrix. Given an HPS, decompose its architecture
matrix A ∈ Zn×m

2 into ⌈m/n⌉ submatrices of n rows (except for the last one), and suppose
each of those submatrices has full rank. The HPS |ΦA

θ ⟩ can then be prepared as

|ΦA
θ ⟩ =

C⌈m/n⌉

m∏
i=(⌈m/n⌉−1)n

eiθiZi

 · · ·(C1

n∏
i=1

eiθiZi

)
|+n⟩ (5)

where the CNOT circuits Ck are chosen such that the first n rows of A are given by
C⌈m/n⌉ · · ·C1, the second n rows by C⌈m/n⌉ · · ·C2, and so on, see Figure 1 for an example.
If the rank condition above is not satisfied, decompose A into the minimal number ℓ of
submatrices with full rank, and proceed as above. The smallest meaningful example of such

1 To the best of our knowledge, such bounds for random IQP circuits were previously not known.
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states – with n random, linearly independent terms – can thus be prepared using a single
layer of rotations and a CNOT circuit. By the fact that GL(n,Z2) is a group, uniformly
random architecture matrices Ci and phases θi generate a uniformly random HPS.

This protocol for the implementation of HPS is also interesting from an early fault-
tolerance perspective, since there are quantum codes in which all required operations are
transversal, yielding a highly efficient fault-tolerant implementation. To see this, consider a
q = 2d-fold discretization of the unit circle. Now, we observe that there are d-dimensional
CSS codes with a transversal Z1/2d−1 gate such as the [[2d−1, 1, 3]] simplex code [69]. By the
fact that they are CSS codes, they also admit a transversal CNOT gate between code blocks.
This means that HPS can be prepared using transversal in-block Z1/2d−1 gates as well as
inter-block CNOT gates, making them amenable to implementations in early fault-tolerant
architectures such as reconfigurable atom arrays [14], or trapped ion processors [62, 60] in
which arbitrary inter-block connectivities can be achieved.

3 Hamiltonian Phase State Assumption

In this section, we give a formal definition of our hardness assumption. Recall that an n-qubit
Hamiltonian Phase State is of the form

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

H⊗n |0n⟩

where A ∈ Zm×n
2 is a binary matrix and θ = (θ1, . . . , θm) is a set of angles in the interval

[0, 2π). To avoid matters of precision, we introduce a discretization parameter q ∈ N with
q = poly(n) and partition the interval [0, 2π) into q parts via the set

Θq :=
{

2πk
q

: k ∈ {0, 1, . . . , q − 1}
}
.

We now introduce two variants of our hardness assumption.

3.1 Search Variant
Our first variant considers a search problem. Roughly speaking, it says that given many copies
of a random Hamiltonian phase state, it is computationally difficult to reverse-engineer its
architecture and its angles. Therefore, our assumption says that an ensemble of Hamiltonian
Phase states forms a one-way state generator [57].

We now give a formal definition.

▶ Definition 2 (Search HPS). Let n ∈ N denote the security parameter, and let m and q

be integers (possibly depending on n). Let χ be a distribution with support over matrices in
Zm×n

2 . Then, the (search) Hamiltonian Phase State assumption (HPSn,m,q,χ) states that, for
any number of copies t = poly(n) and for any efficient quantum algorithm A,

Pr
[
1← Ver(A′,θ′, |ΦA

θ ⟩) : A∼χ, θ∼Θm
q

(A′,θ′)←A(|ΦA
θ ⟩

⊗t)

]
≤ negl(n) ,

where Ver(A′,θ′, |ΦA
θ ⟩) denotes the algorithm which applies the projective measurement

{|ΦA′

θ′ ⟩⟨ΦA′

θ′ |, I − |ΦA′

θ′ ⟩⟨ΦA′

θ′ |}
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9:10 Efficient Quantum Pseudorandomness from Hamiltonian Phase States

onto |ΦA
θ ⟩ and outputs 1, if the measurement succeeds, and outputs 0 otherwise. We say that

a quantum algorithm solves the (search) HPSn,m,q,χ problem if it runs in time poly(n,m, log q)
and succeeds with probability at least 1/poly(n,m, log q).

An alternative but equivalent formulation of the security property is to say that it is
computationally difficult to find a state |ΦA′

θ′ ⟩ which has non-vanishing fidelity with the input
state, on average over the choice of architecture and set of angles.

3.2 Decision Variant

Our second variant considers a decision problem. Roughly speaking, it says that given many
copies of a random Hamiltonian phase state, it is computationally difficult to distinguish
it from many copies of a Haar state. Therefore, our (decision) assumption says that an
ensemble of Hamiltonian Phase states forms a pseudorandom state generator [46, 57].

▶ Definition 3 (Decision HPS). Let n ∈ N denote the security parameter, and let m and q
be integers (possibly depending on n). Let χ be a distribution with support over matrices in
Zm×n

2 . Then, the (decision) Hamiltonian Phase State assumption (HPSn,m,q,χ) states that,
for any number of copies t = poly(n) and for any efficient quantum distinguisher D,∣∣∣Pr

[
1← D(|ΦA

θ ⟩
⊗t) : A∼χ

θ∼Θm
q

]
− Pr

[
1← D(|Ψ⟩⊗t) : |Ψ⟩∼Haar(2n)

]∣∣∣ ≤ negl(n) ,

We say that a quantum algorithm solves the (decision) HPSn,m,q,χ problem if it runs in time
poly(n,m, log q) and succeeds with probability at least 1/poly(n,m, log q).

4 Evidence for Average-Case Hardness and Full Quantumness

In this section, we give several pieces of evidence for the security of the HPSn,m,q,χ assumption,
as well as evidence that it is a fully quantum assumption.

First, in Section 4.1, we show two worst-to-average-case reductions for the HPSn,m,q,χ

problem, and also discuss the limitations of those reductions. To this end, we first show that
if the Hamiltonian architecture matrix A is publicly known, then there is a worst-to-average-
case reduction for the angles θ ∈ Θq . Second, we show that for m = n, and any fixed set of
angles, there is a worst-to-average-case reduction over the architecture matrices A.

Then, we show that if χ is the uniform distribution of m× n binary matrices and q > 2t,
Hamiltonian Phase States with m ≳ nt2 random terms form approximate state t-designs
in Section 4.2. This shows that given less than Ω(

√
m/n) many copies, HPS are information-

theoretically indistinguishable from Haar-random states. It also implies that the Hamiltonian
Phase States contain an exponentially large set of almost orthogonal states. This implies
that Hamiltonian phase states are fast mixing, giving additional evidence that the learning
problem is computationally hard.

In the full version, we discuss algorithms for learning phase states with public and
secret architecture matrices. In particular, we give a sample-optimal (but exponential-time)
algorithm for solving the HPS problem using pretty good measurements [9, 56] and a simple
algorithm that uses classical shadows [1, 45]. Moreover, we also discuss why the HPS
assumption is fully quantum. To this end, we give evidence against the possibility of building
one-way functions from HPS.
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4.1 Worst-Case to Average-Case Reduction

We begin providing evidence for the security of our assumption by showing how in different
regimes learning the parameters of the HPS problem of a fixed (worst-case) instance can
be reduced to learning a random instance. Our evidence will treat the angles θ and the
Hamiltonian architecture matrix A separately. Specifically, we will show two types of worst-
to-average-case reductions. First, we will show that in a certain regime of m,n, given a copy
of a HPS instance, a quantum algorithm can efficiently generate a random HPS with the
same angles and architecture dimensions. Second, we will fix the Hamiltonian architecture A
and show that given a copy of a HPS instance and its architecture A, a quantum algorithm
can generate a random HPS with the same architecture but uniformly random angles. Our
worst-to-average-case reductions are therefore similar to those for, say, the Learning with
Errors (LWE) problem [59], with different levels of public knowledge.

Reduction for the architecture for m ≤ n

First, we observe that for any fixed choice of angles θ, the Hamiltonian architecture can
be re-randomized if m ≤ n and χ is the uniform distribution over full-rank matrices
R(m,n) := {A ∈ Zm×n

2 | rank(A) = min(m,n)}. Notice that the restriction to Hamiltonian
architectures with full rank is not too significant, since the probability that a uniformly
random Zm×n

2 matrix has full rank with probability2 ∏min(m,n)
k=1 (1− 2−k) ≥ 0.288 [67]. The

basic idea of the reduction is to apply a circuit composed of uniformly random CNOT gates
to the given HPS instance. In the parameter regime we consider, this will have the effect of
completely scrambling the Hamiltonian architecture to a uniformly random one with the
same choices of m,n and subject to the full-rank constraint.

▶ Lemma 4 (Worst-to-average-case reduction for the architecture). Suppose there exists an
algorithm A that runs in time T and solves the (search) HPSn,m,q,χ problem with probability ϵ
in the average case, where χ is the uniform distribution over R(m,n) and m ≤ n. Then, there
exists an algorithm which runs in time T ·poly(n) and inverts Hamiltonian phase states |ΦC

θ ⟩
⊗t

with probability ϵ for a worst-case choice of architecture C ∈ R(m,n), uniformly random
angles θ, and for any number of copies t = poly(n). Here, R(m,n) = {A ∈ Zm×n

2 |rank(A) =
min(m,n)} is the set of full-rank binary m× n matrices.

Proof. Consider the reduction B which, on input |ΦC
θ ⟩
⊗t, does the following:

1. B samples a uniformly random invertible matrix R ∼ GL(n,Z2).
2. B runs the average-case solver A on the input

(UR |ΦC
θ ⟩)⊗t.

where UR is the n-qubit unitary transformation given by UR : |x⟩ 7→ |R−1 · x⟩, for
x ∈ {0, 1}n. Finally, B outputs whatever A outputs.

Note that UR is a quantum circuit composed just of CNOT gates and therefore efficiently
implementable. Because the average-case solver A runs in time T , it follows that the reduction
B runs in time T · poly(n).

2 See https://math.mit.edu/~dav/genlin.pdf, and this Stackexchange post for a proof.
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Next, we show that B also succeeds with probability ϵ. By assumption, the worst-case
instance |ΦC

θ ⟩
⊗t consists of structured phase states states

|ΦC
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZCij

H⊗n |0n⟩ ,

where C ∈ R(m,n) and θ is a tuple of random angles θ = (θ1, . . . , θm) ∈ Θm
q . To complete

the proof, it suffices to show that UR |ψC
θ ⟩)⊗t is distributed exactly as in the HPSn,n,q,χ

problem, where χ is the uniform distribution over R(m,n). First, we make the following key
observation: it follows from unitarity of UR that

UR |ΦC
θ ⟩ =

UR exp

i
m∑

i=1
θi

n⊗
j=1

ZCij

U†R

URH
⊗n |0n⟩ .

Because UR is an invertible matrix, it leaves the state H⊗n |0n⟩ invariant, and thus we have
URH

⊗n |0n⟩ = H⊗n |0n⟩. Next, we study the action of UR onto tensor products of Pauli
operators. We find that for any index i ∈ [n]:

UR

 n⊗
j=1

ZCij

U†R =
∑

x∈{0,1}n

⟨x|UR

 n⊗
j=1

ZCij

U†R |x⟩ · |x⟩⟨x|

=
∑

x∈{0,1}n

⟨Rx|

 n⊗
j=1

ZCij

 |Rx⟩ · |x⟩⟨x|

=
∑

x∈{0,1}n

(−1)
∑n

j=1
Cij(Rx)j |x⟩⟨x|

=
∑

x∈{0,1}n

(−1)
∑n

j=1
(C·R)ijxj |x⟩⟨x|

=
∑

x∈{0,1}n

⟨x|

 n⊗
j=1

Z(C·R)ij

 |x⟩ · |x⟩⟨x|
=

n⊗
j=1

Z(C·R)ij .

Because UR is acting on a matrix exponential of a diagonal matrix, it follows that

UR exp

i
m∑

i=1
θi

n⊗
j=1

ZCij

U†R = exp

i
m∑

i=1
θi UR

 n⊗
j=1

ZCij

U†R


= exp

i
m∑

i=1
θi

n⊗
j=1

Z(C·R)ij

 .

Finally, we observe that for m = n, R(m,n) = GL(n,Z2), which is a group. Because
C ∈ GL(n,Z2) it follows that C · R is uniformly distributed whenever R ∼ GL(n,Z2).
Putting everything together, it follows that UR |ψC

θ ⟩)⊗t is distributed precisely as in the
HPSn,n,q,χ problem, and thus B succeeds with probability ϵ. The claim for m ≤ n follows
from the fact that in that case C is a submatrix of a GL(n,Z2) matrix. ◀
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4.2 Hamiltonian Phase States Form Approximate State Designs

In this subsection we show that the states in the HPS ensemble form approximate state
designs if m ≥ Cn for a constant C > 0. It will be convenient to view HPS as a random
walk of depth m on the diagonal group. We will therefore slightly adjust the notation.
Consider the following probability distribution ν on the diagonal subgroup of SU(2n): Draw
a uniformly random bitstring A1 ∈ {0, 1}n and a uniformly random angle θ ∈ [0, 2π) and
apply e

iθ
⊗n

j=1
ZA1j

. We can draw m such diagonal unitaries independently and multiply
them. The resulting probability measure is denoted by ν∗m.

We will first show that ei
∑m

i=1
θi

⊗n

j=1
ZAij

is an approximate t-design on the diagonal
group. More precisely, we prove the following theorem:

▶ Theorem 5. For m ≥ 2t(2nt+log(1/ε)) the random unitary eiθi

∑m

i=1

⊗
j

ZAij

with random
Aij and θi is a ε-approximate diagonal t-design. Moreover, the same bound holds if θi is
drawn uniformly from {2πk/q}q

k=1, where q is an integer satisfying q > 2t.

We provide a proof of Theorem 5 in the full version. The proof of Theorem 5 is remarkably
simple in comparison to the derivations of similar results for random quantum circuits [28,
20, 40]. Additionally, the constants in Theorem 5 are unusually small: In stark contrast the
constants in these results are north of 1013. A similar result was obtained in Ref. [39] for the
related random Pauli rotations eiθP for a random θ ∈ (0, 2π] and a random Pauli string P .

Theorem 5 almost directly implies the following corollary:

▶ Corollary 6. For m ≥ 2t(2nt+ log(1/ε)) the state ensemble defined by |ΦA
θ ⟩ = U |+n⟩ for

U drawn from ν∗m (or ν∗mq for q > 2t) is a ε+O(t2/2n)-approximate state t-design.

As a consequence no algorithm with access to t copies can distinguish the states |ϕA
θ ⟩ from

Haar random. In particular, this rules out a large class of natural attacks which make use of
a small number of samples. Prominent examples in classical cryptanalysis are linear attacks
(2-wise independence rules this out), and differential attacks (t-wise independence rules out
log2(t) differential attacks). Moreover, the fact that HPS with sufficiently many terms can
generate arbitrary state t designs makes it seem unlikely even that there is a distinguishing
algorithm using just a few more than t samples. This would mean that there is a sharp
transition in the complexity of distinguishing HPS states from uniform. Thus, the t-design
property gives evidence for the security of the HPS assumption.

As a consequence we can also show that HPS contains many almost orthogonal states,
yielding additional evidence for the HPS assumption:

▶ Corollary 7. Let m = 100nt, δ = 1− 2−n/8 and t ≤ 2n/2. For any fixed state |ψ⟩, we have
with probability 1− 2−Ω(nt) over the matrix A that

Prθ

|⟨ψ| exp

 m∑
i=1

iθi

n⊗
j=1

ZAij

 |+n⟩|2 ≥ 1− δ

 ≤ 2−Ω(nt). (6)

We defer the proofs of Theorem 5 and Corollary 7 to the full version of the paper.
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4.3 Algorithms for Learning Hamiltonian Phase States
Recall that our (search) HPS assumption can be thought of as a state discrimination task.
The goal is to recover the architecture A ∈ Zm×n

2 and the set of angles θ ∈ Θm
q given many

copies of a random Hamiltonian phase state from the ensemble

E =

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

 |+n⟩


A∈Zm×n

2 , θ=(θ1,...,θm)∈Θm
q

.

In this section, we consider various learning algorithms for the (search) HPS probem. We
observe that the HPS problem does in fact have polynomial quantum sample complexity,
and can thus be solved information-theoretically. However, as we also observe, all known
learning algorithms have exponential time complexity, which suggests that the HSP problem
cannot be solved efficiently. We distinguish between the private-key and public-key setting:
the former is essentially the learning task from Definition 2, whereas in the latter we further
assume that the learner also has access to the architecture matrix A ∈ Zm×n

2 . We provide
evidence that the learning tasks remains hard even if we reveal additional information about
A ∈ Zm×n

2 and the goal is simply to guess the angles θ.

Sample complexity of HPS and hypothesis selection. While we believe that HPS is a
computationally hard problem, it can be solved information-theoretically with only polyno-
mially many samples. In full generality, the problem of finding a fixed state ρj among many
hypothesis states ρ1, . . . , ρM is called quantum hypothesis testing. Currently, the best known
general algorithm is threshold search as described in [8, Theorem 1.5] requires n log2(M)
copies improving over the bound from Ref. [1]. For the HPS problem this implies an upper
bound on the sample complexity of O(n log2(qm2nm)) = O(n3m2 log(q)). As the fidelities
for pure states are PSD observables of rank 1, we can also use the shadow tomography
protocol of Ref. [45]. Given a secret state |ΦA

θ ⟩ allows us to estimate the fidelities of all
the M = qm2nm phase states up to an error of ε from O(log(M)/ε2) = O(mn log(q)/ε2)
samples. Then, a solver can simply list all estimated fidelities and pick the state with the
largest overlap up to an error of ε.

We expect these bounds to be tight in the regime where m ≤ O(nlog(q)). For m → ∞
better bounds are available at least for q = 2d. In this case, the HPS instance generated b
unitaries in the dth level of the Clifford hierarchy and it was proven in Ref. [7, Theorem 15]
that for any state of the form

exp

i
∑

y∈{0,1}n

ay

n⊗
j=1

Zyj

 |+n⟩ (7)

with ay ∈ Z a circuit description can be learned with O(nd) copies using only measurements
in the standard basis.

Learning algorithms for HPS with a public architecture. In the special case when the
architecture is public, our HPS assumption does in fact admit an optimal3 but nevertheless
exponential-time learning algorithm.

3 Here, we mean an algorithm that achieves the optimal success probability for a given number of copies.
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We consider the following state discrimination task, where the goal is to recover the set
of angles θ given many copies from the ensemble

EA =

|ΦA
θ ⟩ = exp

i
m∑

i=1
θi

n⊗
j=1

ZAij

 |+n⟩


θ=(θ1,...,θm)∈Θm

q

where the matrix A ∈ Zm×n
2 is a random but fixed architecture which is known to the

learner. This fits exactly into the framework of the pretty good measurement (PGM) [9, 56].
The ensemble E now turns out to be geometrically uniform because it can be written as
EA =

{
UA

θ |+n⟩
}

θ=(θ1,...,θm) where {UA
θ }θ is an Abelian group of matrices. Eldar and

Forney [30] showed that the PGM is optimal for all geometrically uniform ensembles, which
implies that it is also optimal for our variant of the HPS problem. Nevertheless, despite
the optimality, the best known algorithm for implementing pretty good measurements has
exponential-time complexity in the size of the ensemble [33]. Consequently, we believe that
the HPS problem remains computationally intractable, even if the architecture is public.
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Abstract
The (tolerant) Hamiltonian locality testing problem, introduced in [Bluhm, Caro, Oufkir ‘24], is to
determine whether a Hamiltonian H is ε1-close to being k-local (i.e. can be written as the sum of
weight-k Pauli operators) or ε2-far from any k-local Hamiltonian, given access to its time evolution
operator and using as little total evolution time as possible, with distance typically defined by
the normalized Frobenius norm. We give the tightest known bounds for this problem, proving an
O
(√

ε2
(ε2−ε1)5

)
evolution time upper bound and an Ω(1/(ε2 − ε1)) lower bound. Our algorithm

does not require reverse time evolution or controlled application of the time evolution operator,
although our lower bound applies to algorithms using either tool.

Furthermore, we show that if we are allowed reverse time evolution, this lower bound is tight,
giving a matching O(1/(ε2 − ε1)) evolution time algorithm.
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1 Introduction

When dealing with large or expensive-to-measure objects, learning the entire object may be
too costly. Property testing algorithms instead attempt to distinguish between the object
having a given property, or being far from any object with the property. More generally, one
can consider tolerant testing, where one attempts to distinguish between the object being
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10:2 Hamiltonian Locality Testing via Trotterized Postselection

within ε1-close to having a property, or being at least ε2-far from any object with the property.
Such algorithms have been extensively studied in quantum and classical settings (see [18]
for an overview of the quantum case), but [6] was the first to consider it for Hamiltonians
accessed via their time evolution operator e−iHt. In this setting the natural measure of cost
is total evolution time,

∑
j tj where the jth application of the time evolution operator is

e−iHtj .1
The property they considered was k-locality, a problem initially raised (but not studied)

in [18, Section 7] as well [19]. A Hamiltonian H is k-local if and only if it can be written
as
∑
j Hj , where each Hj operates on only k qubits. Such locality constraints (perhaps

even geometrically locality constraints) are considered to be physically relevant. Local
Hamiltonians also appear to be theoretically relevant, as nearly all general learning algorithms
for Hamiltonians assume that the Hamiltonian is local, whether they use the time evolution
operator [15, 14, 5], or copies of the Gibbs state [2, 4]. Local Hamiltonians are also conducive
to efficient simulation on quantum computers, using the technique of Trotterization to break
up the Hamiltonian into local quantum gate operations [16]. Finally, local Hamiltonians
play an important role in quantum complexity theory, such as QMA-completeness and the
Quantum PCP conjecture [1].

The initial version of [6] gave an O
(
nk+1/(ε2)3) evolution time algorithm when distance

is measured by the normalized (divided by 2n/2 for a Hamiltonian acting on n qubits)
Frobenius norm, improved in [12] to O

(
(ε2 − ε1)−7) and then in a later version of [6] to

O
(
(ε2 − ε1)−2.5ε−0.5

2
)
.23 This left open the question: how hard is locality testing? Is it

possible to achieve linear (a.k.a. Heisenberg) scaling in 1/ε for evolution time, and is such
a scaling optimal in all error regimes? In this work we make progress towards resolving
the complexity of this problem, improving the best known upper and lower bounds. Our
algorithm is based on a technique we refer to as Trotterized post-selection, in which we
suppress the effect of local terms in the Hamiltonian evolution by repeatedly evolving for a
short time period and post-selecting on the non-local part of the time evolution operator.

1.1 Our Results
Our main result is a improved upper bound for the Hamiltonian locality testing problem.
As with past works, our algorithm is also time-efficient and non-adaptive, though it does
requires n qubits of quantum memory, like [12, 3].

▶ Theorem 1. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm
that distinguishes whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local
Hamiltonian or (2) ε2-far from all k-local Hamiltonians, with probability 1 − δ. The al-

gorithm uses O
(√

ε2
(ε2−ε1)7 log(1/δ)

)
non-adaptive queries to the time evolution operator

with O
(√

ε2
(ε2−ε1)5 log(1/δ)

)
total evolution time.

We pair it with the first lower bound in the tolerant testing setting. While our upper bound
uses only forward time evolution and does not require controlled application of e−itH , our
lower bound also applies to algorithms using either of these tools.

1 Another cost measure that can be considered is total query count, the number of individual applications
of the time evolution operator. Our algorithm also uses the fewest number of queries of any known
algorithm.

2 The original [6] algorithm only worked in the intolerant setting of ε1 = 0.
3 [12] was later subsumed by [3], which gives an O

(
(ε2 − ε1)−3

)
analysis.
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▶ Theorem 2. Let 0 ≤ ε1 < ε2 ≤ 1 and k ∈ N. Then any algorithm that can distinguish
whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local Hamiltonian or (2) ε2-far
from all k-local Hamiltonians, must use Ω

(
1

ε2−ε1

)
evolution time in expectation to achieve

constant success probability.

▶ Remark 3. [6, Theorem 3.6] gives a hardness result for the unnormalized Frobenius norm
(as well as other Schatten norms) in the non-tolerant setting that scales as Ω

(
2n/2

ε

)
. Once

normalized, this also gives a Ω
( 1
ε

)
lower bound. However, this hardness result only holds

for exponentially small ε, due to the fact that the “hard” Hamiltonian in [6, Lemma 3.2] no
longer has ∥H∥∞ ≤ 1 when the unnormalized Frobenius distance to k-local is super-constant.
Therefore Theorem 2 is, to the authors’ knowledge, the first lower bound that works for
arbitrary values of ε, in addition to being the first for the tolerant setting. Our proof is also
considerably simpler, and still extends to all of the distance measures considered in [6] and
more.

Finally, we show that, when reverse time evolution and controlled operations are allowed,
it is possible to saturate this lower bound even in the tolerant case (proof in the appendix).

▶ Theorem 4. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm that
tests whether an n-qubit Hamiltonian H is (1) ε1-close to some k-local Hamiltonian or (2)
ε2-far from all k-local Hamiltonians, with probability 1 − δ. The algorithm uses O

(
log(1/δ)
(ε2−ε1)2

)
non-adaptive queries to the time evolution operator and its inverse, with O

(
log(1/δ)
ε2−ε1

)
total

evolution time.

2 Proof Overview

2.1 Upper Bound
For simplicity, we will consider the intolerant case (ε1 = 0, ε2 = ε) for this proof overview;
the same techniques apply in the tolerant case but require somewhat more care. First we
start with the intuition behind the algorithm of [12, 3].

We will need the fact that the space of 2n qubit states C22n has the Bell basis (|σP ⟩)P ,
where P spans the n-fold Paulis, |σI⊗n⟩ is the maximally entangled state 1√

2n

∑
x∈{0,1}n |x⟩⊗

|x⟩, and |σP ⟩ = (I⊗n ⊗ P )|σI⊗n⟩. Therefore, for any unitary U , if we apply I⊗n ⊗ U to
|σI⊗n⟩ and then measure in the Bell basis, we are able to sample from the (squared) Pauli
spectrum4 of U (the squares of the Pauli decomposition coefficients always sum to 1 for a
unitary [17]).

For any Hamiltonian H, the closest k-local Hamiltonian is given by dropping all of the
non-local Paulis from its Pauli decomposition. Therefore, as by the first-order Taylor series
expansion,

e−iHt ≈ I⊗n − iHt

for small enough t, we can set U = e−iH·t in the aforementioned procedure, and if H is ε-far
from local we will sample a non-local Pauli term with ≈ (t · ε)2 probability. Conversely, if
H is local we should sample no non-local terms, giving us a distinguishing algorithm if the
process is repeated O

(
(t · ε)−2) times, for a total time evolution of O

(
t−1 · ε−2).

4 That is, α2
P when U is written as

∑
P

αpP .
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10:4 Hamiltonian Locality Testing via Trotterized Postselection

So ideally we would like t to be Θ(1/ε) and only repeat a constant number of times,
leading to a total time evolution of O

(
ε−1), which would be optimal by Theorem 2.

Unfortunately, these higher-order terms in the Taylor series cannot be ignored at larger
values of t. As we have ∥H∥∞ ≤ 1, we can bound the kth order term of the Taylor series
expansion of H by O

(
tk
)
, and so we must set t to be at most Θ(ε), resulting in the total

time evolution of O
(
ε3) obtained in previous work [12, 3].

To evade this barrier, we will instead show that it is possible to (approximately) simulate
evolving by H>k, which is composed of only the non-local terms of the Pauli decomposition
of H. Note that if H is k-local, this is 0, while if it is not, H>k is the difference between H

and the closest k-local Hamiltonian. Suppose we could evolve by the time evolution operator
of this Hamiltonian. Then performing the Bell sampling procedure from before would return
|σI⊗n⟩ with probability∣∣⟨σI⊗n |

(
I⊗n ⊗ e−iH>kt

)
|σI⊗n⟩

∣∣2
=

∣∣∣∣∣⟨σI⊗n |

(
I⊗n ⊗

( ∞∑
ℓ=0

(H>k)ℓ (it)ℓ

ℓ!

))
|σI⊗n⟩

∣∣∣∣∣
2

=

∣∣∣∣∣1 + ⟨σI⊗n |

(
I⊗n ⊗

( ∞∑
ℓ=2

(H>k)ℓ (it)ℓ

ℓ!

))
|σI⊗n⟩

∣∣∣∣∣
2

= 1 − ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2

)
|σI⊗n⟩ +

∞∑
ℓ=3

O
(
tℓ ·
∣∣∣⟨σI⊗n |

(
I⊗n ⊗ (H>k)ℓ

)
|σI⊗n⟩

∣∣∣)
as H contains no identity term.

To tame this infinite series, imagine that ∥H>k∥∞ ≤ 1 (we will eventually evolve by a
related operator A that does satisfy ∥A∥∞ ≤ 1). Then we have∣∣∣⟨σI⊗n |

(
I⊗n ⊗ (H>k)ℓ

)
|σI⊗n⟩

∣∣∣ ≤ ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2

)
|σI⊗n⟩

for all integers ℓ ≥ 2, so as long as t is a sufficiently small constant, we have that∣∣⟨σI⊗n |
(
I⊗n ⊗ e−iH>kt

)
|σI⊗n⟩

∣∣2 is at least

1 − 0.99 · ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2

)
|σI⊗n⟩ = 1 − 0.99 · Tr

(
(H>k)2) /2n,

where Tr
(
(H>k)2) /2n = ε2 is exactly the squared normalized Frobenius distance of H from

being k-local. So if we apply e−iH>kt with t = Θ(1), we are left with a ≈ ε2 probability of
sampling a non-local Pauli term if H is non-local, and are guaranteed to measure identity if
H is local (as then e−iH>k·t is the identity). This means we can distinguish locality from
non-locality with O

(
ε−2) repetitions, requiring O

(
ε−2) total evolution time.5

Now, we cannot actually apply e−iH>kt. However, when starting at |σI⊗n⟩, we can
approximate it up to t = Θ(1) by the use of a process reminiscent of the Elitzur-Vaidman
bomb-tester [9] and Quantum Zeno effect [10], which we refer to as Trotterized post-selection.

Let D be the subspace of Bell states corresponding to non-local Paulis or identity and
let ΠD be the projector onto that subspace. Starting with |σI⊗n⟩ once again, we apply
I⊗n ⊗ e−iHt′ for t′ = O(ε), measure with {ΠD, I

⊗2n − ΠD}, and then post-select on the
measurement result ΠD. We then repeat our application of I⊗n ⊗ e−iHt′ and post-selection,
for O(1/t′) iterations, provided our post-selection succeeds each time.

5 Unfortunately, even with access to the time evolution operator of H>k we cannot set t to the optimal
Θ(1/ε), as we lose control of the higher-order terms of the Taylor expansion.
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As we start with |σI⊗n⟩, then make small adjustments (i.e., e−iHt ≈ I⊗2n for small t),
the chance of failing the post-selection is small: only O

(
ε2) at each iteration, and so as long

as we only use O(1/ε) iterations, we will succeed with probability 1 − O(ε). Now, as we are
taking small steps, we can approximate each iteration of ΠD

(
I⊗n ⊗ e−iH·O(ε))ΠD as

ΠD

(
I⊗n ⊗ e−iH·O(ε)

)
ΠD = ΠD

(
I⊗n ⊗

∞∑
ℓ=0

Hℓ (−i)ℓ O
(
εℓ
)

ℓ!

)
ΠD = e−iA·O(ε) +R

where we define A := ΠD(I⊗n ⊗H)ΠD and choose some ∥R∥∞ ≤ O
(
ε2).6

Now, in general, A ̸= I⊗n ⊗ H>k, but as long as H has no identity term in its Pauli
decomposition7, by construction A|σI⊗n⟩ = (I⊗n ⊗H>k) |σI⊗n⟩, and so ⟨σI⊗n |A2|σI⊗n⟩ =
⟨σI⊗n |I ⊗ (H>k)2 |σI⊗n⟩. Combined with the fact that ∥A∥∞ = ∥ΠD (I⊗n ⊗H) ΠD∥∞ ≤
∥H∥∞ ≤ 1, we can argue that, if we iterate t/t′ times

⟨σI⊗n |
t/t′∏
i=1

e−iA·t′ |σI⊗n⟩ = ⟨σI⊗n |e−iA·t|σI⊗n⟩

= ⟨σI⊗n |

( ∞∑
ℓ=0

Aℓ
(−it)ℓ

ℓ!

)
|σI⊗n⟩

= 1 − t2⟨σI⊗n |H2
>k|σI⊗n⟩ + O

(
t3 · ε2)

where the final inequality follows from the fact that for all k > 2,∣∣⟨σI⊗n |Ak|σI⊗n⟩
∣∣ ≤ ∥A∥k−2

∞ ⟨σI⊗n |A2|σI⊗n⟩ ≤ ⟨σI⊗n |
(
I⊗n ⊗ (H>k)2) |σI⊗n⟩ = ε2.

So as our method based on access to the time evolution operator of H>k only required
distinguishing between ⟨σI⊗n |H>k|σI⊗n⟩ being Θ

(
ε2) and 0 we can emulate it with access to

e−iAt without losing too much accuracy, as long as we take t to be a small enough constant.
We can therefore test locality with a total time evolution of O

(
ε−2).

2.2 Lower Bound

To prove the lower bound, it suffices to show that for any k there exists Hamiltonians H1
and H2 such that a query to the time t evolution of H1 and H2 differ in diamond distance by
at most O((ε2 − ε1)t), with H1 ε1-close to being k-local and H2 ε2-far from being k-local.

We achieve this by considering the weight-k Pauli Z1:k that is Z on the first k qubits,
and identity on the last n− k qubits. We then set H1 := ε1Z1:k and H2 := ε2Z1:k. Because
Z1:k is diagonal, so is e−iεZ1:k·t, making it straightforward to bound the diamond distance
of the two time evolution operators by O(t(ε2 − ε1)). By the sub-additivity of diamond
distance, the total time evolution required to distinguish the two Hamiltonians with constant
probability is therefore at least Ω

(
(ε2 − ε1)−1).

6 Note that the ΠD on the right does nothing besides make A obviously Hermitian, assuming our invariant
of our post-selection succeeding.

7 We can assume this without loss of generality, as our algorithm never uses controlled application of
e−iH·t, and so any identity term would manifest as an undetectable global phase.
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3 Preliminaries

3.1 Quantum Information
A Hamiltonian on n-qubits is a 2n × 2n Hermitian matrix. The time evolution operator of a
Hamiltonian H for time t ≥ 0 is the unitary matrix

e−iHt :=
∞∑
k=0

Hk(−i)k t
k

k! .

We define the n-qubit Pauli matrices to be P⊗n := {I,X, Y, Z}⊗n, where X =
(

0 1
1 0

)
,

Y =
(

0 −i

i 0

)
, Z =

(
1 0
0 −1

)
. For any Pauli P , we denote the locality |P | to be

the number of non-identity terms in the tensor product. Let the Frobenius inner product
between matrices A and B be ⟨A,B⟩ := Tr(A†B). The orthogonality of Pauli matrices under
the Frobenius inner product is implied by the fact that any product of Paulis is another
Pauli (up to sign) and the fact that among them only the identity has non-zero trace. Given
a matrix A =

∑
P∈P⊗n αPP , the locality of A is the largest |P | such that αP ̸= 0. If A is a

Hamiltonian (i.e., Hermitian) then all αP are real-valued. The normalized Frobenius norm is
given by

∥A∥2 =
√

⟨A,A⟩
2n =

√
Tr(A†A)

2n =
√ ∑
P∈P⊗n

|αP |2,

and will be used as our distance to k-locality, in keeping with the previous literature [6, 12, 3].
The other important norm will be the (unnormalized) spectral norm ∥A∥∞, which is the
largest singular value of A. For any matrix A, ∥A∥2 ≤ ∥A∥∞, recalling that ∥·∥2 is the
normalized Frobenius norm. As a form of normalization and to be consistent with the
literature, we will assume that ∥H∥∞ ≤ 1 for any Hamiltonian referenced. We will also
WLOG assume that Tr(H) = 0 for any Hamiltonian, since it does not affect the time
evolution unitary beyond a global phase, and so as our algorithms do not use controlled
application of the unitary, they cannot be affected by it.

We define A>k :=
∑

|P |>k αPP and subsequently A≤k :=
∑

|P |≤k αPP . By the orthogon-
ality of the Pauli matrices under the Frobenius inner product, A≤k is the k-local Hamiltonian
that is closest to A with distance ∥A−A≤k∥2 = ∥A>k∥2.

Let B = {|Φ+⟩, |Φ−⟩, |Ψ+⟩, |Ψ−⟩} denote the set containing the four Bell states. We will
view B⊗n as a basis of C2n ⊗ C2n , in which for each copy of B, one qubit is assigned to the
left register and one to the right. Note that, up to phase, every state in B⊗n is equal to
(I⊗n ⊗ P )|Φ+⟩⊗n for a unique P ∈ P⊗n. We will write |σP ⟩ for this basis element. As an
example,

|Φ+⟩⊗n = |σI⊗n⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ ⊗ |x⟩.

If U =
∑
P∈P⊗n αPP is a unitary matrix, then by Parseval’s identity,

∑
P∈P⊗n |αP |2 = 1,

i.e. |αP |2 gives a probability distribution over the Paulis. Applying I⊗n ⊗ U to the state
|σI⊗n⟩ = |Φ+⟩⊗n and measuring in the Bell basis B⊗n allows one to sample from this
distribution [17].

For a quantum channel that takes as input an n-qubit state, we will let the diamond norm
refer to ∥Λ∥⋄ := maxρ∥(I⊗n ⊗ Λ)(ρ)∥1 where the maximization is over all 2n-qubit states ρ.
The diamond distance famously characterizes the maximum statistical distinguishability (i.e.,
induced trace distance) between quantum channels [21, Section 9.1.6], even with ancillas.
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3.2 Probability
▶ Fact 5 (Multiplicative Chernoff Bound). Suppose X1, . . . , Xm are independent Bernoulli
random variables. Let X denote their sum and let µ := E[X]. Then for any t > 0

Pr [X ≤ (1 − t)µ] ≤ e−t2µ/2.

We will not need a particularly tight form of this bound, so for ease of analysis we state the
following (loose) corollary.

▶ Corollary 6. Suppose X1, . . . , Xm are i.i.d. Bernoulli random variables with probability p,
and

m = 2
p

(d+ log(1/δ)) .

Then

Pr
[
m∑
i=1

Xi < d

]
≤ δ.

Proof. Let µ := E[
∑m
i=1 Xi] = mp and let γ := 1− d

µ . By the Multiplicative Chernoff Bound,

Pr
[
m∑
i=1

Xi < d

]
= Pr

[
m∑
i=1

Xi < (1 − γ)µ
]

≤ exp
(

−µ

2 γ
2
)

= exp
(

−µ

2 − d2

2µ + d

)
≤ exp

(
−mp

2 + d
)
.

Hence, as long as

m ≥ 2 log(1/δ) + 2d
p

,

then
∑m
i=1 Xi ≤ d with probability at most δ. ◀

▶ Fact 7 (Bernstein’s inequality). Suppose X1, . . . , Xn are independent Bernoulli random
variables. Let X denote their sum and let µ and σ2 be the expectation and variance of X
respectively. Then for t ∈ (0, n)

Pr [X − µ ≥ t] ≤ e
−

t2
2

σ2+ t
3 and Pr [X − µ ≤ −t] ≤ e

−
t2
2

σ2+ t
3 .

4 Upper Bound

We will frequently use the truncation of the Taylor series of the matrix exponential to analyze
our algorithm. The following will allow us to then bound the error of the truncation.

▶ Fact 8 ([8, Lemma F.2]). If λ ∈ C then
∣∣∣∑∞

k=ℓ
λk

k!

∣∣∣ ≤ |λ|ℓ

ℓ! e
|λ|.

▶ Corollary 9. For n-qubit Hamiltonian H with ∥H∥∞ ≤ 1, the first order Taylor series
expansion of the matrix exponential gives

e−iHt = I⊗n − iHt+ et · t2

2 R

for ∥R∥∞ ≤ 1.

TQC 2025



10:8 Hamiltonian Locality Testing via Trotterized Postselection

Proof. By the triangle inequality and the fact that ∥Hk∥∞ ≤ ∥H∥∞ ≤ 1 for k ≥ 1:

∥e−iHt − (I⊗n − iHt)∥∞ =

∥∥∥∥∥
∞∑
k=2

(−i)kH
ktk

k!

∥∥∥∥∥
∞

≤
∞∑
k=2

∥Hk∥∞t
k

k! ≤
∞∑
k=2

tk

k! ≤ et · t2

2 ,

using Fact 8 at the end. Setting R := 2
et·t2

(
e−iHt − (I⊗n − iHt)

)
completes the proof. ◀

We also prove the related fact to bound the real and imaginary terms.

▶ Fact 10. If λ ∈ C then∣∣∣∣∣
∞∑
k=ℓ

λ2k

(2k)!

∣∣∣∣∣ ≤ |λ|2ℓ

(2ℓ)! cosh(|λ|)

and∣∣∣∣∣
∞∑
k=ℓ

λ2k+1

(2k + 1)!

∣∣∣∣∣ ≤ |λ|2ℓ+1

(2ℓ+ 1)! cosh(|λ|).

Proof.∣∣∣∣∣
∞∑
k=ℓ

λ2k

(2k)!

∣∣∣∣∣ ≤
∞∑
k=ℓ

|λ2k|
(2k)! = |λ|2ℓ

∞∑
k=0

|λ|2k

(2k + 2ℓ)! ≤ |λ|2ℓ

(2ℓ)!

∞∑
k=0

|λ|2k

(2k)! = |λ|2ℓ

(2ℓ)! cosh(|λ|)

and∣∣∣∣∣
∞∑
k=ℓ

λ2k+1

(2k + 1)!

∣∣∣∣∣ ≤
∞∑
k=ℓ

|λ2k+1|
(2k + 1)! = |λ|2ℓ+1

∞∑
k=0

|λ|2k

(2k + 2ℓ+ 1)!

≤ |λ|2ℓ+1

(2ℓ+ 1)!

∞∑
k=0

|λ|2k

(2k)! = |λ|2ℓ+1

(2ℓ+ 1)! cosh(|λ|). ◀

4.1 Algorithm
▶ Definition 11. We will use D to denote the subspace of C2n ⊗ C2n spanned by |σP ⟩ for
Pauli strings P that are either the identity or are not k-local, and ΠD to denote the projector
onto D. We define A := ΠD (I⊗n ⊗H) ΠD.

We start by giving an algorithm that returns a Bernoulli random variable X ∈ {0, 1},
where E[X] approximates the distance of H from being k-local. It does so by iteratively
applying e−iαH sandwiched by {ΠD, I

⊗2n − ΠD} measurements.

Algorithm 1 Hamiltonian Locality Estimator via Trotterized Postselection.

1: Start with |ϕ⟩ = |σI⊗n⟩.
2: for 50√

ε2
2−ε2

1
iterations do

3: Apply (I⊗n ⊗ e−iαH to |ϕ⟩ for α = ε2
2−ε2

1
100ε2

.
4: Measure |ϕ⟩ with the projectors ΠD, I

⊗2n − ΠD, terminating and returning ⊥ if the
result is I⊗2n − ΠD.

5: end for
6: Measure |ϕ⟩ in the Bell basis, returning 0 if the result is |σI⊗n⟩ and 1 otherwise.
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Let α := ε2
2−ε2

1
100ε2

be the step-size used in Algorithm 1, t :=
√
ε2

2−ε2
1

2ε2
be the total time

evolution used in Algorithm 1, and let m := t/α = 50√
ε2

2−ε2
1

be the number of iterations used

in Algorithm 1. In our analysis will frequently use the fact that α ≤ ε2
100 ≤ 1

100 and t ≤ 0.5
to simplify higher-order terms.
▶ Remark 12. While we attempted to keep the constants in the algorithm reasonable, no

attempt was made to optimize them. We observe that t should remain Θ
(√

ε2
2−ε2

1
ε2

)
for

optimal scaling, but α can be made arbitrarily small to (marginally) improve the constants
in the total time evolution used. This has a cost in the total number of queries used, scaling
roughly proportional to α−1.

First we show that the final state of the Trotterized postselection algorithm corresponds
to evolving |σI⊗n⟩ by e−iAt, with a bounded error term. There are two main sources
of error: (1) the error from higher-order terms in the respective Taylor series of e−iAα

and ΠD

(
I⊗n ⊗ e−iHα)ΠD not matching and (2) the error from post-selection causing

normalization issues. The following technical lemma allows us to tackle the error from (1).
This is done by showing that e−itA = ΠD

(
I⊗n ⊗ e−itH)ΠD ± O

(
α2) for sufficiently small α.

By chaining these together, the triangle inequality will eventually show in Lemma 14 that
the accumulated error is then at most O

(
α2m

)
= O(αt).

▶ Lemma 13. Let H =
∑
P∈P⊗n αPP be any Hamiltonian with ∥H∥∞ ≤ 1. Then,

ΠD(I⊗n ⊗ e−iαH)ΠD = e−iαA + η

where ∥η∥∞ ≤ eα · α2.

Proof. By Taylor expanding the complex exponential of e−iαH and applying Corollary 9,
we get

ΠD(I⊗n ⊗ e−iαH)ΠD = ΠD

(
I⊗n ⊗

(
I⊗n − iαH + eα · α2

2 R

))
ΠD

= I⊗2n − iαA+ et · α2

2 R′

where ∥R′∥∞ ≤ ∥I⊗n ⊗R∥∞ = ∥R∥∞ ≤ 1.
Next, we observe that ∥A∥∞ ≤ ∥I⊗n ⊗H∥∞ = ∥H∥∞ ≤ 1 and that A is Hermitian by

symmetry. We can then Taylor expand e−iαA to get

e−iαA = I⊗2n − iαA+ eα · α2

2 Q

where ∥Q∥∞ ≤ 1. By the triangle inequality, the difference

η := ΠD(I⊗n ⊗ e−iαH)ΠD − e−iαA

between these two linear transformations satisfies

∥η∥∞ ≤ ∥R′∥∞ · e
α · α2

2 + ∥Q∥∞ · e
α · α2

2 ≤ eα · α2. ◀

Luckily, the error from (2) is mostly a non-issue, using a process similar to the Elitzur-
Vaidman bomb [9]: by taking small steps between applications of ΠD, we ensure that we
are barely changing our system, and so the post-selection nearly always succeeds. This also
means that the normalization error can be suppressed to be arbitrarily small, at the cost of
linearly increasing the number of times we have to query the time evolution operator. Using
these facts together, we show that Algorithm 1 approximately applies the time evolution
operator of A.
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10:10 Hamiltonian Locality Testing via Trotterized Postselection

▶ Lemma 14. Algorithm 1 terminates before the final measurement with probability at
most 99

98αt. If it does not, |ϕ⟩ = e−iAt|σI⊗n⟩ + |∆⟩ just before the final measurement, with
∥|∆⟩∥2 ≤ 7

4αt.

Proof. Note that the algorithm can only be terminated early if, in one of the loop iterations,
the measurement in Algorithm 1 returns I⊗2n − ΠD. At the start of the iteration |ϕ⟩ =
|σI⊗n⟩ ∈ D. Since |ϕ⟩ remains within D after each successful iteration, by Taylor expanding
the exponential, and applying Corollary 9 to obtain a suitable R with ∥R∥∞ ≤ 1, the
probability of failure at each iteration is at most∥∥(I⊗2n − ΠD)

(
I⊗n ⊗ e−iHα)ΠD|ϕ⟩

∥∥2
2

=
∥∥∥∥(I⊗2n − ΠD)

(
I⊗n ⊗

(
I⊗n − iαH + α2

2 eαR

))
|ϕ⟩
∥∥∥∥2

2

=
∥∥∥∥(I⊗2n − ΠD)

(
−iα(I⊗n ⊗H) + α2

2 eα(I⊗n ⊗R)
)

|ϕ⟩
∥∥∥∥2

2

≤
(
α∥H∥∞ + α2eα

2 ∥R∥∞

)2

≤
(

1 + αeα + α2

4 e2α
)
α2

<
99
98α

2

where the third line follows from |ϕ⟩ ∈ D, the fourth from the triangle inequality combined
with the definition of the spectral norm, and the final line from α ≤ 0.01. By a union bound
over the m iterations, the first part of the lemma follows, noting that t := α ·m.

For the second part pertaining to accuracy, first we note that in each iteration, if the
measurement in Algorithm 1 does not make the algorithm terminate, the iteration had the
effect of taking |ϕ⟩ ∈ D to

ΠD

(
I⊗n ⊗ e−iαH) |ϕ⟩ = ΠD

(
I⊗n ⊗ e−iαH)ΠD|ϕ⟩,

normalized to length 1. After the m iterations of the loop of Algorithm 1, |ϕ⟩ is then

m∏
i=1

ΠD

(
I⊗n ⊗ e−iαH)ΠD|σI⊗n⟩

normalized to length 1. By Lemma 13, before normalization this is equivalent to

m∏
i=1

(
e−iαA + η

)
|σI⊗n⟩ =

(
m∑
k=0

(
m

k

)
e−iαA(m−k) · ηk

)
|σI⊗n⟩

for ∥η∥∞ ≤ α2eα. The distance of the un-normalized vector from e−iAt|σI⊗n⟩ is then∥∥∥∥∥e−iAt|σI⊗n⟩ −
m∏
i=1

(
e−iAt + η

)
|σI⊗n⟩

∥∥∥∥∥
2

=

∥∥∥∥∥
(

m∑
k=1

(
m

k

)
e−iαA(m−k) · ηk

)
|σI⊗n⟩

∥∥∥∥∥
2

≤
m∑
k=1

mk∥η∥k∞ ≤
m∑
k=1

(
mα2eα

)k ≤
∞∑
k=1

(
mα2eα

)k = mα2eα
1

1 −mα2eα
= αteα

1
1 − αteα

.
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Finally, to bound the error introduced by normalization, for each r ∈ [m], write |ϕr⟩ :=∏r
i=1 ΠD(I⊗n ⊗ e−iαH)ΠD|σI⊗n⟩ for the projected state at iteration r. We note that, by the

same argument proving that the probability of the measurement at any given step returning
the I⊗2n − ΠD result is at most 99

98α
2, |ϕr⟩ is separated from e−iAt|ϕr−1⟩ by an orthogonal

vector of length at most
√

99
98α∥e−iAt|ϕr−1⟩∥2 =

√
99
98α∥|ϕr−1⟩∥2. Therefore,

∥|ϕr⟩∥2 ≥ ∥|ϕr−1⟩∥2

√
1 − 99

98α
2 ≥ ∥|ϕr−1⟩∥2 − 0.699

98α
2

where the last inequality follows from the fact that 1 −
√

1 − x ≤ 0.6x for x ∈ [0, 5
9 ] and

99
98α

2 < 5
9 . The total additional error from the normalization is then at most 297

490α
2m = 297

490αt.
By the triangle inequality, the total distance from e−iAt|σI⊗n⟩ is at most

297
490αt+ tαeα

1
1 − αteα

≤ 7
4αt. ◀

We now show that (approximately) applying e−iAt instead of I⊗n ⊗ e−iHt allows us to
suppress the higher-order terms that were preventing us from increasing the evolution time
t when testing for locality. We will need the following results that let us characterize the
individual terms of the Taylor expansion.

▶ Fact 15. For any matrix M , ⟨σP |(I ⊗M)|σQ⟩ = Tr(PMQ)
2n .

Proof.

⟨σP |(I ⊗M)|σQ⟩ = 1
2n

∑
x,y∈{0,1}n

(⟨x| ⊗ ⟨x|P ) (|y⟩ ⊗MQ|y⟩)

= 1
2n

∑
x,y∈{0,1}n

⟨x|y⟩ · ⟨x|PMQ|y⟩ = 1
2n

∑
x∈{0,1}n

⟨x|PMQ|x⟩ = Tr(PMQ)
2n ◀

▶ Lemma 16. ⟨σI⊗n |A|σI⊗n⟩ = 0.

Proof.

⟨σI⊗n |A|σI⊗n⟩ = ⟨σI⊗n |ΠD

(
I⊗n ⊗H

)
ΠD|σI⊗n⟩ = ⟨σI⊗n |I⊗n ⊗H|σI⊗n⟩

= 1
2n Tr (H) = 0 (Fact 15)

recalling that we have assumed that Tr(H) = 0. ◀

▶ Lemma 17. For k ≥ 2, |⟨σI⊗n |Ak|σI⊗n⟩| ≤ ⟨σI⊗n |A2|σI⊗n⟩ = ∥H>k∥2
2.

Proof. The first inequality follows because ∥A∥∞ ≤ ∥H∥∞ ≤ 1, and the fact that H is
Hermitian and so A is too, meaning that every eigenvalue of Ak is non-increasing in magnitude
as a function of k, and non-negative when k is even.

For the second equality, we observe that

A|σI⊗n⟩ = ΠD

(
I⊗n ⊗H

)
ΠD|σI⊗n⟩ = ΠD

(
I⊗n ⊗H

)
|σI⊗n⟩ =

(
I⊗n ⊗H>k

)
|σI⊗n⟩,

as H has no identity component. By Fact 15,

⟨σI⊗n |A2|σI⊗n⟩ = ⟨σI⊗n |I⊗n ⊗ (H>k)2|σI⊗n⟩ = 1
2n Tr

(
(H>k)2) = ∥H>k∥2

2. ◀
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10:12 Hamiltonian Locality Testing via Trotterized Postselection

Combining Lemmas 14, 16, and 17, we are able to give bounds on the acceptance
probability of Algorithm 1 (assuming it does not terminate early) based on how close or far
H is from being k-local. This gives us an algorithm for testing locality, through repetition of
Algorithm 1 and concentration of measure.

▶ Lemma 18. Let ε := ∥H>k∥2. The probability that Algorithm 1 outputs 1, conditioned on
not terminating early, is at least ε2t2

(
1 − 3

10ε
2t2
)
− 7

2εαt
2 and no more than ε2t2

(
1 + 1

10 t
2)+

287
80 εαt

2 + 49
1600ε2αt

2.8

Proof. At the end of Algorithm 1 (assuming it did not terminate early), the final state lies
in D. By Lemma 14 and the definition of the final measurement, the probability that the
algorithm outputs 1 is the squared length of the component of |ψ⟩ := e−iAt|σI⊗n⟩ + |∆⟩ along
the complement of |σI⊗n⟩, for some ∆ such that ∥|∆⟩∥2 ≤ 2αt. So by the triangle inequality,
Pr [X = 1] is in the range9

((√
1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 − ∥|∆⟩∥2

)2
,

(√
1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 + ∥|∆⟩∥2

)2
)
.

To analyze
∣∣⟨σI⊗n |e−iAt|σI⊗n⟩

∣∣, we note that because A is Hermitian, ⟨σI⊗n |Ak|σI⊗n⟩ is
real-valued for all k ≥ 0. By splitting up the Taylor expansion of the matrix exponential into
real and imaginary terms, we see that

∣∣⟨σI⊗n |e−iAt|σI⊗n ⟩
∣∣2 =

∣∣∣∣∣⟨σI⊗n |

(
∞∑

m=0

(−i)m Amtm

m!

)
|σI⊗n ⟩

∣∣∣∣∣
2

=

∣∣∣∣∣⟨σI⊗n |

(
∞∑

m=0

(−1)m A2mt2m

(2m)!

)
|σI⊗n ⟩

∣∣∣∣∣
2

+

∣∣∣∣∣⟨σI⊗n |

(
∞∑

m=0

(−1)m+1 A2m+1t2m+1

(2m + 1)!

)
|σI⊗n ⟩

∣∣∣∣∣
2

.

Analyzing the first term, we see that∣∣∣∣∣⟨σI⊗n |

( ∞∑
m=0

(−1)mA
2mt2m

(2m)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨σI⊗n |

(
I⊗2n − t2

2 A
2 +

∞∑
m=2

(−1)mA
2mt2m

(2m)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣Tr(I⊗n)
2n − t2

2 ⟨σI⊗n |A2|σI⊗n⟩ + ⟨σI⊗n |

( ∞∑
m=2

(−1)mA
2mt2m

(2m)!

)
|σI⊗n⟩

∣∣∣∣∣ (Fact 15)

=

∣∣∣∣∣1 − ε2t2

2 +
∞∑
m=2

(−1)m⟨σI⊗n |A
2mt2m

(2m)! |σI⊗n⟩

∣∣∣∣∣ (Lemma 17)

= 1 − ε2t2

2 + ηreal

where |ηreal| ≤ ε2t4

24 cosh(t) ≤ ε2t4

20 by Fact 10, Lemma 17, the triangle inequality, and the
fact that t ≤ 1

2 .

8 The ε2 in the 49
1600 ε2αt2 term of the upper bound is intended and not a typo.

9 One might think to use 1 −
∣∣⟨σI⊗n |

(
e−iAt|σI⊗n ⟩ + |∆⟩

)∣∣2 followed by the triangle inequality, but this
actually leads to a lossy analysis of the number of queries used.
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Then, for the second term, we have

ηimaginary :=

∣∣∣∣∣⟨σI⊗n |

( ∞∑
m=0

(−1)mA
2m+1t2m+1

(2m+ 1)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨σI⊗n |

(
A+

∞∑
m=1

(−1)m+1A
2m+1t2m+1

(2m+ 1)!

)
|σI⊗n⟩

∣∣∣∣∣
=

∣∣∣∣∣⟨σI⊗n |

( ∞∑
m=1

(−1)mA
2m+1t2m+1

(2m+ 1)!

)
|σI⊗n⟩

∣∣∣∣∣ (Lemma 16)

≤ε2
∞∑
m=1

t2m+1

(2m+ 1)! (Lemma 17)

≤ε2 t
3

6 cosh(t) ≤ 1
10ε

2t2. (Fact 10)

Since

∣∣⟨σI⊗n |e−iAt|σI⊗n⟩
∣∣2 =

(
1 − ε2t2

2 + ηreal

)2

+ η2
imaginary,

we can upper bound it by
(

1 − ε2t2

2 + |ηreal|
)2

+η2
imaginary and, as ηimaginary ≥ 0, lower bound

it by
(

1 − ε2t2

2 − |ηreal|
)2

.
We can therefore upper bound the probability of Algorithm 1 accepting by(√

1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 + ∥|∆⟩∥2

)2

≤

√1 −
(

1 − ε2t2

2 − |ηreal|
)2

+ 7
4αt

2

(Lemma 14)

≤
(√

ε2t2 + 2|ηreal| + 7
4αt

)2

≤ ε2t2 + 2|ηreal| + 7
2αt

√
ε2t2 + 1

10ε
2t4 + 49

16α
2t2

≤ ε2t2
(

1 + 1
10 t

2
)

+ 287
80 εαt

2 + 49
1600ε2αt

2
(
t ≤ 0.5, α ≤ ε2

100

)
and lower bound it by(√

1 − |⟨σI⊗n |e−iAt|σI⊗n⟩|2 − ∥|∆⟩∥2

)2

≥

√1 −
(

1 − ε2t2

2 + |ηreal|
)2

− η2
imaginary − ∥|∆⟩∥2

2

≥ ε2t2 −
(
ε2t2

2 + |ηreal|
)2

− |ηimaginary|2 − 7
2εαt

2

≥ ε2t2
(

1 − 3
10ε

2t2
)

− 7
2εαt

2. ◀

TQC 2025



10:14 Hamiltonian Locality Testing via Trotterized Postselection

▶ Theorem 1. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm
that distinguishes whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local
Hamiltonian or (2) ε2-far from all k-local Hamiltonians, with probability 1 − δ. The al-

gorithm uses O
(√

ε2
(ε2−ε1)7 log(1/δ)

)
non-adaptive queries to the time evolution operator

with O
(√

ε2
(ε2−ε1)5 log(1/δ)

)
total evolution time.

Proof. By Lemma 18 the output of Algorithm 1, conditioned on succeeding, is a Bernoulli
random variable Xi with bounded expectation. That is, when ε ≥ ε2 then

E[Xi] ≥ ε2
2t

2
(

1 − 3
10ε

2
2t

2
)

− 7
2ε2αt

2

and when ε ≤ ε1 then

E[Xi] ≤ ε2
1t

2
(

1 + 1
10 t

2
)

+ 287
80 ε1αt

2 + 49
1600ε2αt

2.

Let

τ := 1
2

[
ε2

2t
2
(

1 − 3
10ε

2
2t

2
)

− 7
2ε2αt

2 + ε2
1t

2
(

1 + 1
10 t

2
)

+ 287
80 ε1αt

2 + 49
1600ε2αt

2
]

then be the halfway point these two values, and our decision threshold. And for convenience
let

ξ := 1
2

[
ε2

2t
2
(

1 − 3
10ε

2
2t

2
)

− 7
2ε2αt

2 − ε2
1t

2
(

1 + 1
10 t

2
)

− 287
80 ε1αt

2 − 49
1600ε2αt

2
]

be a lower bound on the distance from τ to our bounds on E[Xi]. Observe that ε1 < ε2 ≤ 1,
ε2α = ε2

2−ε2
1

100 and t =
√
ε2

2−ε2
1

2ε2
so:

9
80

(ε2
2 − ε1)2

ε2
2

≤ 1
2(ε2

2 − ε2
1)t2 − 1

5ε
2
2t

4 ≤ ξ ≤ ε2
2 − ε2

1
2 t2 ≤ ε2

2t
2

2 .

Now say that we have i.i.d samples {X1, . . . , Xs} from successful runs of Algorithm 1
for s to be determined and let X :=

∑s
i=1 Xi. If ε ≥ ε2, then by Bernstein’s inequality the

probability that X ≤ sτ is at most:

Pr
[

s∑
i=1

Xi ≤ sτ

]
= Pr

[
X − E[X] ≤ sτ − E[X]

]
≤ exp

[
−

(sτ−E[X])2

2

sE[X] (1 − E[X]) + E[X]−sτ
3

]

≤ exp

− (sτ − E[X])2

2
(
sE[X] + E[X]−sτ

3

)


≤ exp

− sξ2

2
(
ε2

2t
2 + ξ

3

)


≤ exp
[
− 3sξ2

7ε2
2t

2

]
≤ exp

[
− s

46.5
(ε2

2 − ε2
1)3

ε4
2

]
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where the fourth line follows due to the expression in the exponential being monotonically
increasing with respect to E[X] ∈ (τ, 1]. Likewise, if ε ≤ ε1 then the probability that X ≥ sτ

is at most:

Pr
[

s∑
i=1

Xi ≥ sτ

]
= Pr

[
X − E[X] ≥ sτ − E[X]

]
≤ exp

[
−

(sτ−E[X])2

2

sE[X] (1 − E[X]) + sτ−E[X]
3

]

≤ exp

− (sτ − E[X])2

2
(
sE[X] + sτ−E[X]

3

)


≤ exp

− sξ2

2
(
ε2

1t
2
(
1 + 1

10 t
2
)

+ 287
80 ε1αt2 + 49

1600ε2αt2 + ξ
3

)


≤ exp
[

− sξ2

2
(
ε2

2t
2
(
1 + 1

40 + 287
800 + 49

16000 + 1
6
))]

(ε1 < ε2, t ≤ 0.5, α ≤ ε2

100)

≤ exp
[
− s

55.9
(ε2

2 − ε2
1)3

ε4
2

]
where the fourth line also follows due to the expression in the exponential being monotonically
decreasing with respect to E[X] ∈ [0, τ). Therefore, setting

s = 55.9 ε4
2

(ε2
2 − ε2

1)3 ln(2/δ)

suffices for us to succeed at distinguishing the two cases with probability at most 1 − δ/2.
Algorithm 1 has an 99

98αt <
99

19600
(ε2

2−ε2
1)3/2

ε2
2

≤ 99
19600 chance of failure. By applying

Corollary 6,

s′ = 2
1 − 99

19600
(s+ ln(2/δ)) ≤ 115 ε4

2
(ε2

2 − ε2
1)3 ln(2/δ)

suffices to achieve s successful runs with probability 1 − δ/2. By a union bound, we will
correctly differentiate the two cases with probability at least 1 − δ.

The total time complexity used is then

s′t ≤ 115 ε4
2

(ε2
2 − ε2

1)3 ln(2/δ) ·
√
ε2

2 − ε2
1

2ε2
≤ 58 ε3

2

((ε2 − ε1)(ε2 + ε1))5/2 log(2/δ)

≤ 58
√

ε2

(ε2 − ε1)5 log(2/δ) = O
(√

ε2

(ε2 − ε1)5 log(1/δ)
)
,

with a total number of queries of

s′m = s′t

α
≤ 58 ε3

2

(ε2
2 − ε2

1)5/2 log(2/δ) · 100ε2

ε2
2 − ε2

1
≤ 5800 ε4

2
(ε2

2 − ε2
1)7/2 log(2/δ)

≤ 5800
√

ε2

(ε2 − ε1)7 = O
(√

ε2

(ε2 − ε1)7

)
. ◀
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A Lower Bound

We will utilize the following fact about diamond distance of unitaries that will make calcula-
tions easier, at a loss of some constant factors.

▶ Fact 19 ([13, Proposition 1.6]). For all unitaries U and V of equal dimension,

1
2∥U − V ∥⋄ ≤ min

θ∈[0,2π)
∥eiθU − V ∥∞ ≤ ∥U − V ∥⋄.

We now show our lower bound for k-locality testing, simply by showing that the statistical
distance of the resulting unitaries (i.e., diamond distance) only grows linearly with time.

▶ Definition 20. For 0 ≤ k ≤ n, we define

Z1:k :=
k⊗
i=1

Z ⊗
n⊗

j=k+1
I

to be the tensor product of Z on the first k qubits and identity on the last n− k qubits.

▶ Lemma 21. For 0 ≤ ε1 ≤ ε2

∥e−iZ1:kε1t − e−iZ1:kε2t∥⋄ ≤ 2(ε1 − ε2)t.

Proof. Since Z1:k is diagonal with ±1 entries, e−iZ1:kεt is diagonal with entries e∓iεt. There-
fore, the eigenvalues of eiθ · e−iZ1:kε1t − e−iZ1:kε2t can be directly calculated, giving us

min
θ∈[0,2π)

∥eiθ · e−iZ1:kε1t − e−iHε2t∥∞

= min
θ∈[0,2π)

max
(

|ei(θ−ε1t) − e−iε2t|, |ei(θ+ε1t) − eiε2t|
)

= min
(
|e−iε1t − e−iε2t|, |e−iε1t + e−iε2t|

)
= 2 min

(∣∣∣∣sin( (ε2 − ε1)t
2

)∣∣∣∣ , ∣∣∣∣cos
(

(ε2 − ε1)t
2

)∣∣∣∣)
≤ (ε2 − ε1)t,

where one of θ ∈ {0, π} minimizes the value via symmetry. By Fact 19, ∥e−iZ1:kε1t −
e−iZ1:kε2t∥⋄ ≤ 2(ε1 − ε2)t.10 ◀

10 A direct calculation of the diamond distance will give an upper bound of (ε2 − ε1)t, without the factor
of 2 from Fact 19. See [14, Proof of Proposition 1.6].
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▶ Remark 22. Lemma 21 easily extends to the scenario where one is allowed to make calls to
the inverse oracle, controlled versions of the oracle, the complex conjugate of the oracle, and
any combination of these augmentations, as the diamond distance between the corresponding
unitaries can be bounded as a function of time evolution.

We are now ready to prove our tolerant locality testing lower bound by reducing to
Lemma 21.

▶ Theorem 2. Let 0 ≤ ε1 < ε2 ≤ 1 and k ∈ N. Then any algorithm that can distinguish
whether an n-qubit Hamiltonian H is (1) within ε1 of some k-local Hamiltonian or (2) ε2-far
from all k-local Hamiltonians, must use Ω

(
1

ε2−ε1

)
evolution time in expectation to achieve

constant success probability.

Proof. Observe that for any k′ > k, H1 := ε1Z1:k′ is within ε1 of being k-local and
H2 := ε2Z1:k′ is likewise ε2-far from being k-local. ∥H1∥∞ ≤ ∥H2∥∞ ≤ 1 is also satisfied.
Let ti be the time evolution for each query in our algorithm. By Lemma 21, the diamond
distance between the time evolution of these two cases is at most 2(ε2 − ε1)ti for each query.
By the sub-additivity of diamond distance, a total time evolution of

∑
i ti = Ω

(
(ε2 − ε1)−1)

is required to distinguish H1 and H2 with constant probability. ◀

▶ Remark 23. Theorem 2 also holds when the distance to k-locality is determined by
operator norm ∥·∥∞, any normalized schatten p-norm ∥X∥p := 1

2n/p Tr (|X|p)
1
p , or any Pauli

decomposition p-norm ∥X∥Pauli,p :=
(∑

P∈P⊗n |αP |p
) 1

p for X =
∑
P∈P⊗n αPP , improving

upon that of [6, Theorem 3.6]. This is simply because the distance of εZ1:k′ (for k′ > k)
from being k-local is exactly ε for all of these distance measures.

B Optimal Tolerant Testing with Inverse Queries

In this section we augment the tolerant testing algorithm in [12, 3], with amplitude estimation
to get an optimal tolerant tester when given access to controlled versions of the forward and
reverse time evolution.11

We begin with the following crucial result of Gutiérrez.

▶ Lemma 24 ([3, Lemma 3.1]). Let 0 ≤ ε1 ≤ ε2 ≤ 1. Let α := ε2−ε1
3c and H be an n-qubit

Hamiltonian with ∥H∥∞ = 1. Define U := e−iHα, and let U>k be U |σI⊗n⟩ projected onto
onto the space spanned by {(I ⊗ P )|σI⊗n⟩ : P ∈ {I,X, Y, Z}⊗n, |P | > k}. We have that if H
is ε1-close to being k-local, then

∥U>k∥2
2 ≤

(
(ε2 − ε1)2ε1 + ε2

9c

)2
,

and if H is ε2-far from being k-local, then

∥U>k∥2
2 ≥

(
(ε2 − ε1)ε1 + 2ε2

9c

)2
.

We also cite the following result of [11], which itself follows as a corollary of the celebrated
Quantum Amplitude Estimation [7, Theorem 12] result.

11 Using the multiplicative error form from [20] should allow for one to remove the need for controlled
access while remaining non-adaptive, though it causes the constants to blow-up.
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▶ Lemma 25 (Quantum Amplitude Estimation [11, Corollary 29]). Let Π be a projector and |ψ⟩
be an n-qubit pure state such that ⟨ψ|Π|ψ⟩ = η. Given access to the unitary transformations
RΠ = 2Π − I and Rψ = 2|ψ⟩⟨ψ| − I, there exists a quantum algorithm that outputs η̂ such that

|η̂ − η| ≤ ξ

with probability at least 8
π2 . The algorithm makes no more than π

√
η(1−η)+ξ

ξ calls to the
controlled versions of RΠ and Rψ.

In particular, this implies that if we have (controlled) query access to U , U∗ for some
unitary U , and a known state |ϕ⟩, we can estimate η = ∥ΠU |ϕ⟩∥2

2 to ζ accuracy by defining
|ψ⟩ := U |ϕ⟩ and implementing Rψ with controlled applications of U .

We are now ready to state the algorithm, which can be seen as the algorithm of [12, 3]
augmented with Lemma 25.

▶ Theorem 4. Let 0 ≤ ε1 < ε2 ≤ 1, δ ∈ (0, 1), and k ∈ N. There is an algorithm that
tests whether an n-qubit Hamiltonian H is (1) ε1-close to some k-local Hamiltonian or (2)
ε2-far from all k-local Hamiltonians, with probability 1 − δ. The algorithm uses O

(
log(1/δ)
(ε2−ε1)2

)
non-adaptive queries to the time evolution operator and its inverse, with O

(
log(1/δ)
ε2−ε1

)
total

evolution time.

Proof. Let U := e−iHα as in Lemma 24. We apply Lemma 24 with Π the projector onto
the space spanned by {(I ⊗ P )|σI⊗n⟩ : P ∈ {I,X, Y, Z}⊗n, |P | > k} to estimate ∥U>k∥2

2.
Observe that the absolute difference between the two terms in Lemma 24 is(

(ε2 − ε1)ε1 + 2ε2

9c

)2
−
(

(ε2 − ε1)2ε1 + ε2

9c

)2
= (ε2 − ε1)3(ε2 + ε1)

27c2 .

Therefore, we can distinguish the two cases to constant success probability by estimating
η = ∥U>k∥2

2 to error ζ = (ε2−ε1)3(ε2+ε1)
54c2 . By Lemma 25, the number of queries is then no

more than

π

√
(ε2 − ε1)2(ε1 + 2ε2)2/(81c2) + (ε2 − ε1)3(ε1 + ε2)/(54c2)

(ε2 − ε1)3(ε1 + ε2)/(54c2)

= 54πc
(ε2 − ε1)2

√
(ε1 + 2ε2)2/81 + (2ε2 − 2ε1)(2ε1 + 2ε2)/216

ε1 + ε2

≤ 54πc
(ε2 − ε1)2

√
(2ε1 + 2ε2)2/81 + (2ε1 + 2ε2)2/216

ε1 + ε2

≤ 54πc
(ε2 − ε1)2

√
11(2ε1 + 2ε2)2/648

ε1 + ε2

≤ 3
√

22πc
(ε2 − ε1)2 .

Since the Hamiltonian is applied for α := ε2−ε1
3c for each query, the total evolution of the

Hamiltonian is at most

3
√

22πc
(ε2 − ε1)2

ε2 − ε1

3c =
√

22π
ε2 − ε1

.

By standard error reduction, we can reduce the constant failure probability to at most δ
using log(1/δ) repetitions.
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Finally, observe that constructing RΠ (and its controlled version), as in Lemma 25 is free,
as Π is a known projector onto the low locality Paulis. On the other hand, Rψ requires us
to take (a version of) the Grover Diffusion operator D := 2|0⟩⟨0| − I and conjugate it by U .
This is the step that requires access to U† := eiHα. ◀

Since this matches the lower bound of Theorem 2, Theorem 4 is optimal.
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1 Introduction

Space is one of the cornerstones of theoretical computer science, and the study of space-
bounded computations has been crucial in the development of complexity theory. Investigating
logspace computations revealed the limits of efficient computation under memory constraints
and has led to striking results such as Savitch’s theorem [38] and NL = coNL [25, 41].
Logspace reductions are essential in classifying problems as NL-complete or P-complete, and
leading to techniques for efficient parallelization and algorithm design.

Many graph and database problems rely on logspace techniques, making them relevant
for query optimization, data retrieval, and formal verification. Furthermore, logspace compu-
tations have practical applications in streaming algorithms, embedded systems, cryptography,
and model checking, where minimizing memory usage is critical.

The emergence of quantum computing has led to remarkable theoretical speedups over
the best known classical algorithms. The promise of exponential computational advantage
in using principles of quantum mechanics to process information comes with formidable
experimental challenges of building and maintaining quantum computers that can implement
long sequences of coherent operations. This led to a renewed interest in the structure of
quantum space.

1.1 Space in quantum computation
Understanding the true extent of the power of quantum computing in a variety of space-
constrained settings is a major challenge. In contrast to the classical setting where adding
a reasonable amount of extra memory to support computations is routinely achievable,
producing and maintaining multiple qubits is exceptionally difficult due to several fundamental
physical, engineering, and scalability issues. Qubits are fragile and susceptible to decoherence,
and maintaining long coherence times becomes significantly harder as the number of qubits
increases. Furthermore, quantum error rates scale with the number of qubits, making fault-
tolerant quantum computing a major challenge. In the quantum computational setting, space
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thus comes at a premium, and increasing the amount of space available for computation
requires overcoming fundamental challenges to reduce error rates, increase control precision,
and maintain entanglement across multiple systems, to name but a few.

The characterization of quantum logspace (QL) and the study of the computational
power of bounded-error quantum logarithmic space (BQL) and its relationship to classical
complexity classes was first done by Watrous [44], where it was established that BQL ⊆ P.
This showed that any problem solvable in quantum logspace with bounded error is also
solvable in polynomial time by a classical deterministic machine. In later work, Watrous [43]
showed that QSPACE(s) ⊆ SPACE[O(s2)] for all s ≥ logn, even when the quantum machine
is allowed to err with probability arbitrarily close to 1/2; this confirms that quantum logspace
computations remain simulable within polynomial space, and is consistent with classical
space complexity results such as Savitch’s theorem. His work also established that quantum
logspace can efficiently solve certain algebraic problems, including the group word problem
for solvable groups, which lacks efficient classical logspace algorithms [43].

These above obstacles prompted the search for extra ingredients which could lift restricted
models of quantum computation (for example – realized by quantum circuits which are
classically efficiently simulatable) to regain the power of universal quantum computation.
These extra ingredients (e.g. magic state injection) are usually studied in the context of
unrestricted space and there has as of yet been no attempt to investigate them under space
restrictions.

On the other hand, there have been several notable results that illuminate various proper-
ties of quantum logspace. One of the earliest findings shows that any quantum computation
that can be performed with logarithmic space can also be efficiently simulated using matchgate
circuits of polynomial width, and vice versa [26]. Following this characterisation, there have
been a series of further results indicating that quantum logspace describes a non-trivial class
of computations. Ta-Shma [42] showed that given a matrix with a bounded condition number,
a quantum logspace algorithm can efficiently approximate its inverse or solve linear systems.
Girish, Raz, and Zhan [21] described a quantum logspace algorithm to compute powers of
an matrix with bounded norm and prove that deterministic logspace is equal to reversible
logspace. Recently, it was shown by the same authors that the class of decision problems
solvable by a quantum computer in logspace admits an efficient verification procedure [22];
moreover, they also show that every language in BQL has an (information-theoretically
secure) streaming proof with a quantum logspace prover and a classical logspace verifier.
This hints at a curious interplay between the powers of classical and quantum logspace.

1.2 Catalysis and space
Catalysis is a concept well-studied in the context of quantum information and is widely
recognized for its counterintuitive abilities to enable (state) transformations that are otherwise
infeasible (see survey by Lipka et al. [30]). A related concept, known as catalytic embedding,
was recently introduced in the context of circuit synthesis as an alternative to traditional
gate approximation methods in quantum circuit design [4]. Here the goal is to implement
a desired unitary operation more efficiently (e.g., with fewer gates, lower depth, or using a
restricted gate set) than would be possible without assistance. It involves a specific, known,
and often small catalyst state that is chosen to aid a particular unitary implementation.

These foregoing lines of work focus on the idea that a specific unitary may be implemented
more efficiently if a special state (i.e. catalyst) is available, often discussing resource theories,
and do not dwell on complexity theoretic implications.

TQC 2025
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In this work, we initiate the complexity-theoretic study of the effect of catalytic space
in quantum computations. Much like magic state injection is able to promote and increase
quantum computational power in the space-unrestricted setting, the presence of a catalyst in
the form of an extra register of quantum memory – albeit memory that already contains
some stored quantum information – holds a similar promise for space-bounded quantum
computations. The notion of catalytic space can be regarded as a theoretical model of
qubit reusal.

The first step towards a rigorous study of catalytic logspace quantum computations is
to formalize the model and means of interaction with the catalytic space. Identifying new
computational capabilities endowed by the presence of a catalyst in the form of additional
quantum memory, which however contains an arbitrary unknown quantum state, appears
to be a significantly more challenging task due to the nature of quantum information and
the inherent limitations of quantum resources. For example, any framework for quantum
catalytic space must incorporate the possibility of entanglement and its inherent limitations
(e.g. monogamy) between the catalytic memory and the rest of the work space. It has to
further account for the irreversibile nature of quantum measurement.

Remarkably, it was recently shown that the addition of a similar notion of catalytic space
has major implications even in the classical logspace setting. Buhrman et al. [10] introduced
a model of space, called catalytic computing, which studies the power of “imperfect” memory.
In addition to the usual Turing machine work tape, a catalytic machine is equipped with a
much larger catalytic work tape, which is filled with an arbitrary initial string τ and which
must be reset to the configuration τ at the end of its computation.

The setting of most interest to us is catalytic logspace (CL), wherein a logspace machine
is given access to a polynomial size catalytic tape. On the positive side, [10] showed that
such machines have significantly greater power than traditional logspace, capturing the
additional power of both non-determinism (NL) and randomness (BPL); in fact, they showed
that CL can simulate the much larger class of logarithmic-depth threshold circuits (TC1). On
the negative side, they also showed that CL can be simulated by (zero-error) randomized
polynomial-time machines (ZPP), which are strongly believed to be much weaker than e.g.
polynomial space.

Since then, many works have studied classical catalytic space from a variety of angles,
including further results on the power of CL [12, 1, 2] augmenting catalytic machines with other
resources such as randomness or non-determinism [11, 15, 12, 29], considering non-uniform
models such as catalytic branching programs or catalytic communication complexity [36, 13,
37], analyzing the robustness of classical catalytic machines to alternate conditions [9, 8, 23],
and so on. Many properties of catalytic computation have emerged that appear ripe for use
in the quantum setting, such as reversibility [18, 12], robustness [23, 20], and average-case
runtime bounds [10].

Perhaps most important to motivate our current study, the utility of classical catalytic
computation has been strikingly demonstrated in its use as a subroutine in an ordinary
space-bounded computation: avoiding linear blowups in space when solving many instances
of a problem. The most impactful result is the Tree Evaluation algorithm of Cook and
Mertz [14], which was the key piece in Williams’ recent breakthrough on time and space [45].
Catalytic subroutines of this kind are even more relevant in the quantum setting, as they
may lead to a persistent reduction of the qubit count when executing a quantum algorithm.
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1.3 Summary of results
In this paper we initiate the systematic study of catalytic techniques in the quantum setting.
To this end we codify a concrete definition of quantum catalytic space (QCSPACE), explore
the degrees to which the definition is robust, and establish the relationship of quantum
catalytic logspace (QCL) to various classical and quantum complexity classes.

Our main technical contribution is to show that, somewhat surprisingly, quantum Turing
machines and quantum circuits are equivalent even in the catalytic space setting:

▶ Theorem 1. Let L be a language, and let s := s(n) and c := c(n). Then L is computable
by a quantum catalytic Turing machine with work space O(s) and catalytic space O(c) iff L

is computable by a family of quantum catalytic circuits with work space O(s) and catalytic
space O(c).

While this translation is straightforward in other settings, QCL has no a priori polynomial
time bound, and so there is no obvious way to define the length of a catalyic circuit without
running into trouble. However, we prove that the result of Buhrman et al. [10] which shows
that CL takes polynomial time on average can be strengthened in the quantum case, to show
that QCL always takes polynomial time without any error:

▶ Theorem 2. QCL ⊆ EQP

We find Theorem 2 intriguing for many reasons. Naturally it is exciting to be able to solve the
“holy grail” of catalytic computing in the quantum setting. The story of classical catalytic
computing has been the ability of clever algorithms to circumvent the resetting condition of
the catalytic tape and use it for powerful purposes, but Theorem 2 shows that conversely,
the additional power of quantum techniques in such algorithms does not offset the additional
restrictiveness of resetting a quantum state. Quantum computation is a model fundamentally
built on reversible instructions, with the one exception being the final measurement with
which we obtain our answer; Theorem 2 shows that this measurement is a massive obstruction
to reversibility, as having access to such a huge resource with only the reversible restriction –
something which is taken care of in the intermediate computation already – gives less power
than we initially assumed.

In terms of class containments, we focus on two questions: the relationship of quantum
and classical catalytic space, and the relationship of catalytic space to the one-clean qubit
model (DQC1), a pre-existing object of study in quantum complexity which bears a strong
resemblance to catalysis. We show that, while CL ⊆ QCL is surprisingly out of reach at the
moment, this can be shown for an important subclass of CL, one which captures the strongest
known classical containment:

▶ Theorem 3. TC1 ⊆ QCL

As a consequence, we show that TC1 constitutes a natural class of functions for which
catalysis gives additional power to quantum computation.

We also show that unitary QCL (QUCL) and classical CL are both contained in DQC1:

▶ Theorem 4. BQUCL ⊆ DQC1

▶ Theorem 5. CL ⊆ DQC1

Note that we use a version of DQC1 defined using a logspace controller instead of a polynomial
time controller as may also be done. These results show how much of the power of DQC1
comes from avoiding the limitation of the resetting condition on the “dirty” work space.

TQC 2025
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1.4 Open problems

We identify a number of interesting avenues to further explore the power of quantum catalytic
space, and understand its relation to various (quantum) complexity classes.

QCL subroutines

Remarkably, classical catalytic subroutines can already be used to achieve analogous space
savings in QCL. Is it possible to identify genuinely quantum subroutines to achieve savings
beyond those attained by classical generalizations? This is not so straightforward because
the subset of qubits being reused in a catalytic subroutine could become entangled with
qubits that cannot be accessed by the subroutine. Therefore, there might be a non-trivial
and inaccessible reference system with respect to which the catalytic property must hold.
While we show the presence of such an inaccessible reference system does not change the
model we define, designing quantum catalytic subroutines (cf. classical results in [14, 45])
stands out as a fertile direction for future work.

QNC1 vs QCL

Starting with Barrington’s Theorem [5], a landmark result in space complexity, a classical
line of work [6, 10] has shown that polynomial-size formulas over many different gatesets can
be computed using only logarithmic space, using a reversible, algebraic characterization of
computation. Such a result in the quantum case, i.e. QNC1 ⊆ QL, appears far out of reach, as
this would imply e.g. novel derandomizations in polynomial time. However, such techniques
are also key to the study of catalytic computation, and so perhaps we can show QNC1 or a
similar quantum circuit class is contained in QCL. This would give a clear indication of the
power of quantumness in catalytic computation.

QCL vs DQC1

While we seem to find that QUCL or QCL without intermediate measurements is contained
in DQC1, it is unclear if this still holds when we allow intermediate measurements.

QCL with errors

One aspect of our results which is discordant with the usual mode of quantum computation
is that we require the catalytic tape be exactly reset by the computation. On the other
hand, many basic primitives in quantum computing, such as converting between gatesets,
can introduce errors into the computation, and in practice even the ambient environment
can be assumed to cause such issues. Thus it seems natural to study the power of QCL when
we allow a small, potentially exponentially small, trace distance between the initial and final
catalytic states. This model is well-understood in the classical world [23, 20], but it would
be interesting to see whether our techniques can be made robust to this small error or, to
the contrary, whether this slight relaxation is enough to overcome the barriers in our work,
chiefly the inability to show CL ⊆ QCL.
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2 Preliminaries

2.1 Quantum computation
For this work we will consider complex Hilbert spaces H ∼= Cd of dimension d, that will
form the state space for a quantum system. Multiple quantum systems are combined by
taking the tensor product of their Hilbert spaces, such as H1 ⊗ H2. We will often write Hs

to denote the Hilbert space
(
C2)⊗s of s qubits, where the dimension is given by function

d(Hs) = 2s. We will also often use the abbreviation [n] = {1, . . . , n}. Below, we recall some
of the important background required for this article, referring the reader to [32] for more
details.

▶ Definition 6 (Quantum states). A pure quantum states is a unit vector of the Hilbert
space |ψ⟩ ∈ H, with the normalization condition ⟨ψ|ψ⟩ = 1. We also make use of more
general states represented by density matrices ρ which are positive semi definite operators
on a Hilbert space with unit trace, Tr[ρ] = 1. Density matrices describe mixed states which,
beyond pure quantum states, can also capture classical uncertainty. In other words, they
correspond to classical mixtures of pure quantum states. The density matrix of a pure state
is ρ = |ψ⟩ ⟨ψ|. Given an ensemble of states {|ψi⟩} and corresponding probabilities {pi}, with
pi ≥ 0 and

∑
i pi = 1, it can be represented by a mixed state of the form ρ =

∑
i pi |ψi⟩ ⟨ψi|.

We will denote the set of mixed states a Hilbert space H by D(H).

▶ Definition 7 (Quantum channels). A quantum channel is a linear operator that maps
density matrices to density matrices, Φ : D(H1) → D(H2) (also known as superoperators or
CPTP maps). It is also required to have two additional properties: 1) it must be completely
positive; and 2) it must be trace preserving. We denote the set of channels from D(H) to
itself by C(D(H)).

We denote the identity channel on d qubits by Id, or just I when d is clear from context.
The Choi matrix of a channel Φ that acts on an input space H of dimension d is defined by
the action of Φ on the first register of a maximally entangled state in H ⊗ H

J(Φ) := (Φ ⊗ Id)

1
d

d∑
i,j=1

|i⟩ ⟨j| ⊗ |i⟩ ⟨j|

 = 1
d

d∑
i,j=1

Φ
(

|i⟩ ⟨j|
)

⊗ |i⟩ ⟨j| .

▶ Definition 8. The trace distance between two density matrices ρ, σ ∈ D(H) is defined by:

||ρ− σ||1 = Tr[
√

(ρ− σ)†(ρ− σ)],

where A† denotes the conjugate transpose of the matrix A† = ĀT .

It is well known that no physical process can increase the trace distance between two states:

▶ Lemma 9 (Contractivity under CPTP maps [32, Theorem 9.2]). Let Φ ∈ C(D(H)) and
ρ, σ ∈ D(H) then the trace distance between ρ and σ can not increase under application of Φ:

||Φ(ρ) − Φ(σ)||1 ≤ ||ρ− σ||1

2.1.1 Quantum Turing machines
Our fundamental computation model in quantum computing will be the quantum analogue
of Turing machines [17, 7], which we define informally below.
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▶ Definition 10 (Quantum Turing machine). A quantum Turing machine is a classical Turing
machine with an additional quantum tape and quantum register. The quantum register does
not affect the classical part of the machine in any way, except in that the qubits in the
quantum register can be measured in the computational basis. On doing so, the values read
from the measurement are copied into the classical registry, from where they can be used to
affect the operation of the machine. The quantum Turing machine can perform any gate from
its quantum gate set on its quantum registry. We assume this gate set is fixed and universal.
Finally, the tape head on the quantum tape can swap qubits between the quantum registry and
the position that the quantum tape head is located at. This applies a two-qubit SWAP gate.

We define a number of complexity classes with respect to efficient computation by quantum
Turing machines [7, 35]1.

▶ Definition 11 (BQP). BQP is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗ × {0, 1}∗
for which there exists a quantum Turing machine M using t = poly(n) time such that for
every input x ∈ L of length n = |x|,

if x ∈ Lyes then the probability that M accepts input x is ≥ c,
if x ∈ Lno then the probability that M accepts input x is ≤ s.

▶ Definition 12 (BQL). BQL is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗ × {0, 1}∗
for which there exists a quantum Turing machine M using r = O(log(n)) quantum and
classical space such that for every input x ∈ L of length n = |x|,

if x ∈ Lyes then the probability that M accepts input x is ≥ c,
if x ∈ Lno then the probability that M accepts input x is ≤ s.

The completeness and soundness parameters in both the above definitions can be chosen to
be c = 2/3 and s = 1/3 without affecting the set of languages.

▶ Definition 13 (EQP). EQP is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗ × {0, 1}∗
for which there exists a quantum Turing machine M using t = poly(n) time such that for
every input x ∈ L of length n = |x|,

if x ∈ Lyes then M outputs one with certainty on measurement,
if x ∈ Lno then M output zero with certainty on measurement.

▶ Remark 14. Note that the definition of EQP is gateset dependent; this is due to the fact
that quantum gatesets only allow universality up to approximation, which means that if a
quantum complexity class requires perfect soundness and completeness, as does EQP, it also
has to be gateset dependent.

2.1.2 Quantum circuits
We may also define quantum complexity classes using uniform quantum circuits. For this we
use similar definitions to those provided by [19], which readers may refer to for more details.

▶ Definition 15. Let s := s(n), t := t(n), k := k(n), let K be a family of machines, and let G
be a set of k-local operators. A K-uniform space-s time-t family of quantum circuits over G is
a set {Qx}x∈{0,1}n , where each Qx is a sequence of tuples ⟨i, g, j1 . . . jk⟩ ∈ [t] × G × [s]k such
that there is a deterministic TM M ∈ K which, on input x ∈ X , outputs a description of Qx.

1 We do not attempt to provide an exhaustive list of references to the vast literature on this topic, and
refer the interested reader to the Complexity Zoo for such a list.

https://complexityzoo.net/Complexity_Zoo
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The execution of Qx consists of initializing a vector |ψ⟩ to |0s⟩ within Hs and applying,
for each step i ∈ [t] in order, each gate g to qubits j1 . . . jk such that ⟨i, g, j1 . . . jk⟩ ∈ Qx. The
output of Qx is the value obtained by measuring the first qubit at the end of the computation.

If G consists of unitary operators, we call these unitary circuits and call each g a gate.
If G additionally consists of measurements together with postprocessing and feed forward by
(classical) K-machines, we call these general circuits and call each g a channel.

It is known that polynomial-time uniform general quantum circuits over n qubits with
poly(n) gates can be used to provide an alternative definition of BQP [46]. Similarly, logspace
uniform general quantum circuits of logarithmic width can be used as an alternative to define
classes such as BQL [19].

2.2 Catalytic computation
We finally recall the known classical definitions of catalytic classical computation.

▶ Definition 16 ([10]). A catalytic Turing Machine with space s := s(n) and catalytic space
c := c(n) is a Turing Machine M with a work tape of length s and a catalytic tape of length
c. We require that for any τ ∈ {0, 1}c, if we initialize the catalytic tape to τ , then on any
given input x, the execution of M on x halts with τ on the catalytic tape.

This definition gives rise to a natural complexity class CSPACE[s, c], which is a variant of
the ordinary class SPACE[s]. The most well-studied variant is catalytic logspace, where s is
logarithmic and c is polynomial.

▶ Definition 17. We define CSPACE[s, c] to be the class of all functions f for which there
exists a catalytic Turing Machine M with space s and catalytic space c such that on input x,
M(x) = f(x). We further define catalytic logspace as

CL :=
⋃
k∈N

CSPACE(k logn, nk)

3 Quantum catalytic space

The first goal of this paper is to find a proper definition of quantum catalytic space. There
are many choices that have to be made in the model, but we begin with our general definition
up front, leaving questions of machine model, uniformity, gateset, and initial catalytic tapes.
These will be discussed and clarified in the rest of this section.

▶ Definition 18 (Quantum catalytic machine). A quantum catalytic machine with work
space s := s(n), catalytic space c := c(n), uniformity K, gateset G, and catalytic set A is a
K-uniform quantum machine M with operations from G acting on two Hilbert spaces, Hs

and Hc, of dimensions 2s and 2c respectively. The latter space, called the catalytic tape, will
be initialized to some ρ ∈ A ⊆ D(Hc). We require that for any ρ ∈ A, if we initialize the
catalytic tape to state ρ, then on any given input x ∈ {0, 1}n, the execution of M(x) halts
with ρ on the catalytic tape. Furthermore, we require that the output state on the worktape is
independent of the catalytic state ρ.2 The final action of the machine can be represented by a
quantum channel Φx : |0⟩ ⟨0| ⊗ ρ 7→ ηx ⊗ ρ, for any catalytic state ρ and input x ∈ {0, 1}n,
and some output state η.

2 We justify this final requirement in Lemma 42.
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This gives rise to the following complexity classes:

▶ Definition 19 (Quantum catalytic complexity). QCSPACE[s, c] is the class of Boolean
functions which can be decided with probability 1 by a quantum catalytic machine with work
memory s and catalytic memory c.

BQCSPACE[s, c] is the class of Boolean functions which can be decided with probability
2/3 by a quantum catalytic machine with work memory s and catalytic memory c.

We further specify to the case of quantum catalytic logspace:

▶ Definition 20 (Quantum catalytic logspace).

QCL =
⋃
k∈N

QCSPACE[k logn, nk]

BQCL =
⋃
k∈N

BQCSPACE[k logn, nk]

3.1 Machine model
We begin by defining the two natural choices of base model for quantum catalytic machines,
namely Turing machines and circuits.

▶ Definition 21 (Quantum catalytic Turing machine). A quantum catalytic Turing machine
is defined as in Definition 18 with quantum Turing machines as our machine model. We
write QCSPACEM (respectively BQCSPACEM, QCLM, and BQCLM) to refer to QCSPACE
with quantum Turing machines.

▶ Definition 22 (Quantum catalytic circuits). A quantum catalytic circuit is defined as in
Definition 18 with time-2O(s) quantum circuits as our machine model. We write QCSPACEC
(respectively BQCSPACEC, QCLC, and BQCLC) to refer to QCSPACE with quantum catalytic
circuits.

Given that CL and related classes are defined in terms of (classical) Turing machines,
the option of circuits seems surprising and perhaps unnatural. For example, Definition 22
imposes a time bound as part of its definition, while for CL there is no known containment in
polynomial time. For quantum circuits and Turing machines without access to the catalytic
tape, a simple equivalence has been known for a long time [46]; however, Definition 22 only
allows for circuits of length 2O(s), while a generic transformation on s + c qubit registers
would give a circuit of length 2O(s+c), i.e. requiring an exponential overhead.

The main result of this paper is to show that these models are in fact equivalent:

▶ Theorem 23. For s = Ω(logn), c = 2O(s)

QCSPACEM[O(s), O(c)] = QCSPACEC[O(s), O(c)]

BQCSPACEM[O(s), O(c)] = BQCSPACEC[O(s), O(c)]

For the rest of this section we will deal with all auxiliary issues, namely the choice of catalytic
tapes and gateset, for quantum circuits alone; while all proofs can be made to hold for
quantum Turing machines without much issue, this is also obviated by Theorem 23, which
we will prove in Section 4.
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3.2 Catalytic tapes
We now move to discussing the choice of initial catalytic tapes A. Perhaps the most immediate
choice would be to put no restrictions on A and allow our catalytic tapes to come from the
set of all density matrices in D(Hc); this will ultimately be our definition.

▶ Definition 24. We fix the catalytic set in Definition 18 to be A = D(Hc).

While this is a natural option, encompassing every possible state on c qubits, there are
other choices one can make. We propose four natural options – density matrices and three
others – and show that all four are equivalent, thus justifying our choice.

▶ Definition 25. We define the following catalytic sets:
Density is the set of all density matrices ρ ∈ D(Hc).
Pure is the set of all pure states |ψ⟩ ∈ Hc.

PauliProd = {|PP⟩ : |PP⟩ =
c⊗

i=1
|ϕ⟩i} is the set of tensor products of eigenstates of the

single-qubit Pauli operators, where |ϕ⟩i ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |⟳⟩ , |⟲⟩} ⊂ H2.
EPR = { 1√

2c

∑2c−1
i=0 |i⟩ |i⟩} ⊂ Hc ⊗ Hc is the unique state of c EPR pairs, where the

catalytic tape will be formed of one half of each EPR pair; the other halves are retained
as a reference system which cannot be operated on by the quantum circuit. the quantum
circuit is of the form Qx = Q̃x ⊗ Ic, acting as the Identity on the second set of halves of
the EPR pairs that is inaccessible to the circuit.

▶ Remark 26. We briefly comment on the fourth set, i.e. EPR. Using classical catalytic
techniques as a subroutine has proven to be very useful, for instance in giving an algorithm
for tree evaluation in O(logn log(logn)) space [14]. One can also consider using analogous
quantum catalytic techniques as subroutines for quantum computations, albeit this does
not appear straightforward due to inherent quantum limitations. We will see that this
complication can be effectively modeled by considering the initial state of the catalytic tape
to be the halves of c EPR pairs.

We will now prove that the four classes of quantum catalytic circuits with initial catalytic
states restricted to one of the four sets D(Hc), Hc, PauliProd, and EPR respectively, are all
equivalent. For this we first require the following lemma.

▶ Lemma 27. Any 2d × 2d complex matrix can be written as a linear combination of rank-1
outer products of states from PauliProd over d qubits.

In other words, the complex span of the set of d-qubit tensor products of Pauli eigenstates
equals the set of 2d × 2d complex matrices.

Proof. Note that all four Pauli matrices can be written as a linear combination of two of
the Pauli eigenstates:

I = |0⟩ ⟨0| + |1⟩ ⟨1| , X = |+⟩ ⟨+| − |−⟩ ⟨−| ,
Z = |0⟩ ⟨0| − |1⟩ ⟨1| , Y = |⟳⟩ ⟨⟳| − |⟲⟩ ⟨⟲| .

The four Pauli matrices form a basis for 2 × 2 complex matrices. Consequently, Pauli strings
of length d – i.e., tensor products of d Pauli matrices – form a basis for 2d × 2d matrices. ◀

Now we can state the theorem:
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▶ Theorem 28. Let QCCA denote quantum catalytic circuits with initial catalytic tapes
coming from A. Then The following four classes of quantum catalytic circuits are equivalent:

QCCDensity = QCCPure = QCCPauliProd = QCCEPR

Proof. First note the obvious implications: for any quantum catalytic circuit Φ,

Φ ∈ QCCDensity =⇒ Φ ∈ QCCPure

Φ ∈ QCCPure =⇒ Φ ∈ QCCPauliProd

these follow due to the fact that PauliProd ⊂ Pure ⊂ Density. To finish the proof, we will
further show the following two implications.

(1) Φ ∈ QCCPauliProd =⇒ Φ ⊗ Ic ∈ QCCEPR

(2) Φ ⊗ Ic ∈ QCCEPR =⇒ Φ ∈ QCCDensity

We first prove implication (1). Let Φ be a circuit from QCCPauliProd and consider the action
of Φ ⊗ Ic (where the Identity operator acts on the inaccessible halves of the EPR pairs) on
the state 1

2c |0⟩ ⟨0|
∑

i,j |i⟩ ⟨j| ⊗ |i⟩ ⟨j|:

Φ ⊗ Ic

 1
2c

|0⟩ ⟨0|
∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j|

 = 1
2c

∑
i,j

Φ
(

|0⟩ ⟨0| ⊗ |i⟩ ⟨j|
)

⊗ |i⟩ ⟨j| ,

because Φ being a channel is a linear operator. By Lemma 27, |i⟩ ⟨j| can be written as
a linear combination of rank-1 projectors onto PauliProd states. Since Φ is catalytic with
respect to PauliProd, it follows that

1
2c

∑
i,j

Φ
(

|0⟩ ⟨0| ⊗ |i⟩ ⟨j|
)

⊗ |i⟩ ⟨j| = η ⊗ 1
2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| ,

for some state in η ∈ D(Hs). This shows that Φ ∈ QCCEPR.
Implication (2) requires a similar approach. Let Φ̃ ∈ QCCEPR, then we can write Φ̃ = Φ⊗Ic.

For a given input state |0⟩ ⟨0| ∈ Hs the action of Φ ⊗ Ic must satisfy

Φ

 1
2c

∑
i,j

|0⟩ ⟨0| ⊗ |i⟩ ⟨j|

 ⊗ |i⟩ ⟨j| = η ⊗ 1
2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| ,

for some state in η ∈ D(Hs). Since the catalytic state of c EPR pairs is returned perfectly
unaffected for every choice of input state, the effective channel of Φ can also be written as a
tensor product channel: Φ = Γs ⊗ Ξc

3, with the action of Ξc being

1
2c

∑
i,j

Ξc

(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| = 1

2c

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| .

3 It seems that the catalyst does not offer any improvement, because we can write Φ as a tensor product
of the action on the logspace clean qubits and the action of the catalyst, however this does not need to
hold. Only the action as a whole is writable as a tensor product, it might actually consist of intermediate
steps that are not of tensor product form, therefor Γs might only have an efficient circuit description in
the presence of a catalyst.
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Note that although the effective channel factorises into a tensor product across the work
and catalytic registers, without the catalytic tape much larger circuits may be required to
implement Γc. Moving forward, this implies that the Choi matrix of Ξc is

J(Ξc) =
∑
i,j

Ξc

(
|i⟩ ⟨j|

)
⊗ |i⟩ ⟨j| =

∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j| = J(I),

and therefore the effective channel Ξc is the identity channel. This gives that for any state
ρ ∈ Hc it must hold that on input |0⟩ ⟨0|, the channel Φ must act as follows:

Φ(|0⟩ ⟨0| ⊗ ρ) = η ⊗ ρ ◀

▶ Remark 29. In the proof that these channel definitions are equivalent we actually showed
that any channel under one definition also furnishes an instance of the other definitions.
This means that they are also operationally equivalent. These equivalence proofs therefore
have to hold for any type of machine model that has to adhere to the same restrictions of
resetting the input state in the catalytic space. In particular it also holds for quantum Turing
machines.

3.3 Gateset
When discussing quantum circuits, a fundamental issue is the underlying gate set. Unlike
the classical case, unitary operations form a continuous space, and finite-sized circuits over
finite gate sets cannot implement arbitrary unitaries. However, there do exist finite gate
sets of constant locality (that is, fan-in) which are quantum universal, in the sense that any
n-qubit unitary may be approximated to any desired precision ϵ in ℓ2-distance by a product
of l = O(poly log 1

ϵ ) gates from the universal gate set; this is the celebrated Solovay-Kitaev
theorem [27, 16, 32]. From the standpoint of complexity classes, Nishimura and Ozawa [34]
also showed that polynomial-time quantum Turing machines are exactly equivalent to finitely
generated uniform quantum circuits.

We note that Definitions 15 and 22 do not make reference any fixed universal gate set. A
potential issue that arises in this regard is that the complexity class being defined may depend
in an intricate way on the chosen universal gate set, since it may not be possible to perfectly
reset every initial catalytic state under our uniformity and resource constraints. If we relax
the notion of catalyticity to mean that the initial catalytic state only has to be reset to within
ϵ trace distance at the end of the computation, one can use the Solovay-Kitaev theorem to
see that every choice of gate set leads to the same complexity class in Definition 22. This
interesting model resembles classical catalytic space classes with small errors in resetting,
and we leave it as an open question to determine how it relates to the exact resetting model.

Returning to our setting that requires the quantum catalytic machine to perfectly reset
the catalytic space to its initial state at the end of the computation, we will restrict out
attention to the case of universal quantum gate sets that are infinite (for the complexity
theoretic properties of circuit families over such gate sets, see e.g. [33]). In this case, our
definition is robust to the choice of gate set since any unitary may be implemented exactly
by finite-sized circuits over such gate sets. Consequently changing the gate set does not
change the set of catalytic states that can be reset exactly by the machine. This results in
well-defined catalytic complexity classes independent of the specific choice of gate set.

3.4 Uniformity
Similar to gatesets, the question of uniformity is quite subjective, as different uniformity
conditions will lead to different levels of expressiveness for our machines.
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▶ Definition 30. We fix the uniformity in Definition 18 to be K = SPACE[O(s)].

We choose SPACE[O(s)] as it is the largest class of classical machines a QCSPACE[s, c]
machine should seemingly contain by default. Thus we believe the choice of SPACE[O(s)]-
uniformity is best suited to removing classical uniformity considerations from taking the
forefront of the discussion regarding quantum catalytic space.

The question of how uniformity affects the power of QCSPACE is left to future work;
we only comment briefly here on natural alternative choices. Perhaps the most immediate
would be to consider CSPACE[s, c] uniformity, as it mirrors our quantum machine. As we
will see later, it is not clear how to prove QCSPACE[s, c] contains CSPACE[s, c] directly, an
interesting technical challenge that would be rendered moot by building it into the uniformity.
Similarly we avoid P-uniformity because it is not known, and even strongly disbelieved, that
CL contains P.

4 QCL upper bounds

In this section we will finally return to the question of our quantum machine model, showing
that Turing machines and circuits are equivalent. One major stepping stone is to show that
quantum catalytic Turing machines adhere to a polynomial runtime bound for all possible
initializations of the catalytic tape.

Before all else, a remark is in order as to why such a restriction should hold for a seemingly
stronger model, i.e. QCLM, when it is not in fact known for CL. While quantum catalytic
space has access to more powerful computations, i.e. quantum operations, it also has the
much stronger restriction of resetting arbitrary density matrices rather than arbitrary bit
strings. This restriction gives rise to a much stronger upper bound argument, and in fact rules
out one of the main techniques available to classical Turing machines, namely compression
arguments (see c.f. [18, 12]).

4.1 Polynomial average runtime bound
We begin by showing an analogue of the classical result of [10], i.e. the average runtime
of a quantum catalytic machine for a random initial catalytic state ρ is polynomial in the
number of work qubits. We note that the runtime of a quantum Turing machine need not
be a deterministic function of the input; M has access to quantum states and intermediate
measurements, from which it is possible to generate randomness which might influence the
time that machine takes to halt.

▶ Definition 31. Given a quantum catalytic Turing machine M , a fixed input x ∈ {0, 1}n,
and an initial catalytic tape ρ, we denote by T (M,x, ρ) the distribution of runtimes of M on
input x and initial catalytic tape ρ.

For an averaging argument to hold, we need to have a quantum notion of non-overlapping
configuration graphs.

▶ Lemma 32. Let M be a quantum catalytic Turing machine, and let {τi}i form an or-
thonormal basis for D(Hc). For all i and t, let ρi,t be the density matrix describing the state
of the classical tape, quantum tape, and internal state of M at time step t on initial catalytic
tape τi. Then if M is absolutely halting, all elements of the set {ρi,t}i,t are orthogonal.

Proof. We first consider the states ρi,t for a fixed i. Assume instead that there exists some
times t and t′ where the states are not orthogonal. This means that the state at time
step t can be written as a superposition between the state in time step t′ and the state
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ρi,t = pρi,t′ + (1 − p)η for some p > 0. This forms a loop in the configuration graph where
part of the state is back at time step t′. The amplitude of the part of the state in this loop
will shrink over time, but never go to zero. The part of the state that is stuck in the loop
will never reach the halting state, therefore this is in contradiction with the assumption that
the quantum Turing machine is absolutely halting.

Next we consider the states ρi,t for different i. By definition of a quantum Turing machine,
the transformations M can apply to the entire state of the machine is given by some quantum
channel. By Lemma 9 we know that the trace distance between the entire state of the
machine for separate instances of the catalytic tape can only decrease by this quantum
channel. Therefore we know that if two instances start out to be orthogonal and end to be
orthogonal, they have to remain orthogonal through the entire calculation. ◀

▶ Lemma 33. Let M be a quantum catalytic Turing machine with work space s and catalytic
space c, let {ρi}i form an orthonormal basis for D(Hc), and define Tmax(M,x, ρ) to be the
maximum runtime of machine M on input x on starting catalytic tape ρ. Then

Ei[Tmax(M,x, ρi)] ≤ 2O(s)

Proof. Our catalytic machine is defined by a SPACE[O(s)] machine, defined by a tape of
length O(s) and an internal machine of size O(1), which acts on Hs and Hc, which can be
addressed into using log s and log c bits respectively. Since these quantities plus the Hilbert
spaces Hs and Hc define the dimensionality of our machine, by Lemma 32 we have that∑

ρ∈{ρi}

Tmax(M,x, ρ) ≤ O(22(s+c+O(s)+O(1)+log s+log c))

and therefore the lemma follows because |{ρi}| ≤ 22c and 2(s+O(s) +O(1) + log s+ log c) =
O(s). ◀

This already gives us a nice containment for our QCSPACE[s, c] classes.

▶ Corollary 34. QCLM ⊆ ZQP

▶ Corollary 35. BQCLM ⊆ BQP

4.2 Equal running times
We now take a further leap, showing that the initial catalytic tape does not affect the
(distribution of the) runtime of our machine M for a fixed input x.

We can first show that given M and only one single copy of a state η ∈ Hc, this probability
distribution can be approximated up to arbitrary precision for any x.

▶ Lemma 36. Given catalytic Turing machine M and a single copy of a quantum state
η ∈ Hc, T (M,x, η) can be approximated up to arbitrary precision for any x.

Proof. Because M is a quantum catalytic Turing machine it has to reset the quantum state
initialized in its catalytic tape perfectly. Therefore we can use the following approach: first
fix some input x, then run the catalytic machine given x as input and η on its catalytic tape
and record the running time. When the machine halts, η should be returned in the catalytic
tape. This means the test can be performed again given the same inputs. This test can be
run arbitrarily often giving an arbitrary approximation to T (M,x, η). ◀

This gives us the following observation about states with different halting times:
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▶ Lemma 37. Let M be a quantum catalytic Turing machine, and let ρ1, ρ2 ∈ D(Hc).
Assume there exists x ∈ {0, 1}n such that T (M,x, ρ1) ̸= T (M,x, ρ2). Then ||ρ1 − ρ2||1 = 1,
where || · ||1 is the trace distance.

Proof. The Helstrom bound states that the optimal success probability of any state discrim-
ination protocol given one copy of an unnown state is:

Psuccess = 1
2 + 1

2 · ||ρ1 − ρ2||1

By Lemma 36, we know that T (M,x, ρ) can be approximated to any precision with only
one copy of ρ. Given a copy of either ρ1 or ρ2 at random, one can estimate T (M,x, ρ)
and perfectly discriminate between the cases ρ = ρ1 and ρ = ρ2 giving a protocol with
Psuccess = 1. Therefore it follows that

1
2 + 1

2 ||ρ1 − ρ2||1 = 1

and hence ||ρ1 − ρ2||1 = 1. ◀

Lemma 37 is sufficient to show that the halting time of a quantum catalytic Turing machine
is independent of the initial state in the catalytic tape:

▶ Theorem 38. Let M be a quantum catalytic Turing machine with s-qubit work space and
c-qubit catalytic space, and let x ∈ {0, 1}n. Then there exists some value t := t(n) such that
T (M,x, ρ) = t for all ρ ∈ D(Hc).

Proof. Assume for contradiction that there exist ρ1, ρ2 such that T (M,x, ρ1) ̸= T (M,x, ρ2).
By Lemma 37 it holds that ||ρ1 − ρ2||1 = 1. Consider the state ρ′ = 1

2ρ1 + 1
2ρ2, and

note that only one of T (M,x, ρ′) = T (M,x, ρ1) or T (M,x, ρ′) = T (M,x, ρ2) can hold, by
transitivity. Without loss of generality, let us assume T (M,x, ρ′) = T (M,x, ρ2), thereby
T (M,x, ρ′) ̸= T (M,x, ρ1) and so ||ρ′ − ρ1||1 = 1 by Lemma 37. However, by definition we
have that

||ρ′ − ρ1||1 = ||(1
2ρ1 + 1

2ρ2) − ρ1||1 = 1
2

which is a contradiction. ◀

Putting Lemma 33 and Theorem 38 together immediately shows that the runtime of M
is bounded by a polynomial in n for every input x and initial catalytic state ρ:

▶ Theorem 39. Let M be a quantum catalytic Turing machine with work space s and
catalytic space c. Then the maximum halting time is bounded by 2O(s).

This strengthens Corollary 34 to remove the randomness in the output probability; this
is the quantum equivalent of showing CL ∈ P, considered the holy grail of open problems in
classical catalytic computing:

▶ Corollary 40. QCLM ⊆ EQP

4.3 Turing machines and circuits
We finally prove Theorem 23 and show the equivalence of our two definitions of quantum
catalytic machines. To do this, we observe, without proof, that Theorem 38 extends to any
classical observable feature of the initial catalytic state by the same proof. We will apply this
to one other aspect, namely the transition applied at a given timestep t:
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▶ Lemma 41. Let M be a quantum catalytic Turing machine, and let x ∈ {0, 1}n. Then for
every time t, there exists a fixed operation g applied by M at time t for every ρ ∈ Hc.

This is sufficient to prove Theorem 23:

Proof of Theorem 23. We only prove the equivalence between QCSPACEC and QCSPACEM;
the same proof applies to BQCSPACEC and BQCSPACEM. Certainly QCSPACEC[s, c] is
contained in QCSPACEM[O(s), O(c)], since QCSPACEC circuits are SPACE[O(s)] uniform
and can be directly simulated by a QCSPACEM machine.

Conversely, given a QCSPACEM[s, c] machine M , we wish to find an equivalent quantum
catalytic circuit in QCSPACEC[O(s), O(c)]. For this, we transform the transition function
of the quantum Turing machine into a quantum channel; since the transition only takes a
finite number of (qu)bits as input, this can be always be done, and we have our transitions
act on the same space Hs ⊗ Hc as M . Then, by using a method similar to that from the
proof of Lemma 56, to make the machine oblivious, the tape head movement of the quantum
Turing machine will be fixed. If our circuit is the transition function channel copied to all
locations where the tape heads end up, we completely simulate the quantum Turing machine.
We know that Tmax(M,x, ρ) is always at most 2O(s) for a machine M by Theorem 39, and
so the number of such transition function channels is also at most 2O(s). Therefore, we can
simulate M using a quantum circuit of length 2O(s) as claimed. ◀

As an afterword, we also resolve one other aspect of our initial definition of quantum
catalytic space, namely the requirement that the output state be the same for every ini-
tial catalytic state. As mentioned above, Lemma 36 extends to all classically observable
characteristics, but a similar argument clearly holds for approximating the output state
as well:

▶ Lemma 42. Given catalytic Turing machine M and a single copy of a quantum state
η ∈ Hc, the output qubit |ϕout⟩ can be approximated up to arbitrary precision for any x.

Thus again we can appeal to the instistinguishability of nearby catalytic states to claim
that |ϕout⟩ must be equal for all inital |τ⟩.
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A Simulation of TC1

In this section we show that QCL can simulate Boolean threshold circuits. As in the classical
world, the ability to simulate TC1 is also a reason to believe that catalytic logspace is strictly
more powerful than logspace. This follows from the fact that QL = PL [44], which is itself
contained in TC1:

▶ Lemma 43. QL ⊆ TC1

Since TC1 can compute powerful functions such as determinant, this containment is
largely believed to be strict. Thus Theorem 3 gives us a candidate class of problems for
separating QL from QCL.

A.1 Reversibility and obliviousness
In [10] the authors showed that TC1 can be simulated by transparent register programs, which
themselves are computable in CL; thus our goal is to extend the CL simulation of transparent
programs to QCL. More broadly, we show that reversible, oblivious, time-bounded CL is
enough to simulate transparent programs, and such a model is structured enough that, while
we cannot show that all of CL is in QCL, we can at least prove the containment for this small
fragment.

We first make the following definitions which we use for our simulations. We begin by
recalling a result of Dulek [18] which shows that catalytic Turing machines can be made
reversible (see c.f. [12] for a proof)

▶ Theorem 44. For every catalytic machine M with space s and catalytic space c, there
exist catalytic machines M→, M← with space s+ 1 and catalytic space c such that for any
pair of configurations (τ1, v1), (τ2, v2) of M→ and M←, if M→ transitions from (τ1, v1) to
(τ2, v2) on input x, then M← transitions from (τ2, v2) to (τ1, v1) on input x.

We will also need to consider oblivious machines, i.e. ones where the tape head movement
is solely a function of the input length |x| and does not depend at all on the content of the
catalytic tape c. While any Turing machine can be made oblivious, it requires relaxing the
definition of obliviousness to not forcing the machine to halt at the same time on every input;
we simply require that every machine that continues to run carries out its execution in an
oblivious manner. We will bar this restriction in this section.

▶ Definition 45. We say that a CL machine is totally oblivious if the following holds. Let
t, q, h be special registers on the free work tape, all initialized to 0, representing the time, state,
and tape heads of the machine. At each point in time our machine consist of one mega-step:
for every setting of t, q, h there is a fixed transformation, computable in logspace, which the
machine applies to the catalytic tape and to q, h, and a mega-step consists of applying each
of these operations, conditioned on the values of t, q, h on the free work tape, in order. At the
end of every mega-step we increment t, and our machine halts iff t reaches a predetermined
step T .

Totally oblivious machines are ones that in essence apply the same bundle of transforma-
tions at every time step, with the information about which one to to actually apply being
written on the free work tape, and the halting behavior being determined only by the clock.

https://doi.org/10.1109/SFCS.1993.366852
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Such machines are clearly in poly-time bounded CL (see c.f. [12] for a discussion of this
class), since the clock must fit on the free work tape. This causes issues when we seek total
obliviousness in tandem with reversibility; in general it is not known, and is highly unlikely,
that a polynomially time-bounded Turing machine can be made reversible while remaining
polynomially time-bounded.

However, there is an important class of algorithms which is both reversible and totally
oblivious: clean register programs. For our purposes we will use a very restricted version of
clean register programs (see c.f. [31] for a discussion).

▶ Definition 46. A register program P is a list of instructions P1 . . . Pt where each Pi either
has the form Rj += xk for some input variable xk or has the form Rj += qi(R1 . . . Rm) for
some polynomial qi. A register program cleanly computes a value v if for any initial values
τ1 . . . τm, the net result of running P on the registers R1 . . . Rm, where each Rj is initialized
to the value τj, is that R1 = τ1 + v and Rj = τj for all j ̸= 1.

If we think of these registers as being written on the catalytic tape, it is clear that clean
register programs are totally oblivious, as the instruction at every moment in time is based
only on the timestep. This is nearly immediate, although we note a few minor complications
here. We need to preprocess the catalytic tape to ensure our registers have values over the
same ring as our register program; for example, if we represent numbers mod p using ⌈log p⌉
bits, some initial values will exceed p. This can be handled obliviously by observing that for
either τ or τ , half the registers are already correct, and so we take one full pass over τ to
keep a count of which case we are in, store this as a bit b (1 iff we need to flip τ), and XOR
τ with b at the beginning and end of the computation. We subsequently ignore all blocks
which are initialized to improper values; when we go to operate on register Rj , say, as we
obliviously pass over the whole catalytic tape we will count how many valid registers we
have seen, and act only when we see the counter reach j.

Besides being totally oblivious, however, such programs are also reversible, as every step
of the form Rj += c can be inverted by a step of the form Rj− = c. Thus such programs
appear highly constrained in terms of what they can and cannot achieve. Nevertheless, such
programs are sufficient to compute TC1.

▶ Lemma 47 ([10]). Let L be a language in TC1. Then L can be decided by a clean register
program, and, hence, by a totally oblivious reversible CL machine.

A.2 Simulation by QCL machines
We now show that reversibility plus total obliviousness is sufficient for simulation by QCL.

▶ Lemma 48. Let L be a language which can be computed be a totally oblivious reversible
CL machine. Then L ⊆ QCL.

Proof. Let M be a totally oblivious reversible CL machine. We will treat our quantum
catalytic tape as a superposition over classical catalytic tapes, i.e. a superposition over
computational basis states. It is thus sufficient to show that the operation of machine M
can be simulated by a fixed quantum circuit containing Toffoli gates, as such a circuit will
correctly operate on each of our catalytic basis states in each branch of the superposition.

By total obliviousness, every step that M takes is a fixed transformation conditioned on
the value of t, q, and h; since we additionally know that such a step is reversible, it must
be isomorphic to a Toffoli gate applied to a fixed position of the catalytic tape conditioned
on some fixed mask applied to t, q, and h, and furthermore each transformation can be
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computed by our logspace controlling machine. Since these operations are fixed for each
timestep, we can move t to our space controlling machine and have it construct a circuit,
comprised of Toffoli gates on q, h, and the catalytic tape, of polynomial length. ◀

This is sufficient to prove our main result for this section:

Proof of Theorem 3. Combine Lemma 47 with Lemma 48. ◀

B Simulating catalytic space in DQC1

Lastly we will discuss the relationship between catalytic computing and a pre-existing yet
closely related quantum model, namely the one clean qubit setting. We will introduce the
model and then prove that it can simulate unitary QCL. In the full version of the paper, we
further show that classical CL is also contained in the one clean qubit model.

B.1 One clean qubit model
In the one-clean qubit model, first introduced by Knill and Laflamme [28], a quantum
machine is given a single input qubit initialized in the zero state and n qubits initialized in
the maximally mixed state. We will formalize the definition of this computational model:

▶ Definition 49 (One clean qubit). Let {Qx}x be a log-space uniform family of unitary
quantum circuits. The one clean qubit model is a model of computation in which Qx is
applied to the n+ 1-qubit input state

ρ = |0⟩⟨0| ⊗ In

2n
,

where n = |x| and In operator is the identity on n qubits. After execution of Qx the first
qubit is measured, giving output probabilities:

p0 = 2−n Tr
[
(|0⟩⟨0| ⊗ I)Qx(|0⟩⟨0| ⊗ I)Q†x

]
,

p1 = 1 − p0

▶ Remark 50. Two points stand out in this definition. First, note that Qx are unitary circuits,
and hence do not allow intermediate measurements; such measurements would allow for
resetting the qubits initialized in the maximally mixed state, making the model significantly
stronger. Second, in this paper we consider log-space uniform families of unitary circuits,
rather than the more common deterministic polynomial-time uniform families, in order to
align more closely with the QCL model that we study.

The one-clean qubit model is a probabilistic model of computation, and hence we typically
talk about computing a function f(x) in terms of success probability for computing f(x)
being bounded away from 1/2. The exact bound on the error probability does not matter;
while we often use 2/3 in defining e.g. BQP, even a 1/poly(n) gap is sufficient as there we
can employ standard error-correction to boost our success, namely by running the algorithm
multiple times. However, this is not known to be possible in the one-clean qubit model, as
such a machine can only reliably run once.

▶ Definition 51 ([28, 39]). DQC1 is the set of all languages L = (Lyes, Lno) ⊂ {0, 1}∗×{0, 1}∗
for which there exists a one-clean qubit machine M and a polynomial q(n) that on input
x ∈ L of length n = |x|,

if x ∈ Lyes then the output probability p1 ≥ 1
2 + 1

q(n)
if x ∈ Lno then the output probability p0 ≥ 1

2 + 1
q(n)
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On the other hand, somewhat surprisingly the one-clean qubit model is robust to the
number of clean qubits allowed, up to a logarithmic number:

▶ Lemma 52 ([40]). DQCk = DQC1 for k = O(log(n)), where DQCk means having access
to k clean qubits instead of one.

B.2 Containment of unitary QCL in DQC1

We now move on to establishing a formal connection between QCL and DQC1. A QCL
machine is allowed to apply intermediate measurements to its quantum tape as well as its
catalytic tape, which is not possible in DQC1; however, if we restrict the QCL machine to
not make any intermediate measurements we can show that such a machine can in fact be
simulated by the one-clean qubit model.

▶ Definition 53 (QUCL). A QUCL machine is a QCL machine in which the quantum circuit
is unitary. In the final step of the unitary the QUCL machine measures the first qubit, which
then gives the outcome of the calculation. Similarly we define BQUCL to be BQCL with the
unitary restriction.

Using this definition we can give the following proof of containment:

Proof of Theorem 4. Let C be a log-space uniform BQUCL quantum channel. Since C is
unitary up until the last measurement step, it preserves all possible density matrices from
the catalytic tape, and in particular it preserves the maximally mixed state In. Let U be
the unitary part of C. The action of U on the work-tape and the catalytic tape, with the
catalytic tape initialized in In, is:

U |0⟩ ⟨0|w ⊗ In

2n
U† = (√p0 |0⟩ ⟨0|w0

|ψ0⟩ ⟨ψ0|w + √
p1 |1⟩ ⟨1|w0

|ψ1⟩ ⟨ψ1|w) ⊗ In

2n

with |p1| ≥ 2/3 in a “yes” instance and |p0| ≥ 2/3 in a “no” instance. Note that this calculation
is of the exact form of a log(n)-clean qubit machine and that the output probabilities are
a constant bounded away from 1/2; hence this problem is in DQCk, and by Lemma 52 is
therefore in DQC1 ◀

B.3 Containment of CL in DQC1

We aim to show that CL ⊆ DQC1. The idea is that CL, as per Theorem 44, can always
be made reversible. While as discussed before we cannot maintain reversibility and total
obliviousness, a CL machine can also always be made “almost oblivious” while maintaining
reversibility; the tape head movements are independent of the input, but the machine does
not know when to halt. Instead, after any given amount of time, we know that the machine
has halted on a fraction 1/poly(n) of possible initial catalytic states. Since the DQC1 model
can be interpreted as sampling from a uniform distribution of computational basis states,
this shows the probability of finding the correct output is 1/2 + 1/poly(n), which is sufficient
for the proof.

▶ Definition 54. A non-halting reversible oblivious catalytic Turing machine is a reversible
oblivious catalytic Turing machine that need not halt absolutely. In particular, for every input
x and initial catalytic state c there exists a time t(x, c) where the correct output has been
written to the output tape and the catalytic tape has been reset to its initial state. In addition,
the output state has an additional binary cell that indicates whether or not the output has
been determined yet, or is still “unknown” by the machine.
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▶ Definition 55. We say a reversible oblivious catalytic Turing machine halts with polynomial
success probability if there exists polynomials p, q such that for any valid input x to a promise
problem, after time p(|x|) the output tape of the catalytic Turing machine contains the correct
output to the problem on a fraction of at least 1/q(|x|) when the initial catalytic tapes are
taken uniformily at random. After time p(|x|), the output tape of the catalytic Turing machine
never contains the wrong answer, but it may leave the output undetermined.

We show that any CL machine can be transformed into a reversible oblivious catalytic
Turing machine that halts with polynomial success probability. We defer the proof of this
fact to the full version of the paper.

▶ Lemma 56. Any catalytic Turing machine M that has a logarithmic clean space and
polynomial size catalytic tape can be turned into a non-halting oblivious reversible catalytic
Turing machine Mo with a logarithmic clean tape and polynomial catalytic tape.

We call the machine formed this way Mo for oblivious M . Since the catalytic and clean
tape are no more than polynomial length, this procedure adds at most a polynomial factor
to the runtime. However, since the runtime of M may be super-polynomial and an oblivious
machine has the same runtime for all inputs x of the same length and catalytic tapes c, the
machine does not have enough clean space to keep a clock to know whether or not it has
terminated. This means we cannot assume it to be halting. However, we can show that it is
halting with sufficient probability (we again defer this proof to the full version of the paper):

▶ Lemma 57. For any language L in CL that is recognized by a catalytic Turing machine
M , there exists a reversible oblivious catalytic Turing machine N that halts with polynomial
probability that also recognizes L. Furthermore, N also uses O(log |x|) clean space and
polynomial catalytic space.

This completes all technical components necessary to show that CL ⊆ DQC1.

Proof of Theorem 5. The maximally mixed state of DQC1 can be interpreted as uniformly
randomly sampling computational basis states. If we take these basis states to be the catalytic
tape and use the fact that DQC1 is unchanged if we allow a logarithmic number of clean
qubits, then we can run the machine N from Lemma 57 by using unitary gates instead of
reversible, oblivious operations. When we measure the output bit at the end, we get either
an indeterminate state or the correct output with certainty. If we get an indeterminate state,
we output a random bit and thus output the correct answer with probability 1/2. If not,
then we output the correct answer, which occurs with probability at least 1/poly(n). ◀
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In this work we study a variant of the local Hamiltonian problem where we restrict to Hamiltonians
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1 Introduction

In order to understand the behavior of a quantum many-body system, it is crucial to study
its Hamiltonian. The Hamiltonian operator not only governs the system’s dynamics through
the Schrödinger equation but also encodes its low-energy states and energy spectrum. It is
thus important to understand which Hamiltonians are tractable to analyze. In this work, we
study the computational complexity of estimating the ground-state energy of a Hamiltonian
with only short-range interactions, which is known as the local Hamiltonian problem.

Often the goal is to show that a specific variant of this problem is QMA-complete, which
implies that for certain Hamiltonians not even a quantum computer can be expected to
find its ground state energy. On the one hand, this is a negative result for being able to
calculate ground state energies. On the other hand, these results lead to constructions of
highly complex quantum systems that are interesting objects of study in their own right.

Kitaev initiated the study of local Hamiltonian problems in his landmark result proving
that this problem in its most general form is QMA-complete [7]. However, Kitaev’s result
only applies for a worst-case family of Hamiltonians, which are not physically natural.
In order to study the complexity of more physically relevant cases, subsequent work has
extended Kitaev’s result to apply under additional constraints that capture what it means
to be “natural”. This has included restricting the local dimension of each particle as well as
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constraining the geometry of the interactions. For example, [10] extends Kitaev’s result to
qubits on a 2D lattice while [2] further restricts to particles on a line with constant local
dimension.

Additional follow-up work has also emphasized symmetry constraints. This is motivated
by the observation that many systems in nature are highly symmetric. For instance, the
laws of gravity, electromagnetism, etc., do not change depending on where you are or how
you are oriented; thus, these laws are translation and rotation-invariant. For translation-
invariant one-dimensional spin chains, [6] showed that this local Hamiltonian problem is
QMAEXP-complete.

Although much work is now known about the complexity of translation-invariant systems
[6, 4, 3, 8, 11], there have been very few results for the rotation-invariant case. In fact, it was
posed as an open question of [6] whether their results can be extended to rotation-invariant
Hamiltonians in higher dimensions. In this work, we solve this question and hope similar
techniques can be used to lift other translation-invariant results to the rotation-invariant
case.

Translation invariance with reflection symmetry and rotation invariance coincide in 1D
and so the main challenge is to extend [6] to Hamiltonians on higher dimensional lattices. It
is trivial to extend their result to higher dimensional translation-invariant lattices simply by
ignoring all but one dimension. However, this breaks the rotation symmetry, which requires
that the Hamiltonian terms act identically in all directions. In this case, the key challenge
is to handle the increasingly high degree of interaction without increasing the number of
parameters in the Hamiltonian. This presents issues, for example, when attempting to encode
computation into the Hamiltonian’s ground state, which is an essential step for proving
hardness. Controlling this computation requires the ability to track time, which can be
accomplished in the 1D setting by moving a clock pointer along the spin chain [6]. However,
this same idea cannot be used in higher dimensions since the paths can branch in many
directions throughout the lattice. In order to pick out a specific time direction, we must
engineer a family of Hamiltonians that spontaneously breaks the rotation symmetry.

Technical difficulties aside, it may seem intuitive that increasing the lattice dimension
only makes the local Hamiltonian problem more difficult, and so one might assume that the
complexity for higher dimensional cases follows from the one-dimensional case. However, due
to the rotation symmetry, the increase in lattice dimension does not correspond to more
Hamiltonian parameters, and so it is unclear how the complexity actually compares. In
fact, standard condensed matter arguments imply that increasing the dimension can instead
make the problem easier. This follows from the observation that for higher-dimensional
lattices, mean-field theory (which uses a product-state ansatz to approximate the ground
state) becomes more and more accurate [12]. In the quantum setting, this can be explained
by an effect called monogamy of entanglement [14], which states that a particle cannot be
highly entangled with many other particles. Thus, for high lattice dimension, each particle
has many neighbors and so on average they must be nearly unentangled. Due to this effect,
the product state becomes a good approximation of the ground state, suggesting that this
problem could now be more tractable than the lower dimensional cases.

This has been formalized in [5] which shows that for lattice dimension r there is a product
state that approximates the ground-state energy by an average error of O(r−1/3) per term of
the Hamiltonian. Furthermore, [9] rigorously show that in the limit as r → ∞ the ground
state is exactly a product state when the Hamiltonian is translation and rotation invariant.
These results suggest that if the lattice dimension is high enough, the problem loses its
quantum hardness since the low-energy states become unentangled. Another result that
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captures this phenomenon is [1], who show that a commuting version of the local Hamiltonian
problem becomes easier as the interaction graphs become more expanding, which intuitively
corresponds to more interaction.

In this work, we consider a lattice dimension that is in an intermediate regime between
one-dimensional spin chains, which are hard and spin chains with r → ∞, which are easy.
In particular, we consider an arbitrary but fixed lattice dimension and show that this
rotation-invariant Hamiltonian problem is quantumly hard as you scale the lattice length.

1.1 Results

We informally describe the rotation-invariant Hamiltonian problem as follows.

▶ Definition 1 (Rotation-invariant Hamiltonian problem (Informal)). Consider the Hamiltonian
where a single two-body term is applied to each neighboring pair of qudits on an r-dimensional
lattice of side length n. Is the ground-state energy below a or greater than b?

Our main result is that the rotation-invariant Hamiltonian problem is QMAEXP-complete,
where QMAEXP is the same as QMA except the witness and verification circuit are allowed
to be exponentially large in the input size. The reason we consider QMAEXP rather than
QMA is that the input size to our problem is actually very small in comparison to the size
of the Hamiltonian. To see this, notice that our Hamiltonian can be completely described
by 1) the two-body term, 2) the dimension r, and 3) the lattice length n. The first two of
these only require a constant number of bits to specify, while n requires logn bits to specify.
Therefore, the Hamiltonian description length is exponentially smaller than the total number
of qudits. However, we still would like to allow an “efficient” algorithm to run in polynomial
time with respect to the number of qudits, which in turn is exponential in the input size. To
accommodate this technicality, we must prove quantum hardness even when the quantum
computer is allowed an exponential amount of computation time.

To prove QMAEXP-completeness, we use the standard method of reducing an instance x
of an arbitrary QMAEXP problem to an instance R(x) of the rotation-invariant Hamiltonian
problem. It turns out that in this reduction only n depends on the original problem instance
x, so we take everything else (such as the two-body term and the lattice dimension) to
be parameters rather than inputs to the problem. This is described in the more technical
definition of the problem in Section 2. This differs from the standard QMA-completeness
result, where the Hamiltonian terms themselves are given as input. We argue that this is a
more natural setting since often one is studying a particular Hamiltonian, and so it is more
suitable to consider the hardness of a given Hamiltonian for increasingly large system sizes.
A desirable feature of our reduction is that the Hamiltonian we construct has no dependence
on the system size or lattice dimension.

The QMAEXP-completeness of this problem has a number of interesting implications.
First, it suggests that not even a quantum computer can find the ground-state energy of
certain rotation-invariant Hamiltonians. Since nature can be viewed as a quantum computer
this means that the system itself cannot find its own ground state either, suggesting the
emergence of spin glass behavior at low temperatures. Next, our result implies (assuming
QCMAEXP ̸= QMAEXP) that the ground state of these Hamiltonians cannot have an efficient
classical description and thus cannot be well approximated by a product state. In fact, our
result directly implies a lower bound of Ω(n−rr−1) for how close the average ground-state
energy per term can be approximated by a product state. This complements the result in [5]
by providing a corresponding lower bound for the product-state approximation error.
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1.2 Techniques

Our main approach is to carve out one-dimensional chains within our higher dimensional
lattice so that we can apply [6]’s 1D construction to these chains. To do this, we take
inspiration from the closely related classical problem of tiling. In this problem, imagine
fitting together square tiles to cover an entire floor, where we are given a penalty for placing
certain color tiles next to each other. The task is now to design a set of tiling rules where
the least penalized configuration is a pattern of stripes. If such a set of tiling rules exists, we
can use a portion of each qudit’s Hilbert space to represent a tile and encode the tiling rules
in our two-body Hamiltonian term. This enforces that the tiling of the ground state will
have this striped pattern. Our construction then proceeds by applying the 1D construction
onto neighboring qudits with same-colored tiles, which are now effectively spin chains.

Unfortunately, such a set of tiling rules does not actually exist, and so we will have
to modify this classical technique to incorporate some quantum phenomena. To see this,
consider the 3D case with periodic boundary conditions. No matter what set of rules are
given, the optimal tiling will always take the following form. Start by tiling the first column
of the first 2D slice with the optimal 1D configuration. Then, for each subsequent column in
this slice, tile it by offsetting this sequence by exactly one. Finally for each subsequent 2D
slice, tile by shifting the entire previous 2D configuration by one. With some thought, one
can convince themselves that this is the correct tiling. The issue is that this configuration
cuts the 3D lattice into diagonal planes which is not the desired 1D structure. Additionally,
this argument also shows that these rotation-invariant tiling problems are in P whereas
their translation-invariant (but not rotation-invariant) counterparts are NEXP-complete for
dimension 2 and higher [6]. This further shows how the additional symmetry constraints can
potentially simplify the complexity.

It is possible to still achieve our tiling goal by combining it with some purely quantum
effects. In particular, we introduce a new technique that uses the monogamy of entanglement
to enforce an effective 1D geometry. This is performed by first appending two qubits to the
Hilbert space of each particle. The key idea is to enforce that same-colored neighbors share
an EPR pair among their qubits. Since each site only has two qubits, it can only share an
EPR pair with two neighbors by the monogamy of entanglement. Thus, it can only have
two same-colored neighbors. This is already close to our goal, since now our lattice must be
colored by disjoint same-colored loops. It remains to make sure that these loops do not have
any turns but instead cut straight across the lattice. This can be handled by imposing some
further classical tiling constraints, which we discuss in more detail in Section 3. We hope
that this EPR pair technique can also find use in other Hamiltonian complexity problems
that benefit from embedding lower dimensional geometries into higher ones.

One last technicality to resolve is that [6]’s 1D Hamiltonian is frustrated and has an
energy of at least 1/2. This results in an overall energy of nr−1/2 when this Hamiltonian is
embedded into nr−1 1D lines in the lattice. In order to balance this energy penalty with the
rest of the Hamiltonian terms, it is necessary to normalize this contribution with a coefficient
that depends on n. However, such a system size dependence is unnatural and is preferably
avoided. To fix this, we first embed a 2D translation-invariant Hamiltonian into the lattice
by encoding stripes in two different directions as opposed to just one. In this case, the same
result can be achieved as in the 1D case except the construction can now be made to be
nearly frustration-free, removing the need for a system-size dependent normalization term.
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1.3 Outline
We begin by describing our notation and briefly state the technical version of our result in
Section 2. Next, we define the Hamiltonian construction in Section 3. Finally, the proof of
our main theorem is presented in Section 4 where it is shown that our construction satisfies
both completeness and soundness.

2 Notation and technical result

Define Λr(n) := Zr/nZr to be a periodic lattice. In other words, the lattice is r-dimensional,
where each dimension has length n and each site is denoted by integer coordinates. For a
lattice point u ∈ Λr(n) we denote the ith coordinate as ui. To define distance between points
in the lattice while respecting the periodic boundary conditions, we use the Lee metric, which
is defined as follows:

▶ Definition 2 (Lee metric). Let x, y ∈ Λr(n).

d(x, y) =
r∑

i=1
min(|xi − yi|, n− |xi − yi|)

The set of nearest-neighbor pairs is defined as EΛr(n) = {{x, y} : x, y ∈ Λr(n), d(x, y) = 1}.
If h is a 2-local Hamiltonian term and u, v ∈ Λr(n) then hu,v denotes the Hamiltonian term
h applied to sites u and v. For an operator H, we denote the lowest eigenvalue of H by
E0(H).

▶ Definition 3 (QMAEXP). A language L is in QMAEXP if there exists a quantum verifier
V such that on input x, V has runtime O(2|x|k ) for some k. In addition, if x ∈ L then
there exists a state |ψ⟩ ∈ CO(2|x|k

) such that V (x, |ψ⟩) accepts with probability at least 2/3.
If x ̸∈ L, then V (x, |ψ⟩) accepts with probability at most 1/3.

With this notation in hand, the formal definition of the rotation-invariant Hamiltonian
problem can be stated as follows:

▶ Definition 4 (r-DIM-RIH (Rotationally-Invariant Hamiltonian)).
Problem Parameter: The geometric dimension of the lattice r. A permutation-invariant

Hermitian operator h. Two polynomials p and q.
Input: Integer n specified in binary.
Promise: Let N = |Λr(n)| = nr. Consider the Hamiltonian H =

∑
{u,v}∈EΛr(n)

hu,v. The
ground state energy of H is either at most p(n) or at least p(n) + 1/q(n).

Output: Determine whether the ground-state energy of H is at most p(n) or at least p(n) +
1/q(n).

In particular, notice that h does not depend on the system size n or the lattice dimension r
in this definition. Our main result is the following theorem.

▶ Theorem 5. r-DIM-RIH is QMAEXP-complete for q(n) = 1.

3 Hamiltonian construction

Our strategy will be first to embed a two-dimensional translation-invariant Hamiltonian
without reflection symmetry into our rotationally-invariant Hamiltonian. In the case where
our lattice has dimension r, we will break up the lattice into nr−2 2D slices and embed
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the Hamiltonian into each of these slices. Then we can utilize the extra parameters of the
2D translation-invariant Hamiltonian to embed a one-dimensional hard Hamiltonian that is
nearly frustration-free.

To accomplish this, it is crucial to have a mechanism to break the rotation symmetry by
selecting a direction. We will do this by embedding two sets of directed stripes to indicate
the two directions of the 2D grid.

3.1 Embedding directed stripes
In our construction, we will attach the following Hilbert spaces to each site in the lattice:

HT1 ⊗ HT2

Our Hamiltonian will act diagonally in these subspaces and, therefore, it will only enforce
classical constraints with respect to a given set of basis states, which we denote by the sets T1
and T2, respectively. We refer to these basis states as “tiles” that we can assign to each site.

We define T1 := {red, yellow,blue} and T2 := {0, 1, 2}, which associate a color and number
with each tile, respectively. It can be enforced that two tiles t1 and t2 cannot be placed
next to each other by including the term |t1, t2⟩⟨t1, t2| in the Hamiltonian. In this way, we
incorporate the following rules for which tiles are allowed to be placed next to each other:
1. If two neighboring tiles have the same color then they must have different numbers.
2. If two neighboring tiles have different colors then they must have the same number.

To write down the Hamiltonian terms associated with these rules more explicitly, let V
represent the set of illegal neighboring tiles. Then we include the following Hamiltonian
term:

htile = 8
∑

(s,t)∈V

|s, t⟩⟨s, t|

The energy cost of 8 is carefully chosen to balance out other competing terms introduced
later.

3.1.1 EPR projections
Next, we would like to enforce that the qubits of same-colored neighbors form EPR pairs
with each other. We can do this by attaching the following two additional Hilbert spaces to
each site:

Hσ1 ⊗ Hσ2

Since each site only has two qubits it can only form two EPR pairs and therefore can
only have two same-colored neighbors. Thus, this accomplishes our goal of forcing the
same-colored tiles to form one-dimensional chains.

Given two same-colored neighbors u and v, it remains to determine which of their qubits
must form EPR pairs. To do this, we first define directed edges between each basis state of
T2 such that 0 → 1, 1 → 2 and 2 → 0. Due to the constraints in the previous section, u and
v must both have different numbers. Without loss of generality, if the directed edge between
these numbers points towards v’s tiles then we enforce that u’s σ2 qubit forms an EPR pair
with v’s σ1 qubit. We denote this EPR pair state as |Φ+⟩uσ2 vσ1

= 1√
2 (|00⟩ + |11⟩)uσ2 vσ1

.
More formally we add the following term acting on sites u and v:

Au,v = 16
∑
i∈T2

|i, i+ 1 mod 3⟩⟨i, i+ 1 mod 3| ⊗ ( I− |Φ+⟩⟨Φ+|
2 )uσ2 vσ1
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Figure 1 When a chain of sites is numbered sequentially around the cycle Z3, each qubit is
matched with exactly one other qubit to form an EPR pair and so the EPR constraint can easily be
satisfied.

Figure 2 When there are three consecutive same-color neighbors that are not numbered mono-
tonically around Z3 (for instance 0, 1, 0) then two different qubits are matched with the same qubit
to form an EPR pair. Due to the monogamy of entanglement this constraint cannot be satisfied and
incurs an energy penalty.

Our convention throughout is to separate sites of the lattice by commas within the braket
notation and to separate subspaces within each site by tensor product symbols. Notice that
if u and v have different numbers then this implies they also have the same color and so
this does not need to be additionally conditioned on in this Hamiltonian term. In order to
preserve rotation invariance, we add this term for both orderings of the particles u and v:

hEPR = Au,v +Av,u (1)

In addition to enforcing that contiguous regions of same-colored sites form 1D chains,
these EPR constraints also require that each same-colored chain is numbered as the periodic
sequence: 0, 1, 2, 0, 1, 2, . . . either in the forwards or backwards direction (see Figure 1). This
is because there can never be a site where the directed edges incident to it are both pointing
away or both pointing towards it. In either case, this requires one of that site’s qubits to be
in two different EPR pairs, which is not allowed by the monogamy of entanglement. This
scenario is depicted in Figure 2. This sequential numbering, is very helpful because it defines
a direction to each chain. Notice that such a numbering is only possible when n is a multiple
of 3, so we will later incorporate this restriction into our hardness reduction.

3.1.2 1D chain boundary conditions
Given the current Hamiltonian terms, the same-colored sites can form chains with either
open or periodic boundary conditions (lines or loops). It will be convenient later that the
boundary conditions are fixed and so we add another term to enforce periodic boundary
conditions. In particular, we define the following term acting on sites u and v:

hloop = 2
∑

c,d∈T1 |c̸=d

|c, d⟩⟨c, d| ,

which penalizes neighboring sites with different colors. This adds a penalty of 2r − 2 for
every site in the middle of the chain. This is because each site has 2r neighbors, where all
but exactly two are colored differently. This results in a penalty of 2(2r − 2)/2 where we
have divided by two to fix double-counting. Using similar reasoning, a penalty of 2r − 1 is
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(a) First copy of tiles. (b) Second copy of tiles.

Figure 3 An example of how a 2D lattice can be tiled to optimize the Hamiltonian terms.
Specifically, each copy forms a striped pattern where each stripe is numbered in a cyclic sequence.
In addition, the two copies of tiles must have stripes pointing in different directions. Finally, the
rows/columns that do not hold stripes must be numbered with the same number. Now a translation-
invariant Hamiltonian can be simulated by using these tilings as a guideline for which sites are above,
below, left, or right of each other. As our convention, we take the first copy to denote the horizontal
direction and the second copy to denote the vertical direction.

incurred for every site at the endpoint of an open chain. Assuming that the classical tiling
and EPR constraints are satisfied, this term is optimized when all 1D chains form loops so
that each site always neighbors two other sites of the same color. The scaling of 2 is chosen
so that the energy savings of coloring neighboring sites the same will never outweigh the
energy penalty of violating the EPR constraints. This tradeoff will be worked out in detail
in Section 4.2.

3.2 Adding the second dimension
Now that we have embedded stripes in one direction of the lattice, we must repeat this
process to embed stripes in another direction. To do this, we can simply make a copy of
each site’s Hilbert space and apply the same Hamiltonian terms to the copy. It remains to
ensure that both copies do not have stripes oriented in the same direction. To do this, it
is sufficient to simply disallow two neighboring tiles from having matching colors on both
copies. In other words, we add the following term where we let HT1 denote the T1 subspace
of the first copy and H′

T1
denote that of the second copy.

hcopy = (
∑
c∈T1

|c, c⟩⟨c, c|)HT1
⊗ (

∑
d∈T1

|d, d⟩⟨d, d|)H′
T1

3.3 Embedding the translation-invariant Hamiltonian
An arbitrary two-dimensional translation-invariant Hamiltonian HTI can now be embedded
into our rotation-invariant Hamiltonian by using the directed stripes as guidelines. Our
convention will be to let the first copy of each site represent the horizontal stripes and the
second copy represent the vertical stripes. These tiling patterns are depicted in Figure 3.
Now, the horizontal Hamiltonian term is applied only when the first copy tiles have the same
color (i.e., different numbers). In addition, the orientation of which site is on the left and
which is on the right will be decided by the directed edge in between the two tile’s numbers
where each arrow points from left to right. The vertical Hamiltonian term is applied similarly
with respect to the second copy of each site’s tiles.
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To make this more concrete, we first attach to each site of our lattice the Hilbert space of
a site in HTI which we denote by H2D. Denote the horizontal 2-body term of HTI by hTI.
To incorporate this into our construction we add the following term:

hRI =
∑
i∈T2

|i, i+ 1 mod 3⟩⟨i, i+ 1 mod 3| ⊗ hTI (2)

+
∑
i∈T2

|i, i− 1 mod 3⟩⟨i, i− 1 mod 3| ⊗ ShTIS (3)

where S is the swap operator on the two sites and the term acts on the first copy of HT2 .
Note that while hT I does not have reflection symmetry, hRI does. The vertical term is
implemented in the same way but acts on the second copy. We denote the vertical term
by vRI.

It remains to now describe the 2D translation-invariant Hamiltonian that encodes the
computational hardness. We will combine techniques from [6] in order to encode the desired
ground state energy in the yes and no cases. The details are deferred to Section A but the
key result is outlined below.

▶ Theorem 6. Let L be a QMAEXP-complete language. There exists an efficiently computable
function f : {0, 1}∗ → Z and 2-local positive semidefinite Hamiltonian terms hTI and vTI
with the following properties:
1. f(x) is a multiple of 3 and f(x)/3 is prime. Furthermore, log f(x) = O(poly(|x|)) and f

is computable in O(poly(|x|)) time.
2. Let f(x) = n ≥ n0 for some constant n0 and a given problem instance x ∈ {0, 1}∗. For

an n×n 2D lattice with periodic boundary conditions, let Eh be the set of ordered pairs of
horizontal neighbors and let Ev be the set of ordered pairs of vertical neighbors. Consider
the Hamiltonian HTI =

∑
(u,w)∈Eh

hu,w
TI +

∑
(x,y)∈Ev

vx,y
TI .

a. If x ∈ L then E0(HTI) ≤ O(n−k) for an arbitrarily large constant k.
b. If x ̸∈ L then E0(HTI) ≥ Ω(1/n3)

Using the prime symbol to denote terms acting on the second copy of a site’s Hilbert
space, we can now write the entire 2-body Hamiltonian term of our construction as follows:

h = htile + hEPR + hloop + h′
tile + h′

EPR + h′
loop + hcopy + hRI + vRI (4)

We can now define the reduction from any QMAEXP problem instance to an r-DIM-RIH
problem instance.

▶ Definition 7 (Reduction from QMAEXP to r-DIM-RIH). Let L be a language in QMAEXP and
let x ∈ {0, 1}∗ be a problem instance. Define the function R(L, x, r) =

∑
{u,v}∈EΛr(f(x))

hu,v

where f : {0, 1}∗ → Z is constructed as in Theorem 6 and h as in Eq. 4.

Next, the detailed analysis of this construction is provided.

4 Analysis

In this section we prove the main theorem that the rotation-invariant Hamiltonian problem
is QMAEXP-complete.

TQC 2025
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4.1 Completeness
We begin by first considering the case where x ∈ L. In this case, we present a ground state
that achieves energy below p(n) = 4nr(r − 1) + 1/g(n) for an arbitrarily large polynomial
g(n).

▶ Lemma 8. Let L be a language in QMAEXP and let x ∈ {0, 1}∗ be a problem instance.
Let H = R(L, x, r). If x ∈ L, then E0(H) ≤ 4nr(r − 1) + 1/g(n) for any polynomial g(n).

Proof. Consider the following tiling, which generalizes the tiling of the 2D lattice depicted
in Figure 6. We first construct a 3-coloring of the (r − 1)-dimensional lattice. This always
exists because an (r − 1)-dimensional lattice can be decomposed as a Cartesian product of
cycle graphs. Since each cycle graph is 3-colorable their Cartesian product is also 3-colorable
by a result by Sabidussi [13]. To color a site in the full r-dimensional lattice we simply drop
the 1st coordinate and assign the color from the 3-coloring of the remaining r− 1 coordinates.
This enforces that any two neighboring sites that have the same 1st coordinate are colored
by different colors and any two neighbors that only differ in the 1st coordinate are tiled by
the same colors. This has the effect of coloring 1D chains of sites that travel in a straight
line along the 1st coordinate dimension.

For this coloring, it is easy to satisfy the numbering constraints. This can be accomplished
by tiling all particles u with the number u1 mod 3. This simultaneously tiles all 1D chains
with the ordering 0, 1, 2, 0, 1, 2, . . . which eventually wraps around since n is a multiple of 3.
In addition, all neighboring tiles with different color tiles are tiled with the same number
since this only occurs when the two particles have the same 1st coordinate.

The EPR constraint can easily be satisfied since the particles have been tiled as disjoint
1D chains with the appropriate numbering. In addition, all chains are loops and so the
constraint on having periodic boundary conditions is also satisfied. This ensures that only a
penalty of nr(2r − 2) = 2nr(r − 1) is introduced by the hloop term. We can repeat this for
the second copy of tiles but now directing the 1D chains along the second coordinate. This
introduces another penalty of 2nr(r − 1).

With this choice of tiles the lattice has effectively been broken up into nr−2 2D slices where
we can now apply the 2D translation-invariant Hamiltonian construction. By Theorem 6,
since x ∈ L we have that each 2D slice contributes an energy of at most O(n−k). The total
energy is thus O(nr−2−k) = O(n−k′) where we have chosen k = r − 2 + k′. This results in a
final energy upper bound of 4nr(r − 1) +O(n−k′). ◀

4.2 Soundness
In this section we will prove the following lemma:

▶ Lemma 9. Let L be a language in QMAEXP and let x ∈ {0, 1}∗ be a problem instance.
Let H = R(L, x, r). If x ̸∈ L, then E0(H) ≥ 4nr(r − 1) + 1.

Our general strategy will be to first lower bound the energy of any state with a given classical
tiling. We call these “tile states” and define them as follows:

▶ Definition 10 (Tile state). A tile state is a state |ψc,c′⟩ = |c⟩ ⊗ |c′⟩ ⊗ |ϕ⟩ where c, c′ ∈
TN

1 ×TN
2 and |ϕ⟩ ∈ (Hσ1 ⊗ Hσ2 ⊗ H′

σ1
⊗ H′

σ2
⊗ H2D)⊗N . The notation |ψc⟩ is used whenever

only one of the tilings is relevant.

Lower bounding the energy of an arbitrary state follows straightforwardly, since each of the
Hamiltonian terms is diagonal with respect to the tile Hilbert spaces.

We start by first establishing the fact that a qubit cannot be in two EPR pairs at once.
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▶ Fact 11. Consider a Hamiltonian on three qubits u, v and w defined by ( I −|Φ+⟩⟨Φ+|
2 )u,v +

( I −|Φ+⟩⟨Φ+|
2 )v,w. By direct computation this has a minimum eigenvalue of 1/4.

We next focus on one copy of the tilings at a time and define the following notation.

▶ Definition 12. For a given site u, let nu be the number of u’s neighbors that are tiled with
the same color as u.

With these in hand, we can now lower bound the energy of any tile state in terms of the
number of same-colored neighbors of each site.

▷ Claim 13.

⟨ψc|
∑

{u,v}∈EΛr(n)

(htile + hEPR + hloop)u,v |ψc⟩ ≥ 2nrr −
∑

u∈Λr(n)

nu + 4
∑

u∈Λr(n)

⌊nu/3⌋ (5)

Proof. Recall that hloop gives an energy penalty of 2 for neighboring particles that are tiled
by opposite colors. Every particle has 2r neighbors and so if every particle is tiled with a
different color than all of its neighbors then the total penalty due to this Hamiltonian term
would be 2 nr(2r)

2 = 2nrr. The total number of neighboring pairs with the same color tiling
is

∑
u∈Λr(n)

nu

2 . Since each of these pairs saves an energy of 2, the total energy with respect
to hloop applied to each edge is 2nrr − 2

∑
u∈Λr(n)

nu

2 = 2nrr −
∑

u∈Λr(n) nu.
Now for every particle u we can group its same-colored neighbors into groups of three

until a full group of three cannot be formed. There will be ⌊nu/3⌋ such groups. For a given
group of three neighbors, label the particles v, w, z. If htile applied to edge {u, v}, {u,w}, or
{u, z} is violated then this incurs a penalty of 4 per particle involved (8 in total for the edge).

If none are violated then this means at least two of the three particles, v, w, z, must be
tiled with the same number. This is because htile enforces that same-colored neighbors of
u are tiled with a different number than u and there are only two such numbers. Without
loss of generality assume that v and w are tiled with the same number and it is exactly one
higher (mod 3) than u’s number. Then we have the following bound

E0(hu,v
EPR + hu,w

EPR) ≥ E0(Au,v +Au,w) (6)

≥ 16E0(( I− |Φ+⟩⟨Φ+|
2 )uσ2 vσ1

+ ( I− |Φ+⟩⟨Φ+|
2 )uσ2 wσ1

) (7)

≥ 4 By Fact 11
(8)

Repeating this argument for each site u in the lattice does not double count energy penalties
since we only used the Au,v term of hEPR, and so when considering v we would use the Av,u

term instead. Therefore, either htile or hEPR must be violated and either way a penalty of
at least 4 is added to the energy. This argument can be repeated for each group of three
same-colored neighbors and so this contributes at least 4

∑
u∈Λr(n)⌊nu/3⌋ to the energy. ◁

It follows immediately from Equation (5) that each particle must have exactly two same
colored-neighbors. Otherwise this induces an energy penalty of at least one which is enough
to imply the bound in Lemma 9. This is helpful since we have now shown that the tiling
pattern forms loops. It still remains to show that these loops are straight. Before moving on
to this, we first make the above statements rigorous as follows:

▶ Definition 14. A classical tiling c ∈ TN
1 × TN

2 is looped if nu = 2 ∀u ∈ Λr(n)

TQC 2025
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▷ Claim 15. If c or c′ is not looped, then ⟨ψc,c′ |H |ψc,c′⟩ ≥ 4nr(r − 1) + 1.

Proof. Without loss of generality assume that c is not looped and that c′ is any tiling.
The inequality in Eq. 5 is minimized when nu = 2 for all u ∈ Λr(n). This is because
−nu+4⌊nu/3⌋ = −2 for nu = 2 and −nu+4⌊nu/3⌋ ≥ −1 for nu ≠ 2 where nu is a nonnegative
integer. The right-hand side of Eq. 5 is equal to 2nrr − 2nr = 2nr(r − 1) when ∀u nu = 2.
Therefore, when nu ̸= 2 for some u ∈ Λr(n), ⟨ψc|

∑
{u,v}∈EΛr(n)

(htile +hEPR +hloop)u,v |ψc⟩ ≥
2nr(r − 1) + 1. The terms h′

tile, h
′
EPR, and h′

loop add a penalty of at least 2nr(r − 1) as we
have just argued. Finally, each term in H is positive semidefinite and so the energy with
respect to the entire Hamiltonian is lower bounded by the energy with respect to a subset of
the terms. The claim then follows. ◁

We now must show that these loops are in fact straight and do not contain any turns.

▶ Definition 16. Let g : Λr(n)2 → N be a function that outputs the number of coordinates
that differ between two lattice sites.

▶ Definition 17. A classical tiling c ∈ TN
1 × TN

2 has a turn if there exists three particles u,
v, and w where the following is true: u and w are neighbors of v (i.e. d(u, v) = d(v, w) = 1),
u, v, and w are all tiled by the same color, and g(u,w) = 2.

We can now penalize turns by using the tiling rule that different color neighbors must have
the same number. This is because if there is a turn then there exists some neighboring site
outside of the loop that borders two sites right where the turn occurs. This causes a penalty
because both sites in the loop must have the same number as the site outside of the loop,
which contradicts the sequential numbering of the loop. This is argued in more detail below.

▷ Claim 18. If c or c′ is looped but has a turn, then

⟨ψc,c′ |H |ψc,c′⟩ ≥ 4nr(r − 1) + 4 (9)

Proof. Once again without loss of generality, assume that c is looped and has a turn and
that c′ is any tiling. If c has a turn then there exists u, v, and w that are all tiled by the
same color and g(u,w) = 2. Without loss of generality, let u1 = 0, u2 = 0, v1 = 0, v2 = 1,
w1 = 1, w2 = 1. This simplification is for clarity but note that the following argument works
for any coordinates such that d(u, v) = d(v, w) = 1 and g(u,w) = 2. Consider a fourth site z
at coordinates z1 = 1, z2 = 0. Note that d(z, u) = d(z, w) = 1 and so it neighbors u and w.
This situation is depicted in Figure 4. If z is tiled by the same color as u, v, and w then it
would form a loop of length four. This violates htile since the loop is not a multiple of three
and so the numbers can not sequentially wrap around Z3 (see Figure 4a). If z is tiled with
a different color than u, v, and w then it must be tiled with the same number as u and w

since htile enforces that different colored neighbors must have the same number. However,
as we have argued previously, a site cannot have two same-colored neighbors that are tiled
with the same number as each other since this causes the EPR constraint to be violated (see
Figure 4b). In either case, there is an energy penalty of at least 4. In addition, the hloop and
h′

loop terms together add a penalty of 4nr(r− 1). Finally, noting the positive semidefiniteness
of each Hamiltonian term concludes the proof. ◁

So far we have given a sufficient lower bound for any tile states that do not consist of
only straight loops. It will be helpful to make a few more observations on the structure of
these 1D loops.
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(a) (b)

Figure 4 Two examples of how energy penalties can arise when there is a turn in the loop. Here,
the loop consists partially of u, v, and w which contains a turn since u and w differ in more than
one coordinate. In (a), z is colored the same as the rest but this results in a penalty since a loop of
size 4 cannot be numbered cyclically around Z3. This results in the illegal configuration of u and v

having the same color and the same number. In (b), z is colored differently but this leads to part of
the loop being numbered as 1, 0, 1, which is also illegal as depicted in Figure 2.

Figure 5 This configuration always arises if the tiling is not uniformly directed since otherwise
each loop is always pointed in the same direction. This causes a rule violation since the blue and
yellow tiles must have the same number but are forced to hold different numbers due to the red tiles.

▶ Definition 19. A classical tiling c ∈ TN
1 × TN

2 is uniformly directed if it is looped
without turns and each 1D loop is oriented along the same dimension.

▷ Claim 20. If c or c′ is looped without turns but not uniformly directed then

⟨ψc,c′ |H |ψc,c′⟩ ≥ 4nr(r − 1) + 8 (10)

Proof. If the tiling is not uniformly directed then the following situation will necessarily arise,
which is illustrated in Figure 5. Without loss of generality, consider a square of sites within
the lattice such that the top two sites are the same color and thus a part of the same 1D
chain, but the bottom two sites have two different colors from the top and from each other.
Since different color tiles must have the same numberings, then all four squares would be
required to have the same number. However, since the top two have the same color, they
are required to have different numbers and so it is impossible to assign numbers that do not
incur any penalties. ◁

One final property we will need is that each 1D loop is numbered consistently.

▶ Definition 21. A classical tiling c ∈ TN
1 ×TN

2 is numbered consistently if it is uniformly
directed towards a given dimension d and every site with the same dth coordinate value has
the same number.

▷ Claim 22. If c or c′ is uniformly directed, but not numbered consistently then

⟨ψc,c′ |H |ψc,c′⟩ ≥ 4nr(r − 1) + 8 (11)

Proof. Consider the r − 1 dimensional sublattice of sites that each have the same dth
coordinate value. Each pair of neighbors in this lattice must have different colors. Otherwise,
the coloring would not be uniformly directed towards the dth dimension since this means
there is some 1D loop that points in a different direction. Since each pair of numbers
has different colors, they all must have the same number, i.e. the tiles must be numbered
consistently. Otherwise, a penalty of at least 8 is incurred. ◁
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All that remains is to now lower bound the ground-state energy when both tilings are
numbered consistently.

▷ Claim 23. Let c and c′ be numbered consistently. Let L be a language in QMAEXP and
let x ∈ {0, 1}∗ be a problem instance. Let H = R(L, x, r) If x ̸∈ L, then ⟨ψc,c′ |H |ψc,c′⟩ ≥
4nr(r − 1) + Ω(nr−5).

Proof. First, we must handle the case where c and c′ both have 1D chains pointing in the
same direction. This would incur a penalty of nrr from the hcopy term alone, which would
clearly imply the desired lower bound. Next, we focus on the case where they point in
different directions. We let the 1D chains in the first tiling represent the horizontal rows of
each 2D slice and those of the second tiling represent vertical rows. In addition, we let the
order of the numberings define the left, right, up and down directions of the slices. In this
way we can embed nr−2 2D translation-invariant Hamiltonians. Since x ̸∈ L, by Theorem 6,
these terms contribute an energy penalty of Ω(nr−5). ◁

To complete the proof it remains to deal with the non-tile states but these can easily be
handled since the Hamiltonian is diagonal in the tile Hilbert spaces.

▶ Lemma 24 (Restatement of Lemma 9). Let L be a language in QMAEXP and let x ∈ {0, 1}∗

be a problem instance. Let H = R(L, x, r). If x ̸∈ L, then E0(H) ≥ 4nr(r − 1) + 1.

Proof. First we can write an arbitrary state as a superposition of tile states: |ζ⟩ =∑
i αi |ci⟩ |ϕi⟩ where ci ∈ T 2N

1 × T 2N
2 . Note that ⟨ci| ⟨ϕi|H |cj⟩ |ϕj⟩ = 0 for ci ̸= cj . This is

because all terms are diagonal on the Hilbert space of the classical tiles. Therefore, we have
⟨ζ|H |ζ⟩ =

∑
i |αi|2 ⟨ci| ⟨ϕi|H |ci⟩ |ϕi⟩. This is an affine combination of tile state energies

which we have already lower bounded by 4nr(r − 1) + 1. Thus, the energy itself is also
bounded from below by 4nr(r − 1) + 1. ◀

5 Open boundary conditions

So far we have only considered the case where the Hamiltonian has periodic boundary
conditions. It turns out that the same construction also works for open boundary conditions.
Our method of embedding directed stripes still works in this case except now instead of
closed loops the stripes form spin chains with open boundary conditions. This leaves the
sites at the ends of the chain with one unpaired qubit that can still form an EPR pair with
another site; however, this would require introducing a turn. The energy penalty for having
a turn outweighs the energy bonus of having one more same-colored neighbor and so it is
optimal to leave the qubit unpaired. Thus, the same construction can once again be used to
embed a 2D translation-invariant non-reflection-invariant Hamiltonian with the exception
that this Hamiltonian now has open boundary conditions. To complete the result, it remains
to show the equivalent of Theorem 6 in the case of open boundary conditions. The proof of
this statement is shown in Section A.2.

6 Conclusion

In this work, we have resolved the complexity for rotation-invariant Hamiltonians with
constant lattice dimension, but it still remains interesting to better understand the complexity
at even higher lattice dimensions. For instance, we know that as r → ∞ the ground state
becomes a product state, but how fast does it converge? Consider the problem where the
lattice length is now fixed, and the lattice dimension is given as input. Is there a small
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enough promise gap for which this problem is quantumly hard? Another direction to consider
is to study more general permutation symmetries. In some sense, the rotation-invariant
Hamiltonian problem interpolates between systems with comparatively low symmetry in
the one-dimensional case to highly symmetric systems as the lattice dimension increases. It
would be an interesting question to generalize this interpolation and probe whether there
exists a complexity phase transition with respect to some symmetry parameter.
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Figure 2: A possible arrangement of layers 1 (a.) and 2 (b.) for PERIODIC TILING.

types of tile: , , , , , , and . The new layer 2 has 10 types of tile: , , , , , ,
, , , and .

The , , and tiles will create the vertical and horizontal borders. and are used to make
sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
make sure the diagonal line goes from the upper left corner of the rectangle to the bottom right corner,
which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.

Layer 1 The tiling rules for layer 1 are summarized in Table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and
will go over the layer 1 and tiles.
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Figure 6 An example of an allowed configuration for a given set of translation-invariant tiling
rules on a 2D grid defined in [6]. The key feature is that when the side length is a prime number,
exactly one row can contain the
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types of tile: , , , , , , and . The new layer 2 has 10 types of tile: , , , , , ,
, , , and .

The , , and tiles will create the vertical and horizontal borders. and are used to make
sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
make sure the diagonal line goes from the upper left corner of the rectangle to the bottom right corner,
which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.

Layer 1 The tiling rules for layer 1 are summarized in Table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and
will go over the layer 1 and tiles.
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which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.
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The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and
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The , , and tiles will create the vertical and horizontal borders. and are used to make
sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
make sure the diagonal line goes from the upper left corner of the rectangle to the bottom right corner,
which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.

Layer 1 The tiling rules for layer 1 are summarized in Table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and
will go over the layer 1 and tiles.
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tile.
The above image is directly reproduced from [6] under CC-BY 3.0.

▶ Theorem 25 (Restatement of Theorem 6). Let L be a QMAEXP-complete language. There
exists an efficiently computable function f : {0, 1}∗ → Z and 2-local positive semidefinite
Hamiltonian terms hTI and vTI with the following properties:
1. f(x) is a multiple of 3 and f(x)/3 is prime. Furthermore, log f(x) = O(poly(|x|)) and f

is computable in O(poly(|x|)) time.
2. Let f(x) = n ≥ n0 for some constant n0 and a given problem instance x ∈ {0, 1}∗. For

an n×n 2D lattice with periodic boundary conditions, let Eh be the set of ordered pairs of
horizontal neighbors and let Ev be the set of ordered pairs of vertical neighbors. Consider
the Hamiltonian HTI =

∑
(u,w)∈Eh

hu,w
TI +

∑
(x,y)∈Ev

vx,y
TI .

a. If x ∈ L then E0(HTI) ≤ O(n−k) for an arbitrarily large constant k.
b. If x ̸∈ L then E0(HTI) ≥ Ω(1/n3)

Much of the proof will directly utilize techniques from [6]. When needed, a brief summary of
these ideas is given but we direct the interested reader to [6] for the full details. The main
idea of the construction is to use the 2D translation-invariant tiles to embed a 1D chain with
a designated starting tile. This allows us to avoid the 1/2 additive penalty that is required
in the 1D construction when there is no designated starting tile (see section 6 “The quantum
cycle” of [6]). Fortunately, the construction in tables 5 and 6 of section 4.1 of [6] accomplish
exactly this. This construction is quite complicated and so we only present the end result.
The last piece to handle is that this construction requires the grid length to be prime while
our tiling rules require it to be a multiple of three. This can easily be remedied by simulating
each tile in the 2D construction with a 3 × 3 grid of nine tiles. We explain each of these steps
in more detail below.

We start by describing how to construct the function f referenced in the theorem
statement. [6] show that given x there is a randomized algorithm a running in expected time
O(poly |x|) to find a prime number p such that the 1/3 most significant digits represent x
and log p = O(poly(|x|)). Using this result, we simply define f as f := 3 · a(x).

Next, to construct the 2D translation-invariant Hamiltonian, we start by using the below
result.

▶ Lemma 26 (see section 4.1 of [6]). There exists a set of translation-invariant, non-reflection-
invariant tiling rules involving a constant number of total tile types on an n× n 2D grid with
periodic boundary conditions such that when n is prime exactly one row must contain tiles of
the form
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types of tile: , , , , , , and . The new layer 2 has 10 types of tile: , , , , , ,
, , , and .

The , , and tiles will create the vertical and horizontal borders. and are used to make
sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
make sure the diagonal line goes from the upper left corner of the rectangle to the bottom right corner,
which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.

Layer 1 The tiling rules for layer 1 are summarized in Table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and
will go over the layer 1 and tiles.
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sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
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which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.

Layer 1 The tiling rules for layer 1 are summarized in Table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
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and no other row can contain either of these tiles. In addition, exactly
one site in this row must contain
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types of tile: , , , , , , and . The new layer 2 has 10 types of tile: , , , , , ,
, , , and .

The , , and tiles will create the vertical and horizontal borders. and are used to make
sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
make sure the diagonal line goes from the upper left corner of the rectangle to the bottom right corner,
which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.

Layer 1 The tiling rules for layer 1 are summarized in Table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and
will go over the layer 1 and tiles.
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The , , and tiles will create the vertical and horizontal borders. and are used to make
sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
make sure the diagonal line goes from the upper left corner of the rectangle to the bottom right corner,
which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.

Layer 1 The tiling rules for layer 1 are summarized in Table 5.
The rules for , , and imply that if we have a anywhere in a column, that column must only

contain and tiles, and if we have a anywhere in a row, that row can only contain and
tiles. Furthermore, a tile must be surrounded by tiles above and below and tiles to the left and
right. Thus, layer 1 contains some number of vertical and horizontal lines composed of and tiles
intersecting at tiles. No two horizontal or vertical lines can be adjacent.

The next set of rules for layer 1 enforce that the space between the lines must be filled by a
checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
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will go over the layer 1 and tiles.
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. This
configuration is depicted in Figure 6.
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Figure 7 This is the only allowed configuration for the subtiles associated with each 3 × 3 grid.
Each such grid represents a tile in the original tiling system.

Since this construction only works for prime n but our lattice length must be a multiple
of three, it is necessary to replace each tile with a 3 × 3 grid of tiles that serve the same
function as the original. First, for each tile in the original tiling, a corresponding center tile
is defined as . Then, the following tiles and rules are added. must be placed above .
Similarly, must be placed below , placed to the left of it and placed to the right
of it. Now to fix the corners in place we enforce that must be placed to the left of ,

placed to the right of , placed to the left of and placed to the right of . In
other words, the center tile must always be surrounded by the border tiles. The reciprocal
of each of these rules is also included. This enforces that the border tiles must always be
accompanied by the center tile in the appropriate location. This results in Figure 7 being
the only allowed configuration. The last thing to resolve is to ensure that these 3 × 3 grids
are aligned with each other. To do this, we must regulate which border tiles can be placed
next to those of a different 3 × 3 grid. We enforce that only type tiles are allowed to the
left of type tiles. We incorporate the same rule for the other sides as well: only type
tiles are allowed to the right of type tiles, only type tiles are allowed above type tiles
and only type tiles are allowed below type tiles.

Now we can incorporate an original rule between tiles by applying it to their corresponding
border tiles. This will exactly simulate the original but with each site replaced by a 3 × 3
grid. This results in an n× n grid where n = 3p and p is a prime number.

With this tiling in hand, the 1D construction can now be embedded into the 3 × 3 grids
associated with the
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The , , and tiles will create the vertical and horizontal borders. and are used to make
sure that there is at least one of each kind of border, and the and tiles will create a diagonal line
within the rectangle defined by the borders. Layer 2 is used to mark the directions next to the border and
make sure the diagonal line goes from the upper left corner of the rectangle to the bottom right corner,
which ensures that the rectangle is a square. When N is prime, this means there can only be one horizontal
and one vertical border. The structure of tiling that we would like to achieve is shown in Figure 2.
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checkerboard of or alternating with or tiles. We ensure this by forbidding and from
being adjacent to themselves or each other in any direction, and forbidding and from being adjacent
to themselves or each other in any direction. Since N is odd, this ensures that it is not possible to tile the
entire torus with the checkerboard pattern and there must be at least one horizontal and one vertical line.

Furthermore, if we ever have a tile anywhere, we want to be forced to have a diagonal line of
tiles continuing to the upper left and lower right, with a diagonal line of tiles next to it (above and to
the right), with both lines ending at a vertical or horizontal line. We enforce this by requiring that a
tile must have both below it and to its left. Above a tile we can have only or , and to the right
of a tile, we must have either or .

Layer 2 The tiling rules for layer 2 are summarized in Table 6.
We wish to mark the top side of the rectangles delineated by the layer 1 and tiles. will

mark the right side, the left side, and the bottom side, with , , , and marking the upper
left, upper right, lower left, and lower right corners, respectively. will be inside the rectangle and
will go over the layer 1 and tiles.
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tile is used to mark the left endpoint of the 1D
construction.

It remains to construct a 1D translation-invariant Hamiltonian on a f(x)-length spin
chain with the desired ground-state energy properties. To accomplish this [6] is directly used
and is briefly summarized here. The main idea is to use the Hamiltonian terms to simulate a
quantum Turing machine where each site in the length-f(x) spin chain represents a different
cell of the Turing machine tape except for two sites which are used to mark the boundaries.
The goal of the first part of the Turing machine is to infer x from the length of the tape and
write it on the tape. The second part of the Turing machine is quantum and uses x as the
input along with a quantum witness to execute the QMAEXP verification algorithm for L.

We now discuss the first part of the Turing machine, which we denote as MBC . MBC is
a purely classical Turing machine implementing a binary counter. By incrementing a clock
pointer from one side of the tape to the other, we can ensure that MBC is run for exactly
f(x) − 3 steps. Recall that f(x) = 3p where 1/3 of the most significant digits of p is x.
Therefore, by using a sufficiently slow binary counter, it is possible to ensure that x is always
written on the tape at the end of the f(x) − 3 steps.

Now that x is on the tape, we can run the quantum verification algorithm on x along
with an arbitrary quantum witness. The verifier is also allowed a total of f(x) − 3 timesteps.
Notice this is more strict than QMAEXP, which allows the verifier 2poly |x|. QMAEXP can be

TQC 2025
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Figure 8 The only allowed configuration for the given set of translation-invariant tiling rules on
a 2D grid with open boundary conditions.

reduced to this case by a standard padding argument where x is padded by zeros to have
length poly(|x|). Finally, an energy penalty is applied if the verifier does not accept. If the
verifier accepts with probability 1 − ϵ in the x ∈ L case then the ground-state energy will be
upper bounded by ϵ/n2. In order to drive ϵ ≤ O(n−k) for an arbitrarily large constant, it
is possible to use witness amplification. This incurs a O(k logn) overhead in the verifier’s
runtime [7], which can easily be accommodated by padding. In our construction, we would
like to set k = O(r) where r is the dimension, but would prefer not to have the verification
algorithm depend on r. Therefore, we can instead set k = logn where logn ≥ O(r) for some
n ≥ n0 since r is a parameter of the problem and does not scale with n. Importantly, even
though the number of rounds of witness amplification depends on n, our Hamiltonian term
still does not depend on n since n is deduced from the length of the lattice and then given as
input to the verification algorithm. For this construction [6] also show that in the x ̸∈ L case
the ground-state energy is lower bounded by Ω(1/n3).

Finally, each term in the construction is of one of two forms called Type 1 terms: |ab⟩⟨ab|
and Type II terms:

1
2(|ab⟩⟨ab| + |cd⟩⟨cd| − |ab⟩⟨cd| − |cd⟩⟨ab|). (12)

Both types are positive semidefinite and so the overall Hamiltonian term is also positive
semidefinite.

A.2 Open boundary conditions
An equivalent theorem to Theorem 6 is also true in the case of open boundary conditions.
The construction is also inspired by [6]. First, we define the tiles , , , and . The idea
is then to introduce the following tiling rules: no tile is allowed to the left of or below , no
tile is allowed below and no tile is allowed to the right of or below . Additionally, the
only tile that is allowed to the right of is and the only tile that is allowed to the left
of is also . Finally, is not allowed to the left or right of and the only tile allowed
above , and is . This results in the configuration depicted in Figure 8. The 1D
Hamiltonian can then be embedded into the bottom row of the 2D grid where the and
tiles denote the endpoints.
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