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—— Abstract

In the cut-query model, the algorithm can access the input graph G = (V, E) only via cut queries
that report, given a set S C V, the total weight of edges crossing the cut between S and V' \ S.
This model was introduced by Rubinstein, Schramm and Weinberg [ITCS’18] and its investigation
has so far focused on the number of queries needed to solve optimization problems, such as global
minimum cut. We turn attention to the round complexity of cut-query algorithms, and show that
several classical problems can be solved in this model with only a constant number of rounds.

Our main results are algorithms for finding a minimum cut in a graph, that offer different tradeoffs
between round complexity and query complexity, where n = |V| and §(G) denotes the minimum
degree of G: (i) O(n*®) cut queries in two rounds in unweighted graphs; (ii) O(rn**/"/§(G)*/™)
queries in 2r+1 rounds for any integer » > 1 again in unweighted graphs; and (iii) O~(rn1+(1+log” W)/T)
queries in 4r + 3 rounds for any r > 1 in weighted graphs. We also provide algorithms that find a
minimum (s, t)-cut and approximate the maximum cut in a few rounds.
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1 Introduction

Graph cuts are a fundamental object in computer science with numerous applications, in
part because they are a basic example of submodular functions. Recall that a set function
f:2Y = R is submodular if it satisfies the diminishing-returns property

VACBCVvogB, f(AU{v}) - f(A)= f(BU{v}) - f(B).

From the viewpoint of submodular optimization, it is natural to study the complexity of
graph algorithms in the cut-query model, which correspond to value queries to the submodular
function. Here, the input graph G = (V, E, w) can be accessed only via oracle queries to its
cut function, namely to cutg : 2¥ — R, given by

VS CV, cutg(S) = Z w(e).

ecE: |enS|=1

Here and throughout w(e) > 0 is the weight of the edge e € E, precluding edges of zero
weight as they cannot be detected by the algorithm. As usual, an unweighted graph models
unit weights, i.e., w(e) =1 for all e.
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Cut-Query Algorithms with Few Rounds

The query complexity of an algorithm is the number of queries it makes in the worst-case.
While this is often the primary performance measure, it is highly desirable that algorithms
can be parallelized, as such algorithms can utilize better the available computing resources.
The literature on the parallelization of submodular optimization [9, 24, 25, 18], relies on a
measure called round complexity, which count the number of sequential rounds of queries the
algorithm makes.!

» Definition 1.1 (Round Complexity). An algorithm has round complexity r if it performs
r rounds of queries, meaning that queries in round t € [r] can depend only on the answers
to queries in previous rounds 1,...,t — 1. An algorithm is called non-adaptive if it uses a
single round of queries.

We study the cut-query model, from the perspective of round complexity focusing on the
problem of finding a global minimum cut. Previous work [33, 31, 3, 2] shows that a minimum
cut of a graph can be found using O(n) queries in unweighted graphs and O(n) queries in
weighted graphs. However, it paid no attention to the algorithms’ round complexity, and we
fill this gap by studying the tradeoff between round complexity and query complexity.

An analysis of the round complexity of existing algorithms, with some simple modifications,
shows that it is possible to find a global minimum cut of a graph using O(n) queries with
round complexity O(log?n) [33, 31]. It should be noted that other algorithms do require
round complexity Q(n) [3, 2]. As another baseline, it is possible to recover the entire graph
using O(n?) deterministic non-adaptive queries [14],2 which clearly suffices to find a minimum
cut. This motivates our main question

» Question 1.2. What is the tradeoff between the round complexity and the query complezity
of finding a global minimum cut in the cut-query model?

1.1 Main Results

We show that the polylogarithmic round complexity of previous work is not necessary for
finding a global minimum cut. We begin by presenting two results for unweighted graphs.
The first one shows that using even two rounds, we can substantially improve on the O(n?)
query complexity of the naive algorithm. All of our algorithms return a vertex set S C V
and the value of the minimum cut. In the case of unweighted graphs the algorithms can
also report the edges of the cut using one additional round of queries and with the same
asymptotic query complexity.

» Theorem 1.3 (Unweighted Minimum Cut with 2 rounds). Given an unweighted graph G on

n vertices, it is possible to find a minimum cut of G using O(n4/3) cut queries in 2 rounds.

The algorithm is randomized and succeeds with probability 1 — n=2.

We further provide a smooth tradeoff between the number of queries and the number
of rounds, namely O(n!'*1/7/§(G)*/") cut queries with in 2r rounds, where §(G) > 1 is the
minimum degree of G.3

I The aforementioned references use the term adaptivity, which is the number of rounds minus one.

2 O(|E|) queries suffice, however without some bound on the size of the graph the algorithm must make
O(n?) queries in the worst case.

3 We can assume that the graph is connected since connectivity can be checked using O(n) cut queries in
1 round (non-adaptive) [4].



Y. Kenneth-Mordoch and R. Krauthgamer

» Theorem 1.4 (Unweighted Minimum Cut with O(r) rounds). Given an unweighted graph G
on n vertices and a parameter r € {1,2,...,logn}, it is possible to find a minimum cut of G
using O(rn*t1/76(G)~Y/") cut queries in 2r + 1 rounds. The algorithm is randomized and
succeeds with probability 1 —n~1.

We also obtain a similar tradeoff also for weighted graphs.

» Theorem 1.5 (Weighted Minimum Cut Graphs with O(r) rounds). Given a weighted graph G
on n vertices with integer edge weights bounded by W, and a parameter r € {1,2,...,logn},
it is possible to find a minimum cut of G using O(rn1+(1+logn W)/”) cut queries in 4r + 3
rounds. The algorithm is randomized and succeeds with probability 1 — n=2.

Finally, we note that our techniques can also be applied to approximating the maximum
cut and finding a minimum (s,t)-cut with low adaptivity. Furthermore, our result for
weighted minimum cuts can also be applied to finding a minimum cut in dynamic streams,
providing a smooth tradeoff between the number of passes and the storage complexity of
the algorithm. This holds since each cut query in a given round can be computed using
O(logn) storage in a single pass by simply counting the edges in the cut. Therefore, the
round complexity of our algorithm translates immediately to the number of passes required
by a streaming algorithm. These results are detailed in the full version of the paper.

1.2 Related Work

Algorithms in the cut query model. In recent years there have been several works on cut
problems in the cut-query model, most of which focused on query complexity and not round
complexity. We will discuss the known results for several problems in the cut-query model.

Beginning with finding a minimum cut, O(n) randomized queries suffice for simple graphs
[33, 3]. Meanwhile, finding a minimum cut in a weighted graph requires é(n) randomized
queries [31]. Finally, in a recent work it was shown that non-trivial deterministic algorithms
exist for finding the minimum cut of a simple graph using O(n®/3) queries [2]. For the easier
problem of determining whether a graph is connected, it is known that O(n) randomized
queries suffice [19, 30]. Additionally, there exists a one round randomized algorithm for
connectivity that uses O(n) queries [4].

Moving to the problem of finding a minimum (s,¢)-cut. In [33] it was shown that it is
possible to compute the minimum (s,t)-cut of a simple graph using O(n°/3) queries, by
showing that using a cut sparsifier it is possible to find a small set of edges that contains the
minimum (s, ¢)-cut. This query complexity was matched in the deterministic setting by [2].

We also mention the problem of finding a 1 — € approximation of the maximum cut. One
way to achieve this is by constructing a cut sparsifier, this was show in [33] for simple graphs
and in [32] for weighted graphs, both using O(¢~2n) cut queries. Furthermore, an algorithm
for 1/2-approximation using O(logn) cut queries in one round and a lower bound of Q(n)
on the query complexity needed to find a 1 — € approximation of the maximum cut are also
known [32].

Finally, there have been several works on graph problems in different query models, such
as additive queries [22, 14, 15], quantum cut queries [29, 6, 3|, matrix multiplication queries
[34, 6, 3], Bipartite Independent Set queries [11, 4, 1] and more.

Adaptivity in submodular optimization. In recent years, there has been a growing interest
in the adaptivity of algorithms for submodular optimization. This line of work was initiated
by the work of [9], which showed that constrained submodular maximization can be solved
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within a constant approximation factor in O(logn) rounds with a polynomial number of
queries, the work also provides a matching lower bound. A string of later works improved on
the query complexity and the approximation guarantee, culminating in an algorithm with an
optimal 1 — 1/e approximation using O(n) queries [9, 7, 8, 24, 25, 21]. The round complexity
of unconstrained submodular maximization was also studied in [20].

The adaptivity of algorithms for submodular minimization was also studied in several
works. It was shown that solving the minimum (s, ¢)-cut problem in weighted graphs using
O(logn) rounds of queries requires Q(n?) queries [5]. For more general submodular functions,
a bound of Q(n/logn) rounds for algorithms with a polynomial number of queries is known
[16, 10, 17]. Note that all these hard instances are non symmetric, and hence do not apply
to the minimum cut problem. It remains open to study the round complexity of symmetric
submodular minimization problems in future work.

2  Technical Overview

Each of our three algorithms for minimum cut is based on a different insight. Our two-round
algorithm uses contractions in the style of [28] to create a smaller graph that preserves the
minimum cut. Similar contractions have been used in several minimum cut algorithm [28,
26, 3], however the existing algorithms aim to reduce the number of vertices in the graph,
while our variant, called T-star contraction, reduces the number of edges.

Our (2r)-round algorithm for unweighted graphs employs a known approach of applying a
contraction procedure and then packing (in the contracted graph) edge-disjoint forests. The
main challenge to ensure that forests are edge disjoint when packing them in parallel, and
we overcome it by leveraging an elegant connection to cut sparsification, which shows that
amplifying the sampling probabilities of the sparsifier construction by a factor of k ensures
finding k edge-disjoint forests.

Our algorithm for weighted minimum cut follows the approach of [31], which constructs a
(1 + e)-cut-sparsifier and then solves a monotone-matrix problem that is easily parallelizable.
Prior work in the cut-query model provided cut sparsifiers [33, 32], but their core step of
weight-proportional edge sampling requires O(logn) rounds. We eliminate this bottleneck
with our two-round weight-proportional edge sampling primitive (Lemma 2.2), and thereby
build a (1 £ €)-cut-sparsifier in 3r rounds, and complete the entire algorithm in O(r) rounds.

A common thread to all our algorithms is the use of edge sampling, both directly as part of
the algorithms and to construct complex primitives such as forest packings and cut sparsifiers.
In edge sampling, the input is a source vertex s and a target vertex set T C V'\ {s}, and the
goal is to sample an edge from E(s,T) := EN({s} xT). We need two types of edge sampling,
both returning a sampled edge e € E(s,T) and its weight w(e). The first one is uniform
edge sampling, which picks each e € E(s,T) with equal probability 1/|E(v,T)| regardless
of its weight, similarly to [y sampling; the second one is weight-proportional edge sampling,
which picks each e € E(s,T) with probability w(e)/w(E(v,T)), similarly to [; sampling. In
unweighted graphs these two definitions clearly coincide.

Weight-proportional edge sampling was used extensively in previous algorithms for the
cut-query model [33, 31, 3, 32], although it had a naive implementation that requires O(logn)
rounds. This naive implementation, which was proposed in [33], follows a binary search
approach. Each step partitions the set T at random into two sets 717,75 of equal cardinality,
and finds the total weight of the edges in F(s,T1) and E(s,T5). The algorithm then decides
whether to continue with 77 or 75 randomly in proportion to their weights. This approach
clearly requires Q(logn) rounds, which exceeds the O(1) round complexity we aim for, and
furthermore yields only weight-proportional sampling, while some of our algorithms require
uniform sampling in weighted graphs.
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2.1 Edge Sampling Primitives

Our first technical contribution is a procedure for non-adaptive uniform edge sampling using
O(log® n/loglogn) queries that returns the weight of the sampled edge. An algorithm for
uniform edge sampling using O(log® n) cut queries in one round (i.e. non-adaptively) was
proposed in [4].* However, their algorithm is based on group testing principles using BIS
queries® and returns only the endpoints of the edge, but not its weight, though it is probably
not difficult to adapt their algorithm to return the weight as well. Our algorithm slightly
improves on the query complexity of their algorithm, while also returning the edge’s weight
in the same round.

» Lemma 2.1 (Uniform Edge Sampling). Given a (possibly weighted) graph G on n wvertices, a
source vertex s € V, and a target vertex set T C V' \ {s}, one can return an edge e uniformly
sampled from E(s,T), along with its weight w(e), using O(log®n/loglogn) cut queries in

one round, i.e, non-adaptively. The algorithm succeeds with probability 1 —n™%.

The algorithm works by subsampling the vertices in T into sets T'=Ty 2 T1 D ... D Tiogn,
and finds a level 4 such that 0 < |E(s,T;)] < O(logn). It then leverages sparse recovery
techniques to recover all the edges in E(s,T;) and return one of them at random. To
perform this algorithm in one round the algorithm recovers w(E(s,T;)) and performs the
queries needed for sparse recovery for all levels in parallel. It then applies the sparse
recovery algorithm to the last level with non-zero number of edges, i.e. the last level with
w(E(s,T;)) > 0. We note that it is easy to decrease the query complexity of Lemma 2.1 by
a factor of O(logn) by adding a round of queries and performing the sparse recovery only on
the relevant level.
Our second procedure performs weight-proportional edge sampling in two rounds.

» Lemma 2.2 (Weight-Proportional Edge Sampling). Given a graph G on n vertices with
integer edge weights bounded by W, a source vertex s € V, and a target vertex set T C V\{s},
one can return an edge e from E(s,T), along with its weight w(e), sampled with probability
w(e)/w(E(s,T)) using O(log® nlog?(nW)) queries in two rounds. The algorithm succeeds
with probability 1 —n=%.

The algorithm follows the same basic approach as the uniform edge sampling primitive, i.e.

creating nestled subsets T'= Ty 2 T1,2 ... 2 Tiog(nw) by subsampling. However, instead of
recovering only the edges that were sampled into the last level with non-zero weight, the

algorithm recovers in each level i all edges e € E(s,T;) such that w(e) ~ w(E(s,T))/2.

The recovery procedure is based on a Count-Min data structure [23], which we show can be
implemented using few non-adaptive cut queries. The algorithm then uses another round of
queries to learn the exact weights of all edges that were recovered in all the levels. It then
concludes by sampling an edge from the distribution {p.}, where for every edge e recovered
in the i-th level, it sets pe o< 2‘w(e) /w(E(s,T)); with probability 1 — > _ p., the algorithm
fails. Since the probability of being sampled into the i-th level is 2%, these probabilities
yield the desired distribution over the recovered edges.

To prove that the algorithm returns an edge with high probability, we show that there is
a constant probability that the outlined procedure returns some edge e € E(s,T), and hence
repeating the algorithm O(logn) times yields with high probability an edge sampled from

4 The algorithm requires O(log? nlog(1/5)) cut queries and succeeds with probability 1 — 4, setting
§ =n"? yields the bound.

5 A BIS query is given two disjoint sets A, B C V and returns true if there exists some edge connecting
A, B and false otherwise.

100:5

ESA 2025



100:6

Cut-Query Algorithms with Few Rounds

E(s,T) with the desired distribution. The query complexity of the algorithm is dominated
by the Count-Min data structure, which requires O(lognlog(nW)) cut queries in each level.
Applying the recovery procedure on O(log(nW)) levels, and repeating the procedure O(logn)
times yields the stated query complexity.

2.2 Unweighted Minimum Cut in Two Rounds

The key idea of our algorithm is to apply an edge contraction technique that produces a
graph with substantially fewer edges while preserving each minimum cut with constant
probability. We then recover the entire contracted graph using a limited number of cut
queries by applying existing graph recovery methods using O(m) additive queries [22, 14].
We show that it is possible to simulate k additive queries using O(n + k) cut queries, which
allows us to recover a graph with m > O(n) edges using O(m) cut queries.

» Corollary 2.3. Given a weighted graph G on n vertices and m edges, one can recover the
graph G using O(m + n) non-adaptive cut queries.

While there has been frequent use of contraction procedures for finding minimum cuts,
existing algorithms focused on reducing the number of vertices in the graph [28, 26, 3],
typically to O(n/3(G)). This does not suffice to guarantee a graph with few edges, for
example, applying such a contraction on a graph G with minimum degree §(G) = log®n
and Q(n) vertices of degree n, might yield a graph with Q(n?) edges. In contrast, our
goal is to reduce the number of edges in the graph, allowing efficient recovery of the
contracted graph using Corollary 2.3. The main technical contribution of this section is a
new contraction algorithm, which we call 7-star contraction, that reduces the number of
edges to O((n/7)? + n7).

Our contraction algorithm is a thresholded version of the star-contraction algorithm
introduced in [3]. The original version of the star-contraction algorithm of [3] can be roughly
described as follows. Sample a subset of center vertices R C V uniformly at random
with probability p = O(logn/d(G)). For every v € V' \ R, choose uniformly a vertex in
r € Ng(v) N R and contract the edge (v, r), keeping parallel edges, which yields a contracted
multigraph G’. The main guarantee of the algorithm is that if the minimum cut of G is
non-trivial, i.e. not composed of a single vertex, then A(G) = A(G’) with constant probability,
where A(G) denotes the value of a minimum cut in a graph. The following theorem states
this formally.

» Theorem 2.4 (Theorem 2.2 in [3]). Let G = (V, E) be an unweighted graph on n vertices
with a non-trivial minimum-cut value A(G). Then, the star-contraction algorithm yields a
contracted graph G’ that,

1. has at most O(nlogn/d(G)) vertices with probability at least 1 — 1/n*, and

2. has M(G") > MNQ) always, equality is achieved with probability at least 2 - 3713,

Note that in the cut query model, the algorithm cannot contract an edge because the
underlying cut function remains constant. However, it can simulate the contraction of
e = (u,v) by merging the vertices u and v into a supervertex in all subsequent queries, which
yields a contracted cut function. We now define our 7-star contraction algorithm.

» Definition 2.5 (7-star contraction). Given an unweighted graph G = (V, E) on n vertices

and a threshold T € [n], T-star contraction is the following operation.

1. Let H={v €V |d(v) > 7} be the set of high-degree vertices.

2. Form the set R CV by sampling each v € V independently with probability p = ©(logn/T).

3. For each uw € H\ R, pick an edge from E(u, R), if non-empty, uniformly at random and
contract it (keeping parallel edges).
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Notice that 7-star contraction depends on uniform edge sampling, since each vertex u € H\ R
samples a neighbor in R. In our case, we can use the uniform edge sampling procedure
described above to sample edges uniformly from E(u, R).

We now sketch the proof that 7-star contraction yields a graph with few edges. To bound
the number of edges, partition the vertices remaining after the contraction into two sets, R,
i.e. the center vertices sampled in the sampling process, and L = V' \ H, i.e. the low degree
vertices. This analysis omits vertices in H \ R that were not sampled into R or contracted,
because every v € H \ R has in expectation dg(v) - logn/7 € Q(logn) neighbors in R; hence
with high probability it will have some neighbor in R and be contracted.

To bound the number of edges observe that |R| < O(n/7) with high probability, and
hence the number of edges between vertices in R is O(|R|?) < O(n?/7?). In addition, since
the degree of the vertices of L is bounded by 7, the total number of edges incident on L,
even before the contraction, is O(n7). Hence, the total number of edges in G’ is with high
probability O(n?/7% + nr). The following lemma, proved in the full version of the paper,
formalizes the guarantees of 7-star contraction.

» Lemma 2.6. Let G = (V,E) be an unweighted graph on n vertices with a non-trivial
minimum-cut \N(G) and let T € [n]. A T-star contraction of G gives G’ that,

1. has at most O(n?/1% 4+ n7) edges with probability at least 1 — 1/n*, and

2. has M(G") > NQ) always, equality is achieved with probability at least 2 - 3713,

We present in Algorithm 1 a procedure for finding the global minimum cut in two rounds
using 7-star contraction. We will use it to prove Theorem 1.3, but first we need the following
claim.

Algorithm 1 Unweighted Minimum Cut in 2 Rounds.

1: Input: Graph G = (V, E)

2: Output: A minimum cut C CV

: sample a set R C V uniformly with probability p = 400 - logn/7

// Query round 1

: query cutg(v) for allv e V > find dg(v) for all v € V

: for each v € V'\ R, let n(v) < a random neighbor in Ng(v) N R > use Lemma 2.1

. 7 < max{n'/3,6(GQ)}

ViV

: for v e {V\ R| cutg(v) > 7} do
update V' by contracting the edge (v,n(v))

// Query round 2

10: recover G' = (V', E') with O(n?>~2/3 4+ n!*1/3) queries > use Corollary 2.3, assuming
|E| = O(n2~2/3 4 pl+1/3)

11: return min(A(G"),d(G)) > can return also a set S C V achieving the cut

w

© W N oA

> Claim 2.7. With probability 1 — n =3, line 9 of Algorithm 1 implements 7-star contraction
with 7 = max {n'/3,6(G)}.

Proof. Notice that R is sampled uniformly from V and that line 9 is executed only for vertices
in H\ R. Tt remains to show that the edge (v,n(v)) is sampled uniformly from Ng(v) N R,
which indeed follows from Lemma 2.1. To analyze the success probability, note that the
algorithm samples at most n edges in line 5 and by the guarantee of Lemma 2.1 this fails

with probability at most n-n=* =n=3. <
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Proof of Theorem 1.3. The main argument is that Algorithm 1 finds a minimum cut of
G with constant probability. Then, running this algorithm O(logn) times in parallel and
returning the minimum output obtained gives the desired result. Notice that by Lemma 2.6,
the connectivity of G’ can only increase, hence, if the algorithm finds a minimum cut of G in
some execution it will be returned. We assume throughout the proof that in all executions of
the algorithm the size guarantee of Lemma 2.6 holds, i.e. |E’| = O(n?>=2/% 4 n'*1/3) note
that this holds with probability 1 — O(n~*). Using a union bound with Claim 2.7 above, we
find that the algorithm succeeds with probability at least 1 —n=2.

By Claim 2.7 the graph G’ is the result of the 7-star contraction with 7 = n'/3, and thus
AMG") = M(G) with constant probability by Lemma 2.6. Therefore, recovering the graph G’
and returning the minimum of A\(G’) and §(G) gives a minimum cut of G with constant
probability.

To bound the query complexity, observe that the query complexity of the algorithm
is dominated by the number of queries in the graph recovery step, which is given by
O(n?2/3 4 p!*t1/3) = O(n*/3). In the first round, we use O(n) queries as finding the
degree of each vertex requires n queries, and sampling a neighbor in E(v, R) can be done
using O(log® n/loglogn) queries by Lemma 2.1. This concludes the analysis of the query
complexity of the algorithm, which is O(n*/3).

Finally, notice that the algorithm proceeds in two rounds; in the first round the algorithm
only queries the degrees of the vertices and samples an edge in E(v, R) for every v, which
does not require any prior information on the graph. In the second round, it recovers G’
round using Corollary 2.3. This concludes the proof of Theorem 1.3. <

2.3 Unweighted Minimum Cut in 2r rounds

This section provides an algorithm for finding a minimum cut in 2r rounds, thus proving
Theorem 1.4. The algorithm uses a known approach of first applying a contraction algorithm,
yielding a graph with O(n/3(G)) vertices, and then packing 6(G) edge-disjoint forests in the
contracted graph. The main challenge in adapting this algorithm to low round complexity, is
ensuring that the forests are edge disjoint when packing them in parallel. This is achieved
by leveraging a connection to cut sparsification, which shows that sampling edges with
probabilities amplified by a factor of k relative to those needed for sparsifier construction
ensures finding k edge disjoint forests within the sampled subset. We note that we also offer
another algorithm for finding a minimum cut, that has slightly worse query complexity of
O(rn'*1/m), and is based on constructing a cut sparsifier and the results of [33], see the full
version of the paper.

The contraction we use is the 2-out contraction procedure of [26], which is obtained by
sampling uniformly two edges incident to each vertex and contracting all the sampled edges.
The following theorem states the guarantees of the 2-out contraction.

» Theorem 2.8 (Theorem 2.4 in [26]). Let G = (V, E) be an unweighted graph on n vertices
with a non-trivial minimum-cut value \(G). Then, applying a 2-out contraction algorithm
gives G’ where,

1. G’ has at most O(n/6(G)) vertices with high probability, and

2. has A(G") > M(G) always, equality is achieved with constant probability.

The other building block of the algorithm is maximal k-packing of forests.

» Definition 2.9 (Maximal k-Packing of Forests). Given a (possibly weighted) graph G, a
maximal k-packing of forests is a set of edge-disjoint forests Ty, ..., Ty that are mazimal, i.e.
for every i € [k] and e € E \ U;T}, the edge set T; U {e} contains a cycle.
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» Lemma 2.10. Given a (possibly weighted) graph G on n vertices and parameters r €
{1,...,logn} and k € [n], one can find a mazimal k-packing of forests of G using O(krn'T1/7)

cut queries in 2r rounds. The algorithm is randomized and succeeds with probability 1 — n=%.

We now outline the algorithm of Lemma 2.10, for further details see the full version of the
paper. The algorithm begins by creating a set of empty trees 17,...,T,. Then, in each of
r — 1 rounds it uniformly samples O~(kn1+1/ ") edges from the graph, augments the trees {T;}
by adding all sampled edges that do not form a cycle, and contracts all vertices that are
connected in all trees. We show that the number of edges decreases by an n'/” factor in each
round; hence, after r — 1 rounds the number of remaining edges is O(nl'H/ ™). Finally, the
algorithm recovers all remaining edges by sampling O(n1+1/ ") edges uniformly, which recovers
all edges by a standard coupon collector argument, and augments the trees appropriately.

To guarantee the decrease in the number of edges we leverage an elegant connection to
cut sparsifier contraction. The seminal work [13] showed that if we sample (and reweight)
every edge with probability proportional to its strong connectivity, then the resulting graph
approximates all the cuts of the original graph with high probability.

» Definition 2.11 (Strength of an Edge). Let G = (V, E,w) be a weighted graph. We say
that S C 'V is k-strong if the minimum cut of the induced graph G|[S] is at least k. An edge
e € FE is k-strong if it is contained within some k-strong component S.

We also need the following lemma concerning the existence of k-strong components in a
graph.

» Lemma 2.12 (Lemma 3.1 in [12]). Every weighted graph H with n vertices and total edge
weight at least kK(n — 1) must have a k-strong component.

We can now detail the process of edge reduction of Lemma 2.10. Let G be a graph with m
edges and n vertices. Observe that after one round of sampling, the algorithm contracts every
(m/nlﬂ/r)—strong component of G, and thus by Lemma 2.12 the number of edges remaining
in the graph is at most m/n'/". Let C C V be a maximal Q(m/n'*1/7)-strong component of
G, and assume the algorithm samples every edge of the graph with probability p. ~ k/k. In
expectation the algorithm samples at least p. - m/ n' /7 ~ k edges crossing each cut S C C,

which also holds with high probability by standard concentration and cut counting results.

Therefore, for every u,v € C, the minimum cut in the sampled subgraph has at least k edges,
hence they are connected in k edge disjoint forests and will be contracted. In conclusion, in
every iteration the algorithm contracts all (m/n1+1/ ")-strong components of the graph, and
the number of edges in the graph decreases by a factor of n!/".

Proof of Theorem 1.4. The algorithm begins by performing a 2-out contraction on G to
obtain a graph G’ with O(n/6(G)) vertices which preserves each non-trivial minimum cut
of G with constant probability by Theorem 2.8. In parallel, the algorithm learns §(G) by
querying the degree of each vertex. Then, it packs k = §(G) trees {Ti}f:l in G’ using
Lemma 2.10. Notice that since the minimum cut of G is at most 6(G) and each edge has
weight at least 1 then 0(G) trees in G’ will include all edges in the minimum cut. Hence,
returning the minimum between ¢(G) and the minimum cut of H = (V, Ey = U,;T;) will
yield the minimum cut of G with constant probability. To amplify the success probability we
repeat the algorithm O(logn) times in parallel and return the minimum cut found.

To analyze the query complexity notice that by Lemma 2.1, sampling the edges for the
2-out contraction takes O(n) queries in one round. Hence, the algorithm constructs G’ in
O(n) queries in one round. Then, it packs k = §(G) trees in G’, which has only O(n/k)
vertices, using O(6(G)r(n/8(G))* /") queries in 27 rounds by Lemma 2.10. Hence, overall

the algorithm require O(§(G)~Y/"rn'*t1/") queries in 2r + 1 rounds.
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We conclude the proof by analyzing the success probability of the algorithm. Our
implementation of the 2-out contraction succeeds with probability 1 —n - n~% since it only
requires sampling O(n) edges using Lemma 2.1. Then, each tree packing succeeds with
probability 1 — 2n~2 by Lemma 2.10. By a union bound, the entire algorithm succeeds with
probability 1 — n~!, which concludes the proof of Theorem 1.4. |

2.4 Weighted Minimum Cut in O(7) rounds

In this section we give an overview of our algorithm for minimum cut in a weighted graph
with low adaptivity. It is an adaptation of the minimum cut algorithm of [31], which reduces
the problem to constructing a cut sparsifier and solving a monotone matrix problem which
is easily parallelizable. The main difficulty lies within the construction of a cut sparsifier;
while previous work in the cut-query model already provided cut sparsifiers [33, 32], its
core step, weight-proportional edge sampling, uses O(logn) rounds. Our main technical
contribution here is our two-round weight-proportional edge sampling primitive (Lemma 2.2),
which enables the construction of a (1 £ €)-cut-sparsifier in 3r rounds and the completion of
the entire reduction within O(r) rounds.

The algorithm of [31] for finding a minimum cut in a weighted graph is actually based
on the 2-respecting minimum-cut framework of [27]; where a spanning tree T' C E is called
2-respecting for a cut C C E if [ NT| < 2. The main insight here is that a given a spanning
tree T that is 2-respecting for a minimum cut €, there are only O(n?) cuts that one needs
to check to find a minimum cut, and they correspond to all pairs of edges in T'. Originally
[27], proposed a clever dynamic algorithm to calculate all these cuts quickly. In contrast, the
algorithm of [31] leverages the structure of the 2-respecting spanning tree to show that the
number of potential cuts is actually much smaller; restricting attention to sub-trees, {T;},
that are all paths and whose total size is bounded. Furthermore, when T is a path the task
of finding a minimum cut reduces to the following problem.

» Definition 2.13 (Monotone Matrix Problem). Let A € RY** be a matriz. For every column
J denote the first row in which j attains its minimum value by js and the last row in which j
attains its minimum value by j.. The matriz is called monotone if for every ¢ > j we have
gt <'ig; i.e. the row in which the minimum value is found increases monotonically as we
move to the right.

The monotone matrix problem is to find the minimum value of a monotone matriz (of
dimension a X a) while querying the value of as few entries as possible.

In the context of the minimum cut problem, each entry in the matrix corresponds to a cut
in G and can be recovered using a single cut query. We summarize some results from [31] in
the following lemma, whose proof is provided in the full version of the paper.

» Lemma 2.14. Assume there is an algorithm to construct a (1 & €)-cut-sparsifier for a
graph G on n vertices using qs(n) queries in rg(n) rounds, and an algorithm that solves the
monotone matriz problem on instances of size n using qp(n) queries in ryr(n) rounds. If
in addition the function qp; is convez, then it is possible to find a minimum cut of G using

O(gs(n) + qu(n) +n) cut queries in rg(n) + rar(n) + 2 rounds.

Therefore, in order to find a minimum cut it suffices to construct a cut sparsifier and then
solve the monotone matrix problem. Our main technical contribution in this section is a
construction of a cut sparsifier with low adaptivity. We begin by formally defining the notion
of a cut sparsifier.
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» Definition 2.15. Let G = (V, E,w) be a weighted graph and let H = (V, Eg,wp) be a
weighted subgraph of G. We say that H is a (1 & €)-cut-sparsifier of G if,

VS CV, cuty (S) € (1 £ €)cutg(S).

» Lemma 2.16. Given a weighted graph G = (V, E,w) on n wvertices with integer edge
weights bounded by W, and a parameter r € {1,2,...,logn}, one can construct a (1+ €)-cut-
sparsifier of G using O(e~2rn'+(H08. W)/ eyt queries and 3r + 3 rounds. The algorithm

is randomized and succeeds with probability 1 — n~2.

We now sketch the proof of Lemma 2.16, for more details see the full version of the paper.
The sparsifier construction is similar to the one in [33, 32] but modified to work in r rounds.
It follows the sampling framework of [13], that shows that if one samples every edge in a
graph with probability proportional to its strong connectivity, then the sampled graph is
a (1 + €)-cut-sparsifier with high probability. The algorithm is based on iteratively finding
the strongest components of the graph using weight-proportional edge sampling, assigning
a strength estimate to all their edges, and contracting them. It repeats this process until
all vertices are contracted. Finally, it samples all the edges in the graph according to their
strength estimates, and returns the sampled edges as the sparsifier.

Our algorithm improves on the round complexity of the existing constructions in two
ways: the first one is the adoption of a two-round weight-proportional sampling algorithm
that eliminates an O(logn) factor in the round complexity. The second improvement is in
the number of contraction steps performed. The algorithm of [33, 32] uses O(log(nW)) steps,
where in each step strengths are approximated within factor 2. Our algorithm uses instead r
steps, where each step contracts all components with strength within an n(t+1°g, W)
Since the maximum component strength is O(n!*1°8» W) the algorithm can contract all the
components within 7 steps.

Our second technical contribution is an algorithm that solves the monotone matrix
problem in few rounds, the proof is provided in the full version of the paper.

/™ factor.

» Lemma 2.17. There exists an algorithm that solves the monotone matriz problem on
instances of size n using O(an/T) queries in T rounds.

The algorithm for the monotone matrix problem in [31] uses a divide-and-conquer
approach. At each step the algorithm reads the entire middle column j of the matrix A and
finds the minimum value in the column. Then, it splits the matrix into two submatrices
Ap = A[l,...,js;1,...,j] and Agr = Aljs,...n;5 + 1,...n] based on the location of the
minimum value in the column. The algorithm is guaranteed to find the minimum value in
each column by the monotonicity property of the matrix. Finally, it is easy to verify that as
the size of the problem decreases by factor 2 in each iteration, the overall complexity of the
algorithm is O(n).

Unfortunately, the algorithm of [31] requires O(logn) rounds to complete all the recursion
calls. Our algorithm instead partitions the matrix into n'/"
block, which requires a total of O(nlﬂ/r) queries in r rounds.

To conclude this section, notice that Theorem 1.5 follows by combining Lemma 2.14,
Lemma 2.16, and Lemma 2.17.

blocks and then recurses on each

2.5 Open Questions

Optimal Tradeoff Between Rounds vs Queries Complexity. An interesting open question
is whether our constructive results have matching lower bounds or, alternatively, if better
algorithms exist. Currently, there are no known query lower bounds even for algorithms
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that use a single round of queries. We note that connectivity can be solved in one round
with O(n) queries [4], however it remains unclear whether this can be extended to finding a
minimum cut, or whether there exists a lower bound of Q(n!*€) cut queries for one round
algorithms.

Adaptivity of Deterministic Algorithms. A deterministic algorithm for finding a minimum
cut in simple graphs using O(n/?) cut queries was recently shown in [2], however its round
complexity is polynomial in n, and it seems challenging to achieve polylogarithmic round
complexity. In comparison, graph connectivity can be solved deterministically using O(n”l/ ")
cut queries in O(r) rounds [4],° though these techniques do not seem to extend to finding a
minimum cut.
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