
Improved Algorithms for Quantum MaxCut via
Partially Entangled Matchings
Anuj Apte
University of Chicago, IL, USA

Eunou Lee
Korea Institute for Advanced Study, Seoul, South Korea

Kunal Marwaha
University of Chicago, IL, USA

Ojas Parekh
Sandia National Laboratories, Albuquerque, NM, USA

James Sud #

University of Chicago, IL, USA

Abstract
We introduce a 0.611-approximation algorithm for Quantum MaxCut and a 1+

√
5

4 ≈ 0.809-approxi-
mation algorithm for the EPR Hamiltonian of [12]. A novel ingredient in both of these algorithms
is to partially entangle pairs of qubits associated to edges in a matching, while preserving the
direction of their single-qubit Bloch vectors. This allows us to interpolate between product states
and matching-based states with a tunable parameter.
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1 Introduction

Given a graph G(V,E,w) with positive edge weights w : E → R+ and a 2-local Hamiltonian
term h, define the n-qubit Hamiltonian

HG
def=

∑
(i,j)∈E(G)

wij · hij ,

where hij is the local term h applied on qubits (i, j). For two particular local terms h, we
are interested in the problem of computing the maximum energy of HG, which we denote as
λmax(HG), for any G. This is not an easy task in general: deciding if λmax(HG) is above
some threshold with inverse polynomial accuracy is known to be QMA-hard [18].

In the first problem, we choose the local term

hQMC
ij

def= 1
2 (IiIj −XiXj − YiYj − ZiZj) = 2 |ψ−⟩ij ⟨ψ−|ij ,

where |ψ−⟩ = 1√
2 (|01⟩ − |10⟩) is the singlet state. This problem has recently been studied

under the name Quantum MaxCut (QMC) [7]. In the statistical mechanics literature,
Hamiltonians HG defined by hQMC are instances of the zero-field quantum Heisenberg
XXX1/2 model. The decision version of QMC is QMA-hard [18].

In the second problem, we choose the local term

hEP R
ij

def= 1
2 (IiIj +XiXj − YiYj + ZiZj) = 2 |ϕ+⟩ij ⟨ϕ+|ij ,

where |ϕ+⟩ = 1√
2 (|00⟩ + |11⟩). This problem, named EPR by [12], is thought to be easier

than QMC, since Hamiltonians HG defined by hEP R are stoquastic (sign-problem free) [18, 5].
In fact, it is not yet clear if EPR can be solved in polynomial time.

In lieu of exactly computing λmax(HG), we may try to approximate this value. In
both problems, the local term h is positive semidefinite, so λmax(HG) ≥ 0. We judge
an approximation by its approximation ratio. Suppose we can find efficiently computable
functions ℓ, u such that for all graphs G,

0 ≤ ℓ(G) ≤ λmax(HG) ≤ u(G) .

Then, the approximation ratio α is at least

α ≥ min
G

ℓ(G)
λmax(HG) ≥ min

G

ℓ(G)
u(G) .

In most works, the upper bound u is determined by solving a semidefinite programming
(SDP) relaxation of the maximization problem [3, 7, 16, 19, 20, 9]. The source of such SDP
relaxations are generally hierarchies of SDPs that provide increasingly better upper bounds
u at the cost of solving larger-sized SDPs. The quantum moment-SOS hierarchy, typically
based on Pauli operators, is widely employed for quantum local Hamiltonian problems. This
hierarchy is an instance of the NPA hierarchy [15] and is also known as the quantum Lasserre
hierarchy [16]. The second level of the quantum moment-SOS hierarchy is necessary for good
approximations, since critical monogamy-of-entanglement properties begin to emerge at that
level [16, 17].

The lower bound ℓ is usually determined by an algorithm that prepares a state with
this energy. Several approximation algorithms have been proposed for QMC and EPR,
using product states [7, 16, 17, 12], matchings [1, 16, 17, 14, 10, 8], and short variational
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circuits [1, 13, 12, 11, 8]. During the preparation of this manuscript, the best known
approximation ratios for these problems were improved to α ≥ 0.603 for QMC [8] and
α ≥ 1+

√
5

4 ≈ 0.809 for EPR [11].
We provide a new algorithm for both problems. For each algorithm, we start from a good

product state. We then choose a matching in G and partially rotate matched qubits towards
an entangled state. Our novel contribution is to perform this rotation such that individual
single-qubit Bloch vectors are preserved, up to a rescaling of magnitude. This allows us to
evaluate the energy of our entangled state in terms of the energy of the product state. For
EPR, we use a fractional matching and provide a circuit-based algorithm. For QMC, we
explicitly describe a tensor-product of single and two-qubit states, which interpolates between
the product state and an integer matching-based state with a single tunable parameter. For
QMC, we additionally introduce the technique of choosing a maximum-weight matching with
respect to rescaled edge weights. One interpretation of this approach is that we widen the
search space of our algorithm to include matchings other than the maximum-weight matching
of G. Combining these techniques allows us to achieve state-of-the-art approximation ratios
on each problem:

▶ Theorem 1. For EPR, α ≥ φ
2 ≈ 0.809, where φ def= 1+

√
5

2 ≈ 1.618 is the golden ratio.

▶ Theorem 2. For QMC, α ≥ 0.611.

▶ Remark 3. Theorem 1 was shown simultaneously and independently by [11] using a different
algorithm. The algorithm of [11] also partially entangles edges while preserving single-qubit
marginals. However, we believe both our algorithm and analysis are simpler.

▶ Remark 4. Theorem 2 requires an improved upper bound in addition to new algorithmic
techniques. The technique of finding a matching with respect to rescaled edge weights was
simultaneously and independently used by [8]; however, they use this as part of an improved
approximation algorithm for QMC on triangle-free graphs rather than general graphs. Our
QMC approximation does rely on a strengthening by [8] of a class of upper bounds first used
in the work [14]. Without this strengthened bound, we still achieve an approximation ratio
α ≥ 0.610.

Our approximation algorithm finds a quantum state ρG such that Tr (HGρG) ≥ ℓ(G).
For the EPR Hamiltonian, the analysis of our algorithm is optimal: there exist graphs G
(such as the single-edge graph) where

ℓ(G)
u(G) ≤ ⟨ψG|HG |ψG⟩

λmax(G) = 1 +
√

5
4 .

For QMC, however, it is possible that a better analysis of this algorithm (particularly of
u(G)) would give a larger approximation ratio.

We stress the novelty of this work is new algorithmic techniques for QMC and EPR. We
use these techniques to immediately improve the approximation ratios for each algorithm,
however we believe that these techniques, potentially combined with previous methods, may
lead to further improvements in approximation ratios for both algorithms. In the remainder
of this work, we introduce necessary notation, describe each algorithm, and prove Theorems 1
and 2. We defer some technical lemmas to the appendix, which can be found in the full
version of this paper [2].

ESA 2025
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2 Preliminaries

2.1 Graph theory

Let G(V,E,w) denote a graph with vertex set V , edge set E, and positive edge weights w :
E → R+. In this work, we always take V = [n] def= {1, 2, . . . , n}. We let WG

def=
∑

(i,j)∈E wij .
When G is inferred by context, we simply write W . Define N(v) as the set of neighbors of a
vertex v ∈ V . For convenience, we index edges by either e or (i, j), or simply ij in subscripts.

A fractional matching of a graph G(V,E,w) is a function m : E(G) → [0, 1] that assigns
a value to each edge in G, such that the sum over values

∑
j∈N(i) mij is at most 1 for any

vertex i. If mij ∈ {0, 1} for all edges (i, j), we say that m is an integral matching. For an
integral matching m, we say an edge (i, j) is in the matching if mij = 1. The weight Wt(m)
of a matching m is defined as Wt(m) def=

∑
(i,j)∈E(G) wij mij . We define FMG (or MG) to be

the maximum total weight of any fractional (or integral) matching of G. For convenience, we
sometimes let MG also denote the set of edges in the maximum-weight integral matching
of G. When the graph is clear from context we drop the subscript G. Optimal integral
and fractional matchings can be computed in polynomial time, for example with linear
programming [6].

2.2 Quantum computation

We refer to σ⃗ = (X,Y, Z) as the canonical Pauli matrices. As such, we can define the Bloch
vector B⃗(ρ) of any 1-qubit density matrix ρ as the vector (bx, by, bz) in the unit sphere S2

such that

ρ = 1
2(I + B⃗(ρ) · σ⃗) def= 1

2(I + bxX + byY + bzZ) .

Pure states correspond to unit Bloch vectors. Let |ψ−⟩ = 1√
2 (|01⟩ − |10⟩) be the singlet

state, and |ϕ+⟩ = 1√
2 (|00⟩ + |11⟩) be the EPR state.

2.3 Previous algorithms

In our work, we use two previously known algorithms as subroutines:
1. The algorithm PROD takes a graph G(V,E,w) as an input, and outputs a good product

state ρP ROD. For EPR, we define ρP ROD
def= |0⟩⊗n ⟨0|⊗n. For QMC, we define PROD to

be the output of the [7] rounding algorithm applied to the some fixed constant level k
of the quantum moment-SOS hierarchy, as in [17] and [14]. This is the only part of our
algorithm for QMC that relies on an SDP. As described in [17, Sec 2.2], the output from
the SDP can be interpreted as a pseudo-density matrix. It is called a pseudo-density matrix
because it satisfies only some of the constraints of a valid density matrix. Furthermore,
the SDP at any constant ℓ can be solved in polynomial time.

2. The algorithm MATCH takes a graph G(V,E,w) as an input, and outputs a product of
2-qubit states ρMAT CH . It was first formally proposed in [14]. The algorithm first finds a
maximum-weight integral matching MG. For EPR (and for QMC), it outputs the tensor
product of |ϕ+⟩ij ⟨ϕ+|ij (and |ψ−⟩ij ⟨ψ−|ij for QMC) for every pair of vertices (i, j) in
the matching, and the maximally mixed state for every vertex i not in the matching.
This obtains energy 2 on matched edges and 1/2 on unmatched edges, for a total of
(3MG +WG)/2.
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3 Our Algorithms

To motivate our algorithms, consider the following simple graph G:

a b c

This graph is bipartite, so QMC and EPR are equivalent under local rotations [12]. We thus
focus on EPR for simplicity. It is easy to compute that λmax(HG) = 3. The optimal product
state ρP ROD is ρ⊗3

0 , where ρ0
def= |0⟩ ⟨0|, and achieves energy 2. The algorithm MATCH

computes the maximum matching MG = {(a, b)} and returns the state ρMAT CH as described
in Section 2. This state gains energy 2 on edge (i, j) and 1/2 on edge (b, c), achieving total
energy 5/2. Thus, the algorithm of [14], which returns the better of ρP ROD and ρMAT CH ,
achieves 5/6 ≈ 0.833 of the optimal energy.

Our algorithms do better by interpolating between ρP ROD and ρMAT CH , rather than
taking the better of the two. For our example G, the unitary

U = e
iθ
(

Xa−Ya√
2

⊗ Xb−Yb√
2

)
,

takes ρP ROD to ρ′, a tensor product of a two-qubit state ρab and a single-qubit state ρc.
The parameter θ sets the entanglement for ρab: when θ = 0, ρab is a product state; when
θ = π/4, ρab is fully rotated into the EPR state. As such, we view this approach as smoothly
interpolating between ρP ROD and ρMAT CH in superposition. It can be easily verified that
the energy obtained by ρ′ on edge (a, b) is Tr

[
hEP R

ab ρ′] = 1 + 2 cos θ sin θ, and the single qubit
marginals of a and b are given by

ρ′
a

def= Trbc[ρ′] = cos 2θρ0 + 2 sin2 θI = ρ′
b .

In particular, note that the single qubit marginals are simply rescaled and shifted by the
identity. This fact aids in the analysis: we can still evaluate the energy of (b, c) in terms of
ρP ROD, even though the edge is not in our matching:

Tr
[
hEP R

bc ρ′] = Tr
[
hEP R

bc (ρ′
b ⊗ ρ′

c)
]

= Tr
[
hEP R

bc (ρ′
b ⊗ ρ0)

]
= Tr

[
hEP R

bc

((
cos 2θρ0 + 2 sin2 θ (I/2)

)
⊗ ρ0

)]
= Tr

[
hEP R

bc

(
cos 2θρP ROD + sin2 θ I ⊗ ρ0

)]
= cos 2θ + sin2 θ = cos2 θ .

Thus the total energy is given by

Tr
[
(hEP R

ab + hEP R
bc )ρ′] = 1 + 2 cos θ sin θ + cos2 θ .

The parameter θ can be optimized over; in this example, taking θ ≈ .554 yields

Tr
[
(hEP R

ab + hEP R
bc )ρ′] ≈ 2.618,

outperforming both ρP ROD and ρMAT CH .
In this example, the analysis simplifies nicely because the initial product state is the

symmetric state ρ⊗n
0 , and because the graph is bipartite. For EPR on general graphs, we

provide a circuit-based algorithm that prepares an entangled state based on a fractional
matching in the graph. This state still works by partially entangling edges according to the

ESA 2025
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matching while preserving single-qubit marginals, but it does not have a simple interpretation
in terms of ρMAT CH . We leave open the possibility that a ( 1+

√
5

4 )-approximation algorithm
can be achieved with a tensor product of one and two-qubit states that simply interpolates
between ρP ROD and ρMAT CH . For QMC, our algorithm does indeed interpolate between
ρP ROD and ρMAT CH . However the algorithm and analysis become slightly more complicated.
Crucial to our analysis is the following lemma:

▶ Lemma 5 (Energy obtained by QMC algorithm on matched and unmatched edges). Given
two 1-qubit pure states ρi, ρj and a real parameter θ ∈ [0, π/2], there exists a 2-qubit pure
state ρij such that

Tr
[
hQMCρij

]
=

(1 + sin θ)
(

1 − B⃗(ρi) · B⃗(ρj)
)

2 ,

B⃗(Trj [ρij ]) = cos θ · B⃗(ρi) ,

B⃗(Tri[ρij ]) = cos θ · B⃗(ρj) .

The last two constraints in Lemma 5 indicate that the Bloch vectors of the single-qubit
marginals of ρij are rescaled Bloch vectors of ρi and ρj , respectively. This is analogous to
the argument in our example, where the marginals are rescaled and shifted by the identity.
This again allows us to compute the energy of unmatched edges in terms of ρP ROD. The
parameter θ again sets the entanglement in ρij : when θ = 0, ρij is a product state; when
θ = π/2, ρij is maximally entangled. The proof of Lemma 5 is given in the appendix of [2].

3.1 EPR
Using the intuition from our example, we introduce the following algorithm for EPR:

▶ Algorithm 1 (Fractional matching algorithm for EPR). Given a weighted graph G(V,E,w):
1. Define the 1-qubit Hamiltonian

P
def= 1√

2
(X − Y ) ,

and the angle

θ
def= ln (φ)

2 ≈ 0.240 , (1)

where φ = 1+
√

5
2 is the golden ratio.

2. Find a fractional matching (muv)(u,v)∈E of maximum weight (e.g., via linear program-
ming).

3. Output the state

|χ⟩ def=
∏

(u,v)∈E

eiγuvPuPv |0⟩⊗n
, (2)

where

γuv = 1
2 cos−1 exp [−θ ·muv] ∈ [0, π/2] . (3)

The unitary eiγPuPv rotates the state |00⟩ij towards the Bell state |ϕ+⟩; this circuit was
proposed in the approximation algorithm of [12].
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3.2 QMC
Our algorithm for QMC relies on the following subroutine, which we call PMATCH since it
places partially entangled 2-qubit states on the edges of a matching, while MATCH places
maximally entangled states:

▶ Algorithm 2 (PMATCH). Given a weighted graph G(V,E,w) and a real parameter
θ ∈ [0, π/2]:
1. Prepare the state ρP ROD =

⊗
i∈[n] ρi by running the PROD algorithm on QMC from

Section 2 for some fixed, constant SDP level ℓ.
2. For each edge (i, j) ∈ E, compute tij

def= B⃗(ρi) · B⃗(ρj) from ρP ROD.
3. Find a maximum-weight integral matching M̃ ⊆ E on the reweighted graph G(V,E′, w̃),

where

w̃ij = wij ·
(

sin θ (1 − tij (1 + sin θ))
2

)+
, (4)

and E′ = {(i, j) ∈ E | w̃ij > 0}. Here, we use the notation (·)+ def= max(0, ·) from [14].
4. Let ρP MAT CH (θ) be the state starting from ρP ROD, but for each edge (i, j) in M̃ , replace

ρi ⊗ ρj with the state ρij described in Lemma 5, parametrized by ρi, ρj , θ.
5. Output the state ρP MAT CH (θ).

Our algorithm for QMC chooses the better of the algorithms PMATCH and MATCH:

▶ Algorithm 3 (Combined algorithm for QMC). Given a weighted graph G(V,E,w):
1. Prepare the state ρMAT CH by running the MATCH algorithm from Section 2.
2. Prepare the state ρP MAT CH (θ) by running PMATCH with parameter θ = 1.286.
3. Output the state out of ρMAT CH and ρP MAT CH(θ) obtaining larger energy on the QMC

Hamiltonian HG.

4 Analysis

We upper-bound the maximum energy λmax(HG) of QMC and EPR Hamiltonians using a
quantifiable monogamy of entanglement:

▶ Lemma 6 (Monogamy of Entanglement, e.g. [14, Lemma 1]). For both EPR and QMC, and
for all graphs G(V,E,w), we have

λmax(HG) ≤ WG + FMG .

For QMC, our analysis improves with better upper bounds on λmax(HG). We use an
inequality of the form WG + MG/d; this first appears in [14, Lemma 4] with the constant
d = 4/5. By a detailed analysis and numerical verification on graphs with up to 13 vertices,
this constant was recently improved to 14/15 in [8]:

▶ Lemma 7 (Strengthened monogamy of entanglement, [8, Lemma 3.10]). For QMC, and for
all graphs G(V,E,w), we have

λmax(HG) ≤ WG + MG

d
,

where d = 14
15 . Additionally, the bound holds for the optimal value of the 13-th level of the

quantum moment SoS hierarchy.

ESA 2025
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4.1 EPR
We now prove Theorem 1. Given the state in Equation (2)

|χ⟩ def=
∏

(i,j)∈E

eiγijPiPj |0⟩⊗n
, (5)

[12, Lemma 9] showed that the energy on the local term hEP R
ij is at least

⟨χ|hEP R
ij |χ⟩ ≥ 1

2 (1 +AijBij + sin 2γij · (Aij +Bij)) , (6)

where

Aij
def=

∏
k∈N(i)\{j}

cos 2γik ,

Bij
def=

∏
k∈N(j)\{i}

cos 2γjk .

In Algorithm 1, the output state |χ⟩ is in the form of Equation (5). Using the angles γij

specified by Equation (3), we have

Aij = exp

−θ
∑

k∈N(i)\{j}

mik

 ≥ exp [−θ(1 −mij)] , (7)

Bij = exp

−θ
∑

k∈N(j)\{i}

mjk

 ≥ exp [−θ(1 −mij)] , (8)

sin 2γij =
√

1 − cos2 2γij =
√

1 − exp [−2θmij ] . (9)

The inequalities in the first two lines follow because m is a matching. For example, we have
mij +

∑
k∈N(i)\{j} mik ≤ 1. Using Equation (6), the energy of |χ⟩ on hQMC

ij is at least

T (θ,mij) def= 1
2

(
1 + exp [−2θ(1 −mij)] + 2

√
1 − exp [−2θmij ] exp [−θ(1 −mij)]

)
. (10)

We combine Equation (10) with Lemma 6 to bound the approximation ratio on any graph
G(V,E,w):

⟨χ|HG |χ⟩
λmax(HG) ≥

∑
(i,j)∈E wij · T (θ,mij)∑
(i,j)∈E wij (1 +mij) .

Each term in the numerator and denominator is positive, so the approximation ratio is at
least the approximation ratio of the worst edge

min
(i,j)∈E

T (θ,mij)
1 +mij

≥ min
x∈[0,1]

T (θ, x)
1 + x

. (11)

Recall from Equation (1) that we take θ = 1
2 lnφ. We empirically identified θ as the angle

that maximizes the approximation ratio in this analysis. Substituting this value into T (θ, x)
in Equation (10), the RHS of Equation (11) yields the minimization problem

min
x∈[0,1]

[
1

2(1 + x)

(
1 + φ−(1−x) + 2

√
1 − φ−x · φ− 1

2 (1−x)
)]
,

whose value is found to be φ/2 by the following lemma:
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▶ Lemma 8. Given φ
def= 1+

√
5

2 , we have that

min
x∈[0,1]

[
1

2(1 + x)

(
1 + φ−(1−x) + 2

√
1 − φ−x · φ− 1

2 (1−x)
)]

= 1 +
√

5
4 = φ

2 . (12)

The proof of Lemma 8 is given in the appendix of [2].

4.2 QMC

We now analyze Algorithm 3 and prove the 0.611-approximation in Theorem 2. We first
introduce some helpful notation. Fix a graph G(V,E,w). Let ρ̃ be the pseudo-density matrix
outputted by solving the SDP of the level-ℓ quantum moment-SOS hierarchy (described in
Section 2.3). We define

gij
def= Tr[hQMC

ij ρ̃] , sij
def= 1

3Tr[(XiXj + YiYj + ZiZj)ρ̃] .

The first value is the energy obtained by ρ̃ on hQMC
ij ; the second value is the expected value

of ρ̃ with respect to the traceless components of the term hQMC
ij . It is straightforward to

show that gij = 1
2 (1 − 3sij). The output of the SDP gives an upper bound to the optimal

energy:

λmax(HG) ≤
∑

(i,j)∈E

wij · gij =
∑

(i,j)∈E

wij · 1 − 3sij

2 . (13)

Fix a positive integer k and suppose Lemma 7 is true for d = 2k
2k+1 . Then, consider a

reweighting G̃(V,E, u) of the graph G where uij ≥ 0. Let x ∈ RE be a vector with

xij
def= d (gij − 1)+ = d

(
−1 + 3sij

2

)+
.

Here, we again use the notation (·)+ def= max( · , 0) from [14], which ensures(
−1 + 3sij

2

)+
∈ [0, 1] , ∀(i, j) ∈ E.

It is shown (e.g. in [8, Lemma 3.4]) that x is in the integral matching polytope of G̃. This
means that x is a convex combination of integral matchings {mℓ}1≤ℓ≤k. Since the weight
of any integral matching mℓ on G̃ is at most M

G̃
, the weight of x on G̃ is also at most M

G̃
.

Thus,

∑
(i,j)∈E

uij · d ·
(

−1 + 3sij

2

)+
≤ M

G̃
. (14)

Equation (14) in this context was first used in [16] and also appears in [14, Lemma 4] and
[10, Lemma C.2].

We now find a lower bound for the energy obtained by the matching state ρP MAT CH (θ)
in PMATCH. We consider the energy on a case-by-case basis in the following lemma:

ESA 2025
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▶ Lemma 9. Consider the state ρP MAT CH and matching M̃ from Algorithm 2. For x ∈
{0, 1, 2}, let S̃x be the subset of edges not in M̃ (e.g. S̃x ⊆ E \ M̃) where each edge in S̃x

has x matched endpoints in M̃ . Then the energy of ρP MAT CH on an edge (i, j) is exactly

Tr
[
hQMC

ij ρP MAT CH

]
=


1
2 (1 + sin θ) (1 − tij) , (i, j) ∈ M̃ ,
1
2 (1 − tij), (i, j) ∈ S̃0 ,
1
2 (1 − tij cos θ) , (i, j) ∈ S̃1 ,
1
2
(
1 − tij cos2 θ

)
, (i, j) ∈ S̃2 .

where, tij is defined in Algorithm 2.

Proof. The case when (i, j) ∈ M̃ follows directly from how we choose ρP MAT CH in Algorithm
2, Step 4. For all other edges, recall that tij is the inner product of the Bloch vectors of
qubits i and j with respect to the product state ρP ROD. The reduced density matrix of
ρPMATCH on qubits i and j is a product state σi ⊗ σj . By [12, Lemma 10], the energy of
σi ⊗ σj on hQMC

ij is

1
2

(
1 − B⃗(σi) · B⃗(σj)

)
.

We handle each remaining case separately:
1. (i, j) ∈ S̃0: Here, the product state is exactly ρi ⊗ ρj , and so B⃗(σi) · B⃗(σj) = tij by

definition.1
2. (i, j) ∈ S̃1: Without loss of generality, i belongs to a matched edge in M̃ and j is

not in a matched edge. Lemma 5 implies that B⃗(σi) is rescaled to B⃗(σi) cos θ, and so
B⃗(σi) · B⃗(σj) = tij cos θ.

3. (i, j) ∈ S̃2: i and j belong to two different matched edges. Therefore, it has both Bloch
vectors rescaled, i.e. B⃗(σi) · B⃗(σj) =

(
B⃗(ρi) · B⃗(ρj)

)
cos2 θ = tij cos2 θ. ◀

Lemma 9 allows us to compute the energy obtained by the state ρP MAT CH (θ):

PMATCH(θ) def=
∑

(i,j)∈E

wij · Tr[hQMC
ij ρP MAT CH ]

=
∑

(i,j)∈M̃

wij

2 (1 + sin θ) (1 − tij) +
∑

(i,j)∈S̃0

wij

2 (1 − tij)

+
∑

(i,j)∈S̃1

wij

2 (1 − tij cos θ) +
∑

(i,j)∈S̃2

wij

2
(
1 − tij cos2 θ

)
=

∑
(i,j)∈E

wij

2
(
1 − tij cos2 θ

)
+

∑
(i,j)∈M̃

wij

2
(
(1 + sin θ) (1 − tij) − (1 − tij cos2 θ)

)
+

∑
(i,j)∈S̃0

wijtij
2

(
cos2 θ − 1

)
+

∑
(i,j)∈S̃1

wijtij
2

(
cos2 θ − cos θ

)
=

∑
(i,j)∈E

wij

2
(
1 − tij cos2 θ

)
+

∑
(i,j)∈M̃

wij

2 (sin θ (1 − tij (1 + sin θ)))

−
∑

(i,j)∈S̃0

wijtij
2 sin2 θ +

∑
(i,j)∈S̃1

wijtij
2

(
cos2 θ − cos θ

)
. (15)

1 Although M̃ is a maximum matching, its edge set E′ is a subset of E, and so S̃0 may be non-empty.
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Note that M̃ is a maximum-weight integral matching with respect to the rescaled weights
defined in Equation (4). Thus, we can invoke Equation (14) to replace the sum over M̃ in
Equation (15) with a sum over E. Since the rescaled weights are positive for all edges in M̃ ,
we have

PMATCH(θ) ≥
∑

(i,j)∈E

wij

2

(
1 − tij cos2 θ + d

(
sin θ (1 − tij (1 + sin θ))

)(
−1 + 3sij

2

)+
)

−
∑

(i,j)∈S̃0

wijtij

2 sin2 θ +
∑

(i,j)∈S̃1

wijtij

2
(
cos2 θ − cos θ

)
. (16)

Note that tij is a random variable because PROD is a randomized algorithm. The analysis
of PROD in [7] is based on [4], which shows that E[tij ] = F (sij). A definition of F in the
context of QMC appears in [17, Equation 3]. For our purposes, it is enough to note that F
is an odd function because it has the form

F (s) = c · s ·G(s2) , (17)

where c > 0 is a constant and G ≥ 0 is a hypergeometric function. Since Equation (16) is
linear in tij , we use linearity of expectation to conclude

E[PMATCH(θ)] ≥∑
(i,j)∈E

wij

2

(
1 − F (sij) cos2 θ + d sin θ (1 − F (sij) (1 + sin θ))

(
−1 + 3sij

2

)+
)

−
∑

(i,j)∈S̃0

wij

2 F (sij) sin2 θ +
∑

(i,j)∈S̃1

wij

2

((
cos2 θ − cos θ

)
F (sij)

)
. (18)

The following lemma lets us analyze the performance of Algorithm 3, which takes the better
of two algorithms, MATCH and PMATCH.

▶ Lemma 10 (Reducing worst-case bounds to a single edge). Suppose we have a collection of k
approximation algorithms {Aℓ}ℓ∈[k] and an upper bound on the maximum energy λmax(HG) ≤∑

e∈E webe, where be ∈ B = (0, bmax] for all e ∈ E, and bmax is a constant. Furthermore,
suppose that the energy that algorithm Aℓ earns on edge e is a function of be, which we denote
aℓ(be), such that Aℓ earns

∑
e∈E we aℓ(be). Then, by running each of Aℓ∈[k] and taking the

output with the maximum energy, we can obtain an approximation ratio

α ≥ max
µℓ

min
b

∑
ℓ

µℓ
aℓ(b)
b

,

where the maximum is taken over valid probability distributions

{ µ |
∑
ℓ∈[k]

µℓ = 1, 0 ≤ µℓ ≤ 1 ∀ℓ ∈ [k] } ,

and the minimum is taken over b ∈ B.
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Proof. Given a specific graph G, outputting the best of Aℓ is at least as good as outputting
the result of Aℓ with probability µℓ, for all ℓ ∈ [k] and for any possible µ. Now, given a fixed
distribution µ, the approximation ratio is at least

α ≥
∑

ℓ

µℓ

∑
e∈E we aℓ(be)∑

e∈E webe

=
∑

ℓ

µℓ

∑
e∈E

(
webe∑

e∈E webe

)
aℓ(be)
be

≥ min
e∈E

∑
ℓ

µℓ
aℓ(be)
be

≥ min
b∈B

∑
ℓ

µℓ
aℓ(b)
b

.

The third line follows because{
webe∑

e∈E webe

}
e∈E

is a distribution over E. Since the statement is true for all possible distributions µ, we take
the maximum over µ to finish the lemma. ◀

We apply Lemma 10 with the SDP upper bound in Equation (13) and our two algorithms
MATCH and PMATCH as described in Algorithm 3. For PMATCH, we consider the
minimum of three different functions, depending on if an edge is in S̃0, in S̃1, or otherwise.
For MATCH, we derived in Section 2.3 that the energy obtained by MATCH on G is 3M+W

2 .
Since M is a maximum-weight matching with respect to G, we may invoke Equation (14) to
express

M ≥
∑

(i,j)∈E

wij · d ·
(

−1 + 3sij

2

)+
,

implying that MATCH achieves energy at least

3M +W

2 ≥
∑

(i,j)∈E

wij

2

(
1 + 3d

(
−1 + 3sij

2

)+
)
.

We have lower-bounded the energy that each algorithm earns on an edge (i, j) as a function
of sij . Note that the SDP upper bound is trivial (i.e. at most 0) when sij ≥ 1

3 , so we
may search over s ∈ [−1, 1/3). Altogether, Lemma 10 implies that Algorithm 3 obtains
approximation ratio at least

α ≥ max
µ∈[0,1], θ∈[0,π/2]

min
{

min
s∈[−1,1/3)

µEP M (θ) + (1 − µ)EM ,

min
s∈[−1,1/3)

µE′
P M (θ) + (1 − µ)EM ,

min
s∈[−1,1/3)

µE′′
P M (θ) + (1 − µ)EM

}
, (19)
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EP M (θ) def=
1 − F (s) cos2 θ + d sin θ (1 − F (s) (1 + sin θ)) ·

(
− 1+3s

2
)+

1 − 3s , (20)

E′
P M (θ) def=

1 − F (s) cos θ + d sin θ (1 − F (s) (1 + sin θ)) ·
(

− 1+3s
2
)+

1 − 3s , (21)

E′′
P M (θ) def=

1 − F (s) + d sin θ (1 − F (s) (1 + sin θ)) ·
(

− 1+3s
2
)+

1 − 3s , (22)

EM
def=

1 + 3 d (− 1+3s
2 )+

1 − 3s . (23)

In the above, µ is demoted to a scalar (which fully describes a probability distribution over
two variables). Equation (23) is the approximation ratio obtained by MATCH on an edge
with s = sij . The expected approximation ratio obtained by PMATCH is Equation (22) on
an edge in S̃0, Equation (21) on an edge in S̃1, and is Equation (20) on all other edges.

We further simplify Equation (19). Recall that F is an odd function (Equation (17)).
So, for all θ ∈ [0, π/2] we have E′′

P M (θ) ≤ E′
P M (θ) ≤ EP M (θ) when s > 0 and EP M (θ) ≤

E′
P M (θ) ≤ E′′

P M (θ) when s ≤ 0. So we may rewrite Equation (19) as

α ≥ max
µ∈[0,1], θ∈[0,π/2]

min
{

min
s∈[−1,0)

µEP M (θ) + (1 − µ)EM , min
s∈[0,1/3)

µE′′
P M (θ) + (1 − µ)EM

}
.

(24)

One may then search over the three free parameters µ, θ, and s using an enumeration of the
feasible ranges. For a more efficient approach, it is also possible to solve a linear program
where the number of variables and constraints is based on an enumeration of the feasible
ranges for s and θ. We obtain α > 0.611 for d = 14/15 at θ = 1.286 and µ = 0.861. By
Lemma 7, our algorithm thus achieves a 0.611-approximation in expectation if ℓ = 13. If
the factor d in Lemma 7 is improved to 1, we would obtain α > 0.614 at θ = 1.288 and
µ = 0.881.

▶ Remark 11. We may simplify Equation (19) by assuming s ∈ [−1, 0). This is because if
s ∈ [0, 1/3) then EM ≥ 1 and E′′

P M (θ) ≥ 1 for all θ ∈ [0, π/2]. This follows from F being
odd, and in addition |F (s)| ≤ |s| for all s ∈ [−1, 1].

5 Discussion

In this work, we introduce two novel techniques for constructing algorithms for the Quantum
MaxCut and EPR Hamiltonians on arbitrary graphs. The main techniques are a) partially
entangling edges in a matching towards an entangled state while maintaining the direction
of the marginal Bloch vectors as b) choosing matching with respect to reweighted graphs.
We show that these techniques immediately lead to state-of-the-art approximation ratios for
both problems. We believe that these techniques may be combined with other methods to
obtain further improvements, and encourage further studies in this direction.
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